1,466 research outputs found

    On the Lagrangian and Hamiltonian aspects of infinite -dimensional dynamical systems and their finite-dimensional reductions

    Get PDF
    A description of Lagrangian and Hamiltonian formalisms naturally arisen from the invariance structure of given nonlinear dynamical systems on the infinite--dimensional functional manifold is presented. The basic ideas used to formulate the canonical symplectic structure are borrowed from the Cartan's theory of differential systems on associated jet--manifolds. The symmetry structure reduced on the invariant submanifolds of critical points of some nonlocal Euler--Lagrange functional is described thoroughly for both differential and differential discrete dynamical systems. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integral-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Backlund transformation. The connection of this hierarchy with integrable by Lax spatially two-dimensional systems is studied.Comment: 30 page

    Optimal Capacity of the Blume-Emery-Griffiths perceptron

    Full text link
    A Blume-Emery-Griffiths perceptron model is introduced and its optimal capacity is calculated within the replica-symmetric Gardner approach, as a function of the pattern activity and the imbedding stability parameter. The stability of the replica-symmetric approximation is studied via the analogue of the Almeida-Thouless line. A comparison is made with other three-state perceptrons.Comment: 10 pages, 8 figure

    Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions

    Get PDF
    The well-posedness of the boundary value problems for second gradient elasticity has been studied under the assumption of strong ellipticity of the dependence on the second placement gradients (see, e.g., Chambon and Moullet in Comput. Methods Appl. Mech. Eng. 193:2771–2796, 2004 and Mareno and Healey in SIAM J. Math. Anal. 38:103–115, 2006). The study of the equilibrium of planar pantographic lattices has been approached in two different ways: in dell’Isola et al. (Proc. R. Soc. Lond. Ser. A 472:20150, 2016) a discrete model was introduced involving extensional and rotational springs which is also valid in large deformations regimes while in Boutin et al. (Math. Mech. Complex Syst. 5:127–162, 2017) the lattice has been modelled as a set of beam elements interconnected by internal pivots, but the analysis was restricted to the linear case. In both papers a homogenized second gradient deformation energy, quadratic in the neighbourhood of non deformed configuration, is obtained via perturbative methods and the predictions obtained with the obtained continuum model are successfully compared with experiments. This energy is not strongly elliptic in its dependence on second gradients. We consider in this paper also the important particular case of pantographic lattices whose first gradient energy does not depend on shear deformation: this could be considered either a pathological case or an important exceptional case (see Stillwell et al. in Am. Math. Mon. 105:850–858, 1998 and Turro in Angew. Chem., Int. Ed. Engl. 39:2255–2259, 2000). In both cases we believe that such a particular case deserves some attention because of what we can understand by studying it (see Dyson in Science 200:677–678, 1978). This circumstance motivates the present paper, where we address the well-posedness of the planar linearized equilibrium problem for homogenized pantographic lattices. To do so: (i) we introduce a class of subsets of anisotropic Sobolev’s space as the most suitable energy space E relative to assigned boundary conditions; (ii) we prove that the considered strain energy density is coercive and positive definite in E; (iii) we prove that the set of placements for which the strain energy is vanishing (the so-called floppy modes) must strictly include rigid motions; (iv) we determine the restrictions on displacement boundary conditions which assure existence and uniqueness of linear static problems. The presented results represent one of the first mechanical applications of the concept of Anisotropic Sobolev space, initially introduced only on the basis of purely abstract mathematical considerations

    Investigation of optimization of attitude control systems, volume i

    Get PDF
    Optimization of attitude control systems by development of mathematical model and computer program for space vehicle simulatio

    Solvability via viscosity solutions for a model of phase transitions driven by configurational forces

    Get PDF
    In the present article, we are interested in an initial boundary value problem for a coupled system of partial differential equations arising in martensitic phase transition theory of elastically deformable solid materials, e.g., steel. This model was proposed and investigated in previous work by Alber and Zhu in which the weak solutions are defined in a standard way, however the key technique is not applicable to multi-dimensional problem. Intending to solve this multi-dimensional problem and to investigate the sharp interface limits of our models, we thus define weak solutions in a different way by using the notion of viscosity solution, then prove the existence of weak solutions to this problem in one space dimension, yet the multi-dimensional problem is still open.Comment: 21 page
    corecore