30 research outputs found

    Universal-SBAS: A worldwide multimodal standard

    Get PDF
    This paper describes a generalisation of the aeronautical GNSS Space Based Augmentation System (SBAS) air interface, in a true worldwide multimodal standard named Universal S-BAS. Examples of usages of this multifrequency future standard are presented in the area of science and precise positioning, timing, security, robust positioning, maritime and reflectometry applications

    Cross-talk statistics and impact in interferometric GNSS-R

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a statistical analysis of the crosstalk phenomenon in interferometric Global Navigation Satellite Systems Reflectometry (iGNSS-R). Crosstalk occurs when the Delay-Doppler Map (DDM) of a tracked satellite overlaps others fromundesired satellites. This study is performed for ground-based and airborne receivers and for a receiver onboard the International Space Station (ISS) such as the upcoming GNSS Reflectometry, Radio Occultation and Scatterometry onboard ISS experiment. Its impact on ocean altimetry retrievals is analyzed for different antenna arrays. Results show that for elevation angles higher than 60 degrees, crosstalk can be almost permanent from ground, up to 61% from airborne receivers at 2-km height, and up to similar to 10% at the ISS. Crosstalk can only be mitigated using highly directive antennas with narrow beamwidths. Crosstalk impact using a seven-element hexagonal array still induces large errors on ground, but reduces to centimeter level on airborne receivers, and is negligible from the ISS.Peer ReviewedPostprint (author's final draft

    Explotación de nuevas oportunidades científicas de los sistemas de posicionamiento global por satélite (GNSS) desde una perspectiva intensiva en datos

    Full text link
    [EN] With the current GNSS infrastructure development plans, over 120 GNSS satellites (including European Galileo satellites)will provide, already this decade, continuous data, in several frequencies, without interruption and on a permanent basis.This global and permanent GNSS infrastructure constitutes a major opportunity for GNSS science applications. In themeantime, recent advances in technology have contributed "de-facto" to the deployment of a large GNSS receiver arraybased on Internet of Things (IoT), affordable smart devices easy to find in everybody’s pockets. These devices – evolvingfast at each new generation – feature an increasing number of capabilities and sensors able to collect a variety ofmeasurements, improving GNSS performance. Among these capabilities, Galileo dual band smartphones receivers andAndroid’s support for raw GNSS data recording represent major steps forward for Positioning, Navigation and Timing (PNT)data processing improvements. Information gathering from these devices, commonly referred as crowdsourcing, opensthe door to new data-intensive analysis techniques in many science domains. At this point, collaboration between variousresearch groups is essential to harness the potential hidden behind the large volumes of data generated by thiscyberinfrastructure. Cloud Computing technologies extend traditional computational boundaries, enabling execution ofprocessing components close to the data. This paradigm shift offers seamless execution of interactive algorithms andanalytics, skipping lengthy downloads and setups. The resulting scenario, defined by a GNSS Big Data repository with colocatedprocessing capabilities, sets an excellent basis for the application of Artificial Intelligence / Machine Learning (ML)technologies in the context of GNSS. This unique opportunity for science has been recognized by the European SpaceAgency (ESA) with the creation of the Navigation Scientific Office, which leverages on GNSS infrastructure to deliverinnovative solutions across multiple scientific domains.[ES] Con los planes actuales de desarrollo de la infraestructura GNSS, más de 120 satélites GNSS (incluidos los satélites europeos Galileo) proporcionarán, ya en esta década, datos continuos, en varias frecuencias, sin interrupciones y de forma permanente. Esta infraestructura GNSS global y permanente constituye una gran oportunidad para las aplicaciones científicas de GNSS. Mientras tanto, avances recientes han contribuido al despliegue de una red GNSS paralela basada en la Internet de las Cosas (IoT), asequibles dispositivos inteligentes fáciles de encontrar en todos los bolsillos. Estos dispositivos, que evolucionan rápidamente con cada nueva generación, acumulan un número creciente de funcionalidades y sensores capaces de recopilar una gran variedad de mediciones. Entre estas funcionalidades, los receptores de teléfonos inteligentes de banda dual Galileo y el soporte Android para la grabación de datos GNSS sin procesar representan pasos especialmente relevantes. La recopilación de información mediante estos dispositivos, comúnmente conocida como crowdsourcing, abre la puerta a nuevas técnicas de análisis de datos en múltiples dominios científicos. Llegados a este punto, la colaboración entre diversos grupos de investigación resulta esencial para aprovechar el potencial que se esconde en los grandes volúmenes de datos generados por esta ciberinfraestructura. Las tecnologías de Cloud Computing extienden los límites computacionales tradicionales permitiendo la ejecución de componentes de procesamiento cerca de los datos. Este cambio de paradigma ofrece una rápida ejecución de algoritmos y análisis interactivos, omitiendo largas descargas y configuraciones. El escenario resultante, definido por un repositorio GNSS Big Data con capacidades de procesamiento acopladas, establece una base excelente para la aplicación de tecnologías de Inteligencia Artificial / Aprendizaje Automático (ML). Esta oportunidad única para la ciencia ha sido reconocida por la Agencia Espacial Europea (ESA) con la creación de la Oficina Científica de Navegación, que aprovecha la infraestructura GNSS para ofrecer soluciones innovadoras en múltiples dominios científicos.This work was supported by the European Space Agency as part of Research and Development Programmes under Science and Navigation Directorates. The authors would like to thank the GNSS Science Advisory Committee and ESA Navigation Support Office for their support and suggestions. We also thank our Industrial partners, involved in science use cases assessment and implementation. Thanks also to the Science and Operations technical IT Unit at ESAC supporting the deployment of the GSSC Thematic Exploitation Platform. We would like to thank all data collection providers, with special thanks to IGS, ILRS, CDDIS, BKG and IGN for their sustained and remarkable support making possible the creation of the GSSC Repository at the core of this work.Navarro, V.; Ventura-Traveset, J. (2021). A data-intensive approach to exploit new GNSS science opportunities. En Proceedings 3rd Congress in Geomatics Engineering. Editorial Universitat Politècnica de València. 43-53. https://doi.org/10.4995/CiGeo2021.2021.12740OCS435

    A Review of Selected Applications of GNSS CORS and Related Experiences at the University of Palermo (Italy)

    Get PDF
    Services from the Continuously Operating Reference Stations (CORS) of the Global Navigation Satellite System (GNSS) provide data and insights to a range of research areas such as physical sciences, engineering, earth and planetary sciences, computer science, and environmental science. Even though these fields are varied, they are all linked through the GNSS operational application. GNSS CORS have historically been deployed for three-dimensional positioning but also for the establishment of local and global reference systems and the measurement of ionospheric and tropospheric errors. In addition to these studies, CORS is uncovering new, emerging scientific applications. These include real-time monitoring of land subsidence via network real-time kinematics (NRTK) or precise point positioning (PPP), structural health monitoring (SHM), earthquake and volcanology monitoring, GNSS reflectometry (GNSS-R) for mapping soil moisture content, precision farming with affordable receivers, and zenith total delay to aid hydrology and meteorology. The flexibility of CORS infrastructure and services has paved the way for new research areas. The aim of this study is to present a curated selection of scientific papers on prevalent topics such as network monitoring, reference frames, and structure monitoring (like dams), along with an evaluation of CORS performance. Concurrently, it reports on the scientific endeavours undertaken by the Geomatics Research Group at the University of Palermo in the realm of GNSS CORS over the past 15 years

    Engineering Calibration and Physical Principles of GNSS-Reflectometry for Earth Remote Sensing

    Full text link
    The Cyclone Global Navigation Satellite System (CYGNSS) is a NASA mission that uses 32 Global Positioning System (GPS) satellites as active sources and 8 CYGNSS satellites as passive receivers to measure ocean surface roughness and wind speed, as well as soil moisture and flood inundation over land. This dissertation addresses two major aspects of engineering calibration: (1) characterization of the GPS effective isotropic radiated power (EIRP) for calibration of normalized bistatic radar cross section (NBRCS) observables; and (2) development of an end-to-end calibration approach using modeling and measurements of ocean surface mean square slope (MSS). To estimate the GPS transmit power, a ground-based GPS constellation power monitor (GCPM) system has been built to accurately and precisely measure the direct GPS signals. The transmit power of the L1 coarse/acquisition (C/A) code of the full GPS constellation is estimated using an optimal search algorithm. Updated values for transmit power have been successfully applied to CYGNSS L1B calibration and found to significantly reduce the PRN dependence of CYGNSS L1 and L2 data products. The gain pattern of each GPS satellite’s transmit antenna for the L1 C/A signal is determined from measurements of signal strength received by the 8-satellite CYGNSS constellation. Determination of GPS patterns requires knowledge of CYGNSS patterns and vice versa, so a procedure is developed to solve for both of them iteratively. The new GPS and CYGNSS patterns have been incorporated into the science data processing algorithm used by the CYGNSS mission and result in improved calibration performance. Variable transmit power by numerous Block IIF and IIR-M GPS space vehicles has been observed due to their flex power mode. Non-uniformity in the GPS antenna gain patterns further complicates EIRP estimation. A dynamic calibration approach is developed to further address GPS EIRP variability. It uses measurements by the direct received GPS signal to estimate GPS EIRP in the specular reflected direction and then incorporates them into the calibration of NBRCS. Dynamic EIRP calibration instantaneously detects and corrects for power fluctuations in the GPS transmitters and significantly reduces errors due to GPS antenna gain azimuthal asymmetry. It allows observations with the most variable Block IIF transmitters (approximately 37% of the GPS constellation) to be included in the standard data products and further improves the calibration quality of the NBRCS. A physics-based approach is then proposed to examine potential calibration errors and to further improve the Level 1 calibration. The mean square slope (mss) is a key physical parameter that relates the ocean surface properties (wave spectra) to the CYGNSS measurement of NBRCS. An approach to model the mss for validation with CYGNSS mss data is developed by adding the contribution of a high frequency tail to the WAVEWATCH III (WW3) mss. It is demonstrated that the ratio of CYGNSS mss to modified WW3 mss can be used to diagnose potential calibration errors that exist in the Level 1 calibration algorithm. This approach can help to improve CYGNSS data quality, including the Level 1 NBRCS and Level 2 ocean surface wind speed and roughness. The engineering calibration methods presented in this dissertation make significant contributions to the spatial coverage, calibration quality of the measured NBRCS and the geophysical data products produced by the NASA CYGNSS mission. The research is also useful to the system design, science investigation and engineering calibration of future GNSS-reflectometry missions.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168052/1/wangtl_1.pd

    Multi-component and multi-source approach to model subsidence in deltas. Application to Po Delta Area

    Get PDF
    This thesis focused on the definition of a study approach able to deal with the complexity of the land subsidence phenomenon in deltas. In the framework of the most up- to-date multi-methodological and multi-disciplinary studies concerning land subsidence and targeting to predict and prevent flooding risk, the thesis introduces a procedure based on two main innovations: the multi-component study and the multi-source analysis. The proposed approach is a “multi-component” procedure as it investigates, in the available geodetic datasets, the permanent component apart from the periodic one, and, at the same time, it is a “multi-source” approach because it attempts to identify the relevant processes causing subsidence (sources) by a modelling based on multi-source data analysis. The latter task is accomplished first through multi-disciplinary and multi-methodological comparative analyses, then through modelling of the selected processes. With respect to past and current approaches for studying subsidence phenomena, the developed procedure allows one to: i. overcome the one-component investigation, improving the accuracy in the geodetic velocity estimate; ii. fix the “analyses to modelling” procedure, enhancing qualitative or semi-quantitative procedures that often characterize the “data to source” and the “residual to source” approaches; iii. quicken the source validation phase, accrediting the relevance of the source on the basis of the analysis results and before the modelling phase, differently from the “peering approach”, which validates the source on the basis of the model findings. The proposed procedure has been tested on the Po Delta (northern Italy), an area historically affected by land subsidence and recently interested by accurate continuous geodetic monitoring through GNSS stations. Daily-CGPS time series (three stations), weekly- CGPS time series (two stations) and seven sites of DInSAR-derived time series spanning over the time interval 2009 – 2017 constituted the used geodetic datasets. Several meteo/hydro parameters collected from fifty-seven stations and wide stratigraphic-geological information formed the base for the performed comparative analyses. From the application of the proposed procedure, it turns out that the periodic annual component highlighted in the continuous GPS stations is explained by two water mass-dependent processes: soil moisture mass change, which seems to control the ground level up-or-down lift in the southern part of the Delta, and the river water mass change, which influences the ground displacement in the central part of the Delta. As it concerns the permanent component, the lower rate found over 2012 - 2016 period in the central part of the Delta with respect to the eastern part is interpreted as due to the sediment compaction process of the Holocene prograding sequences and to the increase of rich-clay deposits

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Advanced GNSS-R instruments for altimetric and scatterometric applications

    Get PDF
    This work is the result of more than eight years during a bachelor thesis, a master thesis, and the Ph.D. thesis dedicated to the development of the Microwave Interferometric Reflectometer (MIR) instrument. It summarizes all the knowledge acquired during this time, and describes the MIR instrument as detailed as possible. MIR is a Global Navigation Satellite System - Reflectometer (GNSS-R), that is, an instrument that uses Global Navigation Satellite System (GNSS) signals scattered on the Earth's surface to retrieve geophysical parameters. These signals are received below the noise level, but since they have been spread in the frequency domain using spread-spectrum techniques, and in particular using the so-called Pseudo Random Noise (PRN) codes, it is still possible to retrieve them because of the large correlation gain achieved. In GNSS-R, two main techniques are used for this purpose: the conventional technique cGNSS-R and the interferometric one iGNSS-R, each with its pros and cons. In the former technique, the reflected signal is cross-correlated against a locally generated clean-replica of the transmitted signal. In the latter technique the reflected signal is cross-correlated with the direct one. Nowadays multiple GNSS systems coexist, transmitting narrow and wide, open and private signals. A comparison between systems, signals, and techniques in fair conditions is necessary. The MIR instrument has been designed as an airborne instrument for that purpose: the instrument has two arrays, an up-looking one, and a down-looking one, each with 19 dual-band antennas in a hexagonal distribution. The instrument is able to form 2 beams at each frequency band (L1/E1, and L5/E5A), which are pointing continuously to the desired satellites taking into account their position, as well as the instrument's position and attitude. The data is sampled and stored for later post-processing. Last but not least, MIR is auto-calibrated using similar signals to the ones transmitted by the GNSS satellites. During the instrument development, the Distance Measurement Equipment/TACtical Air Navigation (DME/TACAN) signals from the Barcelona airport threatened to disrupt the interferometric technique. These signals were also studied, and it was concluded that the use of a mitigation systems were as strongly recommended. The interferometric technique was also affected by the unwanted contribution of other satellites. The impact of these contributions was studied using real data gathered during this Ph.D. thesis. During these 8 years, the instrument was designed, built, tested, and calibrated. A field campaign was carried out in Australia between May 2018 and June 2018 to determine the instrument's accuracy in sensing soil moisture and sea altimetry. This work describes each of these steps in detail and aims to be helpful for those who decide to continue the legacy of this instrument.Este trabajo es el resultado de más de 8 años de doctorado dedicados al desarrollo del instrumento Microwave Interferometric Reflectometer (MIR). Esta tesis resume todo el conocimiento adquirido durante este tiempo, y describe el MIR lo más detalladamente posible. El MIR es un Reflectómetro de señales de Sistemas Globales de Navegación por Satélite (GNSS-R), es decir, es un instrumento que usa señales de GNSS reflejadas en la superficie de la tierra para obtener parámetros geofísicos. Estas señales son recibidas bajo el nivel de ruido, pero dado que han sido ensanchadas en el dominio frecuencial usando técnicas de espectro ensanchado, y en particular usando códigos Pseudo Random Noise (PRN), es todavía posible recibirlas debido a la elevada ganancia de correlación. En GNSS-R existen dos técnicas para este propósito: la convencional (cGNSS-R), y la interferométrica (iGNSS-R), cada una con sus pros y sus contras. En la primera se calcula la correlación cruzada de la señal reflejada y de una réplica generada del código transmitido. En la segunda técnica se calcula la correlación cruzada de la señal reflejada y de la señal directa. Hoy en día muchos sistemas GNSS coexisten, transmitiendo señales de distintos anchos de banda, algunas públicas y otras privadas. Una comparación entre sistemas, señales, y técnicas en condiciones justas es necesaria. El MIR es un instrumento aerotransportado diseñado como para ese propósito: el instrumento tiene dos arrays de antenas, uno apuntando al cielo, y otro apuntando al suelo, cada uno con 19 antenas doble banda en una distribución hexagonal. El instrumento puede formar 2 haces en cada banda frecuencial (L1/E1 y L5/E5A) que apuntan continuamente a los satélites deseados teniendo en cuenta su posición, y la posición y actitud del instrumento. Los datos son guardados para ser procesados posteriormente. Por último pero no menos importante, el MIR se calibra usando señales similares a las transmitidas por los satélites de GNSS. Durante el desarrollo del instrumento, señales del sistema Distance Measuremt Equi Distance Measurement Equipment/TACtical Air Navigation (DME/TACAN) del aeropuerto de Barcelona mostraron ser una amenaza para la técnica interferométrica. Estas señales fueron estudiadas y se concluyó que era encarecidamente recomendado el uso de sistemas de mitigación de interferencias. La técnica interferométrica también se ve afectada por las contribuciones no deseadas de otros satélites, llamado cross-talk. El impacto del cross-talk fue estudiado usando datos reales tomados durante esta tesis doctoral. A lo largo de estos 8 años el instrumento ha sido diseñado, construido, testeado y calibrado. Una campaña de medidas fue llevada a cabo en Australia entre Mayo de 2018 y Junio de 2018 para determinar la capacidad del instrumento para estimar la humedad del terreno y la altura del mar. Este documento describe cada uno de estos pasos al detalle y espera resultar útil para aquellos que decidan continuar con el legado de este instrumento.Postprint (published version

    Contributions to land, sea, and sea ice remote sensing using GNSS-reflectometry

    Get PDF
    This PhD thesis researches the use of passive remote sensing techniques using signals transmitted from the navigation satellites (GNSS) in order to retrieve different geophysical parameters. The thesis consists of two different parts without taking into account the introduction, the state of the art and the conclusions. The first part analyzes the Interference Pattern Technique (IPT), which was previously used in another PhD thesis, and proposes some key improvements. First, the addition of horizontal polarization to the existing vertical polarization is proposed. Then, the retrieval of soil moisture is studied using the horizontal polarization only and combining both polarizations to correct for the surface roughness effects. It is also demonstrated that the phase difference between the two interference patterns is directly related to soil moisture content. A field campaign was conducted in Australia to test empirically all the theoretical developments and algorithms. Secondly, the possibility of measuring Significant Wave Height (SWH) and Mean Sea Surface Level (MSSL) using the IPT is studied. A three month field campaign over coastal sea is devoted to that study. The SWH retrieval is a new estimation algorithm based on measuring the point where the interference pattern loses coherence. The MSSL retrieval is based on the estimation of the IPT oscillation frequency, testing different spectral estimators to improve the accuracy. Since the IPT is limited in coverage due to its static requirements, the research conducted in this thesis migrated to scatterometric GNSS-R techniques. The main goal that migration was to increase coverage of the different GNSS-R instruments. Therefore, the second part of this thesis analyzes the applicability of a scatterometric technique from different platforms: ground-based (mobile and fixed), airborne, and spaceborne. The ground-based still platforms have allowed to develop a soil moisture retrieval algorithm. The ground-based moving platforms have extended the validity of that algorithm. Airborne platforms have been used to study the reflected electric field statistics when the surface reflecting surface is varying (smooth or rough land, and sea). They have also been used to develop different algorithms to measure the coherent and incoherent scattered components depending on the data structure (real-data or complex data). Coherent reflectivity measured from airborne platforms has been compared to other techniques such microwave radiometry, which is highly used in the soil moisture retrieval from spaceborne sensors, and other sensors using optical, multispectral and thermal frequency bands. These relationships between microwave radiometry and GNSS-R measurements suggests the potential synergy of both techniques. A sea ice detection algorithm is also developed using scatterometric GNSS-R data from the UK TDS-1 mission. This algorithm is based on measuring the degree of coherence of the reflected waveform. Finally, a field campaign was conducted to study the effect of vegetation on the GNSS signals that pass through it in order to take into account and correct the effect of vegetation in the GNSS-R data and in the soil moisture retrieval algorithms.Aquesta tesi doctoral aprofundeix en el coneixement de les tècniques de teledetecció passives utilitzant senyals emesos pels satèl·lits de navegació (GNSS) amb l'objectiu de recuperar diferents paràmetres geofísics del terreny. La tesi conté dues parts ben diferenciades a banda de la introducció, estat de l'art i conclusions. La primera part analitza la tècnica coneguda com a patró d'interferències, utilitzada prèviament en una altra tesi doctoral, i proposa certes millores per la seva aplicabilitat. En primer lloc es decideix afegir polarització horitzontal a la ja existent polarització vertical, i s'estudia la recuperació d'humitat del sòl utilitzant només polarització horitzontal i combinant les dues polaritzacions per corregir els efectes de la rugositat del terreny. A continuació es demostra que la mesura de desfasament entre els dos patrons d'interferència està directament relacionada amb la humitat del terreny. Es va realitzar una campanya de mesures a Austràlia per provar empíricament tots els desenvolupaments teòrics i algorismes proposats. En segon lloc s'analitza l'aplicabilitat del patró d'interferències en la mesura de l'altura de les onades (SWH) i del nivell del mar (MSSL), tots dos de forma precisa. L'estimació de l'alçada de les onades és un procés totalment nou basat en mesurar el punt on el patró d'interferències perd la coherència. L'estimació del nivell del mar es basa en l'anàlisi espectral del patró d'interferències provant diferents estimadors espectrals. Atès que la tècnica del patró d'interferència està limitada en cobertura per les seves característiques estàtiques, la investigació duta a terme en aquesta tesi doctoral va migrar cap a tècniques GNSS-R escateromètriques. El principal objectiu a assolir va ser el d'augmentar la cobertura dels diferents instruments GNSS-R de mesura. En conseqüència, la segona part d'aquesta tesi analitza l'aplicabilitat d'aquestes tècniques des de diferents plataformes terrestres (mòbils i fixes), aerotransportades i satèl·lit. Les plataformes terrestres fixes han permès derivar algoritmes de recuperació d'humitat i les mòbils estendre la validació d'aquests. Les plataformes aerotransportades s'han utilitzat per mirar l'estadística del camp elèctric reflectit quan la superfície on es reflecteixen els senyals GNSS va variant (terra plana o terra rugosa, i mar). També han servit per desenvolupar diferents algorismes amb l'objectiu de determinar les components coherent i incoherent del senyal reflectit. De la mateixa manera, dades de reflectivitat coherent mesurades des d'aquestes plataformes han estat comparades amb altres tècniques de teledetecció passiva com la radiometria de microones, altament utilitzada en la mesura d'humitat de terreny, i altres sensors òptics, multi-espectrals, i tèrmics. Aquests resultats han permès suggerir la possible sinergia de dades d'ambdues tecnologies. Un algorisme per detectar la presència de gel sobre el mar també ha estat desenvolupat mitjançant l'ús de dades GNSS-R escateromètriques satel·litals de la missió UK TDS-1. Aquest algorisme es basa en mesurar el grau de coherència de la forma d'ona reflectida. Finalment, s'ha realitzat un estudi de l'efecte de la vegetació en els senyals GNSS que la travessen, per tal de poder corregir aquest efecte en els algoritmes de recuperació d'humitat del terreny
    corecore