A novel power consensus algorithm for DC microgrids is proposed and analyzed.
DC microgrids are networks composed of DC sources, loads, and interconnecting
lines. They are represented by differential-algebraic equations connected over
an undirected weighted graph that models the electrical circuit. A second graph
represents the communication network over which the source nodes exchange
information about the instantaneous powers, which is used to adjust the
injected current accordingly. This give rise to a nonlinear consensus-like
system of differential-algebraic equations that is analyzed via Lyapunov
functions inspired by the physics of the system. We establish convergence to
the set of equilibria consisting of weighted consensus power vectors as well as
preservation of the weighted geometric mean of the source voltages. The results
apply to networks with constant impedance, constant current and constant power
loads.Comment: Abridged version submitted to the 20th IFAC World Congress, Toulouse,
Franc