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Software Dependability Techniques validated
via Fault Injection Experiments

A. BENSO, S. DI CARLO, G. DI NATALE, P. PRINETTO, L. TAGLIAFERRI

Abstract
The present paper proposes a C/C++ Source-to-

Source Compiler able to increase the dependability
properties of a given application. The adopted strategy
is based on two main techniques: variable
duplication/triplication and control flow checking. The
validation of these techniques is based on the emulation
of fault appearance by software fault injection. The
chosen test case is a client-server application in charge
of calculating and drawing a Mandelbrot fractal.

1. INTRODUCTION

Nowadays, the use of computer-based systems
manages multiples aspects of our life and an increasing
number of critical applications relies on their functions.
The tasks in which ECS (Embedded Computer Systems)
are involved are becoming more and more complex
concerning crucial duties like aircraft, trains and medical
control systems. In this context, ECS plays a crucial role
in ensuring data security and human safety; therefore it
is mandatory that their tasks were appropriately
accomplished.
It can be observed that, while circuits size decrease,

clock frequency increase. These aspects, coupled with
the fact that processors are often placed in electrically
active environments, can favor transient errors
incidence. One commonly used technique to detect this
kind of errors is based on the on-line testing techniques
able to ensure high dependability without heavily
affecting the system performance.
The development of custom products with high

performance and dependability level it is not always an
acceptable task both from the economical point of view
and for the manufacturing time. These constraints force
the massive use of commercial off-the-shelf components
(COTS) both in software and in hardware domains.
These components are usually not developed to work in
unfavourable environments where high dependability is
the essential requirement. The goal is to realize fault
tolerant and reliable systems starting from off-the-shelf
hardware and software components.
The techniques involved in building fault tolerant

ECSs rely both on hardware and software redundancy.

Hardware redundancy is a powerful and very
effective resource but sometimes it is inapplicable for
the cost it implies. On the other hand, software
redundancy, while often effective, can slow down the
system performances. However, this second solution can
be implemented with very low costs.
Software redundancy techniques exploits additional

memory and/or execution time to guarantee the
correctness of the computation (and, hence, the code
integrity) and of the data stored in memory. The
techniques employed in the construction of such
software are called Software Implemented Hardware
Fault Tolerance (SIHFT) since they handle hardware
errors with the software aid. In particular, many studies
show how it is possible to verify the integrity of the
variables that populate a program [1][2] and of the
executed code [4-13]. All these strategies rely on ad hoc
modification of the high-level source code, with the
introduction of routines able to periodically test the
memory integrity. Even though these methods differ in
their approach (data protection or code protection) their
purpose is always producing a Fail-Silent system, i.e., a
system that produces only correct results.
Methods based on variable duplication aim at

reducing the situations in which the ECS produces
incorrect results, whereas the application gives the
impression to correctly terminate. This kind of
malfunction is called Fail-Silent Violation and typically
is caused by an alteration of a variable value [14] [15].
Methods based on control flow point to verify the

correctness of the program control flow. They are,
therefore, suitable to detect faults appearing in the code
more than on the variables. These solutions mainly rely
on the use of software signature checking [6-13]. The
application program is split into elementary blocks, i.e.,
block with one identified entry and exit point. A
signature is computed off-line by means of the
instructions contained in the block and then is stored in a
suitable data structure. At run-time the signature is
computed again and compared with the previously
stored one. The hardware deputed to maintain this kind
of statistics is a so-called watchdog processor [5].
This approach has demonstrated to be very effective

but unluckily shows two main drawbacks: first of all a
hardware modification (an effort which cannot always
be supported); second, watchdogs can only cover main
memory faults but not the memory cache ones.



In order to solve these two weaknesses the research
has moved in the direction of pure software
implementation. Typical solutions are Block Signature
Self Checking (BSSC) [16] and Control Checking with
Assertion (CCA) [17]. These researches essentially
exploit the previously introduced concepts of watchdogs
but the computation of the signatures is performed by a
software process and not by a hardware component.
This paper presents a new reliable compiler able to

enhance the dependability of a given C/C++ source
code. The compiler joins the approaches presented by
the authors in [2] with the RECCO (Reliable C/C++
Compiler) tool and in [18] obtaining a single integrated
approach able to deal with both data and code errors.
This new tool named RECCO* targets the improvement
of the dependability properties of C/C++ source code by
introducing apposite routines able to protect the data
stored in memory (via data duplication/triplication) and
detecting the deviations from the right control flow due
to erroneous code executions (with the use of control
flow checking) . The main purpose is to show how it is
possible to couple these two techniques to produce a
high level dependability application able to self-detect
errors injected in its memory area. Our approach has
been then validated with the use of software fault
injection tool [19].
The paper is organized as follow: Section 2

introduces some basic concepts about the structure of
the compiler itself whereas Section 3 defines the
adopted fault model and the fault injection environment.
To prove the effectiveness of the work Section 4 reports
experimental results performed on a benchmark. Finally
Section 5 draws some conclusions.

2. The Tool

RECCO* is a source-to-source compiler; it converts
a C/C++ code into a reliable version with the same
functionalities. The high reliability level is reached by
the introduction of routines that periodically check the
content of the memory (both data and code) to detect
corruptions.
Figure 1 sketches the structural design of RECCO*

identifying the different tasks of the compiling flow.

CodeReliabilityAnalysis

Control Flow
Checking

VariableDuplicationor
Triplication

Original
C/C++code

Reliability
Requirements

ReliableC/C++code

Figure 1: The RECCO* tool

First of all (Code Reliability Analysis) the compiler
acquires information about the code structure itself and
the variables used in the program. The tool builds up a
dependency graph that defines the correlation and the
dependencies among the variables.
At the same time the control flow of the code is

examined: the program is split into branch-free blocks
(defined as the biggest blocks with one entry and one
exit point) and each of them is assigned to a unique
identifier.

By means of these identifiers the compiler builds a
graph describing how the program control flow can
progress. This report is saved in an auxiliary file using
the regular expression formalism [18].
Figure 2 sketches an example of how the compiler

handles a typical control flow. The Block labels are
associated with sequential operations that do not contain
branch instructions whereas Dec labels show the
presence branch instructions. The regular expression
describing the example control-flow is: a[b|c*]d.
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Block2
[b]

Block3
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End

Begin

Block1
[a]

Figure 2: Control Flow

In the Control Flow Checking phase the code is
enriched with a concurrent process, in charge of
monitoring the control flow and verifying its
correctness. This kind of test has been suited to intercept
code modifications that cause the program to deviate
from its standard flow. Realizing the checker as an
independent process introduces a modest execution-time
overhead since its functions can be efficiently scheduled
by the Operating System when the main program is
waiting for external inputs (such as I/O operations). As a
matter of fact this approach implies the presence of a
multitasking Operating System.



During the Variable Protection phase the compiler
introduces redundant data to allow error
detection/correction of the program variables: the
variables considered in the Code Reliability Analysis are
duplicated/triplicated, depending on the user choice.
Each time a variable is written its copies are updated
whereas when a variable is read, the values stored in its
copies are checked for consistency. Therefore, the
compiled program is able to asses the reliability of its
data and detect (if variables are duplicated) or even
correct (if variables are triplicates) the errors occurring
in memory locations.
In order to reduce fault latency and to avoid fault

propagation through the system, both the tests
concerning code and data integrity are performed
concurrently with the normal operations.

3. Fault Injection

Concerning the Fault model, data corruption has
been reproduced by a single bit flip (Single Error Upset,
SEU) in the memory locations of the test-case both in
the code and in the data (global and stack) areas. The
question of how much this fault model represents an
appropriate defect induced by the occurrence of real
phenomena is crucial. Several software-implemented
fault injection studies are dedicated to the analysis of the
relationship between fault injected by software and
physical faults. In particular, NASA [20] researches set
up statistical investigations about the most common
errors occurring in modern digital circuits. These studies
lead to the conclusion that, due to the high
miniaturization and the high work frequencies, today
circuits are becoming more and more susceptible to the
effect of ionizing radiation and noise source. The most
commonly observed effects of these kind of disturbs is
the SEU.
The effectiveness of the used fault model is

increased when dealing with space applications, where
the probability of SEU is very high.
To emulate the faults in the test-case memory a Fault

Injector has been implemented as a UNIX daemon able
to inject errors in random locations of the targeted
program at random execution time.
The daemon could be driven by the user to inject

faults in different sections of the running program: code,
data and stack segment. Looking at the faulty program
results and comparing them with the correct ones the
injector is able to section the fault effects into the
following three categories:

• No effect: the error has no effect on the system;
• Wrong result, i.e., Fail Silent Violation (FSV): the

program end but the program results are wrong;
• Crash: the system crashes due to an unrecoverable

problem.

The information produced by the fault injector can be
used to statistically characterize the effectiveness of
RECCO*

4. Experimental results

To prove the effectiveness of the techniques
developed in RECCO*, a test-bench and a specific fault
injection policy have been set up.
The test-case is a program able to draw images based

on Mandelbrot fractals. It is organized as a client-server
application. The client is in charge of drawing the
picture using data provided by the server whereas the
server waits for client requests to produce new pictures.
Once the request is triggered, the server performs the
computation and sends the data flow through the
network.
This structure has been intended to distribute the

workload between two different machines, to support
the fault injection experiments and to help the statistics
registering. In fact, any injection experiment that causes
a malfunction on the server turns in an erroneous depict
on the client which can be easily compared with the
right one. The results’ checking is based on image files
comparison. Only the server section of the program has
been compiled with RECCO* and the faults have been
injected only on it.
The experiments are repeated on different

dependable versions of the same program to underline
which are the capabilities of each technique and the
influence on the program performance. Each version is
compiled selecting some of the options provided by
RECCO*. Five benchmarks have been defined:

• Control flow checking only (CF)
• Variable duplication only (VD)
• Variable triplication only (VT)
• Control flow checking and variable duplication

(CF+VD)
• Control flow checking and variable triplication

(CF+VT)
For each benchmark, a set of 1000 injections is

performed.
Table 1 summarizes the overhead introduced by the

dependable techniques.

Original CF VD VT CF+VD CF+VT
Binary Code (KB) 16 24 17 19 25 27
Execution Time (s) 4,2 5,1 5,4 6,2 6,5 7,3

Table 1: Memory and Time overhead

The code overhead is comprised between 3KB and
11Kb. Nevertheless, for the control flow technique, the
most of it is wasted by the control flow checker while a
small part is used by the synchronizations routines; for
this reason the incidence of this overhead decreases with
the code growth.
The first experiment aims at underlining how many

code errors and crashes can be detected when the



Control Flow Technique is employed. Table 2
summarizes results of injections on the code segment of
the program. In this case, only the CF benchmark has
been used because data redundancy is not able to cover
transient errors on the code.
For both the original program and the CF benchmark

the following information have been provided:
• no effect
• number of crashes;
• number of control-flow errors;
• number of errors not belonging in the set of

control-flow errors;
• number of detected control-flow errors.

Original CF
# No Effect 620 622
# Crashes 274 269
# Control Flow Errors 75 24
# Other Errors 31 30
# Detected Flow Errors - 55

Table 2: Injection on code

As we can see, the number of crashes decreases by 5
units whereas the number of control flow errors is
reduced by 68%.
The second experiment is performed injecting faults

in the data segment and the stack segment. In this case,
the whole set of benchmarks is used. In fact, control
flow checking technique is able to cover (even if in a
limited way) some faults occurring in the data segment
(for example, indirect jumps or function calls). Table 3
sketches the obtained results. For both the original
program and the benchmarks, the following information
have been provided:

• No effect
• number of crashes;
• number of Fail Silent Violation (i.e., the program

terminates its execution but it generates a
distorted image);

• number of detected but not corrected errors.

Original CF VD VT CF+VD CF+VT
# No Effect 718 716 714 978 716 977
# Crashes 143 143 13 12 11 12
# Fail Silent Violation 139 139 12 10 10 11
# Detected but Not
corrected Errors 0 2 261 0 263 0

Table 3: Injection on data

The number of crashes and fail silent violations is
highly reduced. This means that this huge percentage of
errors that before the compilation caused an altered
image are automatically corrected by the program itself.
To validate our approach, further benchmarks, with

different characteristics, have been set up; the results are
shown on Table 4 - Table 7. As it can be seen from the
two tables the results are similar to the ones obtained in
the previous test.

5. Conclusions

The present paper describes a source-to-source
compiler able to automatically integrate methodologies
to achieve high software dependability. The main
feature of the approach is the possibility of checking the
different memory areas of a running program with two
different methods of action. The data area is protected
with variables duplication or triplication whereas the
code section is checked for error by control flow
checking. This last technique has been implemented
resorting to a multi-process approach in order to
minimize both memory and execution time overheads.
Experimental results demonstrate the effectiveness

of the approach and the low overhead introduced both in
terms of additional memory and execution time.
Comparing the percentage of CFE detected by BSSC

technique [16] (about 50%), the result is worse than the
one achieved by RECCO*. Moreover, BSSC is
applicable to machine code only.
Watchdogs and Triple Modular Redundancy (TMR),

instead, can both reach accuracy in detecting CFE and
data corruption of about 80-95% with an overhead in the
execution time of about 10%. The main drawback is the
dependence from dedicated hardware with consequent
noticeable modifications of the system.
The disadvantages of these techniques are not shown

by RECCO* that instead deals with C/C++ code which
is target machine independent.
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Floating Point
Benchmark

Dicotomic
Search

Matrix
Multiplication
Benchmark

Quick Sort List Insertion

Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.

Code Size (KB) 48 58 36 43 14 22 15 23 20 29
Execution Time (s) 1,5 1,8 0,4 0,6 6,1 10,5 0,5 0,6 1,5 2
# Crashes 484 471 452 443 420 414 440 432 471 464
# No Effect 465 466 501 503 537 538 512 513 475 478
# Control Flow Errors 25 19 18 9 13 6 19 9 23 12
# Other Errors 26 26 29 29 30 30 29 29 31 31
# Detected Flow Errors 18 16 12 17 15

Table 4: Benchmarks results for Control Flow (injections on code)

Floating
Point

Benchmark
Dicotomic
Search

Matrix
Multiplicatio
n Benchmark

Quick Sort List Insertion

Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.

Binary Code Size (KB) 48 63 36 49 14 25 15 27 20 33
Execution Time (s) 1,5 1,8 0,4 0,6 6,1 10,5 0,5 0,6 1,5 2,5
# No Effect 690 983 663 981 653 979 696 992 657 983
# Crashes 139 8 178 7 159 5 135 4 214 9
# Fail Silent Violation 171 9 159 12 188 16 169 4 129 8
Table 5: Benchmarks results for Control Flow and Data Triplication (injections on data)

Floating Point
Benchmark

Dicotomic
Search

Matrix
Multiplication
Benchmark

Quick Sort List Insertion

Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.
Code Size (KB) 48 53 36 42 14 17 15 19 20 24
Execution Time (s) 1,5 1,8 0,4 0,6 6,1 10,5 0,5 0,6 1,5 2,2
# No Effect 690 984 663 983 653 981 696 992 657 985
# Crashes 139 8 178 7 159 5 135 4 214 8
# Fail Silent Violation 171 8 159 2 188 14 169 4 129 7

Table 6: Benchmarks results for Data Triplication (injections on data)

Floating Point
Benchmark

Dicotomic
Search

Matrix
Multiplication
Benchmark

Quick Sort List Insertion

Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.

Code Size (KB) 48 60 36 46 14 24 15 25 20 31
Execution Time (s) 1,5 1,8 0,4 0,6 6,1 10,5 0,5 0,6 1,5 2,2
# Crashes 139 7 178 7 159 5 135 5 214 9
# No Effect 690 685 663 660 653 651 696 691 657 655
# Fail Silent Violations 171 9 159 11 188 16 169 4 129 7
# Detected Errors 299 322 328 300 329

Table 7: Benchmarks results for Data Duplication+ Control Flow (injections on data)


