4,045 research outputs found

    Some Notes on the Past and Future of Lisp-Stat

    Get PDF
    Lisp-Stat was originally developed as a framework for experimenting with dynamic graphics in statistics. To support this use, it evolved into a platform for more general statistical computing. The choice of the Lisp language as the basis of the system was in part coincidence and in part a very deliberate decision. This paper describes the background behind the choice of Lisp, as well as the advantages and disadvantages of this choice. The paper then discusses some lessons that can be drawn from experience with Lisp-Stat and with the R language to guide future development of Lisp-Stat, R, and similar systems.

    Strategic Directions in Object-Oriented Programming

    Get PDF
    This paper has provided an overview of the field of object-oriented programming. After presenting a historical perspective and some major achievements in the field, four research directions were introduced: technologies integration, software components, distributed programming, and new paradigms. In general there is a need to continue research in traditional areas:\ud (1) as computer systems become more and more complex, there is a need to further develop the work on architecture and design; \ud (2) to support the development of complex systems, there is a need for better languages, environments, and tools; \ud (3) foundations in the form of the conceptual framework and other theories must be extended to enhance the means for modeling and formal analysis, as well as for understanding future computer systems

    A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    Get PDF
    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control

    Next generation software environments : principles, problems, and research directions

    Get PDF
    The past decade has seen a burgeoning of research and development in software environments. Conferences have been devoted to the topic of practical environments, journal papers produced, and commercial systems sold. Given all the activity, one might expect a great deal of consensus on issues, approaches, and techniques. This is not the case, however. Indeed, the term "environment" is still used in a variety of conflicting ways. Nevertheless substantial progress has been made and we are at least nearing consensus on many critical issues.The purpose of this paper is to characterize environments, describe several important principles that have emerged in the last decade or so, note current open problems, and describe some approaches to these problems, with particular emphasis on the activities of one large-scale research program, the Arcadia project. Consideration is also given to two related topics: empirical evaluation and technology transition. That is, how can environments and their constituents be evaluated, and how can new developments be moved effectively into the production sector

    Ada in AI or AI in Ada. On developing a rationale for integration

    Get PDF
    The use of Ada as an Artificial Intelligence (AI) language is gaining interest in the NASA Community, i.e., by parties who have a need to deploy Knowledge Based-Systems (KBS) compatible with the use of Ada as the software standard for the Space Station. A fair number of KBS and pseudo-KBS implementations in Ada exist today. Currently, no widely used guidelines exist to compare and evaluate these with one another. The lack of guidelines illustrates a fundamental problem inherent in trying to compare and evaluate implementations of any sort in languages that are procedural or imperative in style, such as Ada, with those in languages that are functional in style, such as Lisp. Discussed are the strengths and weakness of using Ada as an AI language and a preliminary analysis provided of factors needed for the development of criteria for the integration of these two families of languages and the environments in which they are implemented. The intent for developing such criteria is to have a logical rationale that may be used to guide the development of Ada tools and methodology to support KBS requirements, and to identify those AI technology components that may most readily and effectively be deployed in Ada

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    An engineering approach to automatic programming

    Get PDF
    An exploratory study of the automatic generation and optimization of symbolic programs using DECOM - a prototypical requirement specification model implemented in pure LISP was undertaken. It was concluded, on the basis of this study, that symbolic processing languages such as LISP can support a style of programming based upon formal transformation and dependent upon the expression of constraints in an object-oriented environment. Such languages can represent all aspects of the software generation process (including heuristic algorithms for effecting parallel search) as dynamic processes since data and program are represented in a uniform format

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Research on Architectures for Integrated Speech/Language Systems in Verbmobil

    Get PDF
    The German joint research project Verbmobil (VM) aims at the development of a speech to speech translation system. This paper reports on research done in our group which belongs to Verbmobil's subproject on system architectures (TP15). Our specific research areas are the construction of parsers for spontaneous speech, investigations in the parallelization of parsing and to contribute to the development of a flexible communication architecture with distributed control.Comment: 6 pages, 2 Postscript figure

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features
    corecore