217,958 research outputs found

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Model Checking with Program Slicing Based on Variable Dependence Graphs

    Full text link
    In embedded control systems, the potential risks of software defects have been increasing because of software complexity which leads to, for example, timing related problems. These defects are rarely found by tests or simulations. To detect such defects, we propose a modeling method which can generate software models for model checking with a program slicing technique based on a variable dependence graph. We have applied the proposed method to one case in automotive control software and demonstrated the effectiveness of the method. Furthermore, we developed a software tool to automate model generation and achieved a 35% decrease in total verification time on model checking.Comment: In Proceedings FTSCS 2012, arXiv:1212.657

    OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse

    Full text link
    OpenJML is a tool for checking code and specifications of Java programs. We describe our experience building the tool on the foundation of JML, OpenJDK and Eclipse, as well as on many advances in specification-based software verification. The implementation demonstrates the value of integrating specification tools directly in the software development IDE and in automating as many tasks as possible. The tool, though still in progress, has now been used for several college-level courses on software specification and verification and for small-scale studies on existing Java programs.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Incremental bounded model checking for embedded software

    Get PDF
    Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and test case generation are some of the most common applications of automated verification tools based on bounded model checking (BMC). Existing industrial tools for embedded software use an off-the-shelf bounded model checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This article reports on the extension of the software model checker CBMC to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EMBEDDED TESTER. We present an extensive evaluation over large industrial embedded programs, mainly from the automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software. We furthermore report promising results on analysing programs with arbitrary loop structure using incremental BMC, demonstrating its applicability and potential to verify general software beyond the embedded domain

    Software dependability techniques validated via fault injection experiments

    Get PDF
    The present paper proposes a C/C++ source-to-source compiler able to increase the dependability properties of a given application. The adopted strategy is based on two main techniques: variable duplication/triplication and control flow checking. The validation of these techniques is based on the emulation of fault appearance by software fault injection. The chosen test case is a client-server application in charge of calculating and drawing a Mandelbrot fracta
    • …
    corecore