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Abstract. Runtime verification has primarily been developed and evaluated as
a means of enriching the software testing process. While many researchers have
pointed to its potential applicability in online approaches to software fault toler-
ance, there has been a dearth of work exploring the details of how that might be
accomplished.
In this paper, we describe how a component-oriented approach to software health
management exposes the connections between program execution, error detec-
tion, fault diagnosis, and recovery. We identify both research challenges and op-
portunities in exploiting those connections. Specifically, we describe how recent
approaches to reducing the overhead of runtime monitoring aimed at error detec-
tion might be adapted to reduce the overhead and improve the effectiveness of
fault diagnosis.

1 Introduction

The past decade has witnessed a growing interest in relating program executions to
rich correctness properties as a way to increase the observability of software system
behavior and thereby enhance the software testing process. The foundations of run-
time verification have been well established. Researchers have developed sophisticated
specification notations for expressing properties to be checked at runtime, e.g., [1, 2],
devised techniques for synthesizing efficient monitors to check those properties, e.g.,
[3], and produced powerful frameworks that allow monitors to be incorporated into
programs, e.g., [4, 5].

Early runtime verification systems, e.g., UPenn’s MaC [2] and NASA’s Java Path
Explorer [6], focused on using monitoring to enhance program testing. While enhanced
test oracles offer significant value, it seems clear that even in the early years of research
on runtime verification, researchers envisioned using it in a broader context. For ex-
ample, the authors of both the MaC and Java Path Explorer papers identify exploring
monitoring in a broader context as future work in stating “Our current system is geared
towards the detection of faults. It would be desirable in the future to build monitors that
can steer a system to a correct state.” [2] and asking “How can missions be made safer
in the face of errors occurring during flight that survived tests?” [6].

Research towards those goals has been modest, at least in part because it is a very
difficult challenge. In recent years, however, there has been a concerted effort to un-
derstand how one might construct software health management (SHM) subsystems [7].
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Building on decades of work in systems and vehicle health management, SHM seeks
to accommodate the nature of software faults, e.g., that arise as discontinuities relative
to their input domain, and provide an overall framework into which different error de-
tection, fault diagnosis, and recovery techniques can be incorporated to achieve greater
tolerance to software errors in fielded systems.

We believe that the broader context of SHM provides a number of significant chal-
lenges and opportunities for the runtime verification research community, which has
focused primarily on error detection techniques. More specifically, we believe there is
a need to consider the connections between error detection and other elements of SHM
solutions. In this paper, we consider one such connection, between error detection and
fault diagnosis, in light of recent efforts to mitigate the runtime overhead of error de-
tection.

One of the key challenges to widespread use of runtime verification, especially mon-
itoring of rich properties, i.e., monitors that check non-trivial predicates over program
data state and monitors that reason about sequences of program states, is runtime over-
head. Recent studies of the performance of state-of-the-art algorithms for monitoring
typestate properties [8] on Java program executions [5, 9, 10] have revealed rather bi-
modal findings in terms of performance; for many combinations of programs and prop-
erties, the overhead is negligible– less than 5% –but there are combinations that incur
significant overhead– more than 100%.

Monitor overhead is determined by a number of factors: the number of program lo-
cations that must be observed, the extent to which different data values require the need
for multiple copies of a monitor, and the cost of updating monitor state and checking
for violations. In the case of monitoring a typestate property, i.e., using a finite-state au-
tomaton (FSA) that expresses constraints on the legal ordering of operations called on
an instance of a given type, monitoring can incur significant overhead. For example, to
monitor the HasNext property on the bloat benchmark, one of the DaCapo benchmarks
[11] that was studied in [5], over 211 million operations, spread across one million
iterator instances, are processed during monitoring.

Given such a large overhead to monitor a single property, work to optimize this
type of property monitor is needed and has become an active area of research in recent
years, e.g., [10, 12]. The results thus far are quite promising, however, in all of the work
to date, there is no consideration of how optimization might impact the broader context
in which the monitor is deployed. For example, both error detection and fault diagnosis
must observe program behavior. How are those observations related to one another?
Can optimizing error detection also optimize fault diagnosis? Will such optimization
preserve the information needed by fault diagnosis?

In this paper, we begin to explore some of these questions, and more broadly, to
consider the connections that arise from considering runtime verification in an SHM
context. Our study offers some insights into how those connections might be exploited
to produce better SHM systems, and suggests principles that must be observed when
designing an error detection techniques for SHM.

The paper is organized as follows. Section 3 describes one recent strategy for op-
timizing runtime monitors for typestate properties and describes the property preser-
vation requirements developed for that optimization. Section 4 considers the impact of
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Fig. 1: Conceptual architecture for software health management.

applying that optimization strategy on three techniques for online fault diagnosis that
have been proposed recently. We present, in Section 5, a series of research challenges
and opportunities related to how runtime verification fits into SHM solutions that we
believe the research community is well-positioned to advance in the near future. We
begin with a discussion of existing research that forms the background for our study.

2 Background and Related Work

We provide background on the application of runtime monitoring for error detection,
survey approaches to software health management, and outline a few recent approaches
to software fault localization.

2.1 Runtime Monitoring for Error Detection

Monitoring the execution of a software system might be performed for a variety of rea-
sons, e.g., to assess performance, to enforce security policies, or to provide test coverage
information. The runtime verification community has focused, primarily, on monitor-
ing the conformance of program executions relative to a formally specified correctness
property. This type of monitoring can extend the set of errors that can be observed dur-
ing system execution compared to a traditional test oracle which evaluates predicates
on output values. Moreover, since such monitors typically observe the internal state of a
software system they are capable of detecting errors before they give rise to system-level
failures, such as outputting an incorrect value.

The top portion of Figure 1 depicts the relationship between a program, P , and
an error detection capability realized through runtime monitoring. A set of correctness
properties, φi, are defined and those properties together define the set of observations
of program behavior that is necessary to make judgments about the satisfaction or fal-
sification of each of the φi; this set is denoted Σ–the alphabet of program observations.
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Fig. 2: Monitor instrumentation and optimization.

As the program executes, it reaches locations at which an observation, or symbol, in
Σ is generated and that observation is communicated to the monitor associated with
each property. Each monitor tracks the sequence of observations and renders a boolean
judgment about the conformance of the program execution with respect to its property.

This conceptual architecture for monitoring can be instantiated using a wide range
of property monitoring approaches. For example, monitoring assertion properties relies
on observations that query the data state of the program. In this case, a single observa-
tion is all that is required to render a judgment of ¬φ, and if all observations satisfy
φ then a satisfying judgment is produced on program exit. Monitoring temporal or se-
quencing properties relies on observation of a set of program locations along with data
values, e.g., indications of calls and returns to methods of a given class coupled with
the identity of the receiver object. For such properties, the processing of an observation
updates the monitor state and judgments are rendered when an object’s lifetime ends or
the property enters a trap state, i.e., a state for which no subsequent observations can
prevent the property from being falsified.

The identification of observations during program execution and their communi-
cation to the property monitor can be achieved in a variety of ways. In recent years,
the runtime verification community appears to have converged on the use of program
instrumentation, realized by sophisticated aspect weaving technologies, as being a par-
ticularly effective means of integrating the generation of observations into programs [4,
13]. To illustrate, consider the three versions of program P shown in Figure 2. On the
left is the original, uninstrumented, version of P . In the middle is Pφ, an instrumented
version of P that produces observations relevant to φ. We discuss the rightmost version
in Section 3. When the instrumentation in Pφ is executed, sophisticated data struc-
tures are used to route observations [5] to monitors that are synthesized from high-level
property specifications [3, 14]. This monitoring code is incorporated in the deployed
program, e.g., as the added module shown at the bottom of Figure 2, so that it can be
invoked as needed during runtime.

2.2 Software Health Management

For at least three decades, there has been a recognition that the challenges of construct-
ing correct software are so significant that deployed systems will contain faults and that
cost-effective techniques for tolerating faults at runtime would be extremely valuable.



Many techniques have been proposed, but no technique has emerged as one that can be
widely applied in practice–some techniques have been shown to be ineffective [15, 16].

More recently, forms of software fault tolerance have been explored under the
names autonomic, recovery-oriented, failure-oblivious, self-healing, self-adaptive and
re-configurable systems. Even more recently, the term software health management
(SHM) has emerged in the safety-critical systems community and we adopt that term
here to encompass the general class of software fault tolerance approaches.

Rather than surveying the significant literature in these areas, we present, in Fig-
ure 1, a conceptual architecture for SHM that includes three capabilities that are incor-
porated into the subject program: error detection, fault diagnosis, and system recovery.

As described above, as program P executes it is monitored for properties, φi. Run-
time monitoring detects property violations, i.e., errors, that indicate a potential need
for system recovery. In an SHM solution, error detection communicates the identity of
the violated property to a fault diagnosis capability. Fault diagnosis is a very differ-
ent problem than error detection. Its goal is to identify the system component whose
behavior initiated the erroneous behavior that was ultimately detected–the faulty com-
ponent. Information from the faulty component may be separated both temporally and
structurally within the code from the component that exhibited the error. Consequently,
additional diagnostic information, D, is recorded during program execution to aid fault
diagnosis. While Σ and D may overlap or be generated from common locations in the
program, that need not be the case. Once diagnosis completes, it passes an indication
of the faulty component(s) to the recovery capability which may reconfigure, restart,
remove or replace those component(s).

This architecture can be instantiated in a wide variety of ways. For example, the
Pinpoint system [17] provides for SHM of web-services by instrumenting portions of
the service implementations and J2EE infrastructure to capture data for error detection
and fault diagnosis, which then triggers rather rudimentary component reboot for recov-
ery [18]. Other approaches skip fault diagnosis altogether [19, 20] and instead simply
repair data structures at the point of failure as a means of recovering from immediate
system failure. The FLORA [21] system allows an application to be refactored into iso-
lated recovery units that are rebootable, and allows different error detection and fault
diagnosis approaches to be incorporated–we discuss one such approach below.

None of these solutions seems appropriate in a safety-critical context. For such sys-
tems, SHM approaches are typically much more integral to overall system development
and are not regarded as an add on. Approaches like [22] take a holistic approach and
consider the possibility that faults might also exist within detection, diagnosis, and re-
covery algorithms–their approach is to prove those algorithms correct.

Researchers and developers will undoubtedly continue to evolve SHM solutions
from individual application domains to more general settings, from coping with in-
dividual types of of faults to broad classes of faults, and between different levels of
criticality. As they do, there will be opportunities for results from runtime verification
to be incorporated as long as those results are designed to fit into the broader SHM
context.



2.3 Software Fault Localization

Over the past decade, the software engineering research community has developed a
rich literature on techniques for identifying the root cause of a program failure, i.e., the
fault. Most of the techniques that have been developed are intended to support human
developers by narrowing their attention to parts of the program that are more likely to be
faulty. In doing this, they may produce a ranking of program elements, e.g., statements,
methods, classes, from most likely to be faulty to least likely. A developer starts at the
top of the list and works their way down and, if the localization technique is effective,
they save time in finding the fault and can then proceed with fixing it.

In recent years, several researchers have investigated the adaptation of fault local-
ization techniques to online fault diagnosis. While many different fault localization ap-
proaches might be used for this purpose, here we describe two classes of approaches
that use very different types of recorded information.

Spectrum-based fault localization [23]. This technique records information about which
system components are executed during a run of the system. This information is cap-
tured prior to deployment as the system undergoes its final round of testing. The infor-
mation recorded includes the coverage or execution frequency of each component.

Let the set of system components be c1, . . . , cm, then the hit spectrum, hs, is an
array of m values drawn from {0, 1} where hs[i] = 1 indicates that component ci was
executed in a program run. The count spectrum, cs, is an array of m natural numbers
where cs[i] indicates the number of times component ci was executed in a program run.
Rather than accumulate this information across a test suite, as is done in test adequacy
calculations, the spectra are stored for each of n runs thereby forming an n × m ac-
tivity matrix. An additional row stores a boolean value indicating whether an error was
detected during the run.

Studies have shown that spectrum-based on-line fault localization can narrow the lo-
cation of a fault to a set of components comprising between 10% and 25% of the system
components across a range of software systems with injected faults [24, 25]. The sys-
tem achieves good localization performance when given spectra for at least 10 error-free
executions, and, surprisingly, without spectra for runs with errors the technique is able
to eliminate 75% of the components from consideration. For these reasons, in recent
work, spectrum-based fault localization has been incorporated as an on-line diagnosis
technique in the FLORA system [26].

Sequence-based fault localization [27]. This technique records information about the
order in which system components are executed during a run of the system. Intuitively,
this technique should provide richer information when compared with spectra, which
are order-independent, and the study presented in [27] confirms this intuition at least
with respect to hit spectra.

It can be very costly to record the entire component execution sequence for any
given program run. Consequently, the approach of Dallmeier et al. [27] uses several
techniques to reduce the cost of capturing and storing sequence information. The most
aggressive technique stores all sub-sequences of component invocations of length k.
This results in the recording of a sequence set for each program run.



As with spectrum-based localization, sequence sets are accumulated for both erro-
neous and error-free runs. The sequence sets for a set of runs are processed to produce
a ranking of components – from most likely to be faulty to least likely. A case study ap-
plied sequence-based localization to multiple faulty versions of a non-trivial software
system with k = 8. They explored varying numbers of error-free runs together with
a single error run. The faulty component was ranked first 36% of the time and in the
top two 47% of the time. On average, the faulty component fell in the top 21% of the
ranking which is comparable to the accuracy achieved by spectrum-based diagnosis.

3 Optimizing Monitor Overhead

We begin with some definitions that will permit us to explain monitor optimization in
sufficient detail. For the purposes of illustration, we discuss monitoring of properties
expressed as deterministic finite state automaton (FSA) [28]. An FSA is a tuple φ =
(S,Σ, s0, δ, A) where: S is a set of states, Σ is an alphabet of symbols that encode
program observations, s0 ∈ S is the initial state, δ : S × Σ → S is the state transition
function, and A ⊆ S are the accepting states. We use ∆ : S × Σ+ → S to define
the composite state transition for a sequence of symbols from Σ; we refer to such a
sequence as a trace and denote it π. We lift the transition function from traces to sets
of traces, Π , and define ∆(s,Π) = {s′|∃π ∈ Π : ∆(s, π) = s′}3, i.e., the set of
states reached from s via any trace in Π . We define an error state as err ∈ S such
that ¬∃π ∈ Σ∗ : ∆(err, π) ∈ A. A property defines a language L(φ) = {π | π ∈
Σ∗ ∧∆(s0, π) ∈ A}.

FSA monitoring generally involves instrumenting a program to detect each occur-
rence of an observation, a ∈ Σ. A simple runtime monitor stores the current state,
sc ∈ S, which is initially s0, and at each occurrence of an observation a, it updates
the state to sc = δ(sc, a) to track the progress of the FSA in recognizing the trace of
the program execution. We say that a program execution violates a property, φ, if the
generated trace, π, ends in a non-accepting state, i.e., ∆(s0, π) 6∈ A; violations can be
detected as soon as the monitor enters an error state, i.e., sc = err.

3.1 Monitor Correctness

Definition 1 (Monitor Correctness for Error Detection). A runtime monitor for prop-
erty φ observing execution trace π is sound if it reports a violation if π 6∈ L(φ), and
complete if it reports a violation only if π 6∈ L(φ). A runtime monitor is correct in the
context of error detection if and only if it is sound and complete.

Soundness guarantees that no observed violation will be missed, whereas complete-
ness guarantees that false reports of violations will not occur. We note in the context
of error detection systems soundness is associated with the absence of false negatives.
In other words, an error detection system is sound if and only if not reporting an error
means the absence of errors in the system [29]. For runtime monitoring, the notions of

3 ∆ inside the set comprehension corresponds to the composite state transition for a sequence
of symbols from Σ.



soundness and completeness are relative to the trace generated by observations of pro-
gram behavior. In general, runtime monitoring would be complete, but unsound since
it is impractical to observe all program behavior. Hence, soundness in Definition 1 is
defined relative to just the observed behavior.

While it might seem obvious to require sound and complete monitoring, this re-
quirement can incur greater overhead than approaches that sacrifice one or the other.
For example, researchers have explored a variety of sampling techniques that assure
completeness of monitoring [30–32], but sacrifice soundness. This means that there
may exist a trace of the program that violates φ, but no error is reported. The advan-
tage of sacrificing soundness is the potential to maintain very low-levels of runtime
overhead, e.g., below 10%. When using runtime monitoring for the purpose of error de-
tection, i.e., to enrich existing test oracles, such a tradeoff may be appropriate however,
sacrificing soundness is undesirable when monitoring is used in the context of SHM.

3.2 Transforming Loops to Optimize Monitoring

Over the past several years several researchers explored approaches to statically opti-
mizing the overhead of runtime monitoring [9, 10, 12, 33]. In principle, these techniques
work much like compiler optimizations. They first perform static analyses to calculate
information about how a program and property relate to each other. Then, as depicted
on the right side of Figure 2, they use the results of those analyses to eliminate or mod-
ify monitor-related instrumentation within the program, to produce P ′φ, so as to reduce
its runtime cost.

To illustrate how such optimizations interact with online fault diagnosis techniques,
we provide a brief overview of the optimization described in [12]. This optimization
targets loops that involve observations related to a property being monitored. The goal
of the analysis is to determine whether the loop’s iteration space, i.e., the series of
executions of a loop’s body that arise when executing a loop, can be partitioned into a
prefix and a suffix as follows.

The loop prefix is comprised of a fixed number of iterations, such that after moni-
toring the observations in those iterations the property monitor is guaranteed to reach a
common state regardless of the monitor state on entry to the loop. More formally, if π
is a non-empty regular expression encoding all possible sequences of observations in a
single loop iteration and d is the number of iterations in the prefix, then the loop is said
to stutter at distance d for property φ if

∀s ∈ S : ∀s′ ∈ ∆(s, πd) : ∆(s′, π) = {s′}

We have found that for many properties and programs, the minimum stutter distance
is 1. This means that only a single iteration of the loop must be monitored. Instrumen-
tation related to property monitoring can be eliminated from the loop suffix. Conse-
quently, monitoring a loop for a property defined as an FSA requires only constant
overhead – the overhead does not vary with the number of iterations of the loop.

As an example, we consider the property StartStart described by the FSA in Fig-
ure 3. This property states that “on a stopwatch, do not call start twice without calling
stop in between” [9]. The snippet of code in Figure 4 resembles the code in class FFT
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Fig. 3: Property StartStart.

i n t b = 0 ;
w h i l e ( b < n ) {

. . .
sw . s t a r t ( ) ∗ ;
. . .
sw . s t o p ( ) ∗ ;
. . .

}
sw . r e s e t ( ) ;

i n t b = 0 ;
w h i l e ( b < n ) {

. . .
sw . s t a r t ( ) ∗ ;
. . .
sw . s t o p ( ) ∗ ;
. . .
b r e a k ;

}
w h i l e ( b < n ) {

. . .
sw . s t a r t ( ) ;
. . .
sw . s t o p ( ) ;
. . .

}
sw . r e s e t ( ) ;

Fig. 4: Example from SciMark 2.0 FFT: original (left) and optimized (right)

from the benchmark SciMark 2.0 [34]. The optimization described above transforms
the code as shown in Figure 3. This loop stutters at unit distance, and only the first iter-
ation of the loop needs to be monitored. The instrumented statements are marked by an
asterisk in the figure, which shows that observable statements only in the predecessor
loop are monitored. If during the program execution the original loop is required to be
executed k times before exiting it, the monitor optimized using this technique will only
observe 2 events instead of 2*k that will be observed by an unoptimized monitor.

In evaluating this optimization, we have found that it can yield significant reduc-
tions in runtime overhead. For example, for the Bloat DaCapo [11] benchmark and a
property that requires the strict alternation of hasNext() and next() calls on iter-
ators the number of observations that require processing is reduced by two orders of
magnitude which yields a factor of 4 reduction in runtime overhead. This significant
optimization benefit comes at no cost to the quality of error detection when monitoring
since, for programs that are free of certain forms of uncaught unchecked exceptions,



the optimized monitors are guaranteed to preserve both soundness and completeness
provided the corresponding unoptimized monitor preserves them.

Optimization of monitoring must preserve the correctness of the original monitor.

Definition 2 (Correctness of Monitor Optimization for Error Detection). A runtime
monitor M ′ for property φ, is correctly optimized with respect to an unoptimized run-
time monitorM for error detection if and only if for every trace π that would have been
observed by M , it observes π′, where |π′| ≤ |π| and M ′ reports a violation for π′ if
and only if M would have reported a violation for π.

3.3 Preserving Diagnostic Information

In the context of SHM, one must consider the possibility that the optimization of error
detection impacts the information collected for fault diagnosis. If Σ and D, from Fig-
ure 1, are completely distinct then there is no danger that optimizing error detection will
impact fault diagnosis. In general, we expect that these two information sources may
overlap,Σ∩D 6= ∅. For example, the set of observations for error detection of typestate
properties are exactly what are needed to form sequence sets for the fault localization
in [27].

While it may be permissible for optimization to degrade D in some way without
impacting the output of fault diagnosis, we define a more conservative property here
that suffices as long as fault diagnosis is deterministic relative to its input.

Definition 3 (Diagnostic Information Preservation of Monitor Optimization for
Error Detection). An optimized runtime monitor M ′ for property φ, preserves diag-
nostic information, D, relative to an unoptimized runtime monitor M , if for every trace
π that would have been observed by M , M ′ observes π′, and D ∩ π = D ∩ π′.

4 Adapting Monitor Optimization to Diagnosis

Overhead and resource constraints are important considerations when designing run-
time monitors. These considerations are equally important when designing diagnosis
capabilities. In this section, we consider the potential for adapting several optimization
techniques for monitoring aimed at error detection to optimize the recording of infor-
mation for diagnosis.

Stutter-optimization and hit-spectra present a clear opportunity for optimizing the
recording of diagnosis information. Recall that stutter-optimization clones a loop prefix
which contains instrumentation to support error detection, and leaves an uninstrumented
loop suffix. From a diagnosis point of view, the bodies of the loop prefix and suffix are
identical. Loop execution will remain in the prefix until all of the behavior relevant to
error detection is covered thereby computing a hit-spectra for the prefix. For all paths
through the loop that involve error detection instrumentation, this prefix hit-spectra is
guaranteed to be the hit-spectra for the original loop. Consequently, diagnosis related
instrumentation that records hit-spectra from the loop suffix can be safely removed.



Stutter-optimization and count-spectra require diagnosis related instrumentation in the
loop suffix be preserved. This is because each execution of a block of code that is
relevant for diagnosis must be recorded, and there is no way to infer the length of
the loop suffix from the analysis performed for stutter-optimization of error detection
monitors.

Stutter-optimization and sequence sets present a more subtle opportunity for optimiz-
ing the recording of diagnosis information. Recall that stutter-optimization preserves
error detection whenever the prefix has at least a minimum stutter distance d. The op-
timization will instrument d iterations of the loop, i.e., the loop prefix, and on each
iteration the non-empty string π is generated. The loop prefix is thus guaranteed to gen-
erate a sequence of at least length d ∗ |π|. Prefixes and suffixes of that sequence will be
combined with sequences occurring before and after the loop.

By setting the sequence length to k, one can apply stutter-optimization to a loop
using a distance of max(d, dk/|π|e), which will ensure an adequate stutter distance and
a sufficiently long sequence of symbols from the loop prefix to generate all k-length
subsequences. Using this distance, the diagnosis related instrumentation in the loop
suffix may be removed.

In this section, we have seen that for hit spectra and sequence set based fault diag-
nosis, stutter-optimization of error detection is diagnostic information preserving.

5 Challenges and Opportunities

In this section, we identify challenges and opportunities in runtime monitoring that we
believe to be worth exploring in the broader context of software health management.
The connections that arise from runtime verification in this context not only provide new
requirements for designing error detection techniques, but also create new opportunities
to improve the efficiency and effectiveness of fault detection and diagnosis, and produce
better SHM systems.

Property Selection and Specification. One of the main reasons for using runtime mon-
itors is to check properties that cannot easily be verified prior to deployment using
static analysis techniques. While considerable progress has been made with respect to
specification of rich correctness properties amenable to runtime monitoring, various
challenges and opportunities remain in this area. For example, care must be taken in
developing property specifications such that sufficient information is captured for both
detection and diagnosis. For an expressive path-property, the property specification re-
quired for detection may suffice as an input for diagnosis; however, for a less expressive
state-property the diagnosis module may require a more elaborate specification to cor-
rectly identify the faulty component(s). For example, when checking the state property
divide-by-zero, in addition to the point where the error was detected, the diagnosis mod-
ule may require a trace of instructions that generated, propagated and wrote a value of
zero at the location of interest. This diagnosis can be very challenging due to arbitrarily
large number of observations and real-time constraints.



Implicit Constraints. Property specifications form the primary requirements for run-
time monitor operation; however, because monitors operate as a component of a larger
system, checking properties of the system under observation, and interfacing with the
diagnosis component, they are subject to implicit constraints resulting from constraints
on the system and on the diagnosis component. Moreover, the nature of the system,
e.g., highly-dependable, real-time, distributed, fault-tolerant, can also be a source of
implicit constraints. For example, many of the systems being developed in the context
of SHM are real-time embedded systems operating on precise schedules. This implies
that the scheduling constraints must not be compromised by the addition of detection
and diagnosis. For critical systems, one must also assure that the detection, diagno-
sis, and recovery implementations do not themselves introduce faults lest the overall
dependability of the system be decreased.

Placement of Observations. The points at which program behaviors are observed to
detect property violations affect not only the efficiency and proper functioning of the
error detection capability, but they can also affect the efficiency and effectiveness of the
diagnosis component to accurately identify the faulty component(s). We suggest that
a static analysis that is geared towards improving the efficiency of monitors and the
effectiveness of diagnosis can be developed and employed in order to identify an ap-
propriate set of program points for instrumentation. For example, there are many cases
where the same instrumentation can be used to generate observations for error detec-
tion and diagnostic information. It may also be possible to coalesce data from multiple
instrumentation points when it can be proved that error detection will not occur during
some region of program execution, e.g., [33]. Clearly opportunities for piggybacking
both observation and diagnostic data collection should be exploited.

Exploiting Efficiency. If error detection and the collection of fault diagnosis information
can be made more efficient, then the time gained might be exploited to gather alternate
forms of diagnostic information that could improve diagnosis precision.

The cost of error detection and the collection of fault diagnostics is spread through-
out execution, but once an error is detected the system should execute recovery actions
very quickly. This argues for minimizing the cost of executing diagnostic algorithms,
which seems to run counter to the goal of making precise fault diagnoses. Here again
efficiency improvements can be leveraged for improved diagnoses by shifting some
diagnostic processing to the point at which diagnosis information is collected. This
effectively amortizes diagnostic cost across the entire program execution, rather then
concentrating it between error detection and recovery.

Exploiting Diagnosis Algorithms. In our presentation, we adopted a conservative ap-
proach to optimizing error detection. With more information about the structure of diag-
nostic data and how a diagnosis algorithm processes that information it may be possible
to achieve greater degrees of optimization of both error detection and of diagnostic data
collection. For example, knowledge about redundancy of diagnostic data could be ex-
ploited. To illustrate, consider hit count spectra – one can easily optimize hit count
data collection with removable instrumentation as has been done for test coverage data
collection.



Predictive Error Detection. As discussed above the latency between error detection and
recovery is a critical design constraint for SHM systems. One approach to relaxing this
constraint is to shift error detection earlier in time. This can be achieved, for example,
by migrating probes earlier in the code, e.g., the earliest point that is post-dominated by
the original probe location, or by performing static analyses to calculate predicates on
data values that when true guarantee that a path with probes leading to an error will be
taken. This would allow a longer period of time for diagnosis to operate, and thereby
produce a more precise result, or allow recovery to begin earlier. If an error is predicted
long enough in advance, then program execution might be modified to avoid the failure
thereby eliminating the need for recovery.
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