51,233 research outputs found

    Eco-efficient supply chain networks: Development of a design framework and application to a real case study

    Get PDF
    © 2015 Taylor & Francis. This paper presents a supply chain network design framework that is based on multi-objective mathematical programming and that can identify 'eco-efficient' configuration alternatives that are both efficient and ecologically sound. This work is original in that it encompasses the environmental impact of both transportation and warehousing activities. We apply the proposed framework to a real-life case study (i.e. Lindt & SprĂŒngli) for the distribution of chocolate products. The results show that cost-driven network optimisation may lead to beneficial effects for the environment and that a minor increase in distribution costs can be offset by a major improvement in environmental performance. This paper contributes to the body of knowledge on eco-efficient supply chain design and closes the missing link between model-based methods and empirical applied research. It also generates insights into the growing debate on the trade-off between the economic and environmental performance of supply chains, supporting organisations in the eco-efficient configuration of their supply chains

    Improving sustainability through intelligent cargo and adaptive decision making

    Get PDF
    In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange.In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange.In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange

    Traceability system for capturing, processing and providing consumer-relevant information about wood products: System solution and its economic feasibility

    Get PDF
    Current research and practice reports indicate the existence of purchase barriers concerning eco-friendly products, e.g. wood products. These can be ascribed to consumers' mistrust regarding the non-observable environmental impact of wood products. To counter the mistrust, wood products are commonly endowed with eco-labels, which may be perceived mostly as a marketing tool, therefore not fulfilling their intended purpose. Current studies have shown that providing consumers with wood product information based on traceability systems increases product trust and purchase intentions, with those information items most valued by consumers being identified as well. Based on this, the paper proposes a traceability information system for the capturing, processing, and provision of product information using examples of wood furniture. Furthermore, a cost-benefit model for the proposed solution is developed. The calculations indicate the possibility of implementing traceability at the item level based on a four-layer system architecture enabling the capture and delivery of all information valued by consumers at acceptable costs. The proposed system helps to overcome purchase barriers of eco-friendly products, increasing consumers' product trust and purchase intentions

    Decision support for build-to-order supply chain management through multiobjective optimization

    Get PDF
    This is the post-print version of the final paper published in International Journal of Production Economics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper aims to identify the gaps in decision-making support based on multiobjective optimization (MOO) for build-to-order supply chain management (BTO-SCM). To this end, it reviews the literature available on modelling build-to-order supply chains (BTO-SC) with the focus on adopting MOO techniques as a decision support tool. The literature has been classified based on the nature of the decisions in different part of the supply chain, and the key decision areas across a typical BTO-SC are discussed in detail. Available software packages suitable for supporting decision making in BTO supply chains are also identified and their related solutions are outlined. The gap between the modelling and optimization techniques developed in the literature and the decision support needed in practice are highlighted. Future research directions to better exploit the decision support capabilities of MOO are proposed. These include: reformulation of the extant optimization models with a MOO perspective, development of decision supports for interfaces not involving manufacturers, development of scenarios around service-based objectives, development of efficient solution tools, considering the interests of each supply chain party as a separate objective to account for fair treatment of their requirements, and applying the existing methodologies on real-life data sets.Brunel Research Initiative and Enterprise Fund (BRIEF

    Information technology as boundary object for transformational learning

    Get PDF
    Collaborative work is considered as a way to improve productivity and value generation in construction. However, recent research demonstrates that socio-cognitive factors related to fragmentation of specialized knowledge may hinder team performance. New methods based on theories of practice are emerging in Computer Supported Collaborative Work and organisational learning to break these knowledge boundaries, facilitating knowledge sharing and the generation of new knowledge through transformational learning. According to these theories, objects used in professional practice play a key role in mediating interactions. Rules and methods related to these practices are also embedded in these objects. Therefore changing collaborative patterns demand reconfiguring objects that are at the boundary between specialized practices, namely boundary objects. This research is unique in presenting an IT strategy in which technology is used as a boundary object to facilitate transformational learning in collaborative design work

    To Greener Pastures: An Action Research Study on the Environmental Sustainability of Humanitarian Supply Chains

    Get PDF
    Purpose: While humanitarian supply chains (HSCs) inherently contribute to social sustainability by alleviating the suffering of afflicted communities, their unintended adverse environmental impact has been overlooked hitherto. This paper draws upon contingency theory to synthesize green practices for HSCs, identify the contingency factors that impact on greening HSCs and explore how focal humanitarian organizations (HOs) can cope with such contingency factors. Design/methodology/approach: Deploying an action research methodology, two-and-a-half cycles of collaboration between researchers and a United Nations agency were completed. The first half-cycle developed a deductive greening framework, synthesizing extant green practices from the literature. In the second and third cycles, green practices were adopted/customized/developed reflecting organizational and contextual contingency factors. Action steps were implemented in the HSC for prophylactics, involving an operational mix of disaster relief and development programs. Findings: First, the study presents a greening framework that synthesizes extant green practices in a suitable form for HOs. Second, it identifies the contingency factors associated with greening HSCs regarding funding environment, stakeholders, field of activity and organizational management. Third, it outlines the mechanisms for coping with the contingency factors identified, inter alia, improving the visibility of headquarters over field operations, promoting collaboration and resource sharing with other HOs as well as among different implementing partners in each country, and working with suppliers for greener packaging. The study advances a set of actionable propositions for greening HSCs. Practical implications: Using an action research methodology, the study makes strong practical contributions. Humanitarian practitioners can adopt the greening framework and the lessons learnt from the implementation cycles presented in this study. Originality/value: This is one of the first empirical studies to integrate environmental sustainability and HSCs using an action research methodology
    • 

    corecore