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1 Introduction

This talk is based on a recent work by Prof. H.-D. Alber and myself, and concerned with
a phase field model for the evolution of an interface in an elastically deformable solid,
which moves by diffusion of atoms along this interface. This study was started in [1] and
continued in [2, 3].

The interface separates the body in two regions consisting of atoms of different types
and having different elastic properties. No exchange of atoms across the interface occurs,
the volumes of the different regions are therefore conserved in time. We call these regions
phases. The diffusion of the atoms along the interface is only driven by bulk terms of
the free energy, surface terms are neglected.

These properties of the model carry over from those of a related sharp interface
model. The phases in the phase field model are characterized by an order parameter,
whose evolution is governed by a non-uniformly parabolic equation of fourth order. This
equation is formulated in [2] following ideas explained in [1, 2, 3], which suggest that
when a certain regularizing parameter ν in this equation tends to zero, then solutions of
the model equations converge to solutions of a sharp interface model for interface motion
by interface diffusion. In this sharp interface model the normal speed is proportional to
the value obtained by application of the surface Laplacian to the jump of the Eshelby
tensor across the interface.

The notations are as follows: Ω is an open subset in R3, it represents a set of material
points of a solid body. At the point x ∈ Ω at time t the material is in phase 1 or 2 if the
value S(t, x) ∈ R of the order parameter S is near to zero or one. The other unknowns
are the displacement u(t, x) ∈ R3 and the Cauchy stress tensor T (t, x) ∈ S3 of the point
x at t. Here S3 is the set of symmetric 3 × 3–matrices. For (t, x) ∈ (0,∞) × Ω, the
unknowns satisfy the quasi-static equations

−divx T (t, x) = b(t, x), (1.1)
T (t, x) = D

(
ε(∇xu)− ε̄S

)
(t, x), (1.2)

St(t, x) = cdivx

(
∇x

(
ψS(ε(∇xu), S)− ν∆xS

)
|∇xS|

)
(t, x) (1.3)
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and we prescribe the boundary and initial conditions

u(t, x) = γ(t, x), (t, x) ∈ [0,∞)× ∂Ω, (1.4)
∂

∂n
S(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω, (1.5)

∂

∂n

(
ψS(ε, S)− ν∆xS

)
|∇xS|(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω, (1.6)

S(0, x) = S0(x), x ∈ Ω̄. (1.7)

Here n is the unit outward normal vector, ∇xu denotes the 3 × 3-matrix of first order
derivatives of u which is the deformation gradient. And

ε (∇xu) =
1
2
(
∇xu+ (∇xu)

T )
is the strain tensor, where (∇xu)T , ε̄ ∈ S3 are the transposed matrix, a given matrix
(the transformation strain), respectively. The elasticity tensor D : S3 → S3 is a linear,
symmetric, positive definite mapping. ψS = ∂

∂Sψ is the partial derivative of the free
energy

ψ(ε, S) =
1
2
(
D(ε− ε̄S)

)
· (ε− ε̄S) + ψ̂(S), (1.8)

where ψ̂ : R → [0,∞) is chosen as a double well potential with minima at points S = 0
and S = 1, and the scalar product of two matrices is denoted by A ·B =

∑
aijbij . Thus,

ψS(ε, S) = −T · ε̄+ ψ̂′(S). (1.9)

Given are the positive constant c, the small positive constant ν, the volume force b :
[0,∞)× Ω → R3 and the boundary and initial data γ : [0,∞)× ∂Ω → R3, S0 : Ω → R.

This completes the formulation of an initial-boundary value problem. Equations
(1.1) and (1.2), which differ from the system of linear elasticity only by the term ε̄S,
determine the elastic properties of the two phases characterized by the values S ≈ 0 or
S ≈ 1: in the first phase the material is stress free at the strain state ε(∇xu) = 0, in
the other phase at ε(∇xu) = ε̄. We assume that D has the same value at both phases,
but it would be important for applications to study the case where D is a function of S
with D[0] 6= D[1]. Equation (1.3) for S is non-uniformly parabolic because of the term
divx

(
∇x(ν∆S) |∇xS|

)
. Up to now, we can only prove existence of weak solutions for the

initial-boundary value problem in 11
2–space dimensions.

Statement of the main result. In the sharp interface model (2.1) – (2.5) the
normal speed of the interface determined by equation (2.3) is proportional to the value
obtained by application of the surface Laplacian to the jump in the Eshelby tensor.
Therefore, this model and also the regularized model (1.1) – (1.7) is not of interest
in a strictly one-dimensional situation, where all unknowns only depend on the first
component x1 of x ∈ R3 and of t, since in this case the normal speed of a planar interface
Γ̃(t) = {(h(t), x2, x3) | (x2, x3) ∈ R2} would be equal to zero, hence h(t) = const. In
this talk we thus consider a 11

2–dimensional problem. To formulate such a problem, we
choose Ω = {(x1, x2, x3) ∈ R3 | a < x1 < d}, and assume that

b(t, x) = b̃(t, x1) + b1(t, x2, x3), (1.10)
γ(t, x) = γ̃(t, x1) + γ1(t, x1, x2, x3), (1.11)
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where b1, γ1 satisfy the elliptic boundary value problem

−divx σ(t, x) = b1(t, x2, x3), (1.12)
σ(t, x) = D(ε(∇xv(t, x))), (1.13)
v(t, x) = γ1(t, x), x ∈ ∂Ω (1.14)

of linear elasticity, which has a solution x 7→ (v(t, x), σ(t, x)) : Ω → R3 × S3 such that

∂x1 σ(t, x) · ε̄ = 0, ∇x(∂2
x2

+ ∂2
x3

) (σ(t, x) · ε̄) = 0, x ∈ Ω. (1.15)

It follows that (∂2
x2

+ ∂2
x3

) (σ · ε̄) is independent of x. We thus define

r(t) = (∂2
x2

+ ∂2
x3

) (σ(t, x) · ε̄) ∈ R. (1.16)

Examples for b1, γ1, v, σ, ε̄ with theses properties can be readily constructed. In particular,
examples can be given with b1 = 0. Of course, if r 6= 0, then (v, σ) will be unbounded
for |(x2, x3)| → ∞. For the solution of problem (1.1) – (1.7), (1.10) – (1.11), we make
the ansatz

(u, T, S)(t, x) = (ũ, T̃ , S̃)(t, x1) + (v, σ, 0)(x).

Noting that (1.9) and (1.15) imply

ψS(ε(∇xu), S)x1 = (−T̃ · ε̄− σ · ε̄+ ψ̂′(S))x1 = (−T̃ · ε̄+ ψ̂′(S))x1 = ψS(ε(∇xũ), S)x1 ,

we obtain by insertion of this ansatz into (1.1) – (1.7) an initial-boundary value problem
for (ũ, T̃ , S̃) in one space dimension. We simplify the notation and denote (ũ, T̃ , S̃)
and b̃ again by (u, T, S) and by b, respectively. We write x for x1, let Ω = (a, d), set
QTe = (0, Te)× Ω, where a, d, Te (time of existence) are positive constants, and denote

ε(ux) =
1
2

(
(ux, 0, 0) + (ux, 0, 0)T

)
∈ S3.

With these notations (u, T, S) : QTe → R3 × S3 × R must satisfy the equations

−T1x = b, (1.17)
T = D(ε(ux)− ε̄S), (1.18)
St = c

(
(ψS(ε(ux), S)− νSxx)x|Sx|

)
x

+ cr(t)|Sx| , (1.19)

and the boundary and initial conditions

u|[0,Te]×∂Ω = 0, (1.20)
Sx|[0,Te]×∂Ω = 0, (1.21)(

(ψS − νSxx)x|Sx|
)
|[0,Te]×∂Ω = 0, (1.22)
S|{0}×Ω = S0. (1.23)

Here T1(t, x) denotes the first column of the matrix T (t, x). In (1.20) we assumed,
without restriction of generality, that the function γ̃ from (1.11) vanishes since equations
(1.17), (1.18) are linear. Given are b(t, x) ∈ R3 and S0(x) ∈ R. Since r(t) ∈ R defined
in (1.16) can be computed by solving the boundary value problem (1.12) – (1.14), also
r : [0, Te) → R can be considered to be given.
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Equations (1.17) – (1.19) constitute the initial-boundary value problem in one space
dimension, which models a planar interface propagating with speed cr(t). To state the
main result for this problem we need some notations and definitions.

For a subset A of QTe , for a function g : A → V with values in some set V and for
t ∈ [0, Te] let

A(t) = {x | (t, x) ∈ A} ⊆ R and g(t) : A(t) → V, g(t)(x) = g(t, x).

We show that the component S in a solution (u, T, S) of the initial-boundary value
problem has the weak derivative Sxxx, however on a set A ⊆ QTe , for which A(t) is
open for almost all t, but which itself is not open in R2. We now define these general
derivatives.

Definition 1.1 Let A ⊂ QTe such that A(t) is open for almost all t ∈ [0, Te], and let
α ∈ N0. We call g : A → R the α-th local weak L2–derivative of S ∈ L2(QTe) with respect
to x in A, if for almost all t ∈ [0, Te] the function g(t) belongs to L2,loc(A(t)) and is the
local weak derivative of S in the usual sense:

g(t) = ∂α
xS(t)|A(t), (1.24)

and if moreover there exists a sequence {An}n of measurable sets An ⊂ A with g|An ∈
L2(An) for all n ∈ N, such that

meas
(
A \

∞⋃
n=1

An

)
= 0.

Local weak derivatives in the sense of this definition are unique because of (1.24), and it
is immediately seen that if A is open then the local weak derivative in the sense of this
definition coincides with the ordinary weak derivative. For S ∈ L2(0, Te;H2(Ω)) let

AS = {(t, x) ∈ QTe | |Sx(t, x)| > 0}.

Since by the Sobolev embedding theorem Sx(t) is continuous for almost all t, it follows
that AS(t) is open for almost all t.

Definition 1.2 Let b ∈ L∞(0, Te;L2(Ω)), r ∈ L∞(0, Te) and S0 ∈ L2(Ω). A function
(u, T, S) with

u ∈ L2(0, Te;H2(Ω)), u(t) ∈ H1
0 (Ω) a.e. in (0, Te), (1.25)

T ∈ L2(0, Te;H1(Ω)), (1.26)
S ∈ L2(0, Te;H2(Ω)) ∩ L∞(QTe), Sx(t) ∈ H1

0 (Ω) a.e. in (0, Te), (1.27)

is a weak solution of the problem (1.17) – (1.23), if (u, T, S) solves (1.17), (1.18) weakly,
if S has the local weak derivative Sxxx in AS with |Sx|Sxxx ∈ L1(AS) and if

(S, ϕt)QTe
+ c(νSxxx|Sx|, ϕx)AS + c

((
T · ε̄− ψ̂′(S)

)
x
|Sx|, ϕx

)
QTe

+ (cr|Sx|, ϕ)QTe
= −(S0, ϕ(0))Ω (1.28)

holds for all ϕ ∈ C∞
0 ((−∞, Te)× R).
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The main result of this talk is

Theorem 1.3 Assume that there exists a constant M > 0 such that the double well
potential ψ̂ ∈ C3(R, [0,∞)) satisfies

max
{
ψ̂′(S)2, S2

}
≤M(ψ̂(S) + 1). (1.29)

Then to all S0 ∈ H1(Ω), r ∈ L∞(0, Te) and b ∈ L2(QTe) with bt ∈ L2(QTe) there exists a
weak solution (u, T, S) of (1.17) – (1.23), which in addition to (1.25) – (1.28) satisfies

u ∈ L∞(0, Te;H2(Ω)), T ∈ L∞(0, Te;H1(Ω)) (1.30)

S ∈ L∞(0, Te;H1(Ω)), St ∈ L
4
3 (0, Te;W−1, 4

3 (Ω)), (1.31)

|Sx|Sxxx ∈ L
4
3 (QTe), (1.32)

where we defined |Sx|Sxxx = 0 on QTe \ AS .

The ideas of the proof of this theorem is as follows: to replace the degenerate parabolic
equation (1.19) by the non-degenerate equation

St = c
(

(ψS − νSxx)x (|Sx|κ + κ)
)

x
+ cr|Sx|κ , (1.33)

where |y|κ = |y|2/
√
|y|2 + κ, with a constant κ > 0, and to use some famous lemmas,

i.e. the Aubin–Lions lemma and the Egolov lemma to investigate the limits of the
approximate solution of (1.17) – (1.23) as κ→ 0.

2 The sharp interface problem

To state the sharp interface model, we let the interface be given by a sufficiently smooth
three-dimensional manifold Γ̃ in [t1, t2]× Ω ⊂ R4 such that for all t ∈ [t1, t2]

Γ̃(t) =
{
x ∈ Ω | (t, x) ∈ Γ̃

}
is a two-dimensional manifold. The two different phases are characterized by the values
of a discontinuous order parameter S, which has the constant values 0 and 1 in the
regions separated by the phase interface, and which jumps along the interface. The
sharp interface problem, which determines the unknown position of the interface and the
unknown functions u, T , consists of the equations

−divxT = b, (2.1)
T = D(ε(∇xu)− ε̄S), (2.2)

s[S] = −c∆Γ̃(t)(n · [C]n), (2.3)

[u] = 0, (2.4)
[T ]n = 0, (2.5)

and of suitable initial and boundary conditions. (2.1) and (2.2) must hold on ([t1, t2] ×
Ω)\Γ̃, the jump conditions (2.3) – (2.5) are given on Γ̃. Here n(t, x) ∈ R3 is the unit
normal vector to Γ̃(t) at x ∈ Γ̃(t) pointing into the region where S = 1, and s(t, x) ∈ R
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is the normal speed of Γ̃(t) at x ∈ Γ̃(t) in direction n(t, x). Also, ∆Γ̃(t) is the surface

Laplacian on Γ̃(t), and [u], [T ], [S], [C] denote the jumps of u, T, S and of the Eshelby
tensor

C(∇xu, S) = ψ(ε(∇xu), S)I − (∇xu)TT

across Γ̃, where I is the 3 × 3–unit matrix and ψ is the free energy given in (1.8). We
use the notation (∇xu)TT to denote the matrix product.

The evolution law (2.3) describes motion of the interface Γ̃(t) due to diffusion of atoms
along the interface. The flux is given by −c∇Γ̃(t)(n · [C]n) with the surface gradient ∇Γ̃(t).
There is no exchange of atoms between the phases, hence the volume

∫
Ω S(x, t)dx of one

of the phases is conserved in time. The evolution law is derived in the standard way
by application of the second law of thermodynamics under the assumption that the free
energy is given by Ψ(t) =

∫
Ω ψ(ε, S)dx and thus contains only bulk terms: the Clausius-

Duhem inequality must be satisfied, which for this free energy leads to the flux term
given above. For this derivation we refer to [1], where the application of the second law
of thermodynamics to an interface problem is discussed with mathematical rigour.

If one assumes more generally that the free energy is a sum of bulk and surface terms

Ψ(t) = α1

∫
Ω
ψ(ε(∇xu(t, x)), S(t, x))dx+ α2

∫
Γ̃(t)

dσ

with α1, α2 ≥ 0, then the evolution law obtained is

s[S] = −c∆Γ̃(t)

(
α1(n · [C]n) + α2κΓ̃(t)

)
, (2.6)

where κΓ̃(t) is the mean curvature of Γ̃(t). Then we obtain several variations of our model,
however we omit the details here due to the limitation of length.

Second law of thermodynamics. The second law requires that there exist a free
energy ψ∗ and a flux q such that the Clausius-Duhem inequality ∂

∂tψ
∗ + divx q ≤ b · ut

holds. With ψ given in (1.8) we choose

ψ∗(ε, S,∇xS) = ψ(ε, S) +
ν

2
|∇xS|2, (2.7)

q(ut, St, ε,∇x ε, S, . . . ,∇3
xS)

= −T · ut − νSt · ∇xS − c(ψS − ν∆xS)∇x(ψS − ν∆xS) |∇xS|,

and apply (1.1) and the relation ∇εψ ·εt = T ·ut, which holds by (1.2) and the symmetry
of T , to obtain after a short computation

∂

∂t
ψ∗ + divxq − b · ut

= (ψS − ν∆xS)St − c divx

(
(ψS − ν∆xS)∇x(ψS − ν∆xS)|∇xS|

)
.

Insertion of (1.3) into this equation results in

∂

∂t
ψ∗ + divxq − b · ut = −c |∇x(ψS − ν∆xS)|2|∇xS| ≤ 0,

which shows that the second law holds for the system (1.1) – (1.3).
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3 Main Steps of the Proof of Theorem 1.3

The proof of Theorem 1.3 consists of the following two steps.
Step 1. To construct approximate solutions to (1.17) – (1.23) by solving the following
quasilinear, uniformly parabolic initial-boundary value problem

−T1x = b, (3.1)
T = D(ε(ux)− ε̄S), (3.2)

St = c
((

(ψS(ε(ux), S)− νSxx

)
x
(|Sx|κ + κ)

)
x

+ cr|Sx|κ , (3.3)

u = 0, on [0, Te]× ∂Ω, (3.4)
Sx = 0, on [0, Te]× ∂Ω, (3.5)

(ψS − νSxx)x = 0, on [0, Te]× ∂Ω, (3.6)
S(0, x) = S0(x), x ∈ Ω , (3.7)

with a fixed positive parameter κ. By definition, (u, T, S) ∈ L2(0, Te;H1(Ω)3) with
Sxxx ∈ L2(QTe) is a weak solution of (3.1) – (3.7) if (3.1), (3.2), (3.4) (3.5) are satisfied
weakly and if for all ϕ ∈ C∞

0 ((−∞, Te)× R)

−(S, ϕt)QTe
= (S0, ϕ(0))Ω
+ c

(
(|Sx|κ + κ)(νSxxx − ψS,x), ϕx

)
QTe

+ c(r|Sx|κ , ϕ)QTe
. (3.8)

We have

Theorem 3.1 Assume that S0 ∈ H1(Ω), r ∈ L∞(0, Te) and b ∈ L2(QTe) with bt ∈
L2(QTe). Then there is a weak solution (u, T, S) of (3.1) – (3.7) with S ∈ L2(0, Te;H3(Ω))
⊆ L2(0, Te;C2+α(Ω̄)), α < 1

2 , and with St ∈ L
4
3 (0, Te;W−1, 4

3 (Ω)).

The proof is divided into two steps, i.e. Lemmas 3.2 and 3.3: firstly, to construct a
sequence of approximate solutions, secondly, to derive uniform a-priori bounds for the
solutions, then to pass to limit. The approximate problem consists of the equations and
initial boundary conditions

−T1x = b, (3.9)
T = D(ε(ux)− ε̄S), (3.10)

St = c
(
( |˜̂Sx|κ + κ)(ψS(ε(ux), S)− νSxx)x

)
x

+ cr|Sx|κ , (3.11)

and of the boundary and initial conditions (3.4) – (3.7). Here Ŝ ∈ L2(0, Te;H2(Ω)) is a
given function and˜̂

Sx(t, x) = (χη ∗ Sx)(t, x) =
∫

QTe

χη(t− τ, x− y) Ŝx(τ, y) d(τ, y) , (3.12)

with the standard mollifier χη ∈ C∞
0 ({x ∈ R2 | |x| ≤ η}).

Lemma 3.2 (Existence) Let 0 < α < 1
2 . To every Ŝ ∈ L2(QTe), b ∈ C

α
4

,α(Q̄Te),
r ∈ C

α
4 ([0, Te]) and S0 ∈ C4+α(Ω̄) there is a unique solution (u, T, S) of the initial-

boundary value problem (3.9) – (3.11), (3.4) – (3.7). This solution belongs to the space

L∞(0, Te;C2+α(Ω̄))× L∞(0, Te;C1+α(Ω̄))× C1+α
4

,4+α(Q̄Te)

and satisfies Sxxt ∈ L2(QTe).
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Lemma 3.3 (A-priori estimates) There is a constant C̄ independent of η and κ but
depending on K, and another constant C independent of η, such that for every Ŝ ∈
L2(0, Te;H2(Ω)), all (b, r, S0) satisfying suitable conditions and for any t ∈ [0, Te]

‖S(t)‖H1(Ω) + ‖S‖L∞(QTe ) ≤ C̄, (3.13)
‖u(t)‖H2(Ω) + ‖T (t)‖H1(Ω) + ‖u‖L∞(QTe ) + ‖T‖L∞(QTe ) ≤ C̄, (3.14)

‖(|˜̂Sx|κ + κ)
1
2Sxxx‖L2(QTe ) + ‖Sxx‖L2(Qt) + ‖St‖

L
4
3 (0,Te;W

−1, 43 (Ω))
≤ C. (3.15)

Step 2. We need the following a-priori estimates independent of κ and a lemma
concerning the limit of the third order derivative. In this step, we make use of Egorov’s
theorem, the Aubin-Lions Lemma etc.

Lemma 3.4 For any t ∈ [0, Te] there hold

‖Sκ
xx‖L2(QTe ) + ‖(|Sκ

x |κ + κ)
1
2Sκ

xxx‖L2(QTe ) ≤ C̄, (3.16)

‖ |Sκ
x |κSκ

xxx‖L
4
3 (Qt)

+ ‖∂tS
κ‖

L
4
3 (0,Te;W

−1, 43 (Ω))
≤ C̄. (3.17)

Lemma 3.5 The limit function S has the local weak L2–derivative Sxxx on AS in the
sense of Definition 1.1. Moreover, there exists a subsequence Sκ such that

|Sκ
x |κSκ

xxx ⇀ χ, weakly in L
4
3 (QTe), (3.18)

where the function χ ∈ L
4
3 (QTe) is given by

χ(t, x) =

{
0, if Sx(t, x) = 0
|Sx|Sxxx, if Sx(t, x) 6= 0.

(3.19)
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