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The Waveform Relaxation Method for Systems of 
Differential/Algebraic Equations 

Mariesa L. Crow' 

Department  of Electrical  a n d  Compute r  Engineering 
Arizona S t a t e  University 

Tempe ,  AZ 85287 

1 Introduction 
A differential/algebraic system may be modeled in the form 

0 = F(Y, Y,  t )  (1) 

where E is singular and may or may not be singular. Sys- 
tenis of differential/algebraic equations (DAEs) of this type 
arise in connection with power systems [I], singular pertur- 
bation theory [2], control theory [3], circuit simulations [4], 
robot dynamics [5], and many other applications in the fields of 
mechanical and chemical engineering, economics, and physics. 
Only recently has concerted effort been put forth to  find meth- 
ods to numerically solve these systems [3] [4] [6] - [15]. Previ- 
ously, systems of DAEs were frequently restated as ODEs, of- 
ten with considerable difficulty or by destroying the structure 
of the problem (i.e., the resulting variables often no longer 
represent physical quantities, or the inherent sparsity of the 
system is destroyed) [12], but as DAE systems arise more and 
more frequently, it has become necessary to  develop numerical 
methods for solving these systems distinct from the traditional 
methods for ODEs. If is non-invertible, the system is said 
to be of htgher index [13]. Difficulties in using ODE methods 
for solving DAE systems occur when the systems have index 
greater than or equal to  two. 

Standard circuit simulators use direct methods to  discretize 
the system by standard stable implicit integration methods. 
The direct method may become inefficient for very large, dy- 
namic systems. This is because the matrix solution time of the 
linear algebraic equations grows super linearly with the size of 
the problem, thus swamping all other steps of the integration 
method. The direct methods are also inefficient for systems 
with states which are varying with considerably different rates. 
Direct application of a discretizing integration method forces 
all of the states to be discretized identically and with sufficient 
fineness such that the fastest changing state can be accurately 
reproduced. If it were possible to  divide the system into several 
subsystems, each of which were changing at  individual rates, 
then it would be possible to integrate each subsystem with the 
largest possible time step which would accurately reflect the 
behavior of the subsystem. 

In addition, if it were possible to divide a higher index sys- 
tem into subsystems, many of the subsystems could have a 
lower index, making i t  possible to  solve these subsystems with 
the usual numerical methods, with little or no additional pre- 
cautionary measures, while those of higher index may be inte- 
grated using methods specifically tailored for high index sys- 
tems. 
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One method which overcomes all of the above drawbacks is 
the waveform relasation (WR) algorithm. The WR algorithm 
was introduced as an iterative method for the numerical inte- 
gration of the system of ordinary differential equations over a 
finite time interval [16]. It is based on the Gauss-Seidel and 
Gauss-Jacobi relaxation methods [I71 used for solving large 
systems of algebraic equations. In the WR approach, the sys- 
tem is broken into subsystems which are solved independently, 
with each subsystem using the previous iterate waveforms as 
"guesses" about the behavior of the s ta te  variables in other sub- 
systems. Waveforms are then exchanged between subsystems, 
and the subsystems are then resolved with improved informa- 
tion about the other subsystems. This process is repeated until 
convergence is achieved. The WR algorithm was first applied 
to index one DAEs in [ I B ]  for the simulation of VLSI circhits. 
This paper endeavors to  generalize the WR algorithm to en- 
compass a broader spectrum of DAE systems, namely those of 
higher-index. 

Because the W R  algorithm is inherently parallel in nature, it 
is well suited for implementation on various parallel processors. 

2 The Solvability and Index of a 
DAE System 

Although general DAE systems look similar to  the standard 
ordinary differential equa.tion systems of the form 

they are in many ways quite different. Some DAE systems 
may be solved successfully using numerical techniques which 
are commonly used for solving stiff systems of ODEs, but many 
present difficulties peculiar to DAE systems. The classical the- 
ory of explicit ordinary differential equations assures that state 
space models of dynamic systems have unique solutions for con- 
tinuous inputs and arbitrary initial values 1191. When DAEs 
are used to model dynamic systems, the question of the exis- 
tence and uniqueness of solutions is more complex. Depending 
on the particular choice of inputs and initial values, the DAE 
system may have no solution, a unique solution, or an infinite 
number of solutions. A solvable DAE system is one which has a 
unique solution for sufficiently differentiable inputs and initial 
values which are consistent with the inputs [13]. 

An important subclass of nonlinear DAEs have the form 

where E R",y E R", f : Rnimt' + R", and g : Rnimtl -+ 
R". For a nonlinear system of this type, a local and global 
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index can be defined. The local index is the index of the lin- 
ear constant coefficient system that  results from linearizing a 
nonlinear system a t  a given fixed time. If [ 21 of ( 3 )  is nonsin- 
gular, the index of ( 3 )  and ( 4 )  is defined t o  be one. An index 
two or higher system results when [g] is noninvertible. The  
global index is the number of times the nonlinear DAE sys- 
tem must be differentiated to  obtain a system of ODES [13]. 
In summary, the index might be considered to be a measure of 
the singularity of the system. In this work, only systems where 
the local and global indices are the same are considered. For a 
more general discussion, see [E]. 

3 The WR Algorithm for Sys- 
tems of DAEs 

The WR algorithm is a means of solving a large system of non- 
linear DAEs. The  basic method proposed here is to partition 
the system into subsystems in which tightly coupled s ta te  and 
non-state variables are grouped together. In particular, the 
system is decomposed into T subsystems as 

*I ( t )  = S ( S I ,  sz 9 . .  . p  SrP YL v YZ . . . , y r ,  t )  21 ( 0 )  = & L O  ( 5 )  
0 = G I  ( S I ,  ~ 2 , .  . . , z r ,  Y I ,  YZ j . . . ,  yr, t )  YI ( 0 )  = W O  (6) 

i r ( t )  = 
0 = 

F r ( S l , ~ 2 , .  . . , Z r ,  VI I YZ p . . , I Y r l  t )  
Gr(z1, ~ 2 ,  . . . , Z r ,  Y L ,  YZ 9 . . . , y r ,  t )  

r v ( O )  = r r 0  ( 7 )  

Y r ( 0 )  = Y r o  (8) 

where x ,  E R"', y i  E R"%, ET=, ni = n, Er=, m i  = m, F, : 
R" x Rm x R 4 R"., and G; : R" x R" x R -+ R". The 
Gauss-Jacobi WR algorithm for solving (5) through (8) is given 
in Algorithm 4.1. 

Algorithm 4.1 - The Gauss-Jacobi WR Algorithm. 
I c e 0  
Guess some zy ( t )  such that  ~ " ' ( 0 )  = zi(0). t E [ O ,  TI 
Guess some yy(t) such that  y;""(O) = yi(0).  1 E [O,TJ 
repeat { IC + Ict 1.  

for each (i E {i, . . . , T } )  solve on [0, T ]  
x k t l  - k k k + l  

I - fi(& ..., x;"", ..., x,, y1 , ..., y ;  , ..., y:) 

g&:, ..., x y ,  ..., x,", y:, ...,yf"+', ...( y,") 0 = 

1 until (Ilzksl - xkll  5 c m  and J J y k t l  .- ykl l  _< c y )  

The WR algorithm is iterative in nature, with the previous 
itera.te waveforms of both differential and algelra.ic va.riables 
acting as inputs to the subsystem currently being solved. 

3.1 The Solvability of the WR Algorithm 
for Systems of DAEs 

The notion of solvability for DAE systems can be extended to 
DAE systems with waveform relaxation applied. 

Theorem 3.1 If t he  s y s t e m  

E i ( t )  = A z ( t )  + BU (9 )  

as solvable, t h e n  the  w a v e f o r m  relaxat ton formulataon as solvable 
z f  and on ly  if all t he  subsystems are solvable.2 

There are two important observations to make from this 
theorem. The  first observation is that  this theorem does not 
imply convergence of the WR method. I t  only states that for 
a solvable system, given any continuous input vector x k ,  then 

'The proof of this theorem is straightforward, but lengthy and is 
omitted for brevity. The proof may be found in [22]. 
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there exists a unique output vector x k S 1 .  I t  does not guaran- 
tee anything about the relationship of z k  to  x k t i .  The second 
observation is that  the solvability of the WR method formula- 
tion depends on the subsystems chosen. If two possible ways of 
partitioning the total system into subsystems are chosen, one 
may be solvable while the other is not. 

3.2 Convergence of the WR Algorithm 
for Index Two Systems 

Several problems in engineering and physics result in problems 
which have an index of two. Applying the WR algorithm to 
index two systems yields the canonical form: 

, W k , z k , Z k )  (10) 

Z k + l  = g ( W k + 1 , W ~ , z i r " Z k l i k )  (11) 

, k t 1  - - f ( W k t l , W k  

where w i s  possibly different from z. In the remainder of this 
section sufficient conditions to guarantee convergence of a WR 
algorithm are derived. The  conditions are stated for the canon- 
ical form of the WR algorithm, but the WR is not necessarily 
implemented in its canonical form, i.e. it is not required to 
find f and g explicitly. 

Theorem 3.2 Conszder a PVR algori thm whose iterated equa- 
t i ons  can  be transformed i n t o  the  fol lowing canonical f o r m :  

( O ) = w o  (12)  

( 1 3 )  

$+i - - f ( W k + ' ,  W k ,  w k ,  Z k , i k )  W k + l  

Z k + l  = g(wk+ ' ,  W k ,  w k ,  Z k ,  ik) 

where w 6 R", z E R", and W O  E R". A s s u m e  tha t  
1 .  t he  canonical differential variables can  be expressed in the 

f o r m  
w k t 1  - - f ( W k t l l  W k , w k - - l , i , k , ~ k - - l )  

2. there exis t  n o r m s  in R" x R",X1 2 0 , X z  2 O , X 3  2 0 ,  and 
y1 E [ O ,  1)> 7 2  E [O,  1) where yi f ~ z  < 1, such  tha t  f o r  a n y  
a , b , c , d , e , k , i , Z , d ' , i  E R" 

I l i ( a , b , c , d , e ) -  f ( ~ , i , ~ J , z ) [ [  5 11 l l a - f i l ! + ~ z  j ( b - 6 ( 1  

+A3 ( I C  - Cl(  + 
71 ( Id - 211 + 7 2  !le - 41 

[ O ,  TI), ( w ' ( t ) ,  4); t E 10, TI), 9 w'(t), z o ( q  m$ 

T h e n  f o r  a n y  ini t ial  guesses (w ' ( t ) ,  zo(t); t E 

t ' ( t )  the  sequence { ( T L ~ " ( ~ ) ,  w k t l ( t ) ,  z k t 1 ( t ) ;  t E [O,T])}k=l 
generated by the WR algorzthm converges unzformly t o  
(G( t ) ,G( t ) ,  z(t);  t E [O, TI) vrhzch satisfies 

. .  
7 i J  = f (w ,7 iJ ,7 i J , i , i )  W ( 0 )  = W O  (14)  

2 = g ( 7 3 , W , W , Z , i )  (15) 

The above theorem3 may be generalized to other index systems 
as well. For higher index systems, the convergence theorem 
follows that of the index two case, except the canonical differ- 
ential functions must be m-point contractive with respect to 
the time derivative iterates where m is the index of the system. 

As an example of a linear index two circuit, consider the 
simple two-node example in Figure 1, which is made up of two 
capacitors, two resistors, and an independent voltage source. 
I t  is possible to construct the system of differential/algebraic 
equations that  describes the circuit by using nodal analysis. 
This gives rise to the following DAE system: 

+ [ p, ] (16) 

?'The proof of this theorem may be found in [23] 



Figure 1: Index Two Float ing Capaci tor  Circui t  Example 

where I is the current through the independent voltage source. 
By partitioning the equations such that  the variables (Vi, I )  
and (Vz) are grouped together, the WRDAE algorithm gener- 
ates the following system of equations: 

GI c1 Gt+1 = z b r k t l  + LIkt l  + @  (17) 

0 = \ p  - v ( t )  (18) 

By defining i = &I, the above equations are equivalent to the 
following system of equations: 

which can be transformed into the following canonical form: 

By substituting the derivative of (22) into (21), the reduced 
canonical system becomes 

This reduced canonical system satisfies the assumptions of 
Theorem 3.2, and the WRDAE algorithm applied to the sys- 
tem will converge. 

At this point, one final note to  this section on the index two 
WRDAE method is pointed out. Whether 01 not the WRDAE 
will converge depends very heavily on the manner in which the 
original problem is partitioned. A partitioning may result in a 
nonconvergent system, or may not be solvable. As an example 
of this latter problem, consider again the previous linear index 
two example of the floating capacitor. If the system variables 
and equations would be partitioned as (171) and (I ,Vz) ,  then 
the resultant equations from the WBDAE algorithm are 

This system is no longer solvable. There is no possible way to 
update Iktl, and Iktl = Io for all k. From Theorem 3.1, the 
problem is solvable, if and only if each of the subsystems yields 
a solvable system of equations. Clearly, the second subsystem 
is nonsolvable. 

This concludes the presentation of the waveform relaxation 
algorithm for systems of differential/algebraic equations. The 
theorems presented give conditions under which the WR algo- 
rithm generates a set of solvable equations, and the properties 
these equations must have to  converge to  the solution of the 
original system of equations. 

4 The Discretized WR Method 
for DAEs 

Interconnected dynamic systems are often modeled in DAE 
form. One traditional approach to  solving large scale systems 
has been to  replace the full system model with a reduced order 
state space model. These reduction processes destroy the nat- 
ural physical structure and sparsity of the full order system. 
Thus numerical solution algorithms, which make effective use 
of structure and sparsity for efficiency, perform poorly on the 
reduced order system even though this system is still quite 
large. Thus it is desirable to be able t o  solve the systems in 
their original DAE form. The most promising approach to  
solving a DAE system numerically is the direct application 
of implicit ordinary differential equation methods to  the DAE 
system. 

The approach of applying ODE methods to  discretize and 
numerically integrate a DAE system was first introduced by 
Gear [E], and consists of replacing & ( t )  by a k-step backwards 
difference formula (BDF) approximation, 

and then solving the resulting equations for approximations to 
zn and yn. 

A major advantage of the WR algorithm is that  the differ- 
entiallalgebraic equations are solved in a decomposed manner. 
This implies that  if discretization methods are used to  solve 
the independent sets of equations, the time steps for each sub- 
system can be selected relatively independently. This leads 
naturally to three questions: Does the waveform relaxation 
process still converge? If it does converge, does the resulting 
multirate integration method possess the stability properties 
of the integration method used for the decomposed systems? 
Can the various time steps be chosen independently? 

4.1 The Uniform Time Step Case 
As an example of a situation where the WR convergence de- 
pends on discretization, consider WR applied to the following 
linear index two test system with partitioning { z L , ~ ) ,  {zz}: 

il = -521 fY+0.122 (29) 

0 = 21 + A 1 2 2  (30) 

$2 = 21 - xzzz (31) 

This system is solvable and stable for all X i  , XZ 2 0. Therefore, 
if each equation in the system is discretized identically (this is 
known as a uniform time step), the discretized equations under 
backward-Euler become 

(1  + 5h)zf,+,',, - hy;:: = O.lhc,k,,+, + z:,L1 (32) 

= -Xlz,k,n+l (33) 

(1 + Xzh)z,k,?+, = hz,k,,t1 + .;,: (34) 
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1 
0.00 
0.01 

o.os 
0.02 

0.06 

System 

b = l  k=2  k = 3  k=4  

-1.000 0 . 1 0 0  -1.000 0.100 -1.000 0.100 -1,000 0.100 
-1.000 0.089 - 0 . 8 9 6  o . ~ ~ ~  o.091 o.091 for which the algebraic relaxation algorithm applied to  a dis- 
-1.000 0.079 -0.792 0.079 - 0 . 7 9 a  0.08a - 0 . 8 ~  o .oaa 
-l.ooo o.069 .o ,688 o,o,5 o,o,s cretized numerical integration scheme will converge. In fact, in 
- l m o  0a58 - 0 s 8 5  0.069 -o .688  0n69 the linear case they are closely rela.ted as was shown in the pre- 

r,  3 1 2 9 1 converge are very similar to the constraints on the time steps 

-1 .000 0.048 - 0 . 4 8 3  0.048 -0 .483 0 .064 -0 .637 0.064 

where h = t n t l  - t,. 
The  waveforms for the Gauss-Jacobi W R  algorithm exhibit 

a strange behavior when discretization is applied to DAE sys- 
tems of index greater than or equal to two. T h e  iterates for 
all variables do not change at  every iteration as they might in 
the W R  applied to ODES, but for an index two case, they only 
change every other iteration. The first few iterations of 21 and 
2 2  for h = 0.01 of the previous example are given in Table 1, 
with a “flat start” initial ~ o n d i t i o n . ~  From Table 1, note that  
c1 is updated in iterations 2 and 4, whereas 2 2  is updated in 
iterations 1 and 3. 

An examination of the discretized equations for the example 
clarifies why this phenomenon occurs. After discretization by 
backward-Euler, the discrete variables may be rearranged to  
yield 

Thus z:,ytl can be equivalently expressed as 

and simila.rly 

(37) 

Note the dependence of the ( k  + l)st  iterate on the ( k  - l)’t 
iterate. Thus each of these variables is only updated every 
other iteration, and the “middle” iteration is redundant. This 
dependency is not unexpected in light of Convergence Theorem 
3.2 which states that  an index two system may give rise to this 
type of “nested” iterations. 

If the system were discretised and relaxation methods were 
used to  solve for zn+l and yn+l,  that  is, if the  system were 
solved by “algebraic relaxation,” then this system will converge 
if the eigenvalues of the relaxation matrix lie within the unit 
circle in the complex plane. For the algebraic relaxation this 
leads to the following allowable values of h: 

I 
h <  ___ 

A1 - A2 
A1 > A 2  2 0 

The WR iterates given above will converge to the discretized 
solution if 

< 1  
1 + Azh 

1 
h < -  

A1 - A 2  

This is identical to the time step bounds given by the alge- 
braic relaxation method. The  upper bounds on the time steps 
for which the uniform time s tep discretized WR algorithm will 

or equivalently 

Theorem 4.1 Let  a k-s tep backwards di f ference fo rmula  be 
applied to the  l inear D A E  sys t em of  the f o r m  

where E ,  A E R“‘”, and E has  the f o r m  

E = d iag{Ei}  i = 1, .  . . , T 

and y ( t )  E R“. A s s u m e  tha t  the Gauss-Jacobi (or Gauss-  
Seidel)  algebraic relaxation algori thm i s  used t o  solve the l inear 
algebraic equations generated by the BDF.  Given  a sequence of 
t i m e  steps {h,} where each h,  i s  chosen  such  that  the dis- 
cretized D A  E i s  h, solvable, the Gauss-Jacobi (Gauss-Seidel)  
relaxation algori thm will converge a t  every s tep,  f o r  a n y  ini- 
tial guess ,  if and  only  if t he  WR algorithm, discretized with the 
same  sequence of t i m e  s teps  and with the same  B D F ,  converges 
f o r  a n y  ini t ial  guess .  

This theorem may be generalized to the nonlinear WR al- 
gorithm if it is assumed that  the initial guess may by chosen 
arbitrarily close to the exact solution. This requirement is 
necessary because of the constraints imposed by the Newton’s 
method on the initial guess. 

4.2 The Multirate WRDAE Convergence 
Theorem 

When different time steps are chosen by the individual subsys- 
tems, the computation of values a t  a time s tep of one subsystem 
may require a value of another subsystem which was not ex- 
plicitly computed, due to differing time steps. This value must 
then be interpolated. If this interpolation is not performed 
carefully, the convergence of the algorithm may be destroyed 

The following DAE system 

becomes 

for i = 1, . . . , T ,  when the Gauss-Jacobi WRDAE algorithm is 
applied. If a k-step BDF is used to numerically solve (39)-(40),  
the iteration equations for the it,, subsystem become 

4 A  “flat start” initial condition is one in which: Z ( t )  = v t E If the T subsystems are solved independently, then h,, may not 
be the same as h,, , hm,, or any of the other ( T  - 1) possible IO, TI. 
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time, steps for the remaining subsystems. Thus,  the values 
of & ; ( T ~ ; ) ,  i i ( ~ ~ ~ ) ,  , . ., may not be available and have to  be 
interpolated from the existing values. 

The most common type of interpolation is linear interpola- 
tion, where the unknown value is taken to  be on a line connect- 
ing the immediately greater and lesser values. For example, if 
i ( ~ ~ - 1 )  and Z(T,,) are known, then z ( i )  is approximated by 

where rn-l 5 i 5 T ~ .  If linear interpolation is used to approx- 
imate the unknown values, the multirate discretized WRDAE 
algorithm will converge. This statement is formalized in the 
following theorem. 

Theorem 4.2 If l inear interpolat ion i s  used t o  approximate  
the u n k n o w n  variable values for nonconcurrent  t ime  s teps ,  t h e n  
there ezists a collection of t i m e  s teps  h;o > 0 ,  i = (1,. . . , n ) ,  
such that  if 0 < h; 5 hi0 for all i, t h e n  the mult irate  f ixed-time 
step discretized WR DAE algori thm converges with respect t o  
the interpolated sequences.  

These theorems imply that the discretized WRDAE algorithms 
will converge only if the "underlying" discretized equations will 
converge. When a DAE system of index m is divided into sub- 
systems, not all of the subsystems may have index m; some may 
have index less than m. This implies that  different restrictions 
may apply in discretizing the various subsystems. A subsystem 
having an index of three must be discretized by a constant step 
size BDF of order 5 6 [I31 whereas a subsystem of index two or 
less may be discretized by a variable-step variable-order BDF 
[9]. This is an additional advantage of the WRDAE method. 
Those subsystems which are of low index may be integrated 
with traditional numerical methods with little or no additiona.1 
precautionary measures, while those of higher index may be 
integrated using methods tailored for high-index systems. 

5 Conclusions 
This paper presents an extension of the waveform relaxation 
algorithm to systems of differential/algebraic equations. Al- 
though this type of application has been expIored earlier in 
relation to VLSI circuits, the algorithm has not been general- 
ized to include the vast array of DAE system structures. This 
paper establishes the solvability and convergence requiremeilts 
of the waveform relaxation algorithm for higher-index systems. 

Many systems in robotics and control applications are mod- 
eled with DAE systems having an index greater than two. 
Computer simulation of these systems has been hampered 
by numerical integration methods which perform poorly and 
must be explicitly tailored to the system. The W R  algorithm 
presents a means by which these systems may be more effi- 
ciently simulated by breaking them into weakly coupled sub- 
systems, many of which will no longer retain the limiting high- 
index properties. 

Appendix - Proof of Theorems 
Proof of Theorem 4.1 Applying a le-step BDF to the linear 
time invariant DAE system 

Ed(t) = A z ( t )  (43) 

yields 

which may be written 

E ( ( Y o Z ~  + $ az5n-1) = hmASn (45) 

By the assumption of consistency, LYO = 1, thus 

k 

E&, = hmAi., - E ar2,,-, (46) 
,=l 

Note that  by assumption E is a block diagonal matrix where 
E = diag {E , )  and E, is as defined in (38). Let A = M A  - N A  
where M A  = diag{A,} such that  A, is of the same dimension as 
E, and NA = - ( A - M A )  is an off-block diagonal matrix. Using 
this notation, the Gauss-Jacobi relaxation iteration applied to 
solving (46) for 5 ,  is 

k 

E5:" = h m M ~ 2 ; ~ '  - h , N A z i  - E CY%&-, (47) 
r = l  

Subtracting the jth iterate from the ( j  + l )8t  iterate yields 

E6jt' = h m M ~ 6 ' "  - h,N~6 '  

( E  - hmll/i~)6'" = -h,N~6' 

(48) 

(49) 

where 6'+' = 5;+' - 5; .  This is equivalently 

or 
6'" = -h,  ( E  - hmMA)-' Na6' 

where ( E  - h,kfA) is invertible by the assumption of solv- 
ability for h,. This will converge at  the mth time point 
for any initial guess if and only if all of the eigenvalues of 
h,  ( E  - h,M!)-' N A  lie within the unit circle in the the com- 
plex plane Using the Gauss-Jacobi W R  to solve (43) yields 

which by consistency is equivalently 

k 

( E  - h,hfa) zit '  = -h,NAdi - E ffizi:; 
i= I 

Subtracting iterates: 

k 

( E  - hmfi 'A)6jt1 = -h ,N~6 '  - E X  cu;6;2 
i = l  

To show that the discretized W R  algorithm will converge only 
if the algebraic relaxation converges, let ht be a time step for 
which E - hlMA is invertible, but for which a t  least one eigen- 
value of 

hi ( E  - h i M A ) - '  Na (54) 
does not lie within the unit circle in the complex plane. Assume 
an initial guess such that  the first 1 -  1 time points are the exact 
solution to  the discretized problem. Then 

k 

(55) 

and (53) is equivalent to  (49) and is not convergent. This 
proves that if the discretized WR iterates converge for any 
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initial guess then the algebraic relaxation iterates must also 
converge for any initial guess as well. 

To prove that  if the algebraic relaxation algorithm converges, 
then the W R  algorithm must converge for any initial guess, 
assume that  the theorem holds for all m < 1. Then 6i-1 -+ 0 
as j + 00, and (53) approaches (49). Since it is assumed that  
the WR iterates converge, this implies that  the eigenvalues of 
(54) are less than one, and the algebraic relaxation iterates 
converge a t  the l t h  time step. Note that  (49) is identical to  
(53) for m = I from which the proof follows by induction. 0 

Proof of Theorem 4.2 The proof of this theorem parallels a 
similar proof in [I61 for ODES. For an index two DAE system, 
the multirate discretized WRDAE differential canonical system 
is a two-point contraction in a p-norm. This result is used 
to prove convergence, and may be generalized to  other index 
systems provided the contraction assumptions are generalized 
as well. 0 
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