11,516 research outputs found

    On the two-point boundary value problem for quadratic second-order differential equations and inclusions on manifolds

    Get PDF
    The two-point boundary value problem for second-order differential inclusions of the form (D/dt)m˙(t)∈F(t,m(t),m˙(t)) on complete Riemannian manifolds is investigated for a couple of points, nonconjugate along at least one geodesic of Levi-Civitá connection, where D/dt is the covariant derivative of Levi-Civitá connection and F(t,m,X) is a set-valued vector with quadratic or less than quadratic growth in the third argument. Some interrelations between certain geometric characteristics, the distance between points, and the norm of right-hand side are found that guarantee solvability of the above problem for F with quadratic growth in X. It is shown that this interrelation holds for all inclusions with F having less than quadratic growth in X, and so for them the problem is solvable

    Improving Results on Solvability of a Class of nth-Order Linear Boundary Value Problems

    Get PDF
    Copyright © 2016 P. Almenar and L. Jodar. This is an open access article distributed under the Creative Commons Attribution ´ License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.[EN] This paper presents a modification of a recursive method described in a previous paper of the authors, which yields necessary and sufficient conditions for the existence of solutions of a class of �th-order linear boundary value problems, in the form of integral inequalities. Such a modification simplifies the assessment of the conditions on restricting the inequality to be verified to a single point instead of the full interval where the boundary value problem is defined. The paper also provides an error bound that needs to be considered in the integral inequalities of the previous paper when they are calculated numericallyThis work has been supported by the Spanish Ministerio de Economia y Competitividad Grant MTM2013-41765-P.Almenar, P.; Jódar Sánchez, LA. (2016). Improving Results on Solvability of a Class of nth-Order Linear Boundary Value Problems. International Journal of Differential Equations. https://doi.org/10.1155/2016/3750530S10Almenar, P., & Jódar, L. (2015). Solvability ofNth Order Linear Boundary Value Problems. International Journal of Differential Equations, 2015, 1-19. doi:10.1155/2015/230405Keener, M. S., & Travis, C. C. (1978). Positive Cones and Focal Points for a Class of nth Order Differential Equations. Transactions of the American Mathematical Society, 237, 331. doi:10.2307/1997625Gentry, R. D., & Travis, C. C. (1976). Comparison of eigenvalues associated with linear differential equations of arbitrary order. Transactions of the American Mathematical Society, 223, 167-167. doi:10.1090/s0002-9947-1976-0425241-xSchmitt, K., & Smith, H. L. (1978). Positive solutions and conjugate points for systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2(1), 93-105. doi:10.1016/0362-546x(78)90045-7Tomastik, E. C. (1983). Comparison Theorems for Second Order Nonselfadjoint Differential Systems. SIAM Journal on Mathematical Analysis, 14(1), 60-65. doi:10.1137/0514005Hankerson, D., & Henderson, J. (1990). Positive Solutions and Extremal Points for Differential Equations. Applicable Analysis, 39(2-3), 193-207. doi:10.1080/00036819008839980Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive solutions and conjugate points for multipoint boundary value problems. Journal of Differential Equations, 95(1), 20-32. doi:10.1016/0022-0396(92)90041-kEloe, P. W., & Henderson, J. (1993). Focal Points and Comparison Theorems for a Class of Two Point Boundary Value Problems. Journal of Differential Equations, 103(2), 375-386. doi:10.1006/jdeq.1993.1055Eloe, P. W., & Henderson, J. (1994). Focal Point Characterizations and Comparisons for Right Focal Differential Operators. Journal of Mathematical Analysis and Applications, 181(1), 22-34. doi:10.1006/jmaa.1994.1003Eloe, P. ., Henderson, J., & Thompson, H. . (2000). Extremal points for impulsive Lidstone boundary value problems. Mathematical and Computer Modelling, 32(5-6), 687-698. doi:10.1016/s0895-7177(00)00165-5Eloe, P. W., & Ahmad, B. (2005). Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions. Applied Mathematics Letters, 18(5), 521-527. doi:10.1016/j.aml.2004.05.009Graef, J. R., & Yang, B. (2006). Positive solutions to a multi-point higher order boundary value problem. Journal of Mathematical Analysis and Applications, 316(2), 409-421. doi:10.1016/j.jmaa.2005.04.049Graef, J. R., Kong, L., & Wang, H. (2008). Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. Journal of Differential Equations, 245(5), 1185-1197. doi:10.1016/j.jde.2008.06.012Zhang, X., Feng, M., & Ge, W. (2009). Existence and nonexistence of positive solutions for a class of nth-order three-point boundary value problems in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications, 70(2), 584-597. doi:10.1016/j.na.2007.12.028Zhang, P. (2011). Iterative Solutions of Singular Boundary Value Problems of Third-Order Differential Equation. Boundary Value Problems, 2011, 1-10. doi:10.1155/2011/483057Sun, Y., Sun, Q., & Zhang, X. (2014). Existence and Nonexistence of Positive Solutions for a Higher-Order Three-Point Boundary Value Problem. Abstract and Applied Analysis, 2014, 1-7. doi:10.1155/2014/513051Hao, X., Liu, L., & Wu, Y. (2015). Iterative solution to singular nth-order nonlocal boundary value problems. Boundary Value Problems, 2015(1). doi:10.1186/s13661-015-0393-6Eloe, P. W., & Ridenhour, J. (1994). Sign Properties of Green’s Functions for a Family of Two-Point Boundary Value Problems. Proceedings of the American Mathematical Society, 120(2), 443. doi:10.2307/2159880Hämmerlin, G., & Hoffman, K.-H. (1991). Numerical Mathematics. Undergraduate Texts in Mathematics. doi:10.1007/978-1-4612-4442-

    A Sufficient Condition for Power Flow Insolvability with Applications to Voltage Stability Margins

    Full text link
    For the nonlinear power flow problem specified with standard PQ, PV, and slack bus equality constraints, we present a sufficient condition under which the specified set of nonlinear algebraic equations has no solution. This sufficient condition is constructed in a framework of an associated feasible, convex optimization problem. The objective employed in this optimization problem yields a measure of distance (in a parameter set) to the power flow solution boundary. In practical terms, this distance is closely related to quantities that previous authors have proposed as voltage stability margins. A typical margin is expressed in terms of the parameters of system loading (injected powers); here we additionally introduce a new margin in terms of the parameters of regulated bus voltages.Comment: 12 pages, 7 figure

    Solvability of the Dirichlet, Neumann and the regularity problems for parabolic equations with H\"older continuous coefficients

    Full text link
    We establish the L2L^2-solvability of Dirichlet, Neumann and regularity problems for divergence-form heat (or diffusion) equations with H\"older-continuous diffusion coefficients, on bounded Lipschitz domains in Rn\mathbb{R}^n. This is achieved through the demonstration of invertibility of the relevant layer-potentials which is in turn based on Fredholm theory and a new systematic approach which yields suitable parabolic Rellich-type estimates

    Boundary effects on localized structures in spatially extended systems

    Full text link
    We present a general method of analyzing the influence of finite size and boundary effects on the dynamics of localized solutions of non-linear spatially extended systems. The dynamics of localized structures in infinite systems involve solvability conditions that require projection onto a Goldstone mode. Our method works by extending the solvability conditions to finite sized systems, by incorporating the finite sized modifications of the Goldstone mode and associated nonzero eigenvalue. We apply this method to the special case of non-equilibrium domain walls under the influence of Dirichlet boundary conditions in a parametrically forced complex Ginzburg Landau equation, where we examine exotic nonuniform domain wall motion due to the influence of boundary conditions.Comment: 9 pages, 5 figures, submitted to Physical Review

    Nonlinear dynamics of sand banks and sand waves

    Get PDF
    Sand banks and sand waves are two types of sand structures that are commonly observed on an off-shore sea bed. We describe the formation of these features using the equations of the fluid motion coupled with the mass conservation law for the sediment transport. The bottom features are a result of an instability due to tide–bottom interactions. There are at least two mechanisms responsible for the growth of sand banks and sand waves. One is linear instability, and the other is nonlinear coupling between long sand banks and short sand waves. One novel feature of this work is the suggestion that the latter is more important for the generation of sand banks. We derive nonlinear amplitude equations governing the coupled dynamics of sand waves and sand banks. Based on these equations, we estimate characteristic features for sand banks and find that the estimates are consistent with measurements

    Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity

    Get PDF
    The bifurcation of asymmetric superconducting solutions from the normal solution is considered for the one-dimensional Ginzburg--Landau equations by the methods of formal asymptotics. The behavior of the bifurcating branch depends on the parameters d, the size of the superconducting slab, and κ\kappa, the Ginzburg--Landau parameter. The secondary bifurcation in which the asymmetric solution branches reconnect with the symmetric solution branch is studied for values of (κ,d)(\kappa,d) for which it is close to the primary bifurcation from the normal state. These values of (κ,d)(\kappa,d) form a curve in the κd\kappa d-plane, which is determined. At one point on this curve, called the quintuple point, the primary bifurcations switch from being subcritical to supercritical, requiring a separate analysis. The results answer some of the conjectures of [A. Aftalion and W. C. Troy, Phys. D, 132 (1999), pp. 214--232]
    • …
    corecore