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Capacitated arc routing problems (CARP) arise in distribution or collecting problems where activities are
performed by vehicles, with limited capacity, and are continuously distributed along some pre-defined
links of a network. The CARP is defined either as an undirected problem or as a directed problem depend-
ing on whether the required links are undirected or directed. The mixed capacitated arc routing problem
(MCARP) models a more realistic scenario since it considers directed as well as undirected required links
in the associated network. We present a compact flow based model for the MCARP. Due to its large num-
ber of variables and constraints, we have created an aggregated version of the original model. Although
this model is no longer valid, we show that it provides the same linear programming bound than the
original model. Different sets of valid inequalities are also derived. The quality of the models is tested on
benchmark instances with quite promising results.
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1. Introduction

Capacitated arc routing problems (CARP) arise in distribution or
collecting problems where activities are performed by vehicles, with
limited capacity, and are continuously distributed along some pre-
defined links (roads, streets) of an associated network. The CARP can
be either undirected or directed. In the undirected case, the required
links can be served in any direction. In the directed case, the required
links must be served only in the defined direction. The mixed capac-
itated arc routing problem (MCARP) models a more realistic scenario
as it accommodates simultaneously both types of links. The MCARP
is a NP-hard problem since it generalizes the CARP [19] which is
known to be NP-hard.

The research on CARP lower bounding procedures, solution and
modelling approaches performed in the last decade is surveyed by
WBhlk [30]. Many real world applications, such as household refuse
collection, winter gritting, postal distribution, metre reading, street
swiping, can be modelled either as a CARP or a MCARP. The surveys
on arc routing by Assad and Golden [3], Eiselt et al. [13,14] and Dror's
book [11] include many references on real world problems modelled
as ARPs until the year 2000. More recent publications on arc routing
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real world applications include postal delivering by Irnich [20]; a
real situation arising on an industrial company by Moreira et al. [25]
and garbage collection, which is a main concern of municipalities
(see [2,5,10,17,24,26,27]).

The MCARP study reported in this paper is motivated by a house-
hold refuse collection problem defined in a quarter of Lisbon. Old
town quarters are usually represented by directed graphs, while new
town quarters are defined in mixed networks.

Many CARP applications differ on the features of the system
collection design, namely the number of depots and its location
([1,10,18,26], to name a few).

An approach to solve capacitated arc routing problems is by
means of well known transformations into equivalent node rout-
ing problems [29,4,22,5]. The main idea is to use available and well
tested methods for node routing problems. However, these trans-
formations lead, in general, to networks that are substantially larger
than the originals and many authors prefer to develop models on
the original graph. This is also the approach followed on this paper.

The first formulation for the CARP was proposed by Golden and
Wong [19] and includes an exponential number of constraints. It
is also stated that the exponential sized set of subtour-breaking
constraints may be replaced by a more compact set, based on flow
variables. The lower bound provided from the LP relaxation of this
formulation is known to be equal to zero (see [12]). Golden and
Wong [19] did not use the compact model to get lower bounds for
the CARP. Instead, a different lower bound method was developed
and its bound was shown to be equal to the bound obtained from
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the optimal value of a relaxation where capacity and connectivity
constraints are omitted.

A different model for the undirected CARP was proposed, in 1998,
by Belenguer and Benavent [6]. In 2003, the same authors [7] sug-
gested a different formulation for the same problem that has only a
single variable for each edge of the underlying graph, but it contains
an exponential number of constraints. This formulation is shown to
be non-valid, similarly to what happens with one of the models pre-
sented in this paper.

Later on, Belenguer et al. [8] developed a study on lower bounds
for the MCARP based on the model defined in [7]. This non-valid
model for the MCARP is similar to models presented for other mixed
arc routing problems, as the mixed Chinese postman problem [28]
and the mixed general routing problem [9]. The authors use this
model and several valid inequalities in a cutting plane fashion to get
lower bounds for the MCARP that outperformed the previous best
known bounds.

In this paper, we formulate the MCARP by a compact model, and
as far as we know, it is the first valid model for the MCARP given
in the literature that is tested on reasonable large sized instances.
We use two well known ideas to design this formulation for the
problem: (i) the concept of flows to guarantee the connectivity of the
solutions (see, for instance [15,16]) and (ii) the concept of indexing
the variables by vehicle to guarantee a matching between trips and
vehicles (see, for instance [23]). The model will be used within an
ILP package to solve medium sized problems and to produce lower
bounds on larger instances. Lower bounds are also obtained from
the corresponding linear programming relaxation.

Our model differs from the model by Golden and Wong [19] in
several aspects: (i) it formulates the mixed case while their model
was developed for the undirected CARP; (ii) the flow variables have
a different interpretation (here they are related with the demands
to be served and in their paper flows are associated with the num-
ber of edges to serve); (iii) additional constraints are included to
ensure that trips start at the depot; and (iv) extra valid inequalities
are considered to strengthen the linear programming relaxation. A
straightforward extended formulation of Golden and Wong [19] to
the mixed CARP was tested on small instances by Lacomme et al.
[21]; it also differs from ours on the above mentioned items (ii)–(iv).

Due to the vehicle indexing, the number of variables and con-
straints in our model is huge. Following the literature on the classic
vehicle routing problem (VRP), we may try to get a more compact
model, where links and flow variables are not disaggregated by
vehicle. Unfortunately, in contrast with the classic VRP, it does not
seem easy to find a similar valid model for the MCARP. However,
we will present and discuss one such aggregated model which,
although not valid, is attractive for three reasons. First, an integer
optimal solution of the aggregated model is easier to compute than
an optimal integer solution of the original model. An integer solu-
tion of the new model gives a lower bound on the optimal solution
value of the MCARP which, as our computational experiments will
show, provides competitive lower bound values for some classes
of well known MCARP instances. Second, for certain instances, the
integer lower bound value is equal to the value of a known heuristic
solution, thus certifying the optimality of this solution. Finally, we
will also prove that the linear programming relaxation values of the
two models are equal. This means that the disaggregated model can
be replaced by the non-valid model in order to produce the linear
programming bound in a much faster way (since the aggregated
model has fewer constraints and variables).

Comparing with the Belenguer and Benavent [7] formulation, the
main difference between our aggregated model and their model lies
on the network type (mixed versus undirected) and on the size of
the models since our model is compact and theirs has an exponential
number of constraints. That is, in ourmodel capacity and connectivity

constraints are enforced by using the additional flow variables and
the constraints linking the two sets of variables. In [7] the authors
do not use the extra set of variables but use, in turn, exponential
sized sets of constraints to force connectivity.

The paper is organized as follows. In Section 2, we define the
MCARP, set notation and present the two formulations, the valid
and the non-valid formulation. We also prove that both formulations
produce the same linear programming bound and discuss valid in-
equalities. Section 3 reports the results from the computational ex-
periments on a set of known benchmark instances. The performance
of the new models is compared with existent methods. A section of
final remarks concludes the paper.

2. Formulations

2.1. Introduction

The terminology presented in this section reflects the fact that
our study is motivated by a refuse collection problem. The problem
undertaken is to plan the collection of garbage in a city with mini-
mum total cost. The street network is described by a mixed graph.
Edges characterize two way streets where zig-zag collection is al-
lowed, i.e., the vehicle can collect the garbage in both sides of the
street with a single traversal. Arcs represent either one way streets
or large two way streets with no zig-zag collection. In the later case
one arc for each direction should be included in the network. Nodes
characterize the street crossings or dead-end streets. A special node,
called depot, is the starting and ending point for the vehicle trips.
The depot is also the dumpsite, where vehicles empty the refuse
collected. A vehicle trip is a circuit that can be performed by a vehi-
cle from and back to the depot while servicing the streets (network
links), compatible with its capacity. The streets to be served, where
there is refuse to be collected, are the required links or tasks. Some
of the streets do not have refuse to be collected and they may be
traversed only to ensure the connectivity of the trips. Every street
(task or not) traversed by a vehicle without serving it is a dead-
heading link. For simplicity, it is assumed that each vehicle performs
only one trip. Capacity and number of vehicles, demands on each
street, service and deadheading costs and dump cost at depot are
known.

Consider, then, the following notation:

• � = (N,A′ ∪ E) is the mixed graph, with AR ⊆ A′ and ER ⊆ E the set
of required arcs and edges, respectively; and N the set of nodes,
representing street crossings, dead-end streets, or the depot.

• 0 ∈ N is the depot node where every vehicle trip must start and
end (|N| = n + 1).

• G = (N,A) is a directed graph where each edge from E is replaced
by two opposite arcs, i.e., A = A′ ∪ {(i, j), (j, i) : (i, j) ∈ E}.

• R ⊆ A is the set of required arcs in G, also named as tasks (
∣∣R∣∣ =∣∣AR

∣∣ + 2
∣∣ER∣∣).

• P is the maximum number of trips allowed.
• W is the capacity of each vehicle.
• � is the dump cost, paid every time a vehicle is emptied at the

depot.
• dij is the deadheading cost of arc (i, j) ∈ A.
• cij is the service cost of arc (i, j) ∈ R.
• qij is the demand of arc (i, j) ∈ R.
• QT is the total demand, computed as QT = ∑

(i,j)∈AR∪ERqij.

The problem is to find a set of no more than P vehicle trips,
satisfying the vehicles capacity, starting and ending at the depot,
node 0, and servicing all the tasks at minimum total cost.

In the sequel LF denotes the linear programming relaxation of
formulation F and z∗

F the optimal value of F.
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We present, next, two compact formulations for the MCARP, one
that is valid (Section 2.2) and the other that is not (Section 2.3). As
noted before, the non-valid formulation provides quite good lower
bounds in a reasonable computation time.

2.2. Valid formulation for the MCARP

The following mixed integer linear programming is a valid model
for the MCARP.

For p = 1, . . . , P define

• xpij =
{
1 if (i, j) ∈ R is served by trip p
0 otherwise

∀(i, j) ∈ R ;

• ypij is the number of times that arc (i, j) ∈ A is deadheaded during
trip p ;

• f pij is the flow in arc (i, j) ∈ A, related with the remaining demand
in trip p or in a sub-circuit in p.

(F1)

min
P∑

p=1

⎡
⎣ ∑
(i,j)∈R

cijx
p
ij +

∑
(i,j)∈A

dijy
p
ij + �

∑
(i,0)∈A

ypi0 + �
∑

(i,0)∈R
xpi0

⎤
⎦ (1)

s.t.
∑

j:(i,j)∈A
ypij +

∑
j:(i,j)∈R

xpij =
∑

j:(j,i)∈A
ypji +

∑
j:(j,i)∈R

xpji

i = 0, 1, . . . ,n; p = 1, . . . , P (2)

P∑
p=1

xpij = 1 ∀(i, j) ∈ AR (3)

P∑
p=1

(xpij + xpji) = 1 ∀(i, j) ∈ ER (4)

∑
j:(0,j)∈A

yp0j +
∑

j:(0,j)∈R
xp0j �1, p = 1, . . . , P (5)

∑
j:(j,i)∈A

f pji −
∑

j:(i,j)∈A
f pij =

∑
j:(j,i)∈R

qjix
p
ji,

i = 1, . . . ,n; p = 1, . . . , P (6)
∑

j:(0,j)∈A
f p0j =

∑
(i,j)∈R

qijx
p
ij, p = 1, . . . , P (7)

∑
i:(i,0)∈A

f pi0 =
∑

i:(i,0)∈R
qi0x

p
i0, p = 1, . . . , P (8)

f pij �W(ypij + xpij) ∀(i, j) ∈ A, p = 1, . . . , P (9)

xpij ∈ {0, 1} ∀(i, j) ∈ R, p = 1, . . . , P (10)

f pij �0 ∀(i, j) ∈ A, p = 1, . . . , P (11)

ypij �0 integer ∀(i, j) ∈ A, p = 1, . . . , P (12)

The objective function, (1), represents the total cost, i.e., the ser-
vice cost, the deadheading cost and the dump cost. Conditions (2) im-
pose the continuity of trips at each node; the service of each required
arc and edge is guaranteed by (3) and (4), respectively; (5) implies
that the dump cost is adequately charged in the objective function;
(6)–(8) are flow conservation constraints that together with the link-
ing constraints (9) force the connectivity of the trips. Note that (6)
are typical generalized flow conservation constraints on each node
i, guaranteeing that if arc (j, i) is served by vehicle p, then qji units of
flow are absorbed by node i. Conditions (9) impose upper bounds on
the flow variables needed to guarantee the capacity constraints for

each vehicle; they also imply that a flow variable is positive only if
the corresponding arc is traversed by the vehicle trip thus ensuring
connectivity, as stated above, with the flow conservation constraints.

In F1 the number of variables is equal to P(2|A| + |R|), and the
number of constraints is equal to P(2|N| + |A| + 2) + |AR| + |ER|.

Note that the above formulation for the MCARP assumes that
the depot cannot be used as an intermediate node. However, that
situation is easily modelled if the depot is replicated, that is, an extra
node, denoted by n+1, is considered with the same links as node 0.
The service constraints, sets (3) and (4), for the tasks incident into
node 0 must be modified accordingly.

Forbidden turn restrictions can also be included in the model, as
they can easily be recognized if arcs are numbered.

The following two lemmas are needed to prove the validity of
model F1 for the MCARP. As noted before, a feasible MCARP solution
is a set of trips, thus satisfying the capacity of the vehicles and form-
ing circuits from and back to the depot, which serves every required
link.

Lemma 1. The vehicle capacity requirements are satisfied by any fea-
sible solution of F1.

Proof. Fixing i = 0 and adding (9) for all arcs (0, j) ∈ A we obtain∑
j:(0,j)∈Af

p
0j �W ,

∑
j:(0,j)∈A(y

p
0j + xp0j). Using (5), the previous inequal-

ity implies
∑

j:(0,j)∈Af
p
0j �W . Finally, (7) gives the required inequality∑

(i,j)∈Rqijx
p
ij �W , which completes the proof. �

The next lemma shows that any feasible solution of F1 is con-
nected.

Lemma 2. For each trip p(p= 1, . . . , P), the graph induced by the set of
arcs corresponding to variables xpij = 1 and ypij >0 is connected.

Proof. We prove this result by showing that any trip that serves
tasks in a set S ⊂ N\{0} starts at the depot.

Assume that there is a required arc set S, served by a vehicle p,
with S representing a connected component and that 0 ∈ S̄ = N\S.

From (6) we obtain

∑
i∈S

⎛
⎝ ∑

j:(j,i)∈A
f pji −

∑
j:(i,j)∈A

f pij

⎞
⎠ =

∑
i∈S

⎛
⎝ ∑

j:(j,i)∈R
qjix

p
ji

⎞
⎠ = Qp

S + Qp
S,S
,

where Qp
S is the demand served by trip p in subset S and Qp

S,S
is the

demand served by trip p in arcs from S to S.
Defining

f pX,Y =
∑

(i,j)∈(X,Y):
X,Y⊂N

f pij

the expression

∑
i∈S

⎛
⎝ ∑

j:(j,i)∈A
f pji −

∑
j:(i,j)∈A

f pij

⎞
⎠

can be rewritten as f pS,S + f p
S,S

− f pS,S − f p
S,S
, leading to f p

S,S
= f p

S,S
+Qp

S +Qp
SS
.

Since f p
S,S

�0; Qp
SS

�0 and that, by assumption, Qp
S >0 must hold, we

obtain f p
S,S
>0. Using (9) we conclude that yp

S,S
>0 ∨ xp

S,S
>0. Then,

the trip p links S̄ to S, and is linked to the depot node. �

From the two lemmas and conditions (2) we show that a feasible
solution for F1 is a set of trips. Together with constraints (3) and (4)
the solution also satisfies all services. Thus, it now becomes trivial
to prove Proposition 1.
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Proposition 1. Formulation F1 is valid for the MCARP.

Next, we present sets of valid inequalities that may improve the
linear programming relaxation bound of the previous formulation
and, as a consequence, may speed up the integer solver.

First, observe that

P∑
p=1

⎛
⎝ ∑

j:(0,j)∈A
yp0j +

∑
j:(0,j)∈R

xp0j

⎞
⎠ �

∑P
p=1

∑
j:(0,j)∈Af

p
0j

W

by (9). Finally, by (3), (4) and (7), the last expression is equal to QT/W .
Since the left hand side of the previous inequality is integer, the

right hand side may be rounded up to obtain

P∑
p=1

⎛
⎝ ∑

j:(0,j)∈A
yp0j +

∑
j:(0,j)∈R

xp0j

⎞
⎠ �

⌈
QT

W

⌉
(13)

that corresponds to a depot degree constraint, stating that the solu-
tion must contain a minimum number of vehicles to satisfy the total
demand. As will be confirmed by the computational tests (in Section
3.1), the inclusion of this condition leads, in general, to better linear
programming relaxation bounds.

Constraints that impose lower bound values on the flow variables
may also be stated:

f pij � qijx
p
ij ∀(i, j) ∈ R, p = 1, . . . , P (14)

f pij � ypij − 1 ∀(i, j) ∈ A\R, p = 1, . . . , P (15)

The first set of constraints specifies that the value of the flow
on an arc served by a trip should be at least equal to its demand
while the second set relates the flow in deadheading arcs with the
number of times that arcs are deadheaded each trip. Again, from the
computational tests reported in Section 3.1, we will see that linear
programming relaxation bounds are improved when (14) and (15)
are added to the model.

The existence of alternative integer solutions that differ only in
their vehicle indexes, representing permutations of trips, may lead
to huge computation times. The next set of constraints break some
of these symmetries:

∑
j:(0,j)∈A

yp0j +
∑

j:(0,j)∈R
xp0j �

∑
j:(0,j)∈A

yp+1
0j +

∑
j:(0,j)∈R

xp+1
0j ,

p = 1, . . . , P − 1 (16)

In a solution with p trips, these inequalities remove all the equiv-
alent solutions with trip indexes greater than p. Again, our results
give some evidence that (16) also speed up the ILP solver.

We denote by F1R the model F1 reinforced with constraints
(13)–(16).

As pointed out before, the number of variables and constraints
of the formulation F1 is too large. In the next section, an aggregated
version of this formulation is presented and discussed.

2.3. Aggregated non-valid formulation

As explained in Section 1, in this model, variables are aggregated
over the set of trips. Consider the following sets of variables:

• xij =
{
1 if (i, j) ∈ R is served
0 otherwise

, thus xij =
∑P

p=1x
p
ij, ∀(i, j) ∈ AR ∪ ER.

• yij is the number of times that arc (i, j) ∈ A is deadheaded, thus
yij =

∑P
p=1y

p
ij.

• fij is the flow that traverses arc (i, j) ∈ A, thus fij =
∑P

p=1f
p
ij .

(F2)

min
∑
(i,j)∈R

cijxij +
∑
(i,j)∈A

dijyij + �
∑

(i,0)∈A
yi0 + �

∑
(i,0)∈R

xi0 (17)

s.t.
∑

j:(i,j)∈A
yij +

∑
j:(i,j)∈R

xij =
∑

j:(j,i)∈A
yji +

∑
j:(j,i)∈R

xji,

i = 0, 1, . . . ,n (18)

xij = 1 ∀(i, j) ∈ AR (19)

xij + xji = 1 ∀(i, j) ∈ ER (20)

∑
j:(0,j)∈A

y0j +
∑

j:(0,j)∈R
x0j � P (21)

∑
j:(j,i)∈A

fji −
∑

j:(i,j)∈A
fij =

∑
j:(j,i)∈R

qjixji, i = 1, . . . ,n (22)

∑
j:(0,j)∈A

f0j = QT (23)

∑
i:(i,0)∈A

fi0 =
∑

i:(i,0)∈R
qi0xi0 (24)

fij �W(yij + xij) ∀(i, j) ∈ A (25)

xij ∈ {0, 1} ∀(i, j) ∈ R (26)

fij �0 ∀(i, j) ∈ A (27)

yij �0 integer ∀(i, j) ∈ A (28)

This model is not valid for the MCARP, as the following example
illustrates.

Example 1. Consider that the vehicle capacity is W = 4, that all
required arcs have unitary demand, and the total demand is equal
to 8. All the links in the underlined graph are depicted in Fig. 1. A
feasible solution for F2 is given by xij = 1, ∀(i, j) ∈ R (represented by
thick arrows in Fig. 1); y02=y20=2 (each represented by two dashed
arrows in Fig. 1); f02 =8, f21 =3, f14 =2, f42 =1, f23 =2, f32 =1, f26 =3,
f65 = 2 and f52 = 1. All remaining variables are zero.

2

1

4

56

0

3

Fig. 1. Solution of the aggregated model.

For the previous solution of F2 to be feasible for the MCARP we
need to be able to identify two trips without adding extra deadhead-
ing arcs, which is impossible. Note that the solution of F2 is formed
by three required subcircuits, incident into node 2, with demands 3,
2 and 3; and no pair of these can fit in only one vehicle, so no two
trips can be found.

The aggregated model contains only (2|A| + |R|) variables and
2|N| + |A| + 2+ |AR| + |ER| constraints. In fact, if we use (19) and (20)
these values can even be reduced. However, we maintain (19) and
(20) to emphasize the relation with the previous formulation F1. The
newmodel is, thus, more attractive to usewithin an ILP solver. In fact,
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our computational experiments confirm that this model, although
not valid, is much easier to solve than the previous one. The results
also indicate that the optimal integer solution values produced by
the model are, in many cases, reasonably good lower bounds on the
optimal cost of the corresponding MCARP.

As mentioned before, another interesting advantage of the ag-
gregated model is that its linear programming relaxation value is
equal to the linear programming relaxation value of the disaggre-
gated model, F1.

Proposition 2. Let LF1 be the linear programming relaxation of F1,
with optimal value Z∗

LF1, and LF2 the linear programming relaxation of
F2, with optimal value Z∗

LF2. Then Z∗
LF1 = Z∗

LF2.

Proof. First note that, if xpij, y
p
ij and f pij ∀(i, j) ∈ A, p = 1, . . . , P is a

feasible solution of LF1, a feasible solution of LF2 with equal value
can be obtained by the equalities that relate the variables from the
two formulations (see the beginning of this section). To complete
the proof we must show that any feasible solution of LF2 can be
transformed into a feasible solution for LF1 with the same value.

Let xij; yij; fij be a feasible solution of LF2. Consider a solution for
LF1 obtained in the following way:

∀p = 1, . . . , P; (i, j) ∈ A : xpij =
xij
P
; ypij =

yij
P
; f pij = fij

P

This solution is feasible for LF1 since:

(i)

∀ p = 1, . . . , P :
∑

j:(i,j)∈A
(ypij + xpij) = 1

P

∑
j:(i,j)∈A

(yij + xij)

=
(18)

1
P

∑
j:(i,j)∈A

(yji + xji) =
∑

j:(j,i)∈A
(ypji + xpji), i = 0, 1, . . . ,n

then constraints (2) are satisfied.
(ii)

P∑
p=1

xpij =
1
P

P∑
p=1

xij =
(19)

1
P

P∑
p=1

1 ∀(i, j) ∈ AR

then constraints (3) are satisfied.
(iii)

P∑
p=1

(xpij + xpji) = 1
P

P∑
p=1

(xij + xji) =
(20)

1
P

P∑
p=1

1 = 1 ∀(i, j) ∈ ER

then (4) are satisfied.
(iv)

∀ p = 1, . . . , P :
∑

j:(0,j)∈A
(xp0j + yp0j) = 1

P

∑
j:(0,j)∈A

(x0j + y0j)

�
(21)

P
P

= 1

then restrictions (5) are satisfied.
(v)

∀ p = 1, . . . , P :
∑

j:(j,i)∈A
f pji −

∑
j:(i,j)∈A

f pij = 1
P

⎡
⎣ ∑
j:(j,i)∈A

fji −
∑

j:(i,j)∈A
fij

⎤
⎦

=
(22)

1
P

∑
j:(j,i)∈R

qjixji =
P
P

∑
j:(j,i)∈R

qjix
p
ji, i = 1, . . . ,n

then (6) are satisfied.

(vi)

∀ p = 1, . . . , P :
∑

j:(0,j)∈A
f p0j =

1
P

∑
j:(0,j)∈A

f0j =
(23)

1
P
QT

= 1
P

∑
(i,j)∈R

qijxij =
∑
(i,j)∈R

qijx
p
ij

then (7) are satisfied.
(vii)

∀ p = 1, . . . , P :
∑

i:(i,0)∈A
f pi0 = 1

P

∑
i:(i,0)∈A

fi0 =
(24)

1
P

∑
i:(i,0)∈R

qi0xi0

=
∑

i:(i,0)∈R
qi0x

p
i0

then (8) are satisfied.
(viii)

∀p = 1, . . . , P : f pij = fij
P

�
(25)

W(yij + xij)
P

= W(ypij + xpij) ∀(i, j) ∈ A

then (9) are satisfied.
(ix) The nonnegativity constraints of xpij, y

p
ij and f pij are valid because

the same constraints are valid on the variables xij, yij and fij.

Finally, the values of the two solutions are equal since:

ZLF1 =
P∑

p=1

⎡
⎣ ∑
(i,j)∈A

dijy
p
ij +

∑
(i,j)∈R

cijx
p
ij + �

∑
(i,0)∈A

ypi0 + �
∑

(i,0)∈R
xpi0

⎤
⎦

= 1
P

P∑
p=1

⎡
⎣ ∑
(i,j)∈A

dijyij +
∑
(i,j)∈R

cijxij + �
∑

(i,0)∈A
yi0 + �

∑
(i,0)∈R

xi0

⎤
⎦

= ZLF2 �

In the previous subsection we have shown that the linear pro-
gramming relaxation of F1 can be improved by adding several sets
of valid inequalities. In a similar way, the linear programming relax-
ation value of F2 can be improved by adding some valid inequalities.
These inequalities are simply the aggregated version of the inequal-
ities presented before.

The following inequality is the aggregated version of (13)

∑
j:(0,j)∈A

y0j +
∑

j:(0,j)∈R
x0j �

⌈
QT

W

⌉
(29)

And the constraints

fij � qijxij ∀(i, j) ∈ R (30)

fij � yij − P ∀(i, j) ∈ A\R (31)

are the aggregated versions of (14) and (15).
Proposition 2 can easily be extended to the two models that in-

clude the sets of valid inequalities, F1R and F2R (model F2 reinforced
with (29)–(31)).

Proposition 3. Let LF1R be the linear programming relaxation of F1R,
with optimal value z∗

LF1R, and LF2R the linear programming relaxation
of F2R, with optimal value z∗

LF2R. Then z∗
LF1R = z∗

LF2R.

The proof is omitted since it is similar to the proof of
Proposition 2.
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3. Computational results

In this section we present the results from computational ex-
periments that were performed on a Pentium� 2.80GHz (with
504MB RAM) with CPLEX 11.0. In the first subsection the effect of
including the valid inequalities in the proposed models is discussed.
Section 3.2 compares our new approach with others from the lit-
erature. This comparison is performed on some sets of benchmark
problems.

Table 1
Examples for the effect of the valid inequalities.

F1 Opt LF1 lower bounds CPU time (s) for F1

(13) (14) (16) – (13) (14) (16)
(15) (15)

ex1 3855 3738 3850 3738 3738 tle 0.17 tle 0.20
ex2 3985 3863 3975 3863 3863 tle 2.61 140.23 40.05
ex3 3865 3839 3839 3842 3839 3.14 3.02 2.31 2.58

Opt—represents the optimum value of F1; LF1—columns refer to the linear programming relaxation bounds; and tle—not solved in one hour (time limit exceeded).

Table 2
mval computational results.

File |N| |A ∪ E| |AR| |ER| P UB BBLP LF1R F1R F2R CPU time (s)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) F1R F2R

1A 24 55 20 35 4 230 230∗ 203 230∗ 230∗ 40.45 0.17
1B 24 51 13 38 5 261 261∗ 248 261∗ 261∗ 6.75 0.05
1C 24 53 17 36 10 315 309 283 292 309 tle 0.16
2A 24 44 16 28 4 324 324∗ 315 324∗ 324∗ 1.09 0.03
2B 24 52 12 40 5 395 395∗ 369 395∗ 395∗ 17.61 0.05
2C 24 49 14 35 10 526 521 482 488 521 tle 0.42
3A 24 48 15 33 4 115 115∗ 111 115∗ 115∗ 1.63 0.03
3B 24 45 16 29 5 142 141 131 142∗ 142∗ 140.88 0.03
3C 24 43 18 25 9 166 166∗ 147 152 163 tle 0.05
4A 41 95 26 69 5 580 580∗ 552 580∗ 580∗ 921.59 0.05
4B 41 102 19 83 6 650 650∗ 631 644 650∗ tle 0.11
4C 41 103 21 82 7 630 630∗ 608 623 630∗ tle 0.06
4D 41 104 21 83 11 770 746 728 732 746 tle 1.20
5A 34 96 22 74 5 597 597∗ 575 597∗ 597∗ 249.33 0.03
5B 34 91 35 56 6 613 613∗ 578 606 613∗ tle 0.17
5C 34 98 17 81 7 697 697∗ 692 697∗ 697∗ 244.99 0.03
5D 34 92 29 63 11 739 719 685 690 718 tle 2.20
6A 31 69 22 47 5 326 326∗ 295 326∗ 326∗ 59.66 0.03
6B 31 66 22 44 6 317 317∗ 296 317∗ 317∗ 1246.61 0.05
6C 31 68 23 45 12 371 365 340 340 355 tle 0.48
7A 40 86 36 50 5 364 364∗ 338 363 364∗ tle 0.05
7B 40 91 25 66 6 412 412∗ 406 412∗ 412∗ 379.61 0.05
7C 40 90 28 62 11 426 424 398 401 417 tle 3.45
8A 30 96 20 76 5 581 581∗ 566 581∗ 581∗ 37.44 0.16
8B 30 91 27 64 6 531 531∗ 508 531∗ 531∗ 2707.14 0.05
8C 30 83 28 55 11 638 617 590 601 617 tle 0.28
9A 50 132 32 100 5 458 458∗ 436 454 458∗ tle 0.05
9B 50 120 44 76 6 453 453∗ 428 453∗ 453∗ tle 0.05
9C 50 125 42 83 7 429 428 396 426 428 tle 0.09
9D 50 131 38 93 12 520 514 486 487 514 tle 0.14
10A 50 138 32 106 5 634 634∗ 613 634∗ 634∗ 229.39 0.05
10B 50 134 33 101 6 661 661∗ 635 658 661∗ tle 0.05
10C 50 136 36 100 7 623 623∗ 594 621 623∗ tle 0.06
10D 50 129 42 87 12 649 643 610 611 642 tle 0.30

Gap (%) Maximum 3.29% 8.43% 4.31% CPU 3.45
Average 0.50% 2.13% 0.67% 0.31

No. of optimum values 23 15 23

|N|—no. of nodes; |A∪E|—no. of links; |AR|—no. of required arcs; |ER|—no. of required edges; P—no. of trips; tle—time limit exceeded; CPU time is given in seconds; UB—upper
bound value from Belenguer et al. [8]; gap = [(UB−lower bound value)/UB]×100; BBLP—lower bound value from Belenguer et al. [8]; LF1R—linear programming relaxation
bound; in bold represents the best lower bound value for each instance (each row); and underlined are the best lower bound obtained by CPLEX for the model.

∗Represents the proven optimum of the MCARP instance.

3.1. Illustrating the effect of the valid inequalities

A set of small test instances were generated to show that the
inclusion of the valid inequalities in the models improve, in some
cases, the linear programming relaxation bounds and/or may speed
up, as a consequence, the ILP solver. These instances, named ex1–ex3,
have 19–24 nodes and 29–50 links.

The results on model F1 are depicted in Table 1. Column
two (F1 Opt) displays the optimum values for each example.
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Table 3
lpr computational results.

File |N| |A ∪ E| |AR| |ER| P UB BBLP LF1R F1R F2R CPU time (s)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) F1R F2R

lpr-a-01 28 94 52 0 2 13484 13484∗ 13484 13484∗ 13484∗ 0.84 0.03
lpr-a-02 53 169 99 5 3 28052 28052∗ 28037 28052∗ 28052∗ 12.83 0.03
lpr-a-03 146 469 271 33 8 76155 76108 75966 76039 76115 tle 10.88
lpr-a-04 195 651 469 34 13 127352 126941 126654 tle 126946 tle 104.95
lpr-a-05 321 1056 748 58 20 205499 202735 202259 tle 202736 tle tle
lpr-b-01 28 63 45 5 2 14835 14835∗ 14813 14835∗ 14835∗ 0.22 0.14
lpr-b-02 53 117 92 9 3 28654 28654∗ 28618 28654∗ 28654∗ 6.03 0.17
lpr-b-03 163 361 279 26 8 77878 77837 77684 77821 77859 tle 0.09
lpr-b-04 248 582 493 8 15 127454 126932 126754 126754 126932 tle 11.08
lpr-b-05 401 876 764 37 22 211771 209791 209496 tle 209776 tle tle
lpr-c-01 28 52 11 39 2 18639 18639∗ 18445 18639∗ 18639∗ 0.89 0.25
lpr-c-02 53 101 23 77 5 36339 36339∗ 35899 36255 36339∗ tle 4.45
lpr-c-03 163 316 61 241 12 111632 111117 109967 109980 110949 tle tle
lpr-c-04 277 604 142 362 20 169254 168441 167084 tle 168399 tle tle
lpr-c-05 369 841 416 387 29 259937 257890 256287 tle 257808 tle tle

Gap (%) Maximum 1.35% 1.34% CPU 3600

Average 0.32% 0.34% 1208.80
No. of optimum values 6 5 6

|N|—no. of nodes; |A∪E|—no. of links; |AR|—no. of required arcs; |ER|—no. of required edges; P—no. of trips; tle—time limit exceeded; CPU time is given in seconds; UB—upper
bound value from Belenguer et al. [8]; gap = [(UB−lower bound value)/UB]×100; BBLP—lower bound value from Belenguer et al. [8]; LF1R—linear programming relaxation
bound; in bold is represented the best lower bound value for each instance (each row); and underlined are the best lower bound obtained by CPLEX for the model.

∗Represents the proven optimum of the MCARP instance.

Columns 3–6 exhibit the linear programming relaxation bounds pro-
duced by model F1 with the extra inequalities: with no additional
constraints (column 3) or with the inequalities identified in the col-
umn caption introduced (columns 4–6). For each problem the best
LP bound is indicated in bold. CPU times (in seconds) for the ILP
solver are depicted in the last four columns, where “tle” indicates
that the one hour limit was attained.

Note that the additional constraints improve the LP bounds of the
original model. Adding (13) alone led to better LP bounds for ex1
and ex2 and the IP solver turns to be able to prove optimality within
a few seconds (0.17 and 2.61, respectively). Concerning inequalities
(14) and (15), their inclusion also conducted to improved bounds,
even when compared with (13) (see ex3). The purpose of constraints
(16) is just to speed up the IP solver (see columns 7 and 10).

3.2. Comparing the models with other approaches

In the present subsection we report the results from the com-
putational tests performed in order to evaluate the quality of the
new formulations in comparison with other approaches. The results
were taken from two different sets of benchmark instances from the
MCARP literature (see [8]).

The first set, the so-called mval files, contains the smaller in-
stances with 24–50 nodes and 43–138 links which are all required.
In these files the number of required edges is always greater than
the number of required arcs.

The second set, the so-called lpr files, include 28–401 nodes and
50–1056 links and are divided into three subsets: lpr-a, lpr-b and
lpr-c, with five instances in each, that differ on the percentage of
required arcs and required edges included. The lpr-a and lpr-b sets
of files include more required arcs than required edges, while the
lpr-c files contain more required edges than arcs.

As a consequence of the preceding Section 3.1, we only report re-
sults for the enhanced models F1R and F2R and their linear program-
ming relaxations. A time limit of one hour was also set for the tests.
The lower bound values are compared with the best known lower
bound (BBLP) for the tested instances and with the best known upper

bound value (UB), obtained by a memetic algorithm developed by
Belenguer et al. [8].

The results for mval instances are depicted in Table 2, while
Table 3 refers to lpr data files. The format for both tables is the follow-
ing. The first six columns (1–6), of each table, describe the instance
characteristics. In column 7 upper bound values from Belenguer et
al. [8] are replicated. The next four columns give lower bound val-
ues, or the optimal solution value when found, of the correspond-
ing instance: column 8 is the lower bound provided by the method
described in [8]; column 9 is the value of the linear programming
relaxation of models F1R and F2R; column 10 and 11 are the best
value obtained by the CPLEX after one hour CPU time of model F1R
and F2R, respectively.

An (*) indicates optimal value of the MCARP. Underlined are val-
ues attained by the CPLEX that represent lower bounds for themodel,
whenever one hour was not enough for the IP solver to find an op-
timal solution. For each instance, row in the table, the best lower
bound is signalized in bold.

With respect to the results for the mval instances reported in
Table 2, we may notice that, the “relaxed” model F2R, column 11,
produces the optimal solution values for 23 of the 34 instances,
while the model F1R, column 10, only produces 15 optimums. Due
to the huge number of variables, CPLEX with F1R ends up without an
optimal solution and with a best lower bound that is usually worse
than the value of the integer solution provided by F2R. The results
of F2R are very similar to the ones of Belenguer et al. [8], referred
as BBLP in (8). Their method also found 23 optimal values, differing
in two cases (instances 3B and 3C) from optimums obtained by F2R.
For the remaining 11 instances, the BBLP bounds are better than the
F2R bounds four times.

Comparing the F2R lower bounds, column 11, with the upper
bounds in 7, we may infer that the lower bounds are close to the
optimal values, as gaps ((UB−LB)/UB) are no greater than 5%.

Concerning CPU times, the F2R formulation provides, in an aver-
age time of 0.31 s, never exceeding 4 s, quite reasonable bounds. For
the same set of instances Belenguer et al. [8] report an average of
1.74 s, with a maximum of 24.17 s, on a 2GHz Pentium IV.
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From Table 3, where results for larger sized instances are re-
ported, we observe again that F2R outperforms F1R. Even when an
optimal solution is not produced by F2R, F2R is able to improve the
value given by F1R. Comparing the reported values from columns 11
and 8, for the first class of instances, lpr-a, F2R always provides bet-
ter bounds, while for the third class of instances, lpr-c, BBLP seems
to be a better choice. It appears that F2R and BBLP play a comple-
mentary role, since the F2R bound is better when the number of
required arcs is greater than the number of required edges, while
the BBLP bounds are better when the number of required edges in-
creases. Note also that within the lpr data, both models F2R and BBLP
provide the optimum values for the smaller instances (with up to 53
nodes and 169 links).

For these instances, the lower bounds obtained by F2R deviate in
no more than 2% from the upper bounds, which again indicates the
quality of the bounds produced.

CPU times are quite similar to [8] and vary between few seconds
for medium sized instances to the time limit for the larger instances
and. As pointed out before, even in these cases, F2R was able to
exhibit bounds that are better than the ones produced by BBLP, which
were the best known lower bounds for the instances in this set.

4. Concluding remarks

With the aim of solving or getting good lower bounds for the
MCARP, two compact models were presented. Both models are
based on flows. The large number of variables and constraints of the
valid formulation has motivated the development of the aggregated
model. Additional constraints were added to strengthen the linear
programming relaxation bounds and speed up the ILP solver.

As noted before, one of the advantages of the aggregated model
lies on the fact that its linear programming relaxation value and the
linear relaxation value of the disaggregated model are equal.

Computational experiments show that the bounds provided by
the aggregated version are, for some benchmark instances, better
than the best known lower bounds.

As far as we know, this is also the first time that a compact model
for the MCARP is successfully tested on medium sized instances,
with its aggregated version leading to quite promising lower bound
values, in fairly small computation times.
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