165,365 research outputs found

    Robustness analysis of a nucleic acid controller for a dynamic biomolecular process using the structured singular value

    Get PDF
    In the field of synthetic biology, theoretical frameworks and software tools are now available that allow control systems represented as chemical reaction networks to be translated directly into nucleic acid-based chemistry, and hence implement embedded control circuitry for biomolecular processes. However, the development of tools for analysing the robustness of such controllers is still in its infancy. An interesting feature of such control circuits is that, although the transfer function of a linear system can be easily implemented via a chemical network of catalysis, degradation and annihilation reactions, this introduces additional nonlinear dynamics, due to the annihilation kinetics. We exemplify this problem for a dynamical biomolecular feedback system, and demonstrate how the structured singular value (μ) analysis framework can be extended to rigorously analyse the robustness of this class of system. We show that parametric uncertainty in the system affects the location of its equilibrium, and that this must be taken into account in the analysis. We also show that the parameterisation of the system can be scaled for experimental feasibility without affecting its robustness properties, and that a statistical analysis via Monte Carlo simulation fails to uncover the worst-case uncertainty combination found by μ-analysis.</p

    What should IS majors know about regulatory compliance? Working paper series--08-12

    Get PDF
    Because of the severe penalties associated with non-compliance of legislative acts and regulations it is important for information systems (IS) majors to recognize and understand the need for the implementation, evaluation, and reporting on internal controls. IS majors need to be aware of legislation and regulations that have an impact on information technology (IT). IS majors also need to understand business processes and how to select, implement, and report on controls embedded into software that is developed. The best way to understand the business processes and associated controls is to become familiar with control frameworks

    Test-driven development of embedded control systems: application in an automotive collision prevention system

    Get PDF
    With test-driven development (TDD) new code is not written until an automated test has failed, and duplications of functions, tests, or simply code fragments are always removed. TDD can lead to a better design and a higher quality of the developed system, but to date it has mainly been applied to the development of traditional software systems such as payroll applications. This thesis describes the novel application of TDD to the development of embedded control systems using an automotive safety system for preventing collisions as an example. The basic prerequisite for test-driven development is the availability of an automated testing framework as tests are executed very often. Such testing frameworks have been developed for nearly all programming languages, but not for the graphical, signal driven language Simulink. Simulink is commonly used in the automotive industry and can be considered as state-of-the-art for the design and development of embedded control systems in the automotive, aerospace and other industries. The thesis therefore introduces a novel automated testing framework for Simulink. This framework forms the basis for the test-driven development process by integrating the analysis, design and testing of embedded control systems into this process. The thesis then shows the application of TDD to a collision prevention system. The system architecture is derived from the requirements of the system and four software components are identified, which represent problems of particular areas for the realisation of control systems, i.e. logical combinations, experimental problems, mathematical algorithms, and control theory. For each of these problems, a concept to systematically derive test cases from the requirements is presented. Moreover two conventional approaches to design the controller are introduced and compared in terms of their stability and performance. The effectiveness of the collision prevention system is assessed in trials on a driving simulator. These trials show that the system leads to a significant reduction of the accident rate for rear-end collisions. In addition, experiments with prototype vehicles on test tracks and field tests are presented to verify the system’s functional requirements within a system testing approach. Finally, the new test-driven development process for embedded control systems is evaluated in comparison to traditional development processes

    Software Engineering Approaches for TinyML based IoT Embedded Vision: A Systematic Literature Review

    Get PDF
    Internet of Things (IoT) has catapulted human ability to control our environments through ubiquitous sensing, communication, computation, and actuation. Over the past few years, IoT has joined forces with Machine Learning (ML) to embed deep intelligence at the far edge. TinyML (Tiny Machine Learning) has enabled the deployment of ML models for embedded vision on extremely lean edge hardware, bringing the power of IoT and ML together. However, TinyML powered embedded vision applications are still in a nascent stage, and they are just starting to scale to widespread real-world IoT deployment. To harness the true potential of IoT and ML, it is necessary to provide product developers with robust, easy-to-use software engineering (SE) frameworks and best practices that are customized for the unique challenges faced in TinyML engineering. Through this systematic literature review, we aggregated the key challenges reported by TinyML developers and identified state-of-art SE approaches in large-scale Computer Vision, Machine Learning, and Embedded Systems that can help address key challenges in TinyML based IoT embedded vision. In summary, our study draws synergies between SE expertise that embedded systems developers and ML developers have independently developed to help address the unique challenges in the engineering of TinyML based IoT embedded vision.Comment: 8 pages, 3 figure

    Analyzable dataflow executions with adaptive redundancy

    Get PDF
    Increasing performance requirements in the embedded systems domain have encouraged a drift from singlecore to multicore processors, and thus multicore processors are widely used in embedded systems today. Cars are an example for complex embedded systems in which the use of multicore processors is continuously increasing. A major reason for this is to consolidate different software components on one chip and thus reduce the number of electronic control units. However, the de facto standard in the automotive industry, AUTOSAR (AUTomotive Open System ARchitecture), was originally designed for singlecore processors. Although basic support for multicore processors was added, more complex architectures are currently not compatible with the software stack. Regarding the software components running on the ECUS of modern cars, requirements are diverse. On the one hand, there are safety-critical tasks, like the airbag control, anti-lock braking system, electronic stability control and emergency brake assist, and on the other hand, tasks which do not have any safety-related requirements at all, for example tasks controlling the infotainment system. Trends like autonomous driving lead to even more demanding tasks in the system since such tasks are both safety-critical and data-intensive. As embedded applications, like those in the automotive domain, become more complex, new approaches are necessary. Data-intensive tasks are usually tackled with large-scale computing frameworks. In this thesis, some major concepts of such frameworks are transferred to the high-performance embedded systems domain. For this purpose, the thesis describes a runtime environment (RTE) that is suitable for different kinds of multi- and manycore hardware architectures. The RTE follows a dataflow execution model based on directed acyclic graphs (DAGs). Graphs are divided into sections which are scheduled separately. For each section, the RTE uses a DAG scheduling heuristic to compute multiple schedules covering different redundancy configurations. This allows the RTE to dynamically change the redundancy of parts of the graph at runtime despite the use of fixed schedules. Alternatively, the RTE also provides an online scheduler. To specify suitable graphs, the RTE also provides a programming model which shares similarities with common large-scale computing frameworks, for example Apache Spark. Using this programming model, three common distributed algorithms, namely Cannon's algorithm, the Cooley-Tukey algorithm and bitonic sort, were implemented. With these three programs, the performance of the RTE was evaluated for a variety of configurations on two different hardware architectures. The results show that the proposed RTE is able to reach the performance of established parallel computation frameworks and that for suitable graphs with reasonable sectionings the negative influence on the runtime is either small or non-existent.Aufgrund steigender Anforderungen an die Leistungsfähigkeit von eingebetteten Systemen finden Mehrkernprozessoren mittlerweile auch in eingebetteten Systemen Verwendung. Autos sind ein Beispiel für eingebettete Systeme, in denen die Verbreitung von Mehrkernprozessoren kontinuierlich zunimmt. Ein Hauptgrund ist, dass es dadurch möglich wird, mehrere Applikationen, für die ursprünglich mehrere Electronic Control Units (ECUs) notwendig waren, auf ein und demselben Chip auszuführen und dadurch die Anzahl der ECUs im Gesamtsystem zu verringern. Der De-facto-Standard AUTOSAR (AUTomotive Open System ARchitecture) wurde jedoch ursprünglich nur im Hinblick auf Einkernprozessoren entworfen und, obwohl der Softwarestack um grundlegende Unterstützung für Mehrkernprozessoren erweitert wurde, sind komplexere Architekturen nicht damit kompatibel. Die Anforderungen der Softwarekomponenten von modernen Autos sind vielfältig. Einerseits gibt es hochgradig sicherheitskritische Tasks, die beispielsweise die Airbags, das Antiblockiersystem, die Fahrdynamikregelung oder den Notbremsassistenten steuern und andererseits Tasks, die keinerlei sicherheitskritische Anforderungen aufweisen, wie zum Beispiel Tasks zur Steuerung des Infotainment-Systems. Neue Trends wie autonomes Fahren führen zu weiteren anspruchsvollen Tasks, die sowohl hohe Leistungs- als auch Sicherheitsanforderungen aufweisen. Da die Komplexität eingebetteter Anwendungen, beispielsweise im Automobilbereich, stetig zunimmt, sind neue Ansätze erforderlich. Für komplexe, datenintensive Aufgaben werden in der Regel Cluster-Computing-Frameworks eingesetzt. In dieser Arbeit werden Konzepte solcher Frameworks auf den Bereich der eingebetteten Systeme übertragen. Dazu beschreibt die Arbeit eine Laufzeitumgebung (RTE) für eingebettete Mehrkernarchitekturen. Die RTE folgt einem Datenfluss-Ausführungsmodell, das auf gerichteten azyklischen Graphen basiert. Graphen können in Abschnitte eingeteilt werden, für welche separat mehrere unterschiedlich redundante Schedules mit Hilfe einer Scheduling-Heuristik berechnet werden. Dieser Ansatz erlaubt es, die Redundanz von Teilen der Anwendung zur Laufzeit zu verändern. Alternativ unterstützt die RTE auch Scheduling zur Laufzeit. Zur Erzeugung von Graphen stellt die RTE ein Programmiermodell bereit, welches sich an etablierten Frameworks, insbesondere Apache Spark, orientiert. Damit wurden drei Beispielanwendungen implementiert, die auf gängigen Algorithmen basieren. Konkret handelt es sich um Cannon's Algorithmus, den Cooley-Tukey-Algorithmus und bitonisches Sortieren. Um die Leistungsfähigkeit der RTE zu ermitteln, wurden diese drei Anwendungen mehrfach mit verschiedenen Konfigurationen auf zwei Hardware-Architekturen ausgeführt. Die Ergebnisse zeigen, dass die RTE in ihrer Leistungsfähigkeit mit etablierten Systemen vergleichbar ist und die Laufzeit bei einer sinnvollen Graphaufteilung im besten Fall nur geringfügig beeinflusst wird

    Symbolic Control and Planning of Robotic Motion [Grand Challenges of Robotics]

    Get PDF
    Mobile robots are complex systems that combine mechanical elements such as wheels and gears, electromechanical devices such as motors, clutches and brakes, digital circuits such as processors and smart sensors, and software programs such as embedded controllers. They have mechanical constraints (e.g., a car-like robot cannot move sideways), limited energy resources, and computation, sensing, and communication capabilities. They operate in environments cluttered with possibly moving and shape changing obstacles, and their objectives can change over time, such as in the case of appearing and disappearing targets. Robot motion planning and control is the problem of automatic construction of robot control strategies from task specifications given in high-level, human-like language. The challenge in this area is the development of computationally efficient frameworks allowing for systematic, provably correct, control design accommodating both the robot constraints and the complexity of the environment, while at the same time allowing for expressive task specifications

    A quality assurance model for airborne safety-critical software

    Get PDF
    Software applications in which failure may result in possible catastrophic consequences on human life are classified as safety-critical. These applications are widely used in a variety of fields and systems such as airborne systems, nuclear reactors' control, and medical diagnostic equipment. Unfortunately, the world has seen several accidents and tragedies caused by software failure error or where such failure/error was part of the problem. This thesis looks into safety-critical software embedded in airborne systems. It proposes a lifecycle specially modeled for the development of safety-critical software in aerospace and in compliance with the DO-178B standard and a software quality assurance (SQA) model based on a set of four acceptance criteria that builds quality into safety-critical software throughout its development. The thesis also provides frameworks and guidelines for the implementation of the proposed SQA model in addition to sets of rules defining how to assess the software development with respect to the four acceptance criteria
    corecore