19 research outputs found

    Lower bounds for the mixed capacitated arc routing problem

    Get PDF
    Capacitated arc routing problems (CARP) arise in distribution or collecting problems where activities are performed by vehicles, with limited capacity, and are continuously distributed along some pre-defined links of a network. The CARP is defined either as an undirected problem or as a directed problem depending on whether the required links are undirected or directed. The mixed capacitated arc routing problem (MCARP) models a more realistic scenario since it considers directed as well as undirected required links in the associated network. We present a compact flow based model for the MCARP. Due to its large number of variables and constraints, we have created an aggregated version of the original model. Although this model is no longer valid, we show that it provides the same linear programming bound than the original model. Different sets of valid inequalities are also derived. The quality of the models is tested on benchmark instances with quite promising results..info:eu-repo/semantics/publishedVersio

    Resources Requirement and Routing in Courier Service

    Get PDF

    A two-stage solution approach for the Directed Rural Postman Problem with Turn Penalties

    Get PDF
    In this paper, we consider the Directed Rural Postman Problem with Turn Penalties (DRPP-TP). A solution is a tour that traverses all required arcs of the graph. The total cost of the tour is the sum of the lengths of the traversed arcs plus the penalties associated with the turns. One solution approach involves transforming the arc routing problem into an equivalent node routing problem. An alternative direct approach (without graph transformation) that involves two stages has been proposed in the literature. In the first part of this paper, we investigate the applicability of the direct approach. We identify several characteristics of the input instance that make this approach effective and present several limitations of this approach. In the second part of this paper, we describe an integer linear program that is combined with a local search algorithm. This combination produces high-quality solutions to the DRPP-TP in a reasonable amount of computing time. (C) 2018 Published by Elsevier B.V

    A strategic oscillation simheuristic for the Time Capacitated Arc Routing Problem with stochastic demands

    Full text link
    [EN] The Time Capacitated Arc Routing Problem (TCARP) extends the classical Capacitated Arc Routing Problem by considering time-based capacities instead of traditional loading capacities. In the TCARP, the costs associated with traversing and servicing arcs, as well as the vehicle's capacity, are measured in time units. The increasing use of electric vehicles and unmanned aerial vehicles, which use batteries of limited duration, illustrates the importance of time-capacitated routing problems. In this paper, we consider the TCARP with stochastic demands, i.e.: the actual demands on each edge are random variables which specific values are only revealed once the vehicle traverses the arc. This variability affects the service times, which also become random variables. The main goal then is to find a routing plan that minimizes the expected total time required to service all customers. Since a maximum time capacity applies on each route, a penalty time-based cost arises whenever a route cannot be completed within that limit. In this paper, a strategic oscillation simheuristic algorithm is proposed to solve this stochastic problem. The performance of our algorithm is tested in a series of numerical experiments that extend the classical deterministic instances into stochastic ones.This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21/AEI/10.13039/501100011033, RED2018102642T, PGC2018-0953322-B-C21/MCIU/AEI/FEDERUE) . The authors are also grateful to the Michael Smurfit Graduate Business School at University College Dublin, Ireland for supporting research stays that contributed to the development of this work.Keenan, P.; Panadero, J.; Juan, AA.; Martí, R.; Mcgarraghy, S. (2021). A strategic oscillation simheuristic for the Time Capacitated Arc Routing Problem with stochastic demands. Computers & Operations Research. 133:1-12. https://doi.org/10.1016/j.cor.2021.10537711213

    Arc Routing with Time-Dependent Travel Times and Paths

    Full text link
    Vehicle routing algorithms usually reformulate the road network into a complete graph in which each arc represents the shortest path between two locations. Studies on time-dependent routing followed this model and therefore defined the speed functions on the complete graph. We argue that this model is often inadequate, in particular for arc routing problems involving services on edges of a road network. To fill this gap, we formally define the time-dependent capacitated arc routing problem (TDCARP), with travel and service speed functions given directly at the network level. Under these assumptions, the quickest path between locations can change over time, leading to a complex problem that challenges the capabilities of current solution methods. We introduce effective algorithms for preprocessing quickest paths in a closed form, efficient data structures for travel time queries during routing optimization, as well as heuristic and exact solution approaches for the TDCARP. Our heuristic uses the hybrid genetic search principle with tailored solution-decoding algorithms and lower bounds for filtering moves. Our branch-and-price algorithm exploits dedicated pricing routines, heuristic dominance rules and completion bounds to find optimal solutions for problem counting up to 75 services. Based on these algorithms, we measure the benefits of time-dependent routing optimization for different levels of travel-speed data accuracy

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges.</p
    corecore