8 research outputs found

    Viscosity solutions to a new phase-field model for martensitic phase transformations

    Get PDF
    summary:We investigate a new phase-field model which describes martensitic phase transitions, driven by material forces, in solid materials, e.g., shape memory alloys. This model is a nonlinear degenerate parabolic equation of second order, its principal part is not in divergence form in multi-dimensional case. We prove the existence of viscosity solutions to an initial-boundary value problem for this model

    An alternative to the Allen-Cahn phase field model for interfaces in solids - numerical efficiency

    Full text link
    The derivation of the Allen-Cahn and Cahn-Hilliard equations is based on the Clausius-Duhem inequality. This is not a derivation in the strict sense of the word, since other phase field equations can be fomulated satisfying this inequality. Motivated by the form of sharp interface problems, we formulate such an alternative equation and compare the properties of the models for the evolution of phase interfaces in solids, which consist of the elasticity equations and the Allen-Cahn equation or the alternative equation. We find that numerical simulations of phase interfaces with small interface energy based on the alternative model are more effective then simulations based on the Allen-Cahn model.Comment: arXiv admin note: text overlap with arXiv:1505.0544

    Solvability via viscosity solutions for a model of phase transitions driven by configurational forces

    Get PDF
    In the present article, we are interested in an initial boundary value problem for a coupled system of partial differential equations arising in martensitic phase transition theory of elastically deformable solid materials, e.g., steel. This model was proposed and investigated in previous work by Alber and Zhu in which the weak solutions are defined in a standard way, however the key technique is not applicable to multi-dimensional problem. Intending to solve this multi-dimensional problem and to investigate the sharp interface limits of our models, we thus define weak solutions in a different way by using the notion of viscosity solution, then prove the existence of weak solutions to this problem in one space dimension, yet the multi-dimensional problem is still open.Comment: 21 page

    Spherically symmetric solutions to a model for phase transitions driven by configurational forces

    Get PDF
    We prove the global in time existence of spherically symmetric solutions to an initial-boundary value problem for a system of partial differential equations, which consists of the equations of linear elasticity and a nonlinear, non-uniformly parabolic equation of second order. The problem models the behavior in time of materials in which martensitic phase transitions, driven by configurational forces, take place, and can be considered to be a regularization of the corresponding sharp interface model. By assuming that the solutions are spherically symmetric, we reduce the original multidimensional problem to the one in one space dimension, then prove the existence of spherically symmetric solutions. Our proof is valid due to the essential feature that the reduced problem is one space dimensional.Comment: 25 page
    corecore