332 research outputs found

    Two combined methods for the global solution of implicit semilinear differential equations with the use of spectral projectors and Taylor expansions

    Full text link
    Two combined numerical methods for solving semilinear differential-algebraic equations (DAEs) are obtained and their convergence is proved. The comparative analysis of these methods is carried out and conclusions about the effectiveness of their application in various situations are made. In comparison with other known methods, the obtained methods require weaker restrictions for the nonlinear part of the DAE. Also, the obtained methods enable to compute approximate solutions of the DAEs on any given time interval and, therefore, enable to carry out the numerical analysis of global dynamics of mathematical models described by the DAEs. The examples demonstrating the capabilities of the developed methods are provided. To construct the methods we use the spectral projectors, Taylor expansions and finite differences. Since the used spectral projectors can be easily computed, to apply the methods it is not necessary to carry out additional analytical transformations

    A power consensus algorithm for DC microgrids

    Get PDF
    A novel power consensus algorithm for DC microgrids is proposed and analyzed. DC microgrids are networks composed of DC sources, loads, and interconnecting lines. They are represented by differential-algebraic equations connected over an undirected weighted graph that models the electrical circuit. A second graph represents the communication network over which the source nodes exchange information about the instantaneous powers, which is used to adjust the injected current accordingly. This give rise to a nonlinear consensus-like system of differential-algebraic equations that is analyzed via Lyapunov functions inspired by the physics of the system. We establish convergence to the set of equilibria consisting of weighted consensus power vectors as well as preservation of the weighted geometric mean of the source voltages. The results apply to networks with constant impedance, constant current and constant power loads.Comment: Abridged version submitted to the 20th IFAC World Congress, Toulouse, Franc

    The Waveform Relaxation Method for Systems of Differential/Algebraic Equations

    Get PDF
    An extension of the waveform relaxation (WR) algorithm to systems of differential/algebraic equations (DAE) is presented. Although this type of application has been explored earlier in relation to VLSI circuits, the algorithm has not been generalized to include the vast array of DAE system structures. The solvability and convergence requirements of the WR algorithm for higher-index systems are established. Many systems in robotics and control applications are modeled with DAE systems having an index greater than two. Computer simulation of these systems has been hampered by numerical integration methods which perform poorly and must be explicitly tailored to the system. The WR algorithm presents a means by which these systems may be more efficiently simulated by breaking them into weakly coupled subsystems, many of which will no longer retain the limiting high-index properties

    Differential-Algebraic Equations

    Get PDF
    Differential-Algebraic Equations (DAE) are today an independent field of research, which is gaining in importance and becoming of increasing interest for applications and mathematics itself. This workshop has drawn the balance after about 25 years investigations of DAEs and the research aims of the future were intensively discussed

    Certifying Stability and Performance of Uncertain Differential-Algebraic Systems: A Dissipativity Framework

    Full text link
    This paper presents a novel framework for characterizing dissipativity of uncertain dynamical systems subject to algebraic constraints. The main results provide sufficient conditions for dissipativity when uncertainties are characterized by integral quadratic constraints. For polynomial or linear dynamics, these conditions can be efficiently verified through sum-of-squares or semidefinite programming. The practical impact of this work is illustrated through a case study that examines performance of the IEEE 39-bus power network with uncertainties used to model a set of potential line failures
    • …
    corecore