143 research outputs found

    Software Health Management with Bayesian Networks

    Get PDF
    Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults

    Concept Development for Software Health Management

    Get PDF
    This report documents the work performed by Lockheed Martin Aeronautics (LM Aero) under NASA contract NNL06AA08B, delivery order NNL07AB06T. The Concept Development for Software Health Management (CDSHM) program was a NASA funded effort sponsored by the Integrated Vehicle Health Management Project, one of the four pillars of the NASA Aviation Safety Program. The CD-SHM program focused on defining a structured approach to software health management (SHM) through the development of a comprehensive failure taxonomy that is used to characterize the fundamental failure modes of safety-critical software

    Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control

    Get PDF
    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems

    Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Get PDF
    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft

    Towards Real-Time, On-Board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Get PDF
    For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, and hardware components. This system can detect and diagnose failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the-fly temporal and Bayesian probabilistic fault diagnosis; and (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software. We call this approach rt-R2U2, a name derived from its requirements. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual flight data from the NASA Swift UAS

    Runtime Verification in Context : Can Optimizing Error Detection Improve Fault Diagnosis

    Get PDF
    Runtime verification has primarily been developed and evaluated as a means of enriching the software testing process. While many researchers have pointed to its potential applicability in online approaches to software fault tolerance, there has been a dearth of work exploring the details of how that might be accomplished. In this paper, we describe how a component-oriented approach to software health management exposes the connections between program execution, error detection, fault diagnosis, and recovery. We identify both research challenges and opportunities in exploiting those connections. Specifically, we describe how recent approaches to reducing the overhead of runtime monitoring aimed at error detection might be adapted to reduce the overhead and improve the effectiveness of fault diagnosis

    FAILSAFE Health Management for Embedded Systems

    Get PDF
    The FAILSAFE project is developing concepts and prototype implementations for software health management in mission- critical, real-time embedded systems. The project unites features of the industry-standard ARINC 653 Avionics Application Software Standard Interface and JPL s Mission Data System (MDS) technology (see figure). The ARINC 653 standard establishes requirements for the services provided by partitioned, real-time operating systems. The MDS technology provides a state analysis method, canonical architecture, and software framework that facilitates the design and implementation of software-intensive complex systems. The MDS technology has been used to provide the health management function for an ARINC 653 application implementation. In particular, the focus is on showing how this combination enables reasoning about, and recovering from, application software problems

    Online Inference for Adaptive Diagnosis via Arithmetic Circuit Compilation of Bayesian Networks

    No full text
    International audienceConsidering technology and complexity evolution the design of fully reliable embedded systems will be prohibitively complex and costly. Onboard diagnosis is a first solution that can be achieved by means of Bayesian networks. An efficient compilation of Bayesian inference is proposed using Arithmetic Circuits (AC). ACs can be efficiently implemented in hardware to get very fast response time. This approach has been recently experimented in Software Health Management of aircrafts or UAVs. However, there are two kinds of obstacles that must be addressed. First, the tree complexity can lead to intractable solutions and second, an offline static analysis cannot capture the dynamic behaviour of a system that can have multiple configurations and applications. In this paper, we present our direction to solve these issues. Our approach relies on an adaptive version of the diagnosis computation for different kinds of applications/missions of UAVs. In particular, we consider an incremental generation of the AC structure. This adaptive diagnosis can be implemented using dynamic reconfiguration of FPGA circuits

    Architecture-Driven Semantic Analysis of Embedded Systems (Eds) Dagstuhl Seminar 12272

    Get PDF
    Architectural modeling of complex embedded systems is gaining prominence in recent years, both in academia and in industry. An architectural model represents components in a distributed system as boxes with well-defined interfaces, connections between ports on component interfaces, and specifies component properties that can be used in analytical reasoning about the model. Models are hierarchically organized, so that each box can contain another system inside, with its own set of boxes and connections between them. The goal of Dagstuhl Seminar 12272 “Architecture-Driven Semantic Analysis of Embedded Systems” is to bring together researchers who are interested in defining precise semantics of an architecture description language and using it for building tools that generate analytical models from architectural ones, as well as generate code and configuration scripts for the system. This report documents the program and the outcomes of the presentations and working groups held during the seminar

    Runtime Analysis with R2U2: A Tool Exhibition Report

    Get PDF
    We present R2U2 (Realizable, Responsive, Unobtrusive Unit), a hardware-supported tool and framework for the continuous monitoring of safety-critical and embedded cyber-physical systems. With the widespread advent of autonomous systems such as Unmanned Aerial Systems (UAS), satellites, rovers, and cars, real-time, on-board decision making requires unobtrusive monitoring of properties for safety, performance, security, and system health. R2U2 models combine past-time and future-time Metric Temporal Logic, “mission time” Linear Temporal Logic, probabilistic reasoning with Bayesian Networks, and model-based prognostics. The R2U2 monitoring engine can be instantiated as a hardware solution, running on an FPGA, or as a software component. The FPGA realization enables R2U2 to monitor complex cyber-physical systems without any overhead or instrumentation of the flight software. In this tool exhibition report, we present R2U2 and demonstrate applications on system runtime monitoring, diagnostics, software health management, and security monitoring for a UAS. Our tool demonstration uses a hardware-based processor-in-the-loop “iron-bird” configuration
    • …
    corecore