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The two-point boundary value problem for second-order differential inclusions of the
form (D/dt)m(t) € F(t,m(t),m(t)) on complete Riemannian manifolds is investigated
for a couple of points, nonconjugate along at least one geodesic of Levi-Civitd connection,
where D/dt is the covariant derivative of Levi-Civitd connection and F(t,m,X) is a set-
valued vector with quadratic or less than quadratic growth in the third argument. Some
interrelations between certain geometric characteristics, the distance between points, and
the norm of right-hand side are found that guarantee solvability of the above problem for
F with quadratic growth in X. It is shown that this interrelation holds for all inclusions
with F having less than quadratic growth in X, and so for them the problem is solvable.

Copyright © 2006 Y. E. Gliklikh and P. S. Zykov. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and discussion of the problem

Let M be a finite-dimensional manifold and TM be its tangent bundle with the natural
projection 7w : TM — M. Consider a set-valued map F : R X TM — TM such that for any
point (m,X) € TM (this means that X € T,,M, i.e., X is a tangent vector to M at the
point m € M) the relation 7F(¢,m,X) = n(m,X) = m holds.

The main aim of this paper is investigation of two-point boundary value problem for
second-order differential inclusions of the form

%m(t) € F(t,m(t),m(t)) (1.1)
with F having quadratic or less than quadratic growth in the third argument where D/dt
is the covariant derivative of a certain connection.

Such inclusions arise in description of complicated mechanical systems on nonlinear
configuration spaces where the set-valued right-hand side F is generated by an essen-
tially discontinuous force field or by a force with control (see, e.g., [8, 10]). That is why
everywhere below we call F a set-valued force field.
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2 Two-point boundary value problem

Besides its mechanical meaning this problem with F quadratic in X is important since
it is a generalization of the well-known classical problem on the possibility to join two
given points in a manifold by a geodesic curve of a certain connection (see, e.g., [17]).
Recall that if V and V are covariant derivatives of two different connections on a manifold
M, there exists a (1,2)-tensor field S(-,-) on M such that for any two vector fields X and
Y on M the equality VxY = VxY + S(X, Y) holds (see, e.g., [17, Statement 7.10]). From
this it follows that in terms of covariant derivative V the geodesics of another connection
V are always described by an equation of the form

2 in(t) = alm(t), (), (1.2)
where a(m,X) = S,,(X,X) is a vector filed on M that is quadratic in X € T,,,M at any
point m € M.

For the Levi-Civita connection on a complete Riemannian manifold the solvability of
two-point boundary value problem for (1.2) for any points my, m; follows from Hopf-
Rinow theorem (see, e.g., [2, 17]). But it is not the case even for a Riemannian connection
with nonzero torsion: in [1, 6, 14] examples of Riemannian connections (in particular, on
a compact manifold, two-dimensional torus) are presented for which this problem may
not be solvable.

Consider two elementary and nevertheless characteristic examples where the two-
point boundary value problem for (1.2) (and so for (1.1)) may not be solvable in spite of
the fact that (1.1) is given in terms of Levi-Civitd connection of a complete Riemannian
metric.

Example 1.1. Consider a mechanical system on the unit sphere $?, embedded into R?,
with the force field a(7,7) = [#,7]]|7|| where the square brackets denote vector prod-
uct. Taking into account the fact that §? is embedded into R*, we can apply d’Alembert
principle and reduce (1.2) to the equation of motion with a constraint in the form: 7 =
[7,7]1I7|| — 2T# where the kinetic energy T = (1/2)72. Since the acceleration is everywhere
orthogonal to the velocity, it is obvious that T = 0. Consider the vector b = [#,7]. Direct
calculations yield b = 0. This means that any trajectory satisfies the relation (b,7) = const
(the parentheses denote scalar product in R?), that is, it is a circle on the sphere that
also lies in a plane orthogonal to the constant vector b. Antipodal points are joint by a
great circle, that is, (b,7) = 0. From this we get the equality for mixed product (7,#,7) =0
that is impossible. Thus the antipodal points on the sphere cannot be connected with a
trajectory.

Example 1.2. Let X = (x, y) be a vector from R? and let a > 0 be a real number; by || - ||
denote the norm in R2. In R? consider the following system of (1.2) type:

() =—allXlly,  y@) =alXlx (1.3)

with initial condition X (0) = 0, X(0) = X,. Since here the vectors X and X are orthogonal
to each other along the solution, | X|| is constant. Let || Xy || = C, represent the vector Xy in
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the form Xy, = C(—singg,cos¢g). Then the solution of above-mentioned Cauchy prob-
lem takes the form x(t) = (1/a) cos(Cat+¢g) — (1/a) cos @y, y(t) = (1/a)sin(Cat+¢@y) —
(1/a)sing@y. Hence any solution is a circle with the radius 1/a and it does not leave the
disc of radius 2/a with the center at the initial point. We would like to emphasize that the
radius is being reduced as a is increasing.

If the points are conjugate along all geodesics of Levi-Civitd connection joining them
(like antipodal points in Example 1.1), the problem may not be solvable even for uni-
formly bounded a(m,X) and for a(m, X) having linear growth in velocities (see [8, 10]).
Example 1.2 is representative specially for quadratic right-hand sides.

The two-point boundary value problem for (1.1) and (1.2) with nonconjugate points
has been investigated under various conditions, more restrictive than ours in this paper.
For (1.2) (i.e., for single-valued force fields) its solvability was shown by Gliklikh for con-
tinuous force fields in [7] (bounded case) and in [9] (linear growth in X), by Yakovlev,
for example, in [18] for smooth force fields under some complicated conditions and by
Ginzburg in [6] for smooth force fields with less than quadratic growth in X. The solv-
ability of this problem for inclusion (1.1) was shown for set-valued force fields of several
types (Gel'man and Gliklikh [5], Gliklikh and Obukhovskii [12, 13], Kisielewicz [16],
etc.) but only in uniformly bounded case.

In this paper, we consider the above-mentioned problem for (1.1) with force fields
having quadratic or less than quadratic growth in X. We deal with F(¢,m,X) either al-
most lower semicontinuous or satisfying upper Carathéodory condition (in the latter
case F(t,m,X) has convex images). We suppose that m, and 1, are not conjugate along
at least one Levi-Civita geodesic and show that if F(t,,X) has less than quadratic growth
in X (see Definition 3.1 below), there exists a solution of (1.1) that joins those points. For
the case of F having quadratic bound in X (see Definition 3.2 below, it is a natural gen-
eralization of quadratic growth property for a right-hand side of (1.2)) we find a certain
condition on geometric properties of M, Riemannian distance between m, and m; and
the norm of operator F that guarantees the solvability of the problem (see Remark 3.9 be-
low). The former result is a generalization of that from [6] for second-order differential
equations with smooth force fields having less that quadratic growth in velocities. Notice
that in [6] the arguments based on uniqueness of solution to Cauchy problem for (1.2)
are used that are not applicable to the case of inclusion (1.1).

Preliminary material from set-valued analysis can be found in [3, 4, 15], from geome-
try of manifolds, in [2, 14, 17].

2. Mathematical machinery

In this section, we modify some constructions from [8, 10] for the problem under con-
sideration.

Let M be a complete Riemannian manifold. Consider my € M, [0,1] C R and let
v: [0,1] — Tyy,M be a continuous curve. It is shown that there exists unique C'-curve
m:[0,1] — M such that m(0) = m, and the vector #i(t) is parallel along m(-) to the vec-
tor v(t) € Ty, M at any t € [0,1].

Denote the curve m(t), constructed above from the curve v(t), by the symbol Fv(¢).
Thus, we have defined a continuous operator & : C°([0,1], T, M) — C'([0,1],M) that
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sends the Banach space C°([0,1], T,,, M) of continuous maps (curves) from [0, 1] to T,,, M
into the Banach manifold C!([0,1],M) of C!-maps from [0, 1] to M.

By Ui C C°([0,1], T,s,M) we denote the ball of radius k centered at the origin in
C°([0,1], Ty M).

Let a point m; € M be nonconjugate to the point my € M along a geodesic g(t) of the
Levi-Civitd connection. Without loss of generality we postulate that the parameter ¢ on
g(¢) is taken so that g(0) = mg and g(1) = m;.

LemmMA 2.1. There exists a ball U, C C°([0,1], Ty, M) with a radius € > 0 such that for any
curve u(t) € U, C C°([0,1], Ty, M) there exists a unique vector C;, belonging to a certain
bounded neighbourhood V of the vector y(0) in Ty, M, that is continuous in ti and such that
P(u+Cy)(1) = my.

Proof. By the construction of operator ¥ its value ¥v,(1) on the constant curve v, (t) =
7(0) coincides with exp,, 7(0) = m,. Since mg and m; are not conjugate along y, exp,, isa
diffeomorphisms of a certain neighbourhood y(0) € T,,, M onto a neighbourhood of the
point m; in M. Applying the implicit function theorem, one can easily show that the per-
turbation of exponential map, that sends X € T,,,M to ¥(X + )(1), is also a diffeomor-
phism of a certain neighbourhood V of (0) onto a neighbourhood of m, in M for any
curve u(t) from a small enough e-neighbourhood of the origin in C°([0,1], T)y,M). O

Introduce the notation sup.y |Cll = C where V is from Lemma 2.1.

LEMMA 2.2. In conditions and notations of Lemma 2.1 let K >0 and t; > 0 be such that
t;'e > K. Then for any curve u(t) € Ugx C C°([0,t], Tyn,M) there exists a unique vector C,
in a neighbourhood t; 'V of the vector t;'§(0) in Ty, M, continuously depending on u and
such that S(u+ C,)(t;) = mj.

Proof. For u(t) € Ux C C°([0,1], TryyM) introduce u(t) = tju(t; - t) € U C C°([0,1],
Tm,M) and C, = t;'C;. From Lemma 2.1 we get F(ii + C;)(1) = m; and (d/dt)S (i +
C,g)(t) is parallel to #(¢) + C;. For the curve y(t) = F(u+ Cy)(t - t;) we have (d/dt)y(t) =
71(d/dt)SF (i + Cy)(t - 1) and this vector is parallel along the same curve to the vector
t1 Y@a(t) + Cy) = u(t) + Cy. Thus p(t) = L(u+ C,)(t) = F(u+Cy)(t- ;') for t € [0,11].
Hence $(u+C,)(t) = LU+ Cy)(1) = my. O

Lemmas 2.1 and 2.2 form a modification of [10, Theorem 3.3].

LeEmMA 2.3. For specifiedt; >0 and K > 0 all curves S(v(t) + C,)(t) withv € Ux C C°([0, ],
TmyM) lie in a compact set E C M where B depends on ¢ and C introduced above.

Indeed, since the parallel translation preserves the norm of a vector, for any v(t) as
above the length of S(v(t) + C,)(t) is not greater than [;' (K + [|C,|)dt < [;' t7' (e + C)dt
= fol(s + C)dt = e+ C. Since M is complete, by Hopf-Rinow theorem any metrlc ball of
finite radius ¢ + C is compact.

LemMA 2.4. Let a real number § satisfy the inequality 0 < § < /(e + C)2. Then there exists
a small enough positive number ¢ such that (et; ' — @) > 0 and the inequality §((et;' — ¢) +
Cty")? < ety? — oty ! holds.
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Proof. For § satisfying the hypothesis of the lemma we get §(et; ' + Ct; )% < ety 2. From
continuity of both sides of this inequality it follows that there exists a small enough num-
ber ¢ >0 such that (ef;' — ¢) > 0 and the inequality 8((et; ! — @) + Ct; 1)? < et;? — ot}
holds. O

3. The main statements

Everywhere below M is a complete Riemannian manifold, by || - || we denote the norm
in a tangent space generated by the Riemannian metric. Introduce the norm of the set
IE(t,m,X)|l € T, M by usual formula || F(t,m,X)| = SUPy F(1,m,x) Iyl

Definition 3.1. We say that F(t,m,X) has less than quadratic growth in X if for any com-
pact ® C M and any finite interval [0,] the relation

. |[E(t,m,X)||

lim =0 3.1
IXl—  [IX]2 (3-1)

holds uniformly in ¢ € [0,]] and m € ©.

Definition 3.2. We say that F(¢,m,X) has quadratic bound in X if for any compact ® ¢ M
and any finite interval [0,/] the relation

. IF(tm, X))

im =a(t,m 3.2
IXl=eo  [IX]|I? (t;m) (32)

holds uniformly in ¢ € [0,]] and m € ® where a(t,m) > 0 is a real bounded function on
[0,1] X © that is not identical zero.

Definition 3.3. We say that F(t,m,X) satisfies upper Carathéodory conditions if:
(1) for every (m,X) € TM the map F(-,m,X):I — T,,M is measurable,
(2) for almost all t € I the map F(t,-,-) : TM — TM is upper semicontinuous.

Definition 3.4. Let I = [0,I] C R. The set-valued force field F: I x TM — TM is called
almost lower semicontinuous if there exists a countable sequence of disjoint compact sets
{I,}, I, C I such that: (i) the measure of I\ U, I, is equal to zero; (ii) the restriction of F
on each I, X TM is lower semicontinuous.

THEOREM 3.5. Let F(t,m,X) satisfy the upper Carathéodory condition, has convex closed
bounded images and has less than quadratic growth in X. Let the points m; and my be
nonconjugate along a certain geodesic g of the Levi-Civitd connection. Then there exists a
positive number L(mg, my,g) such that if 0 < t; < L(mg,m,,g) there exists a solution m(t) of
(1.1), for which m(0) = mg and m(t,) = m.

Proof. For a C'-curve y(t) = Fv(t), v(-) € C°(I, T,y,M), consider the set-valued vector
field F(¢,y(t),p(t)). Denote by I' the operator of parallel translation of vectors along y(-)
at the point y(0) = my. Apply operator T to all sets F(t,y(t),y(t)) along p(-). As a result
forany v € C°(I, T,,, M) we obtain a set-valued map TF¥v : [0,I] — T,,,M that has convex
images. It is shown in [13] that the map TFY : C°([0,1], T,,M) X [0,1] — T,,, M satisfies
upper Carathéodory conditions. Denote by PTFFv the set of all measurable selections
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of TF¥v : [0,1] = T,,M (such selections exist by [3]). Define on C°([0,£], T, M) the
set-valued operator [ PTFY by the formula

J@FFSPV - Uot F@)de| f() e @rp%}. (3.3)

It is shown in [13] that [ PTFY is upper semicontinuous, has convex images and sends
bounded sets from C°([0,¢;], T\, M) into compacts.

Consider the numbers € and C constructed for the points my and m; and geodesic g.
Let E be a compact from Lemma 2.3, and let [0,!] be a certain interval. Choose a positive
number & < &/(e+ C)2. Since F satisfies Definition 3.1, one can easily see that there exists
anumber Q > 0 such that for || X|| = Q the inequality

max _||F(t,m,Y)|| < 81 X||? (3.4)
(t,m)eIXE
holds for all | Y| < [|X]. For t; > 0 small enough we get t; € [0,]] and tfls — ¢ > Q where
¢ is from Lemma 2.4. Determine L(mg,m,,g) as the upper bound of #; such that the
above relations hold. Let 0 < t; < L(mmo,m;,g). For this ¢; denote by K the corresponding
number t; 'e — ¢.

By the construction t;'e > K and so by Lemma 2.2 the operator % : Ux — C°([0,1,],
Ty M):

% (v) = J?H‘F&P(v+ c) (3.5)

is well posed. As well as [ PTFY this operator is upper semicontinuous, has convex images
and sends bounded sets from C°([0,1,], T}, M) into compacts.

For v € Uk € C°([0,1,], Tyn,M), since the parallel translation preserves the norm of a
vector, from the construction of operator &, from (3.4) and from Lemma 2.4 it follows
that

HF(t,Ef’(v(t) +GC,), %S’(v(t) + CV)> H <O(tile—g+CHY) < (t2e—t7'9).  (3.6)
Since parallel translation preserves the norm of a vector, from the last inequality it follows
that

lEe+e)l= || [oregpma)

<(ti'e—¢) =K. (3.7)
CO([0,1], Ty M)

Thus % sends the ball Uk into itself and from Schauder’s principle for upper semicontin-
uous set-valued maps (see, e.g., [3]) it follows that it has a fixed point u* &€ Uk, that
is, u* € Fu*. Let us show that m(t) = S(u*(¢) + C,+) is the desired solution. By the
construction we have m(0) = mg and m(t;) = m;, m(t) is a C'-curve and ri(t) is abso-
lutely continuous. Note that &* is a selection of TF(t,¥(u* + Cy+ ), (d/dt) S (u* + Cy+))
because u* is a fixed point of %. In other words, the inclusion #*(t) € TF(t,¥(u* +
Cy+),(d/dt)F (u* + Cy+)) holds for all points ¢ at which the derivative exists. Using the
properties of the covariant derivative and the definition of ™, one can show that &*(¢) is
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parallel to (D/dt)m(t) along m(-) and TF(t,¥(u* + Cy+ ), (d/dt)F (u* + C,+)) is parallel
to F(t,m(t),m(t)). Hence, (D/dt)m(t) € F(t,m(t),r(t)). O

THEOREM 3.6. Let F(t,m,X) satisfy the upper Carathéodory condition, has convex closed
bounded images and has quadratic bound in X. Let the points m; and mq be nonconju-
gate along a certain geodesic g of the Levi-civitd connection. Let in addition for t € [0,]]
and m € B, where [0,1] is a certain interval and Z is the compact from Lemma 2.3, for
the function a(t,m) from Definition 3.2 there exists a real number § such that the esti-
mate a(t,m) < & < &¢/(e + C)? holds. Then there exists a positive number L(mq,my,g) such
that if 0 < t; < L(mg,m,,g) there exists a solution m(t) of (1.1), for which m(0) = my and
m(tl) =m.

The proof of Theorem 3.6 follows the same scheme of arguments as that for Theorem
3.5. The only modification is that here for F with quadratic bound in X we assume the ex-
istence of & such that a(t,m) < § < ¢/(¢ + C)? while in the proof of Theorem 3.5 analogous
¢ is shown to exist for any F with less than quadratic growth in X.

THEOREM 3.7. Let F(t,m,X) be almost lower semicontinuous, has closed bounded images
and has less than quadratic growth in X. Let the points m; and m be nonconjugate along
a certain geodesic g of the Levi-civitd connection. Then there exists a positive number L(my,
my,g) such that if 0 <t; < L(mgy,m;,g) there exists a solution m(t) of (1.1), for which
m(0) = moy and m(t,) = my.

Proof. Here we use the same notations as in the proof of Theorem 3.5. Notice that from
the condition of less than quadratic growth for F it follows that for all v € C°([0,1], T\, M)
the curves from PTFYv are integrable. Hence the set-valued map PTFY sends C°([0,1],
TmyM) into L*(([0,1],4, 1), Trsy M), where 9 is the Borel o-algebra and y is the normal-
ized Lebesgue’s measure. Since F is almost lower semicontinuous, in complete analogy
with [15] one can easily show that PTFY : C°([0,1], Ty, M) — L*(([0,1],4, 1), Trsy M) is
lower semicontinuous and has decomposable images (see the definition of decomposable
image, e.g., in [4]). Then by Bressan-Kolombo theorem (see, e.g., [4]) it has a continuous
selection that we denote by pI'FY.

Choose the numbers Q, L(myg,m1,g), 0 < t; < L(mg,m1,¢) and K as in the proof of
Theorem 3.5. Then on the ball Ux c C°([0,t], T;,, M) the operator

Gy = fprw((v(s) +G), L (us) +Cv)>d5: Uk — C([0,6], To,M)  (3.8)
0 dt

is well posed. As a corollary to [11, Lemma 19], we get that % is completely continuous.
Since parallel translation preserves the norm of a vector, from the construction of & for
any u € Uk with given F we get

|Gv]| = H Ltpl"F (5,9’(1/(5) +GCy), %S’(V(s) + CV)>ds

<('e—¢) =K

CO([0,t1], Ty M) (3.9
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Hence % sends Uk into itself and by classical Schauder’s principle it has a fixed point
u* € Ug. Using the same arguments, as in the proof of Theorem 3.5, one can easily prove
that m(t) = F(u™ + C¥)(¢) is a solution of (1.1) such that m(0) = mg and m(t;) =m;. O

TueoreM 3.8. Let F(t,m,X) be almost lower semicontinuous, has closed bounded images
and quadratic bound in X. Let the points m, and mq be nonconjugate along a certain ge-
odesic g of the Levi-civitd connection. Let in addition for t € [0,1] and m € E, where [0,]]
is a certain interval and E is the compact from Lemma 2.3, for the function a(t,m) from
Definition 3.2 there exists a real number § such that the estimate a(t,m) < & < &/(e + C)?
holds. Then there exists a positive number L(mgy,my,g) such that if 0 < t; < L(mg,m,,g)
there exists a solution m(t) of (1.1), for which m(0) = my and m(t,) = my.

As well as in the case of Theorems 3.5 and 3.6, Theorem 3.8 is proved in complete
analogy with Theorem 3.7 with the following minor modification: in Theorem 3.8 for F
with quadratic bound in X we assume the existence of § such that a(t,m) < § < ¢/(e+ C)?
while in the proof of Theorem 3.7 we use the fact that analogous & does exist for any F
with less than quadratic growth in X (see the proof of Theorem 3.5).

Remark 3.9. Notice that if a geodesic, along which my and m, are not conjugate, is a
length minimizing one, the number C characterizes the Riemannian distance between
these points. The numbers C and ¢ together provide a certain characteristics of the Rie-
mannian geometry on M in a neighbourhood of m,. Theorems 3.6 and 3.8 establishes an
interrelation between C, € and the quadratic bounds of (1.1), under which the two-point
boundary value problem for nonconjugate points #y and m, is solvable for sure.
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