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Zusammenfassung
Aufgrund steigender Anforderungen an die Leistungsfähigkeit von eingebetteten
Systemen findenMehrkernprozessorenmittlerweile auch in eingebetteten Systemen
Verwendung. Autos sind ein Beispiel für eingebettete Systeme, in denen die Verbrei-
tung von Mehrkernprozessoren kontinuierlich zunimmt. Ein Hauptgrund ist, dass
es dadurch möglich wird, mehrere Applikationen, für die ursprünglich mehrere
Electronic Control Units (ECUs) notwendig waren, auf ein und demselben Chip
auszuführen und dadurch die Anzahl der ECUs im Gesamtsystem zu verringern.
Der De-facto-Standard AUTOSAR (AUTomotive Open SystemARchitecture) wurde
jedoch ursprünglich nur im Hinblick auf Einkernprozessoren entworfen und, ob-
wohl der Softwarestack um grundlegende Unterstützung für Mehrkernprozessoren
erweitert wurde, sind komplexere Architekturen nicht damit kompatibel.

Die Anforderungen der Softwarekomponenten von modernen Autos sind vielfäl-
tig. Einerseits gibt es hochgradig sicherheitskritische Tasks, die beispielsweise die
Airbags, das Antiblockiersystem, die Fahrdynamikregelung oder den Notbremsas-
sistenten steuern und andererseits Tasks, die keinerlei sicherheitskritische Anforde-
rungen aufweisen, wie zum Beispiel Tasks zur Steuerung des Infotainment-Systems.
Neue Trends wie autonomes Fahren führen zu weiteren anspruchsvollen Tasks, die
sowohl hohe Leistungs- als auch Sicherheitsanforderungen aufweisen.

Da die Komplexität eingebetteter Anwendungen, beispielsweise im Automobilbe-
reich, stetig zunimmt, sind neue Ansätze erforderlich. Für komplexe, datenintensive
Aufgaben werden in der Regel Cluster-Computing-Frameworks eingesetzt. In dieser
Arbeit werden Konzepte solcher Frameworks auf den Bereich der eingebetteten
Systeme übertragen. Dazu beschreibt die Arbeit eine Laufzeitumgebung (RTE)
für eingebettete Mehrkernarchitekturen. Die RTE folgt einem Datenfluss-Ausfüh-
rungsmodell, das auf gerichteten azyklischen Graphen basiert. Graphen können in
Abschnitte eingeteilt werden, für welche separat mehrere unterschiedlich redundan-
te Schedules mit Hilfe einer Scheduling-Heuristik berechnet werden. Dieser Ansatz
erlaubt es, die Redundanz von Teilen der Anwendung zur Laufzeit zu verändern.
Alternativ unterstützt die RTE auch Scheduling zur Laufzeit. Zur Erzeugung von
Graphen stellt die RTE ein Programmiermodell bereit, welches sich an etablierten
Frameworks, insbesondere Apache Spark, orientiert. Damit wurden drei Beispiel-
anwendungen implementiert, die auf gängigen Algorithmen basieren. Konkret
handelt es sich um Cannon’s Algorithmus, den Cooley-Tukey-Algorithmus und
bitonisches Sortieren. Um die Leistungsfähigkeit der RTE zu ermitteln, wurden
diese drei Anwendungen mehrfach mit verschiedenen Konfigurationen auf zwei
Hardware-Architekturen ausgeführt. Die Ergebnisse zeigen, dass die RTE in ihrer
Leistungsfähigkeit mit etablierten Systemen vergleichbar ist und die Laufzeit bei
einer sinnvollen Graphaufteilung im besten Fall nur geringfügig beeinflusst wird.





Abstract
Increasing performance requirements in the embedded systems domain have en-
couraged a drift from singlecore to multicore processors, and thus multicore proces-
sors are widely used in embedded systems today. Cars are an example for complex
embedded systems in which the use of multicore processors is continuously in-
creasing. A major reason for this is to consolidate different software components
on one chip and thus reduce the number of electronic control units. However,
the de facto standard in the automotive industry, AUTOSAR (AUTomotive Open
System ARchitecture), was originally designed for singlecore processors. Although
basic support for multicore processors was added, more complex architectures are
currently not compatible with the software stack.
Regarding the software components running on the ECUS of modern cars, re-

quirements are diverse. On the one hand, there are safety-critical tasks, like the
airbag control, anti-lock braking system, electronic stability control and emergency
brake assist, and on the other hand, tasks which do not have any safety-related
requirements at all, for example tasks controlling the infotainment system. Trends
like autonomous driving lead to even more demanding tasks in the system since
such tasks are both safety-critical and data-intensive.
As embedded applications, like those in the automotive domain, become more

complex, new approaches are necessary. Data-intensive tasks are usually tackled
with large-scale computing frameworks. In this thesis, some major concepts of
such frameworks are transferred to the high-performance embedded systems do-
main. For this purpose, the thesis describes a runtime environment (RTE) that is
suitable for different kinds of multi- and manycore hardware architectures. The
RTE follows a dataflow execution model based on directed acyclic graphs (DAGs).
Graphs are divided into sections which are scheduled separately. For each section,
the RTE uses a DAG scheduling heuristic to compute multiple schedules covering
different redundancy configurations. This allows the RTE to dynamically change
the redundancy of parts of the graph at runtime despite the use of fixed sched-
ules. Alternatively, the RTE also provides an online scheduler. To specify suitable
graphs, the RTE also provides a programming model which shares similarities with
common large-scale computing frameworks, for example Apache Spark. Using
this programming model, three common distributed algorithms, namely Cannon’s
algorithm, the Cooley-Tukey algorithm and bitonic sort, were implemented. With
these three programs, the performance of the RTE was evaluated for a variety of
configurations on two different hardware architectures. The results show that the
proposed RTE is able to reach the performance of established parallel computation
frameworks and that for suitable graphs with reasonable sectionings the negative
influence on the runtime is either small or non-existent.
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1
Introduction

The trend towards increasing performance requirements is not limited to the domain
of high performance computing any more andmulticore processors are widely used
in complex embedded systems today. In a survey from 2020 about industry practice
in real-time systems, more than 80% of the respondents stated that the system
they are working on contains at least one multicore processor (2–16 cores) and a
similar proportion of participants (roughly 80%) indicated their use in real-time
embedded projects by 2021 [Ake+20]. According to the survey, the proportion of
respondents working on systems which contain manycore processors (16+ cores)
is significantly lower (about 15%). However, interest appears to be greater, with
33% of respondents indicating that manycore processors will become established
by 2021 and another 14% expecting this by 2029.

1.1 Motivation
About 40% of the participants in the survey work on automotive-related systems.
Cars are complex embedded systems consisting of various electronic control units
(ECUs) connected via different kinds of buses. Amajor reason for the increasing use
ofmulticore processors in the automotive domain is to consolidate different software
components on one chip and thus reduce the number of ECUs. Tesla is a pioneer
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1 Introduction

in this field. Back in 2012, the Model S already utilized only 3–4 ECUs [VBP19].
Since the de facto standard in the automotive industry, AUTOSAR (AUTomotive
Open System ARchitecture), was originally designed for singlecore processors, an
extension of the software stack was required. First support for multicore processors
was added in version 4.0 of AUTOSAR [Bec+15]. However, theAUTOSARmulticore
extensions were only designed for a simple hardware model in which cores access
a shared memory and other peripherals over a shared bus [Bec+15]. To meet the
requirements of future automotive applications, there is great interest in extending
the existing multicore capabilities and adding support for additional hardware
architectures, for example distributed manycores [GC18; Bec+15; UO17].

The software components running on the ECUS of modern cars are diverse and
thus have different requirements. First, there are safety-critical tasks like the airbag
control, anti-lock braking system, electronic stability control and emergency brake
assist. Such tasks may not be computationally complex but have strong require-
ments regarding reliability and timing predictability. The complete opposite would
be tasks controlling the car’s infotainment system which gets more performance
demanding as technology evolves but is not safety-critical at all. Between these
two kinds of tasks, lies broad spectrum of tasks with different performance and
safety requirements. The ignition timing control, for example, clearly has real-time
requirements, but occasional close deadline misses might be acceptable.
With the continuous expansion of assistance systems and the long-term goal of

fully autonomous driving, safety-critical software components are becoming more
and more complex. A common computational task in this area is the execution
of convolutional neural networks (CNNs) to detect pedestrians, lane lines, street
signs and other vehicles from camera images [Tal+20; Luc+16]. CNNs are directed
graphs consisting of different types of operation nodes, for example convolution and
pooling nodes. Multi- and manycore processors are well-suited for the execution
of CNNs since there is enough parallelism resulting from the data parallelism in
operation nodes and the possibility to execute nodes concurrently.

Considering the requirements of complex embedded applications, like automotive
software components, and modern computational tasks, for example CNNs, this
thesis describes a runtime environment (RTE) that is suitable for different kinds of
multi- and manycore hardware architectures. A major aspect in the development of
the RTE was the transfer of concepts from large-scale computing frameworks, which
are commonly used for machine learning and other data-intensive applications, to
the high-performance embedded systems domain. Like many of these frameworks,
the RTE executes programs in form of directed acyclic graphs (DAGs). Suitable
graphs can be specified either directly by defining the nodes and edges or via a
functional-style programming model. The benefit of this programming model is
that large graphs with enough inherent parallelism for manycore processors can
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be created with only a few function calls. In general, the programming model is
similar to the programming style of existing big data frameworks but provides a
smaller set of functions due to its focus on embedded systems. The RTE’s execution
model follows a coarse-grain dataflow style, i.e. data passed between the nodes of a
graph is usually a larger data structure or collection. Both the type of data passed
between nodes and the functions applied to the data are user-defined. Thus, the
RTE offers enough expressiveness for today’s as well as future embedded systems.
An important topic in the embedded systems domain is fault tolerance. Some large-
scale computing frameworks which inspired the RTE also contain a fault tolerance
mechanism. However, these mechanisms mainly focus on the failure of a node in
the compute cluster and the recovery of data. Safety-critical embedded systems
have additional requirements, for example the correctness of results, which requires
redundant computation. Tomeet the requirements ofmodern safety-critical systems,
the proposed RTE implements the concept of adaptive redundancy, which allows it
is to change the redundancy of parts of the application dynamically at runtime.

1.2 Contribution
Themain contribution of this thesis is the transfer of concepts which are successfully
used in big data frameworks to the domain of high-performance embedded systems.
For this purpose, the thesis comprehensively describes a runtime environment,
from the high-level programming model down to the implementation on different
hardware architectures. In detail, the individual contributions are:

• A programming model similar to established large-scale computing frame-
works that allows to conveniently specify dataflow graphs with enough inher-
ent parallelism to utilize the capabilities of multi- and manycore processors

• A coarse-grain dataflow execution model based on directed acyclic graphs
which on the one hand allows to change the redundancy of different parts of an
application at runtime and on the other hand to analyze dataflow executions
with reasonable effort

• Details of an RTE implementation on two hardware architectures, more pre-
cisely a shared-memory architecture and a network-on-chip-based architecture

• Extended versions of an existing DAG scheduling heuristic with support for
different redundancy configurations

• Analyzability considerations for dataflow executions in the RTE
• An evaluation of the proposed programming and execution model with three

common applications on two existing hardware architectures
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1.3 Overview
This thesis consists of eleven chapters. Following this chapter which gives an in-
troduction to the topic, Chapter 2 provides background information on the four
concepts the RTE is based on, namely dataflow, functional programming, DAG
scheduling and fault tolerance. Chapter 3 shows how the four concepts are com-
bined in the RTE as it gives a high-level overview of the RTE’s internal structure.
The RTE consists of four parts, a graph construction part based on a functional
programming model, an import/export part, a scheduling part and a graph exe-
cution part. Subsequent chapters go into the details of the different parts of the
RTE. In Chapter 4, the data structures and operations of the functional program-
ming model are introduced. It is important to note that this chapter only describes
the programming model from a user’s perspective, i.e. the provided operations
are considered as functions that are evaluated in a lazy fashion. The chapter also
contains three exemplary algorithms expressed in the programming model. How
the operations actually construct dataflow graphs is explained in Chapter 5. The
chapter also provides more details on the structure of dataflow graphs and shows
dataflow graphs constructed by the three example programs from the previous chap-
ter. In Chapter 6, dataflow executions are discussed in more details. This chapter
describes reference RTE implementations for two different hardware architectures,
a shared-memory system and a network-on-chip-based architecture. Chapter 7
describes extended versions of a common DAG scheduling heuristic and an online
scheduling procedure that support the hardware architectures and redundancy
configurations covered in Chapter 6. Some considerations about the analyzability
of dataflow executions with offline schedules are made in Chapter 8. The chapter
also briefly covers different redundancy configurations and transient errors. Details
about the performance of dataflow executions on two different platforms are given
in Chapter 9. Similar to previous chapters, Chapter 9 also covers the different redun-
dancy configurations. Furthermore, the chapter provides measurements regarding
graph construction, scheduling and adaptive redundancy. Chapter 10 describes
other approaches which are related to the proposed RTE either in terms of their
programming model, dataflow or fault-tolerance. Furthermore, the similarities and
differences between the RTE and the related work are discussed. Lastly, Chapter 11
summarizes the results of this thesis and proposes future research opportunities.
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2
Background

This chapter provides information on different topics that are important for the
proposed programming model and runtime environment. Section 2.1 introduces
the concept of dataflow and shows different types of dataflow models, ranging
from static dataflowmodels over dynamic dataflowmodels to hybrid dataflow/von-
Neumann approaches. After that, Section 2.2 describes the functional programming
paradigm and some common characteristics, like high order functions and paramet-
ric polymorphism. Section 2.3 provides information on scheduling heuristics for
directed acyclic graphs (DAGs). These heuristics are applied offline, i.e. before the
graph is executed. A common approach to tackle the problem of DAG scheduling at
runtime is described in Section 2.4. Lastly, an overview of different concepts related
to fault tolerance is given in Section 2.5.

2.1 Dataflow
Today’s computer architectures are mostly based on the von-Neumann model.
A computer following the von-Neumann model executes programs according to
the given control flow. This means that instructions are executed one after the
other based on the given instruction order. The von-Neumann model makes it
easy for programmers to write sequential programs, but it is also possible to write
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parallel applications in this computing model, for example via an abstraction like
operating system processes or threads. However, writing parallel programs in the
von-Neumann model is much more difficult than writing sequential programs.
The reason for this is that programmers have to handle the synchronization of all
sequential executions manually. What makes the situation worse is that bugs in
parallel von-Neumann programs are often hard to detect and fix [Lu+08]. Examples
of such bugs are deadlocks, livelocks, starvation and race conditions. Because
of their non-deterministic nature, these bugs may randomly lead to unintended
behavior at some point during program execution or may not appear at all.

The dataflow model is an alternative approach to the classic von-Neumann com-
puting model. In contrast to the von-Neumann model’s control-flow-based execu-
tion, instructions in the dataflow computing model are triggered by the availability
of their operands. This means that instructions can be executed as soon as their
operands and the required hardware resources are available. As a result, dataflow-
based computers are able to fully exploit the inherent parallelism of programs. In
this regard, the organization of memory also plays an important role. Since there
are no explicit load and store instructions in the dataflow computing model, there
is no way to freely access memory locations like in the von-Neumann model.

2.1.1 Emergence of Dataflow Architectures
The first proposal describing the dataflow paradigm was made by Karp and Miller
[KM66]. They described a model in which a parallel program is represented by a
finite directed graph. Graph nodes represent operations in the parallel program,
while edges result from their data dependencies. Edges in the graph act as queues
which transfer data from one operation to another. The authors also showed some
favorable characteristics of their model. Probably the most important property
they proved is determinism. This property says that all proper executions of the
computation graph lead to the same results. Neither the timing of a graph node
execution nor its actual runtime influence the result. Further, the property holds
for each graph node as well as the computation graph as a whole. Determinism
is not limited to Karp and Miller’s model. It is rather a property of the dataflow
paradigm in general. Therefore, later upcoming dataflow models are also deter-
ministic. However, there also exist models that support indeterminism when it
is explicitly introduced, for example Kosinski’s dataflow language DFPL [Kos73].
Other well-known early dataflow models were proposed by Kahn [Kah74] and
Dennis [Den74].
What all the dataflow models have in common is that parallel programs are

expressed through directed graphs, known as dataflow graphs. Although there are
subtle differences between the graphs of different models, their core is the same.
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Like in Karp and Miller’s original model, graph nodes, also called dataflow actors,
represent instructions, while edges (or arcs) represent data dependencies. Nodes in
the graph usually do not have an internal state. Data that is transferred from one
node to another according to the graph edges is often called a token. If all required
tokens of an instruction node are available, the node is called enabled. An enabled
node may fire, i.e. consume some input tokens, execute the instruction and create
appropriate output tokens. Although dataflow graphs can be created by hand,
this procedure is not feasible for larger graphs. Hence, dataflow graphs are often
constructed from higher-level code. The construction itself may be done at compile
time, decode time or execution time, based on the dataflow system [Yaz+14].

After some dataflowmodels and languageswere proposed, the dataflowprinciple
was also used to design dataflow architectures. These processors can directly exe-
cute dataflow programs and therefore differ from typical von-Neumann processors.
The first concrete architecture was proposed by Dennis and Misunas [DM74]. Its
structure is shown in Figure 2.1 in a simplified form. Dataflow graphs are stored in
the processor’s memory, which consists of various instruction cells. Each instruction
cell corresponds to a node in the dataflow graph. Since all instructions in Dennis’s
model have a maximum of two operands, instruction cells contain three registers,
one for the instruction and the result addresses and two for the operands. A cell
is enabled when its input operands are available. Enabled cells are fetched by the
arbitration network and sent to an operation unit in form of an operation packet. When
an operation unit has finished its current instruction, the result is sent as a data
packet over the distribution network, which sends the data to the correct registers
inside the memory. Later proposed dataflow architectures usually have a more com-
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Figure 2.1: Simplified dataflow processor [DM74]
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plicated structure than the described simplified architecture. Well known examples
for dataflow architectures include the Manchester dataflow computer [GKW85],
the MIT tagged-token dataflow architecture [AN90] and the Hughes dataflow mul-
tiprocessor [VF85]. What they have in common is the circular organization of the
pipeline, which is also visible in Figure 2.1. This structure strongly encourages
parallel instruction execution. However, the circular pipeline is the main reason for
the poor sequential performance of many dataflow architectures [ABU91; RŠU00].
An instruction can only be executed when all directly preceding instructions in the
graph went through the whole pipeline.

2.1.2 Static Dataflow
The original dataflow architecture proposed by Dennis belongs to the category of
static dataflow approaches. In such models, graph edges may only contain a single
token at a time. Therefore, static models follow the so-called single-token-per-arc
approach [ŠRU98]. Because of this restriction, the firing of instruction nodes must
not only consider incoming edges but also the outgoing ones. In the static model,
outgoing edges of a node must not contain data because otherwise the node cannot
be executed. As a result, tokens produced by the same actor are always consumed
in order of their creation.
The downside of the single-token-per-arc approach is that it prohibits parallel

executions of the same instruction node because this would require multiple tokens
on the input arcs. This affects, for example, loops in the dataflow graph. Loop itera-
tions cannot be executed completely in parallel even if there is no data dependency
between them. The only possibility to introduce some parallelism in loop iterations
is via pipelining [ŠRU98]. But besides loop iterations, parallelism in subroutine
calls is also limited [Yaz+14]. If subroutines are modeled as independent dataflow
graphs, it is not possible to execute the same subroutine multiple times in parallel
for the same reason as with loop iterations.
Examples for architectures following a static dataflow model are some of the

dataflow architectures based on the work of Dennis [DM74], the DDM1 dataflow
processor [Dav78] and the Hughes dataflow multiprocessor [VF85].

2.1.3 Dynamic Dataflow
The described problem of static dataflow architectures that the same instruction
node cannot be executed in parallel lead to the development of dynamic dataflow
models. In dynamic dataflow models, multiple tokens in the same graph edge
can co-exist. But this fact alone is not enough to support parallel instruction node
executions. If loop iterations, for example, are executed in parallel, tokens from
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different iterations could get mixed up since there is no way to check to which
iteration a token belongs. The same problem exists for parallel calls of a subroutine.
The solution of dynamic dataflow models is to assign a tag to each token [ŠRU98].
In case of parallel loop iterations/subroutine calls, tokens belonging to different
iterations/calls have different tags. The presence of tags leads to a different firing
rule compared to static dataflow models. An instruction node may fire if for all
incoming edges tokens with identical tags are available. Examples for dynamic
dataflow architectures are the Manchester dataflow computer [GKW85], the MIT
tagged-token dataflow architecture [AN90] and the Monsoon architecture [PC90].
By using tags, dynamic dataflow architectures can exploit more inherent paral-

lelism than static dataflow architectures. However, tags introduce another difficulty.
The problem of finding tokens with identical tags, also called token matching, is
not trivial, and it is relevant for all dyadic (two-operand) instructions. Since token
matching is necessary for a lot of the instruction executions, it should be as fast as
the execution itself to not become a bottleneck. Dynamic dataflow architectures
typically use an associative (or pseudo-associative) memory to support parallel
tag comparisons [GKW85]. Unfortunately this type of memory implementation is
quite expensive.

Another notable approach to tackle the token matching problem is taken in the
Monsoon architecture [PC90]. This approach is called explicit token store. The basic
idea is to relocate parts of the matching logic from the hardware to the compiler.
Token memory is allocated dynamically in blocks, called activation frames. An
activation frame is allocated each time a procedure is invoked. How the memory in
an allocation frame is used is determined at compile time. This approach, however,
requires that the storage requirement of a procedure is known at compile time.

2.1.4 Hybrid Dataflow/von-Neumann Approaches
The development of hybrid models had different reasons. One reason is to com-
pensate the difficulties in dataflow architectures, such as the poor sequential per-
formance or the expensive token matching in dynamic dataflow models. Another
reason is the desire to create an architecture which is able to execute both dataflow
and von-Neumann programs. The variety of hybrid dataflow/von-Neumann mod-
els is big. Therefore, this section briefly describes a selection of approaches, based
on the taxonomy of Robič et al. [RŠU00].

Threaded Dataflow

One approach is the threaded dataflow model, which is relatively similar to pure
dataflow models. In the threaded dataflow model, parts of dataflow graphs with a
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low degree of parallelism are identified and executed sequentially, i.e. as threads.
An advantage of this approach is that the expensive tokenmatching is only necessary
for the first instruction of a thread. Further, in a sequential stream of instructions it
is possible to keep data in registers instead of writing it back to memory as tokens.
This reduces the number of tokens in the system and improves the sequential
performance. Especially dyadic instructions profit from the use of registers because
these instructions would otherwise require token matching. There are two different
kinds of threaded dataflow executions, namely direct token recycling and consecutive
execution. The first technique allows only one instruction per thread at a time. To
fully utilize all pipeline stages multiple threads must be executed in an interleaving
fashion. In contrast to the former, architectures following the consecutive execution
approach execute threads without interleaving. As a result, the token matching in
such architectures has to be delayed when a sequential thread is running. [RŠU00;
ŠRU98]

Coarse-Grain Dataflow

Another way to combine characteristics of von-Neumann and dataflowmodels is the
concept of coarse-grain dataflow. The idea of coarse-grain dataflow is to define actors
as sequences of instructions instead of single instructions. These sequential actors
can be executed in a von-Neumann manner. An advantage in comparison to the
threaded dataflow approach is that von-Neumann processors can be used for actor
executions. Therefore, coarse-grain dataflow architectures can also benefit from
the development and improvements of standard, control-flow-based processors.
A FIFO-buffer in the dataflow pipeline between the token matching stage and the
execution stage can also help to improve the overall performance of the system.
[RŠU00; ŠRU98]

Complex Instructions

The last approach highlighted in this section is the use of complex machine instruc-
tions in dataflow architectures. Vector instructions, for example, allow the dataflow
system to process elements of a data structure in blocks rather than individually.
This is helpful to reduce the number of nested loops. Further, by splitting a complex
instruction into independent sub-operations, it is possible to take advantage of
parallelism at the sub-instruction level. The negative effect of the difference in the
execution times of standard and complex instructions can be reduced by buffers. It
is important to note that, in contrast to conventional dataflow architectures, tokens
in this approach do not contain the actual data but only boolean values. The actual
data is only accessed in the execution stage of the pipeline. [RŠU00; ŠRU98]
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Examples for Hybrid Architectures

Many hybrid architectures were proposed. Notable examples of threaded dataflow
architectures are the Monsoon architecture [PT91] and the EM-4 architecture
[KSY92]. Monsoon uses the direct token recycling technique, while EM-4 belongs
to those architectures following the consecutive execution approach. StarT (also
written as *T) [NPA92] and the Threaded Abstract Machine (TAM) [Cul+91] are
examples for the coarse-grain dataflow approach. Lastly, examples for architectures
that use complex instructions are the Augsburg Structure-Oriented Architecture
(ASTOR) [Ung88] and the Stollman Dataflow Machine [GRS89].

2.1.5 Dataflow in Today’s Hardware and Software
The advantages of dataflow lead to the use of dataflow concepts in hardware and
software. An example for dataflow in hardware is out-of-order superscalar process-
ing, a technique used in nearly all modern high performance processors. Notable
software systems utilizing dataflow concepts are big data frameworks. This section
briefly describes how modern processors and big data frameworks incorporate the
dataflow principle.

Out-of-Order Superscalar Processing

This technique allows a processor to execute multiple instructions per clock cycle
by exploiting parallelism in a sequential program at the instruction level. Figure 2.2
gives an abstract overview of the technique. The prerequisite for a parallel execution
at the instruction level is that the processor is able to fetch multiple instructions per
cycle. Fetched instruction are placed in an instruction window. Instructions inside the
window are dynamically assigned to a suitable hardware unit as soon as all operands
are present. This approach clearly follows the dataflow principle. As shown in
Figure 2.2, instructions in the instruction window and their data dependencies
form a small dataflow graph. Since the executed program is sequential, finished
instructions must be inserted into a reorder buffer. The reorder buffer makes sure
that instruction results are committed in such a way that the overall result of the
parallel execution is equal to the result of the sequential execution demanded by
the program. [RŠU00; SS95]
In the described approach, two problems which limit the parallel execution

remain. First, instructions may use the same registers, but there is no true data
dependency between them. This is the case, when two instructions write their result
to the same register (write-after-write) or when an instruction writes its result to
a register which was read by a prior instruction (write-after-read). Such artificial
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Figure 2.2: Conceptual figure of superscalar execution [SS95]

dependencies can be temporarily removed since they are only important for the
reorder buffer and committing stage, not the executing hardware units. The removal
of artificial dependencies is done by a hardware unit which renames registers before
an instruction is placed in the instruction window. [SS95]

The second problem results from branches. Branches limit the number of instruc-
tions that can be fetched so that there are not enough instructions in the window to
efficiently exploit parallelism. Out-of-order superscalar processing therefore relies
on speculative instruction fetching via branch prediction [SS95]. Today’s branch
prediction is very accurate. AMD, for example, claims that branch prediction in their
Zen 2 architecture exhibits a ~30% lower branch mispredict rate target than in the
predecessor architecture by using a two-level prediction hierarchy [Wik]. The first-
level predictor in this hierarchy is a fast perceptron-based predictor [JL01], while
the second-level predictor is a slower but more accurate TAGE predictor [SM06].
With branch prediction accuracy being above 95% since the 1990s [Cha+94] and
still being improved to this day, mispredicts keep getting a smaller and smaller issue
for the out-of-order execution despite the costly re-rolling in the pipeline.

Big Data Frameworks

Besides out-of-order superscalar processors, big data frameworks also take advan-
tage of dataflow concepts. These frameworks make it possible to process huge
amounts of data on large compute clusters. One advantage of using such frame-
works is that users do not have to consider synchronization and work distribution
since it is already part of the framework. Another benefit is that big data frameworks
like Apache Spark [Zah+12] provide ways to execute self-defined functions on the
data. This is often easier and more flexible than, for example, standard SQL queries.

12



2.2 Functional Programming

Dataflow in big data frameworks belongs to the category of coarse-grain dataflow
models. Data packets traversing through the graph do not contain single values but
instead larger chunks of structured or unstructured data. Analogously, actors in the
graph usually consist of complex operations executing user-defined functions on
their input data instead of single instructions like in traditional dataflow models.
Big data frameworks follow two different approaches, namely batch processing

and stream processing. Batch systems process data in chunks, one after the other,
while stream-based systems operate on continuously incoming data. Examples
for batch systems are Google’s original MapReduce [DG04] as well as Apache
Hadoop [Shv+10] (an open-source implementation of the MapReduce model),
Pig [Gat+09] and Spark [Zah+12]. An example for a stream-based framework is
Apache Flink, which emerged from the Stratosphere project [Ale+14].

In the MapReduce model, each computation consists of a map phase which
produces intermediate data followed by a reduce step. To realize more complex
computations multiple MapReduce steps have to be executed in a row. This leads to
reduced performance in the early MapReduce-based systems, for example Hadoop
and Pig (which translates programs into MapReduce plans by default) [Sah+15].
In order to increase the performance of complex computations, later frameworks
like Apache Spark or Pig with Tez [Sah+15] as back-end follow an approach closer
to traditional dataflow models since they translate programs into directed acyclic
graphs.

2.2 Functional Programming
Functional programming is a programming paradigm which does not distinguish
as strictly between functions and data as the imperative programming paradigm
does. Functions can be stored, returned or passed as arguments just like ordinary
data. An ability functions do not have is to change the program’s global state. In this
regard, functions in this paradigm behave like mathematical functions. In general,
functional programming shares many concepts with formal systems, especially
the lambda calculus [Chu41], which is often considered as its predecessor. The
next sections highlight some important concepts in the functional programming
paradigm and functional programming languages.

2.2.1 Characteristics of Functions

As the name suggests, functions are the central concept in functional programming.
Functional programs consist solely of function applications and compositions. Func-
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tions are closer to mathematical functions and show different characteristics than
functions in imperative languages. Some of their characteristics are described below.

High-Order-Functions

Because of their important role in functional programming, functions are treated
as first-class values. This means that functions can be passed to other functions
as arguments or can be returned by functions like ordinary data. Functions with
parameters or a return value of function type are commonly known as high-order
functions. [Hud89]

Lambda Expressions

Since functions are treated like values in this programming paradigm, they can
be created at runtime and stored in variables or as members of data structures.
Therefore, it is not necessary for functions to have a name (although each function
has an identity). Such functions are called anonymous functions or, with respect
to the lambda calculus, lambda expressions [SK95, pp. 145–146]. A common use
case for lambda expressions is to pass them to high-order functions as arguments,
analogous to literals of plain data types.

Currying

In the context of anonymous functions and high-order functions, the concept of cur-
rying plays an important role. Currying is the process of transforming one function
withmultiple parameters into a sequence of functions with only one argument. Pass-
ing an argument to a curried function returns another curried function (except for
the last function in the sequence) which corresponds to an uncurried function with
one parameter less. This is sometimes called partial application. [SK95, pp. 143–144]

A function returned by partial application of another function could be considered
as a specialized version of the latter. Such a specialized function can then be stored
in a variable or passed as an anonymous function. Being able to easily create more
specialized versions of functions helps to reduce the amount of duplicate code.

Referential Transparency

Another property of functions in this paradigm is that they are free of side effects,
i.e. they do not read or modify the global state of the program. All information a
function requires must be passed through its parameters. Furthermore, functions
are deterministic, which means they return the same value each time they are called
with the same arguments. As a result, expressions can be freely replaced by their
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values. This is why functional programs are often called referentially transparent
[Hud89]. Although referential transparency may seem like a restriction from a
programmer’s view, it has some advantages. First, the lack of side effects leads to a
better composability and reusability of code [Hug90]. Second, functions without
side effects are usually easier to test, since there is no global state to consider [CH00].
However, complex high-order functions also have the potential to be difficult to test
despite being free of side effects. A downside of the functional approach is that I/O,
for example, is more difficult to implement in a purely functional fashion [PW93].

2.2.2 Type System
Types in programming languages are used to divide values into different sets.
By doing so, it is possible to check whether an argument is suitable for a specific
function. Functional programming languages can be statically or dynamically typed.
In this regard, they are no different from imperative languages and share the same
advantages and disadvantages. In statically typed languages, types can be checked
at compile time so that errors are discovered before the program is executed, while
dynamic type systems provide more flexibility. Such systems allow, for instance,
that a variable is used twice or more with values of different types. Examples
for statically typed functional languages are ML [Gor+78], Miranda [Tur85] and
Haskell [Hud+07], while Common Lisp [Ste82] and Scheme [Spe+09] belong to the
class of dynamically typed languages. Statically typed languages are always strongly
typed, which means that all expressions are type-consistent. For dynamically typed
languages this may not necessarily be the case [CW85]. In the following, statically
typed functional programming is discussed in more detail. Type systems of such
languages are often based on the Hindley-Milner type system [Hin69; Mil78], a
type system for the lambda calculus. The Hindley-Milner type system provides
type inference and parametric polymorphism. These two concept are briefly described
in the following sections.

Type Inference

Type inference is the process of determining the type of variables, parameters and
expressions without user-specified type annotations. The Hindley-Milner type
system provides complete type inference, which means that it is guaranteed to infer
types, whenever possible, for entirely unannotated programs [PT00]. To achieve
this, the system first sets up equations describing type constraints which are then
solved in a second step [Mil78].
Complete type inference with the Hindley-Milner type system works for the

lambda calculus and some programming languages based on it. For more complex
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formal systems or programming languages, however, this approach might not be
feasible. Other approaches therefore only use local information (with regard to the
syntax tree) to infer types, but they require more manual type annotations in return.
[PT00]

The following example from the work of Cardelli and Wegner [CW85] illustrates
type inference applied to a function fun like it is done in the ML language.

fun(x) x+1

Type inference works bottom up, i.e. it starts with small expressions, like x and 1.
The type of variable x is initially not known. Therefore, a new type variable 𝑎, which
represents the type of x, is introduced. 1 is easily identified as an integer literal and,
therefore, the binary operation as an integer addition. Accordingly, the value of
type variable 𝑎 must also be integer. Altogether, fun is a function with an integer
parameter that also returns an integer.

Parametric Polymorphism

Parametric polymorphism describes the concept of types containing type variables
in function declarations. This allows programmers to define functions accepting val-
ues of different type. A restriction of parametric polymorphism is that applications
of according functions must not depend on actual types, i.e. the actual type instan-
tiations are not important for the functionality [Str00]. (The analogous concept
where concrete types are important for the function is called ad hoc polymorphism
[Str00]. Today, however, it is often referred to as function overloading.)
A typical use of parametric polymorphism is in functions modifying data struc-

tures, for example lists or queues. Insert functions, for instance, work identically for
all types of data values. The only constraint which has to be checked is that the type
of the inserted value corresponds to the type of the data values in the list/queue.
Accordingly, the type of an insert function would be list⟨a⟩ × a → list⟨a⟩, where
a is a type variable.

2.2.3 Functional Programming and Dataflow
The functional programming paradigm has some characteristics that makes it well
suited for use in dataflow computing. One of these characteristics is that functional
programming follows a declarative approach. Programs in this paradigm are ex-
pressed through function applications and compositions, not through a sequence
of operations. Another property which is beneficial for dataflow computing is refer-
ential transparency. Since functions are free of side effects, data is always passed
from one function to another. As a result, functions in functional programs do not
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depend on the time they are executed. Further, referential transparency ensures
that the order of function executions is flexible, with the only restriction being data
dependencies between functions. When looking at the properties of functions, it
becomes clear that functions in the functional programming paradigm are similar
to dataflow actors. Therefore, functional programming languages work well for
transformations between high level programs and dataflow graphs. An example for
such a transformation from the domain of real-time image processing is proposed
by Sérot et al. [SQZ93]

2.3 Offline DAG Scheduling
Section 2.1.5 described that modern big data frameworks often use directed acyclic
graphs (DAGs) to describe the dataflow of programs. Each node in such graphs
represents a non-preemptive operation that is applied to some data. Arcs between
graph nodes are data dependencies. DAG scheduling is the process of assigning
graph nodes to processing elements (PEs) with the goal of minimizing the schedule
length (or makespan). In the context of DAG scheduling, graphs are often called
task graphs or macro-dataflow graphs [KA98]. It is important to note that the DAG
scheduling problem occurs in different forms based on the assumptions that are
made. Typical assumptions are, for example, that all PEs are homogeneous, all nodes
have the same computational cost or that communication costs are zero. In its general
form and for most of the assumptions, DAG scheduling is NP-complete [Ull75].
There are only a few restricted cases with polynomial time solutions. Scheduling
an arbitrarily structured DAG with uniform weights and no communication costs
to two PEs, for example, is possible in almost linear time [Set76].

Because NP-complete algorithms are only feasible with very small problem sizes,
many DAG scheduling heuristics have been proposed for the general case as well as
for restricted cases. These approaches can be divided into different classes based
on various characteristics, for example the number of PEs they require. A widely
accepted taxonomy of DAG scheduling algorithms was proposed by Kwok and
Ahmad [KA99]. This taxonomy distinguishes between two classes, namely UNC
(unbounded number of clusters) and BNP (bounded number of processors) algorithms.
The former class assumes an unlimited number of PEs, while the number of PEs in
the latter is assumed to be limited. UNC algorithms use a technique which is called
clustering because they divide graph nodes into clusters to minimize the overall
completion time. The result of such an algorithm is an arbitrary number of clusters.
Therefore, further steps are required if the algorithm returned more clusters than
there are PEs in the system. BNP algorithms on the other hand assume a fixed
number of available PEs from the start and therefore do not need a second step.
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Many DAG scheduling algorithms incorporate a technique called list scheduling.
These algorithms assign priorities to graph nodes and create an ordered list of nodes
based on their priority. After that, the algorithms iterate through the list and assign
each node to a PE with the goal to minimize the schedule’s makespan. [KA99]
The next three sections address list scheduling, UNC and BNP approaches, re-

spectively. In the second and third section, an exemplary algorithm of the respective
class is described in more detail.

2.3.1 List Scheduling

List scheduling is a technique which uses a scheduling list to compute a valid
schedule from a given DAG. The general procedure of list scheduling is shown in
Algorithm 2.1. A list scheduling algorithm first assigns priorities to all nodes in
the given graph. The second step is to place all nodes in a scheduling list, ordered
by their priority from highest to lowest. After the list was created, the algorithm
iterates through the list and successively allocates each node to a PE so that its start
time is minimized. [KA99]

Algorithm 2.1: General list scheduling procedure
1 routine LIST_SCHEDULING
2 assign priorities to all graph nodes;
3 create an ordered list of graph nodes based on their priority;
4 while the list is not empty do
5 remove the first node from the scheduling list;
6 allocate the node to a PE so that its start time is minimized;
7 end
8 end

How node priorities are calculated depends on the specific list scheduling heuris-
tic. Commonly used properties for this are the top level (t-level) and bottom level
(b-level) of nodes. The t-level of a node 𝑛 is defined as the length of a longest path
from an entry node of the graph to 𝑛, excluding the node itself. Analogous to the
t-level, the b-level of 𝑛 is defined as the longest path from 𝑛 to an exit node of the
graph. Entry nodes of DAGs are those that have no incoming edges, while exit
nodes have no outgoing edges. In the context of DAGs, the path length is defined
as the sum of all node and edge weights along the respective path. Consequently,
the critical path of a DAG is defined as the longest path in the graph. Depending on
the graph’s structure and weights the critical path may not be unique. [KA99]
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It should be noted that the terminology is not uniform in the literature. T-level
and b-level are also called co-level and level [ACD74] or downward rank and upward
rank, respectively [THW02].
Besides the assignment of node priorities, there are also many possible ways to

assign graph nodes to PEs. The heterogeneous earliest finish time (HEFT) algorithm
[THW02], for example, is compatible with different system topologies since it
considers different execution times for different PEs and different data transfer
speeds between pairs of PEs in the node allocation. Section 2.3.3 describes the HEFT
scheduling algorithm in more detail.

The previous description of list scheduling only covered the traditional static list
scheduling. However, dynamic approaches also exist. The difference lies in the
scheduling list, which in standard list scheduling stays the same during the whole
procedure. In dynamic list scheduling, each time a node is assigned to a PE the
priorities of all unscheduled nodes are recomputed. General steps of dynamic list
scheduling are shown in Algorithm 2.2. The advantage of the dynamic approach is
that it has the potential of producing schedules with lower makespan. However, the
scheduling gets more complex, which can be a downside of this approach. [KA99]

Algorithm 2.2: General dynamic list scheduling procedure
1 routine DYNAMIC_LIST_SCHEDULING
2 while not all nodes scheduled do
3 assign priorities to all unscheduled graph nodes;
4 choose the node with the highest priority;
5 allocate the node to a PE so that its start time is minimized;
6 end
7 end

2.3.2 UNC Algorithms
UNCalgorithms are clustering heuristics. Themain idea behind clustering heuristics
is to divide graph nodes into clusters. Such algorithms usually start with each node
in a separate cluster. Then, clusters are merged successively whenever the merge
reduces the completion time. The number of resulting clusters is therefore only
limited by the number of nodes in the graph. If the number of clusters is larger than
the number of available PEs, a second step is required. This step merges clusters
further until the number of clusters and PEs match. Amongst UNC algorithms,
there exist heuristics that duplicate tasks in order to reduce the number of data
transfers. These are known as task-duplication-based (TDB) algorithms. [KA99]
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In the following, the dominant sequence clustering (DSC) algorithm proposed by
Yang andGerasoulis [YG94] is described as an example. This non-duplication-based
clustering heuristic relies on the dominant sequence of a graph. A dominant sequence
is a critical path of a scheduled or partially scheduled DAG. The DSC algorithm does
not require any restriction on the graph. Any DAG with arbitrary node and edge
weights can be scheduled. During scheduling, DSC iterates successively over all
graph nodes. The algorithm distinguishes between examined and unexamined nodes.
At the beginning, all nodes are unexamined. Nodes are called free if all of their
predecessors are examined and partially free if at least one predecessor is examined.
Entry nodes of a DAG are already free at the beginning. The DSC algorithm main-
tains two ordered list 𝐹𝐿 and 𝑃𝐹𝐿, which contain the free and partially free nodes,
respectively. 𝐹𝐿 is sorted in descending order by the nodes’ priorities, which are
equal to the sum of their b-level and t-level. 𝑃𝐹𝐿, on the other hand, is sorted in
descending order by the nodes’ p-priorities. These are computed similar to priorities,
with the only difference that for the t-levels only examined nodes are considered.
Accordingly, this variation of the t-level is called pt-level.

The DSC scheduling heuristic is shown in Algorithm 2.3. At first, the algorithm
initializes b-levels, t-levels and the lists 𝐹𝐿 and 𝑃𝐹𝐿. Then, it enters its main loop
which is left when all nodes are examined. With each loop iteration, the heuristic
successively merges clusters by setting edge weights to zero. A candidate for the
merging is the first node in 𝐹𝐿, i.e. the node with the highest priority. In Algo-
rithm 2.3 this node is called 𝑛𝑥. By comparing the highest priority and highest
p-priority, it is possible to check whether this node is on a dominant sequence. If 𝑛𝑥
is on a dominant sequence, the algorithm sets some edge weights (possibly none)
between 𝑛𝑥 and its predecessors to zero so that the t-level of 𝑛𝑥 is minimized. Oth-
erwise, edge zeroing is done under the dominant sequence length reduction warranty
(DSRW) constraint. The DSRW constraint says that zeroing incoming edges of a
free node should have no influence on the reduction of 𝑛𝑦’s pt-level if this exact
pt-level is reducible by zeroing an incoming DS edge of 𝑛𝑦.

Finding edges that minimize the t-level (whether under the DSRW constraint or
not) is not trivial. Since this action is performed in each loop iteration, a low time
complexity is desired. DSC therefore uses binary search after sorting all incoming
edges to distinguish between the edges which are zeroed and those which are not.
Exact details on minimizing the t-level can be found in [YG94].
The time complexity of DSC is 𝑂((𝑒 + 𝑣) log 𝑣) where 𝑒 is the number of edges

and 𝑣 is the number of vertices of the graph [YG94]. In case the number of clusters
is greater than the number of available PEs, a second step for further merging is
required. This leads in practice to additional scheduling effort. Nonetheless, in
comparison to the NP-complete optimal solution DSC is well suited for practical
use.
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Algorithm 2.3: DSC scheduling heuristic [YG94]
1 routine DSC_SCHEDULING
2 compute the b-level of all nodes and set the t-level of all nodes to 0;
3 initialize the lists 𝐹𝐿 and 𝑃𝐹𝐿;
4 while there are unexamined nodes do
5 let 𝑛𝑥 be the first element of 𝐹𝐿 and 𝑛𝑦 be the first element of 𝑃𝐹𝐿;
6 if the priority of 𝑛𝑥 is greater than or equal to the p-priority of 𝑛𝑦 then

// 𝑛𝑥 is on a dominant sequence
7 zero the edges between 𝑛𝑥 and its predecessors so that the t-level

of 𝑛𝑥 is minimized;
8 if there are no such edges, 𝑛𝑥 remains in a unit cluster;
9 else

// no free node is on a dominant sequence
10 zero the edges between 𝑛𝑥 and its predecessors so that the t-level

of 𝑛𝑥 is minimized under the constraint DSRW;
11 if there are no such edges, 𝑛𝑥 remains in a unit cluster;
12 end
13 update the priorities of all successors of 𝑛𝑥;
14 update 𝐹𝐿 and 𝑃𝐹𝐿 according to the new priorities;
15 end
16 end

2.3.3 BNP Algorithms

In contrast to UNC algorithms, BNP heuristics assume that the number of PEs
is limited. The majority of BNP algorithms are list scheduling algorithms. Like
described in Section 2.3.1, traditional list scheduling BNP algorithms consist of
two phases, a task prioritizing phase and a processor selection phase. How these
two phases are implemented depends on the specific algorithm. As an example,
the two phases of list scheduling in the heterogeneous earliest finish time (HEFT)
algorithm proposed by Topcuoglu et al. [THW02] are described in the following.
With regard to Kwok and Ahmad’s taxonomy, HEFT belongs to the special class of
arbitrary processors network (APN) scheduling heuristics. This class is a subclass of
BNP, which contains algorithms that also consider the topology of the underlying
hardware architecture [KA99].
The HEFT algorithm uses an abstract model for the system’s topology. More

specifically, HEFT requires (in addition to a DAG) two tables and one list containing
different topology parameters. The first table consists of one estimated execution

21



2 Background

time for each combination of PE and task. Each cell in the second table represents the
bandwidth between a pair of PEs. Lastly, estimations for the communication startup
times of PEs are gathered in a list. The HEFT algorithm is shown in Algorithm 2.4.
Like traditional list scheduling algorithms, HEFT first creates a sorted list of nodes.
Sorting is based on the upward rank of nodes (which corresponds to their b-level).
The difference to the b-level in other algorithms is that average values are used for
node and edge weights. This is because the actual node and edge weights depend
on the assignment of nodes to specific PEs, which is computed in the second phase
of the heuristic.

The processor selection phase consists of a main loop which successively iterates
over all nodes. For each node, the PE that minimizes the earliest finish time (EFT)
is selected. The EFT of a node is calculated by adding the execution time to the
earliest start time (EST). Both the execution time and EST depend on the PE. While
the execution time can be determined directly from the first table mentioned above,
the EST value is more difficult to compute. To calculate EST, all predecessors of
the current node must be considered. Since the scheduling list is by construction
topologically sorted, all predecessors already have been scheduled. Therefore, each
predecessor is already assigned to a PE and has an actual finish time (AFT). The sum
of a predecessor’s AFT and the appropriate communication time provides a lower
bound for the EST. However, just using the maximum of all these lower bounds
for EST is not enough since the PE under consideration may be executing another
node at this point. Hence, the availability of PEs must also be considered in EST
computations.

Algorithm 2.4: HEFT scheduling heuristic [THW02]
1 routine HEFT_SCHEDULING
2 compute mean values for all node and edge weights;
3 compute the upward rank for all nodes in the graph;
4 create a sorted list of nodes by nonincreasing order of upward ranks;
5 while the scheduling list is not empty do
6 let 𝑛 be the first node in the list;
7 remove 𝑛 from the list;
8 for each PE 𝑝 do
9 compute the earliest finish time (EFT) of 𝑛 on PE 𝑝;

10 end
11 assign 𝑛 to the PE with the lowest earliest finish time;
12 end
13 end
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In summary, the EFT of a node 𝑛𝑖 on a PE 𝑝𝑗 is computed as follows:

𝐸𝐹𝑇(𝑛𝑖, 𝑝𝑗) = 𝑤𝑖,𝑗 + max{𝑎𝑣𝑎𝑖𝑙[𝑗], max𝑛𝑚∈pred(𝑛𝑖)(𝐴𝐹𝑇(𝑛𝑚) + 𝑐𝑚,𝑖)} ,
where 𝑤𝑖,𝑗 is the estimated execution time of node 𝑛𝑖 on PE 𝑝𝑗, 𝑎𝑣𝑎𝑖𝑙[𝑗] is the earliest
time at which 𝑝𝑗 is ready for task execution, pred(𝑛𝑖) is the set of predecessors of𝑛𝑖, 𝐴𝐹𝑇(𝑛𝑚) is the actual finish time of 𝑛𝑚 and 𝑐𝑚,𝑖 is the estimated communication
cost for the edge between nodes 𝑛𝑚 and 𝑛𝑖.
Another important aspect of the HEFT algorithm is that it uses an insertion-

based scheduling policy. This means that it looks for idle times on PEs during EFT
computations. If a time slot which is long enough for the execution of a node and
suitable in terms of data dependencies is found, HEFT inserts this node in the idle
time slot. In terms of time complexity, the HEFT algorithm is very efficient. Its
runtime is in 𝑂(𝑒𝑝) where 𝑒 is the number of edges in the graph and 𝑝 is the number
of PEs [THW02].

2.4 Online DAG Scheduling
An alternative to the described DAG scheduling heuristics which compute sched-
ules offline is to determine the node mapping and execution order dynamically
at runtime. Two well known techniques for scheduling DAGs at runtime are work
stealing and work sharing. This section focuses on work stealing since it is more
commonly used. The properties of work stealing are well studied [BL99] and many
parallel computing frameworks, for example Cilk [Blu+95] and Intel Threading
Building Blocks [Rob11], as well as dataflow-based frameworks, for example DARTS
[SZG13] and KAAPI [GBP07], use this technique due to its efficiency.
Graphs in this section have the same properties as in the previous section, i.e.

nodes are non-preemptive and all dependencies are data-dependencies. A visu-
alization of the work stealing principle is shown in Figure 2.3. Work stealing is
typically implemented with one double-ended queue per PE. In order to execute a
graph node, PEs always extract the front element from their queue. When a PE has
executed a node, subsequent nodes which are now ready to be executed are inserted
also at the front of the PE’s queue. In case its own queue is empty, the PE tries to
steal a node from the back of another queues. There are different possibilities on
how to choose the queue from which a node is stolen. A common, well-studied
approach is to choose the queue randomly [BL99]. Regardless of how the queue is
chosen, stolen nodes are always extracted at the back of the queue. To initialize the
work stealing procedure, all nodes that are ready to be executed from the beginning
are inserted into one of the queues.
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Processing Element 1 𝑎1 𝑎2
Processing Element 2

Processing Element 3 𝑎3 𝑎4 𝑎5
Figure 2.3: Visualization of the work stealing principle

Work stealing is commonly used in practice due to its beneficial characteristics. By
finishing the execution of a node, only nodes with a data dependency can become
ready. Therefore, inserting new nodes at the front of the queue and also extracting
them at the front improves data locality in graph executions. Furthermore, since
PEs steal nodes from the back of other PEs’ queues, the disturbance of data locality
is low. Another benefit lies in the performance of work stealing approaches. The
procedure itself is fast and synchronization is easy due to the short critical sections
which are limited to queue insertion and extraction operations. As a result, the
overhead during graph execution caused by work stealing is small.

2.5 Fault Tolerance

Finding practical ways to utilize computer systems in environments with high safety
requirements continues to be an important topic in computer science. To meet the
requirements for such systems, mechanisms to prevent system failure are indispens-
able or otherwise human lives may be endangered. Failures are malfunctions that
causes the system to not meet certain guarantees like correctness or performance.
They always appear in scopes that are visible to users. Errors on the other hand
appear at a deeper level, i.e. in scopes where they are not observable by users, but
they are otherwise similar to failures. When an error is not corrected by the system,
it may propagate to an outside scope and become a system failure. Errors are mani-
festations of faults in the system, but not every fault causes an error. Sometimes the
effect of a fault is masked or tolerated. Faults can have different causes and can be
divided into different categories which can also be used to classify errors. Causes of
faults and the different categories of errors are described in the following sections
in more detail. [Muk08, pp. 6–8]
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2.5.1 Causes of Faults
Knowing the causes of faults which may occur in a safety-critical system is crucial
for the design of both the software and hardware. Otherwise, a fault that was not
considered may propagate to an outer scope and become a system failure. In the
following, some common causes of faults are characterized.

Radiation is a well researched cause of faults in semiconductor devices. Types of
radiation that are demonstrably causing faults include alpha particles, high-energy
cosmic rays and, in some cases, even low-energy cosmic rays. Alpha particles are
emitted by some radioactive materials. Since they do not travel very far, only the
contamination of the chip packagemay become a problem. Cosmic raysmay contain
different particles, of which neutrons have the highest chance to influence electronic
devices. Further, they are more intense at higher altitudes in the atmosphere so
that processors in airplanes are more affected than in devices or vehicles on the
ground. The effect of radiation is often a flipped bit in a memory cell, register, latch
or flip-flop. However, if the intensity is high enough, it is also possible that multiple
bits are flipped. [Bau05]

Wearout is another potential cause of faults. There are several physical effects that
contribute to the overall aging of transistors. Two notable examples are negative bias
temperature instability [Wan+10] and hot carrier injection [Tak+83]. Wearout affects
the threshold voltage of transistors and reduces frequency at which the transistor
can be operated [Wan+10]. Therefore, possible faults caused by wearout include
timing violations and functional failure of transistors.

Heat is also a factor which affects the operation of processors and memory. More
precisely, temperature influences different properties of transistors, for example the
individual transistor current, threshold voltage and gate delay. Furthermore, heat
makes electronic components more susceptible for different forms of radiation. As
a result, high temperature is another factor that may lead to additional faults in a
system. [Jag+12]

2.5.2 Types of Faults
Faults are usually divided into three different categories based on their duration.
These categories are transient faults, intermittent faults and permanent faults. In the
following, the characteristics of each category are pointed out briefly.
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Transient Faults are characterized by the fact that they do not persist and occur
only once, i.e. not periodically or regularly. Many of the causes described in the
previous section can lead to a transient fault. The most notable cause for this type
of fault is probably radiation [Con02]. Errors resulting from transient faults are
often called single event upset (SEU) or soft errors [Sor09, p. 3].

Intermittent Faults differ from transient faults in that they occur repeatedly at the
same location and at a higher rate. An important aspect of intermittent faults is that
they do not appear continuously, which makes them hard to predict. In contrast to
transient faults, intermittent faults can be removed by replacing the offending circuit
since the cause of such faults is often variability in chip production and wearout.
[Con02]

Permanent Faults are, once they occurred, persistent. This type of fault causes
hardware units to consistently deliver wrong results rendering them not usable
anymore. Like intermittent faults, permanent faults can be removed by replacing
the affected hardware units. They are also similar to intermittent faults in their
causes. Nevertheless, the distinction between the two types of faults makes sense
since it allows to treat them differently. Hardware units with intermittent faults
may still be usable if faults do not appear too frequently. [Sor09, p. 3]

2.5.3 Error Models
System developers are rarely interested in the whole process from the physical
phenomenon to a resulting fault and lastly to a detected error but rather in the types
of errors that may occur and to what extent they occur. Therefore, it is useful to
abstract from physical and technical details and create a model describing only the
required aspects of faults. This allows developers to design systems that tolerate
errors within a set of error models. To be useful, error models should closely
represent possible faults in a system, especially the more likely faults. [Sor09, p. 7]
Error models can be classified based on three characteristics, namely the error

type, duration and number of simultaneous errors. Categories of error models
based on their type are stuck-at errors, bridging errors, fail-stop errors and delay errors.
Stuck-at errors cover all types of physical faults which cause one bit in a circuit to
be stuck at either 0 or 1. Situations where values are coupled, for example because
of a short circuit, are covered by bridging errors. The category of fail-stop errors
models situations in which a processing element, memory or other component
completely stop working. Lastly, the delay error model is used to abstract from
faults caused by hardware unitswhich return a value later than expected. Categories
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for error models based on the second characteristic, the error duration, correspond
to the types of faults described in Section 2.5.2. The last characteristic of an error
model, i.e. the number of simultaneous errors, covers which physical faults may
occur simultaneously. Although relatively rare, simultaneous faults may have to be
considered to meet the safety requirements in highly safety-critical systems. [Sor09,
pp. 7–9]

2.5.4 Redundant Execution

Redundancy is an essential concept for error detection in fault-tolerant systems.
Without redundant computation and storage, it is impossible to verify whether
data is correct or was affected by an error. Redundancy techniques can be classified
in different ways. One possible way is to distinguish between physical redundancy,
temporal redundancy and information redundancy [Sor09, p. 19]. Another way is the
distinction between software redundancy and hardware redundancy [Avi76].

Physical, Temporal and Information Redundancy

Physical redundancy is achieved by adding redundant modules to a system. The
twomost common approaches are dual modular redundancy (DMR) and triple modular
redundancy (TMR). In a DMR setting two modules perform the same computation.
A comparator then checks whether their results are equal. Under the assumption
that the comparator is free of faults, all types of errors can be detected in this way.
Only the unlikely case of the same error occurring in both modules is a problem.
If DMR does not satisfy the requirements of a safety-critical system, TMR might
be an option. TMR involves a third module for computation. Further, instead of
a comparator, it features a voter which not only compares the three results but
also identifies the correct value. This, of course, only works if two out of three
results were computed correctly. Higher grades of physical redundancy, commonly
referred to as N-modular redundancy (NMR) with N greater than three, are also
possible and enhance, for odd numbers of redundant modules, the error detection
and recovery capabilities even further. [Sor09, pp. 19–22]

In contrast to physical redundancy, temporal redundancy does not require additional
modules. Instead, a module performs the same computation twice or more and
compares the results afterwards. Temporal redundancy has the advantage that no
additional hardware is required, but the runtime of a module is at least twice as
long. Pipelining approaches may be a solution for reducing the overall runtime.
Lastly, with regard to energy consumption, temporal redundancy behaves similar
to physical redundancy. [Sor09, p. 22]
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Information redundancy differs from the two redundancy approaches described
because it adds redundancy to the data itself instead of multiple computations and
duplicate storage. It can be used to detect errors in data transfer and storage but not
in computation. Most common are error-detecting codes (EDC) and error-correcting
codes (ECC) which extend data words by additional redundancy bits [KK07, p. 55].
The easiest way to achieve error detection is by adding a parity bit to each word.
This allows to detect all single-bit errors, but it is not possible to determine which
bit was flipped [KK07, p. 57]. More complex codes can detect more errors and
are often able to correct them. Cyclic codes which are based on multiplication and
division with generator polynomials are an example. Depending onwhich polynomial
was chosen cyclic codes can be used to detect multiple adjacent bit flips [KK07,
pp. 67–68].

Hardware and Software Redundancy

Hardware redundancy involves specialized hardware for storage and computation.
There are two types of hardware redundancy. In the static hardware redundancy
approach, redundant modules act as if there was only one non-redundant module.
Errors in a module are detected, and error recovery is performed without notifying
other modules or the software. Therefore, interfaces between modules can remain
the same. Since this type of redundancy is invisible to other modules and the
software, it is also called masking. Static hardware redundancy can be used against
all types of errors. A disadvantage is that redundant components are close to each
other and an error may affect both components in the same way. Dynamic hardware
redundancy differs from the static approach. A redundant module notifies other
hardware modules or the software when it detects an error. Error correction is
carried out in a separate step. In this context, a viable option for the first step, i.e.
the detection of errors, is information redundancy. A minor disadvantage of the
dynamic approach is that the design choice has to be made early in the hardware
development process. Masking, on the other hand, makes it easier to replace a
non-redundant module with a redundant module at a later stage. [Avi76]

Software redundancy achieves fault tolerance by extending the system software.
Based on the specific requirements, the granularity can vary from additional pro-
grams over program segments to additional instructions. It is possible to realize
both error detection and correction in software. An advantage which results from
this is that software redundancy can be used to realize fault tolerance on standard
hardware with very limited supporting features. But software redundancy concepts
can also be combined with dynamic hardware redundancy. The main disadvantage
is that it is difficult to ensure that the software works still correctly after an error oc-
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curred. Especially errors in memory locations containing program code are difficult
to handle in software. [Avi76]

2.6 Summary
This chapter introduced the main concepts on which the proposed runtime environ-
ment is built. Dataflow is an alternative to the standard von-Neumann execution
model. In the dataflow model, instructions are not triggered by control flow, but
instead by their operands. A benefit of the dataflow approach is that it allows to
fully exploit the parallelism of applications. Today, dataflow concepts are used, for
example, in out-of-order superscalar processors and big data frameworks.

In the functional programming paradigm, programs consist solely of pure func-
tions, i.e. functions without side effects. Furthermore, functions are treated like
values and can be passed to functions or returned by functions. Many functional
programming languages provide a rich type system with type inference and poly-
morphic types. Because of its declarative approach and referential transparency,
this paradigm is well suited for use in dataflow computing.

Offline DAG scheduling is the process of assigning tasks with data dependencies
to PEs. The goal is usually a small makespan of the schedule. Since the DAG
scheduling is NP-complete, many heuristics were proposed. These heuristics make
different assumptions about the scheduled graph or hardware.

A common method to schedule DAGs dynamically at runtime is work stealing.
The basic principle behind work stealing is that PEs steal nodes from the queues of
other PEs if their own queue is empty. Since nodes are inserted and extracted at the
front of the queue and stolen from the back, data locality in the graph execution is
preserved.
The last major concept, fault tolerance, plays an important role in safety-critical

systems. Faults can have various causes and appear in different shapes. When
the effect of a fault is visible, it becomes an error. Error models help to abstract
from physical faults by focussing on the relevant details. To prevent the system
from failure, error detection and correction is mandatory. The only way to achieve
this is by adding redundancy to the system. There are multiple ways to introduce
redundancy so that different error models can be covered.
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Runtime Environment Overview

The previous chapter introduced the four basic concepts on which the proposed
runtime environment (RTE) is based, namely dataflow, functional programming,
graph scheduling and fault tolerance. This chapter gives an overview of the RTE’s
structure and describes how these concepts are combined. Later chapters will then
highlight the different aspects of the RTE in more detail.

TheRTE aims at bringing parallel applications to safety-critical embedded systems.
In this context, the following requirements had an influence on the design of the
software architecture:

• Programmability: The programming model should be similar to existing
programming frameworks.

• Architecture Support: It should be possible to implement the RTE on dif-
ferent hardware architectures using standard programming languages and
compilers.

• Synchronization: The RTE should automatically handle the synchronization
on multicore shared-memory architectures

• Data Transfers: On hardware architectures with a network-on-chip, the RTE
should automatically handle all data transfers.
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• Small Overhead: The RTE should introduce only small overhead in terms of
execution time and memory so that it is suitable for embedded multi- and
manycore systems with low-power processors and small memories.

• Scalability: Despite the focus on embedded systems, the RTE should also
perform well on architectures with high-performance processors and larger
memories.

• Analyzability: Program executions should be easy to analyze.
• Redundancy: The RTE should support fault tolerance through redundant

execution.
• Adaptive Redundancy: It should be possible to change the degree of redun-

dancy during runtime.
A dataflow approach is well suited to meet most of the described requirements.
With regard to programmability, a functional-style programming model allows
users to specify suitable programs in a declarative way.
The following sections provide information on the RTE’s software architecture.

Section 3.1 gives an overview of the RTE’s internal structure and shows how the
individual components interact with each other. After that, basic information about
the different parts of the RTE is provided. Section 3.2 briefly describes the structure
of dataflow graphs. In Section 3.3, concepts of the functional programming model
are shown. The last three sections cover graph executions on different architectures,
scheduling and redundancy, respectively.

3.1 Software Architecture Overview
The proposed RTE uses directed acyclic graphs (DAGs) tomodel dataflowprograms.
Users can create graphs either through the programming model and its functional-
style operations or by specifying them explicitly in a graph description format so
that they can be imported by the RTE. Dataflow graphs are usually scheduled before
their first execution and then executed multiple times, often repeatedly. However,
there is also the option to switch to online scheduling so that the scheduling step
can be omitted. Internally, the RTE consists of four parts, which are responsible for
graph construction, import/export, offline scheduling and graph execution/online
scheduling. To keep the RTE modular, the different parts only communicate by
exchanging dataflow graphs and do not depend strongly on each other. This allows
users to replace parts of the RTE with custom implementations or to remove the
parts of the RTE that are not relevant for their use cases. Figure 3.1 shows an
overview of the RTE’s internal structure. The lines connecting the four RTE parts
represent interfaces for graph exchange.
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Graph Construction Import/Export

Offline Scheduling

Graph Execution
and Online Scheduling

Figure 3.1: Internal structure of the proposed RTE

Graph Construction. The RTE provides a set of functional-style operations to
the user. These operations are not executed immediately on the data, but instead
build a graph representing the data dependencies. Once its construction is finished,
the graph is passed to a different part of the RTE, either to acquire a schedule (via
import or by applying a scheduling heuristic) or to be executed directly with online
scheduling. Figure 3.2a shows an exemplary use case. In this example, a user has
written a program consisting of functional-style operations. When this program is
executed, the RTE constructs a dataflow graph. Although the RTE does not restrict
their use, it is recommended to make sure that operations are executed on system
startup. The constructed dataflow graph is then executed, possibly multiple times
or even repeatedly.

Import/Export. Dataflow graphs can be stored externally in a graph description
format. Such a graph description explicitly contains information about all nodes,
data dependencies and memory requirements. Specifying graphs directly in a
description format is possible, but it is usually much easier to use the provided
functional-style operations since they automatically compute memory requirements
and also some data dependencies. In the proposed RTE implementation, an ex-
tended DOT format [GKN15] is used.
Aside from graphs, it is also possible to import schedules which were stored

externally in a suitable description format. For a given unscheduled graph, the
import/export module reads a pre-computed schedule, assigns it to the graph
and passes the scheduled graph to the graph execution module. As with graphs,
schedules computed by the RTE can also be exported.

Two use cases illustrating the RTE’s import and export capabilities are shown in
Figure 3.2b and Figure 3.2c. In the former, a graph created from a RAPID program
is passed to the import/export module and converted into a representation in the
description format. The latter use case shows the RTE’s import functionality. A
graph description is read by the import/export module, transformed into a dataflow
graph in the main memory and passed to different parts of the RTE.
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Figure 3.2: Exemplary RTE use cases

Offline Scheduling. The proposed RTE uses DAG scheduling heuristics to com-
pute schedules for graphs received from the graph construction and import/export.
An example use case is shown in Figure 3.2c. Scheduled graph can be passed to
the import/export model in order to export the computed schedule or to the graph
execution model. The RTE implementation provides two variants of the HEFT algo-
rithm (see Section 2.3.3). If this heuristic is not suitable for the desired application,
users can easily expand the RTE by adding their own algorithms.

Graph Execution. This part of the RTE receives graphs from other parts of the
RTE and executes them in a dataflow fashion. The RTE only provides functions
that allow users to start graph executions. Therefore, the decision how often a
graph is executed and when a graph should be executed is up to the user. Graphs
without an associated schedule can only be executed in online scheduling mode.
In the proposed implementation, the RTE supports graph executions with work
stealing (see Section 2.4), but as before, it is possible to extend the RTE by additional
procedures.

3.2 Dataflow Graphs
Dataflow graphs in the proposed runtime environment are bipartite and consist
of actor nodes and partition nodes. Actor nodes (often just called actors in this
chapter) contain information about how data is processed during graph execution,
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while partition nodes are used to keep track of memory requirements. To support
adaptively redundant dataflow executions with fixed schedules, graphs are divided
into sections. How the division exactly takes place is a design choice that users
of the RTE have to make. The offline scheduling part of the RTE computes an
independent schedule for each graph section. More specifically, to support different
redundancy configurations, multiple schedules per section are created. During
graph execution, the schedule of a section can be changed individually whenever
the execution reaches a state between two sections.

Figure 3.3 shows an example graphwith two sections. Partition nodes are depicted
as filled circles, white boxes represent actor nodes. From the graph’s structure, it
is easy to see the available parallelism. Besides the incoming and outgoing edges,
the simplified graphic representation in Figure 3.3 shows no other node properties.
More details on the different nodes follows in Chapter 5.

Section Section

Figure 3.3: Example dataflow graph

3.3 Functional Programming Model
As the previous section briefly described, the programming model provides a set of
functional-style operations that are used to construct compatible graphs for dataflow
executions. But besides these operations, there are three other important concepts,
namely RAPIDs, RAPID functions and contexts. A brief overview on the four
concepts of the programming model and their relation to dataflow graphs is shown
in Figure 3.4.
RAPIDs (Resilient Analyzable Partitioned Immutable Data structure) are an

abstraction for the data in dataflow graphs. Users can treat RAPIDs similar to data
collections, with the exception that the actual data cannot be accessed since it is
computed later during graph execution. To compensate the lack of access to the
data, the programming model allows users to specify how the data is processed in a
declarative way. For this purpose, most RAPID operations are high-order functions
and require a RAPID function as one of their parameters. But instead of applying
the given RAPID functions immediately on the data, RAPID operations construct
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Figure 3.4: Relationship between programming model concepts and graphs

dataflow actors containing references to the respective functions. A user who is not
aware of the dataflow internals could consider it a lazy evaluation.

The other important data structure besides the RAPID is the context. Contexts are
high-level abstractions over dataflow graphs and schedules. Using contexts is not
necessary to write working programs in the programming model but mandatory to
utilize the RTE’s full functionality. A context contains one reference to a dataflow
graph and possibly references to schedules for different redundancy configurations.
By passing a context to a RAPID operation, a user can specify which graph is
supposed to be expanded by this operation. Further, the context provides methods
to utilize the RTE’s import/export functionality and to influence how the referenced
graph is scheduled.
The programming model shares many characteristics with functional program-

ming languages, for example the use of high-order functions as RAPID operations.
Further, RAPID operations are generic functions and RAPIDs are collection-like
structures with a generic type. Thus, the programmingmodel incorporates paramet-
ric polymorphism. Concrete types can be deduced by the RTE with type inference
in most cases. Lastly, all RAPID function have to be pure functions. If a RAPID
function could freely access global memory, the execution of a respective actor could
lead to unexpected behavior on architectures with multiple distributed memories.

3.4 Dataflow Execution
The proposed RTE follows the coarse-grain dataflow approach described in Sec-
tion 2.1.4. Actors process partitions, i.e. data collections, rather than single values
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and apply functions to the data instead of single instructions. The size of data
partitions and extent of RAPID functions is a design choice made by the RTE user.
Nonetheless, the underlying hardware architecture, in particular the size of its
memories, may set some restrictions. Dataflow in the RTE is static since it is based
on DAGs and does not require a token matching mechanism. A benefit of this
approach is that graphs can be scheduled with standard DAG scheduling heuristics.
The higher-level portions of the proposed RTE, namely graph construction and

import/export, as well as the dataflow graph can be implemented in a hardware-
independent way. However, this does not apply to scheduling and dataflow exe-
cution. Implementations of these parts of the RTE must consider the underlying
hardware to achieve high performance. In the following, a brief overview of the
RTE’s internal structure on two different hardware architectures is given. More
detailed information is provided in Chapter 6.

The first architecture is a standard shared-memory architecture. Figure 3.5 shows
an overview. Implementing the RTE on such architectures is straightforward. Each
core has full access to the single main memory, which is large enough to store all
dataflow graphs, schedules and RAPID functions. Therefore, all cores are able to
check which actors are already done and what the next actor according to their
schedule is. Ensuring correct synchronization in a parallel program is usually a
difficult task on shared-memory architectures. In the proposed RTE, the complexity
of synchronization is reduced since both the graph and schedule are read-only
during graph execution. Further, partitions get immutable as soon as their data is
fully computed. Synchronization is only required when a core marks an actor as
done or checks whether an actor is marked accordingly. It is also worth noting that
RTE implementations on shared-memory architectures impose the least number
of restrictions to the user. Since the shared memory is usually large, partitions

Functions

Schedules

1:
2:

Graphs

Core 1

Core 2

Shared Memory

Figure 3.5: Shared-memory architecture overview
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can be processed efficiently, regardless of their size. This might not be the case for
distributed architectures, for example the one described in the following.
The second architecture is based on a network-on-chip (NoC). A simplified

overview is shown in Figure 3.6. The NoC connects multiple tiles which com-
municate via message passing. Only one tile is connected directly to a memory
which is large enough to store graphs and schedules. This tile is called the driver
tile. All other tiles only store the RAPID functions (which are part of each tile’s
binary) permanently. During graph execution, the driver tile acts as a coordinator
and transmits data and actors from its larger memory to the other tiles. Compute
tiles on the other hand only execute actors and transmit new data to other compute
tiles or the driver. Local memories of compute tiles are small and can only hold
few small partitions. This is a restriction, since data should be divided in a way so
that partitions fit in local memories whenever possible. In case an actor processes
larger amounts of data, it must be executed on the driver tile. While occasional
actor executions on the driver can often be tolerated, frequent data processing on
the driver reduces parallelism and leads to poor performance. The RTE does not
split large partitions automatically, so it is up to the user to write proper RAPID
programs with respect to the hardware architecture. As with the shared-memory
architecture, ensuring correct synchronization is rather simple. Graphs aremanaged
by the driver tile, so there is no synchronization required when the status of a node
is updated. However, based on how message passing in the underlying hardware
architecture is working, synchronization might be required. If communication is
done via direct memory access (DMA) transfers, for example, the RTE must ensure
that two concurrent transfers do not write to the same memory location.

Functions
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Driver
Tile

NoC
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Tile 3
Functions

Functions

Functions
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Figure 3.6: NoC-based architecture overview
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3.5 Scheduling
The scheduling part of the RTE computes schedules for all graph sections. As
with graph execution, it is not possible to implement this portion of the RTE in a
hardware independent way (at least not without loss of performance). An appro-
priate implementation must consider the underlying hardware architecture, not
only to compute schedules with a small makespan but also because there may be
constraints about which actors can be executed on which hardware components
(cores, tiles, …). An example would be actors processing large amounts of data. On
the NoC-based architecture described in the previous section, such actors must be
assigned to the driver tile due to the small memory size on compute tiles.

Since the proposed RTE is based on DAGs, arbitrary DAG scheduling algorithms
can be used. The HEFT algorithm described in Section 2.3.3, for example, is well
suited for many hardware architectures. It should be noted that in the proposed
RTE only the ordering and assignment of actors matter. Even though a scheduling
algorithm might also compute exact execution times for actors, this information is
discarded when the algorithm is finished. The RTE follows a dataflow approach
and executes an actor as soon as its arguments are ready and all preceding actors in
the schedule are done. Therefore, the exact timing of actor executions may vary in
different executions of the same graph.

Besides offline scheduling with DAG scheduling heuristics the RTE also supports
online scheduling. In online scheduling mode, the decisions about assignment and
order of actors are made during runtime. An actor is scheduled as soon as it gets
ready. Since online scheduling takes place during dataflow execution and requires
access to the RTE’s state in order to make proper decisions, it is closely tied to the
RTE’s graph execution part.

3.6 Redundancy and Error Model
The proposed RTE supports fault tolerance through redundant actor executions.
After an actor is executed redundantly, a comparison actor checks if all results are
equal. If the results do not match, error correction depends on the exact number of
redundant executions. The RTE supports up to three redundant actor executions.
In case of only two redundant actors, the redundant actors are re-executed. When
an actor is executed three times, the comparison actor functions as a voter so that
no re-execution is required (provided that there is only one error at a time).

Redundant actors and comparison nodes are automatically created during graph
construction and import. Further, the RTE always computes three schedules with
different redundancy for each graph section. As mentioned in previous sections,
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redundancy can be changed during runtime. A change in redundancy is only
possible when graph execution reaches a point between two sections and always
affects a section as a whole.

Regarding the error model, the RTE’s redundancy mechanism focuses primarily
on the detection and correction of transient errors in actor executions. Further-
more, an assumption is that errors only affect the data produced by an actor, i.e.
errors which prevent a processing element from finishing an actor execution are not
considered. Such errors would require a mechanism different from redundancy,
for example watchdog timers, which is not the topic of this thesis. An additional
assumption is that only one out of two or three redundant actors may produce
incorrect data (even though the RTE implementation described in this thesis will
probably handle situations with two errors correctly as long as both incorrect results
are different). Based on how the comparison actor is implemented, the RTE can
detect single- or multi-bit errors. If the results of redundant actors are compared
explicitly (for example byte-wise or word-wise), all differences are detected. Com-
paring checksums of results may not detect all differences but reduces the amount
of data transmitted between tiles on NoC-based architectures. As mentioned above,
this thesis focuses on the redundancy of standard actor executions. Errors in com-
parison actors and other parts of the software, for example RTE management code,
graph construction and scheduling are not considered, i.e. these software compo-
nents are considered as error-free. A way to ensure that the RTE is not affected by
errors occurring in these parts of the software would be, for example, the use of
hardware redundancy.
It should be noted that some chapters in this thesis go beyond the described

error model and also discuss methods for graceful degradation when a processing
element becomes unusable due to a permanent error. This applies in particular to
Chapter 7, where different graceful degradation approaches which are compatible
with offline scheduling are described and compared.

3.7 Summary
This chapter presented an overview of the proposed runtime environment. The
programming model provides a set of functional-style operations. These operations
build a directed acyclic dataflow graph. An alternative way to obtain dataflow
graphs is by using the RTE’s import functionality, which allows the RTE to create
graphs from representations in a graph description format. Constructed graphs can
be either scheduled offline or executed immediately with online scheduling. In the
former case, the RTE uses a DAG scheduling heuristic which may need to be slightly
adjusted depending on the architecture. To support different redundancy config-
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urations, the RTE computes multiple schedules. It is possible to switch between
these schedules at user-specified checkpoints during graph execution.

The next chapters describe the different aspects of the RTE in more detail. Chap-
ter 4 highlights the programming model from a user’s point of view. How dataflow
graphs are constructed is the topic of Chapter 5. After that, Chapters 6 and 7 pro-
vide more information about graph execution and scheduling on the two hardware
architectures introduced in Section 3.4.
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This chapter describes a functional programming model that was designed to lever-
age dataflow applications on embedded multicore-systems. The programming
model is similar to common large-scale cluster computing frameworks, especially
Apache Spark. Since one of the requirements was that the corresponding dataflow
runtime environment only introduces small overhead in the application binary,
the number of provided functions in the programming interface is rather small.
But although the programming model offers reduced functionality, it allows users
to conveniently implement a variety of typical algorithms in the domain of high
performance embedded applications, such as matrix multiplication and fast Fourier
transform. Other requirements that had an influence on the programming model’s
design were good analyzability and easy portability of the dataflow runtime envi-
ronment as well as fast dataflow executions on different hardware architectures.

Because of the high availability of C/C++ compilers on embedded platforms, the
programming model’s reference implementation is based on C++14. Although the
programming model does not depend on a specific programming language, there
are some typical functional language properties that are useful to implement the
RAPID programming model, for example type inference and lambda expressions.
Like Apache Spark, the RAPID programming model is centered around special

data collections. We call these collections RAPIDs as they represent Partitioned
Immutable Data structures enabling Resilient andAnalyzable program executions. The
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associated executionmodel is a dataflow executionmodel based on a directed acyclic
graph (DAG), which is constructed from RAPID operations and the dependencies
between them. Graph construction and dataflow execution are separate steps in a
RAPIDprogram. This ensures that graphs can be constructed at system initialization.
Furthermore, with a suitable programming language, a construction of dataflow
graphs already at compile time is also conceivable.
The rest of this chapter is structured as follows: Sections 4.1 to 4.3 highlight the

basic functionality provided by the RAPID programming model, in particular data
structures, high-order RAPID operations and the functions which are passed to
RAPID operations. Additional concepts of the programmingmodel are described in
Section 4.4. After that, Section 4.5 gives insight into the reference implementation of
the programming model in C++14. The chapter is concluded with three examples
that show how common compute tasks can be implemented efficiently with RAPID
operations.

4.1 Data Structures

The two main data structures in the RAPID programming model are RAPIDs and
partitions. From a user’s perspective, RAPIDs are immutable collections consisting
of one or more partitions which contain data elements. In the implementation of the
runtime environment, however, neither RAPIDs nor partitions contain actual data.
Both are merely pointer structures pointing to partition nodes in the dataflow graph.
Concrete data of partition nodes is computed later during dataflow execution.
In contrast to the resilient distributed datasets (RDDs) from Apache Spark, the

order of partitions in a RAPID as well as the element order in a partition is fixed.
This eliminates the necessity of key-value-pairs in applications requiring ordered
elements. A list containing size information of all partitions inside a RAPID in the
correct order is called the RAPID’s partitioning.

Both data structures, RAPIDs and partitions, are parameterizedwith the data type
of the elements they (conceptually) contain. It is important that all data elements
of a type have the same size. For this reason, valid data elements in the RAPID
programming model are simple values (for example integers or floating point
numbers), fixed-size arrays or structured data elements (for example structs/classes
in C++) without dynamically allocated members. This restriction ensures that the
size of each partition can be deduced from the type of the respective data elements at
graph construction so that the memory requirements of a graph can be determined
statically.

44



4.1 Data Structures

4.1.1 RAPIDs
RAPIDs are the main data structure in the RAPID programming model. The func-
tionality a RAPID provides to a user is depicted in Figure 4.1. Types with angle
brackets are parameterized types. An important aspect about RAPIDs is that their
specification does not include a constructor. RAPIDs can only be constructed from
ordinary data collections, like arrays, or from existing RAPIDs through RAPID
operations. Once created, the user has neither writing nor reading access to the
underlying data. Only the RAPID’s metadata, like the size or partitioning, can be
accessed. The structure also keeps track of the context (see Section 4.4) to which it
belongs. Further, RAPIDs provide a persistmember function whose return value
is just a reference to the RAPID itself. This function has to be called if the user would
like to use a RAPID as input of multiple RAPID operations because non-persistent
RAPIDs are consumed by RAPID operations. The reason for this is to allow the
system to safely remove unnecessary non-persistent RAPIDs at graph construction
time for optimization purposes (see Section 5.3). The RAPID programming model
leaves the behavior when a non-persistent RAPID is used multiple times up to the
implementatition.

Internally, a RAPID consists of a list of pointers to partition nodes and a pointer
to the context the RAPID belongs to. At this point, it should also be noted that
RAPIDs can be reassigned. The assignment of a RAPID is only a shallow copy,
so the duplicate’s pointers point to the same partition nodes in the graph as the
original RAPID’s pointers. Therefore, using both the original RAPID and the new
one in two different RAPID operations requires to call persist for at least one of
the RAPIDs.

4.1.2 Partitions
Partitions are the second important data structure in the programming model. Like
RAPIDs, partitions are pointer structures, which point to partition nodes in the

rapid⟨T⟩
size(): integer
partition_count(): integer
partitioning(): partitioning
get_context(): context
persist(): rapid⟨T⟩

partition⟨T⟩
at(index: integer): T
data(): memory_address
index(): integer
partition_count(): integer
size(): integer

Figure 4.1: Functionality provided by RAPIDs and partitions
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dataflow graph. They cannot be constructed directly either. Instead, partitions only
appear as parameters of partition-based RAPID functions (see Section 4.3.2). Their
purpose is to allow users to specify how a RAPID operation shall process data by
giving them an interface to access input and output data.

From a user’s point of view, each partition belongs to exactly one RAPID. In actual
implementations, however, it is possible that different partitions (or RAPIDs) point
to the same partition nodes in the dataflow graph. Section 5.2 highlights this in
more detail.
Member functions of partitions are shown in Figure 4.1. In contrast to RAPIDs,

partitions allow users to access the underlying data through the member functions
at and data. Further, the partition’s size and index in the RAPID can be accessed.
Lastly, the member function partition_count returns the number of partitions
in the superordinate RAPID. This function allows a user, for example, to check
whether a partition is the last partition in its RAPID.

4.2 RAPID Operations
The RAPID programming model provides a small set of functional-style operations
which create new RAPIDs from existing RAPIDs or ordinary data collections. The
way a RAPID operation transforms data depends on the type of operation and,
for some RAPID operations, on the given RAPID function (see Section 4.3). All
operations have in common that they do not process data immediately. Instead,
RAPID operations build a dataflow graph which is executed at a later point in time.
To write working RAPID programs, it is not necessary for users to be aware of
this postponed data processing. However, knowledge about the dataflow graph is
helpful to write RAPID programs with high performance.

RAPID operations can be divided into three types, namely initial operations, trans-
formations and finalization operations. These three categories are the topic of the
following sections. It should be noted that RAPID operations are described from a
user’s point of view in this chapter, i.e. as if they were actually applied to the data.

4.2.1 Initial Operations
This category contains operations that create a new RAPID from an ordinary con-
tainer data structure, for example an array. The formal specification of the initial
operations is shown in Table 4.1.

Parallelize is an overloaded operation with two variants. These variants differ in
the way the input data is split. In the first variant of parallelize, data is divided
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Table 4.1: Overview of initial operations

RAPID Operation Argument Types

parallelize(d,p,i,c): rapid⟨T⟩
parallelize(d,n,i,c): rapid⟨T⟩

d: collection⟨T⟩
p: partitioning
n: integer
i: identifier
c: context

distribute(d,n,i,c): rapid⟨T⟩ d: collection⟨T⟩
n: integer
i: identifier
c: context

into partitions using an explicit, user-defined partitioning. All sizes in the given
partitioning have to add up exactly to the input collection’s size. Otherwise, an error
is thrown. The second variant divides the input data into n partitions as evenly as
possible for a given n.

Distribute creates a RAPIDwith n equally-sized partitions for a given n. In contrast
to the first initial operation, parallelize, all partitions of the resulting RAPID
contain the whole input data. This operation is particularly useful in combination
with the zipmap_partitions operation if the computation of each output data
element depends on some global data.

Users may pass a context argument to an initial operation. If no context is specified,
the runtime environment’s default context is used. This parameter allows users to
specify the graph to which the operation belongs. For the other types of RAPID
operations, a context parameter is unnecessary since the context can be derived
from the data dependencies between RAPID operations.

The identifier argument is also optional. Whenever an identifier is specified, it has
to be unique. Passing an identifier to an initial operation makes the corresponding
input of the dataflow accessible. This allows a user to change the input data of
a graph and start multiple dataflow executions with different data. Section 4.4
provides more details on this topic.

4.2.2 Transformations
Operations from this category create new RAPIDs from already existing RAPIDs.
Most of the operations in this category are typical for functional programming
languages. An overview of all transformations is given in Table 4.2.
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Table 4.2: Overview of transformations

RAPID Operation Argument Types
map(r,f): rapid⟨U⟩
map(r,g): rapid⟨U⟩ r: rapid⟨T⟩

f: T → U
g: T → U[x]

repartition(r,p): rapid⟨T⟩
repartition(r,n): rapid⟨T⟩ r: rapid⟨T⟩

n: integer
p: partitioning

combine(r,f): rapid⟨U⟩ r: rapid⟨T⟩
f: T[x] → U

zipmap(t,f): rapid⟨U⟩ t: rapid⟨T1⟩ × ⋯
f: T1 × ⋯ → U

append(l): rapid⟨T⟩ l: list⟨rapid⟨T⟩⟩
split(r,n): list⟨rapid⟨T⟩⟩
split(r,l): list⟨rapid⟨T⟩⟩ r: rapid⟨T⟩

n: integer
l: list⟨integer⟩

reorder(r,o): rapid⟨T⟩
reorder(r,f): rapid⟨T⟩ r: rapid⟨T⟩

o: list⟨integer⟩
f: integer → integer

reduce(r,f): rapid⟨T⟩ r: rapid⟨T⟩
f: T × T → T

map_partitions(r,f): rapid⟨U⟩ r: rapid⟨T⟩
f: partition⟨T⟩ → partition⟨U⟩

zipmap_partitions(t,f): rapid⟨U⟩ t: rapid⟨T1⟩ × ⋯
f: partition⟨T1⟩ × ⋯ → partition⟨U⟩

reorder_partitions(r,f): rapid⟨T⟩ r: rapid⟨T⟩
f: integer → integer

Map creates a new RAPID from an existing one by applying a function to each
element in the given RAPID. Table 4.2 shows two variants of map. These two variants
differ in the type of the given RAPID function. The RAPID function in the first
variant creates one element of type U from one element of type T. Therefore, the
partitioning of the RAPID returned by this variant of mapmatches exactly the given
RAPID’s partitioning. In the second variant, the given RAPID function creates
x elements of type U for a single input element of type T. For a concrete RAPID
function, the number of returned elements has to be firm at compile time. As a result,
the number of elements in the result RAPID is a multiple of the number of elements
in the given RAPID. The correlation also applies to the individual partitions of the
result and given RAPID. This second variant of map is also known as flatmap in other
frameworks.
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Repartition constructs a new RAPID from a given one with the same elements
but a different partitioning. This operation is very similar to parallelize, and
therefore the two alternative forms of repartition correspond to the variants of
the former. In the first variant, users may explicitly specify the new partition sizes,
whereas they only need to specify the number of partitions in the second one. As
with the second variant of parallelize, if only the desired number of partitions is
given, elements are divided as evenly as possible. Some operations described later
in this section have requirements on the given RAPIDs’ partitionings. In case an
input RAPID is not partitioned appropriately, repartition is called implicitly in
these operations.

Combine is roughly the opposite of the second variant of map. Both operations
differ in the type of function they expect as an argument. Combine functions create
one new data element for a fixed number of input elements. If x is the number
of elements that the given function requires as input, this function is applied to
successive slices of x adjacent data elements. Therefore, the element count of all
partitions in the given RAPIDmust be divisible by x. If the total number of elements
in a RAPID is suitable, but the number of elements in some partitions is not divisible
by x, combine automatically calls repartition beforehand.

Zipmap applies a given function element-wise on the given RAPIDs to create
a new RAPID. This operations expects a tuple of RAPIDs and a zipmap function
as arguments. The given function creates one new data element from multiple
elements of different type. Most functional programming frameworks provide a zip
operation, which creates a collection of tuples from two or more given collections.
Zipmap represents a combination of a zip operation followed by a map operation.
This operation is also known as zipwith in some frameworks. Zipmap requires at
least that all input RAPIDs contain the same number of data elements. If the given
RAPIDs’ partitionings are not the same, zipmap calls repartition on all RAPIDs
whose partitionings do not match.

Append takes a list of RAPIDs and creates a new RAPID which contains all
partitions from the given RAPIDs in the order specified by the RAPID list. This
operation does not create new data, nor does it alter the order of elements.

Split is contrary to append. It creates multiple RAPIDs, each containing a subset
of the input RAPID’s partitions. The two variants of split allow a user to specify
either the partition count of each output RAPID or the number of output RAPIDs.
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In the second case, partitions are divided as evenly as possible. Like append, split
does not create elements or alter the element order.

Reorder changes the element order of a RAPID,while it leaves the partitioning and
the data itself unchanged. Reordering elements over the boundaries of partitions
is permitted. The two variants of reorder allow a user to specify the new element
indices explicitly as a list or through a reorder function which calculates the new
indices.

Reduce expects one RAPID and a function as arguments. The given reduce
function creates one new data element of type T from two elements which are also
of type T. This function is repeatedly applied to data elements in the given RAPID
until only one element is left. The single result is encapsulated in a RAPID with
one partition. Since the RAPID programming model does not specify in which
order the reduce function is applied, users should only call reducewith associative
functions.

Map_partitions, Zipmap_partitions and Reorder_partitions behave similar
to map, zipmap and reorder, but operate on whole partitions rather than single
elements. Map_partitions and zipmap_partitions expect RAPID functions as ar-
guments which create new partitions from existing partitions. Zipmap_partitions
may call repartition, if the given RAPIDs’ numbers of partitions do not match.
The last RAPID operation, reorder_partitions, changes the order of partitions in
the given RAPID. The new partition indices are calculated with the given function.

4.2.3 Finalization Operations
Operations in this category allow a user to extract data from RAPIDs. The two final-
ization operations, collect and finalize, are shown in Table 4.3. These operations
require identifiers as one of their arguments. As with initial operations, identifiers
must be unique.

Table 4.3: Overview of finalization operations

RAPID Operation Argument Types
collect(r,i): context

r: rapid⟨T⟩
i: identifier

finalize(r,i): collection⟨T⟩ r: rapid⟨T⟩
i: identifier
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Collect adds an identifier to a RAPID and returns the corresponding context. A
user can start the dataflow execution and get the data of the given RAPID later by
calling a member function of the context with the same identifier (see Section 4.4).

Finalize is very similar to collect. The only difference is that finalize starts the
dataflow execution immediately. Therefore, finalize returns a collection with all
data elements from the given RAPID in the respective order.

4.2.4 RAPID operations example

To give a more practical view on RAPID operations, this section provides a small
example program in the C++ reference implementation. The code is shown in
Listing 4.1. At first, two C++ vectors are defined. Both are initialized with integer
numbers from 1 to 10. Two calls of parallelize create the integer RAPIDs r_1
and r_2. In both cases data is divided into four partitions. Since only an integer is
provided, data is divided as evenly as possible, i.e. the first two partitions contain
three integers each, while the last two partitions only contain two integers each. The
given identifiers input_1 and input_2 can be used to re-execute the program later
with two different integer vectors. With the following zipmap call, the user specifies
that an element-wise addition is performed on the two specified RAPIDs. Since
both RAPIDs have the same partitioning, no implicit repartitioning is required, and
the returned RAPID r also adopts this partitioning. Lastly, a dataflow execution is
started via a finalize operation call. For further executions, an identifier for the
result (output) is given. At the end of the program, the result vector contains all
even numbers from 2 to 20.

Listing 4.1: RAPID operations example
1 vector<int> vec_1 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
2 vector<int> vec_2 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
3
4 rapid<int> r_1 = parallelize(vec_1, 4, ”input_1”);
5 rapid<int> r_2 = parallelize(vec_2, 4, ”input_2”);
6
7 rapid<int> r = zipmap({r_1, r_2}, add_function);
8
9 vector<int> result = finalize(r, ”output”);

10 // result is now {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
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4.3 RAPID Functions
Most of the transformations specified in the last section expect a RAPID function
as an argument. The purpose of RAPID functions from a user’s perspective is to
specify the behavior of RAPID operations. From an internal view however, RAPID
functions affect the behavior of dataflow actors. When a RAPID function is applied
to the partitions of a RAPID, the RAPID programming model does not specify an
order. This ensures that partitions can be processed in parallel.
Table 4.2 shows simplified specifications of RAPID functions, e.g. T → U with

arbitrary types T and U for a map function. In concrete implementations, however,
RAPID functions must be structures which include additional information besides
the actual function code.
Figure 4.2 shows the general RAPID function data structure with all possible

members. The members in brackets are irrelevant for some specific types of RAPID
functions (map functions, zipmap functions, …). Each RAPID function object has
a type, a name, an execution measurement function and an action function. The
measurement function is a user-specified function which returns the estimated
runtime of the action function for the given size. Depending on the implementation
of the dataflow runtime environment, the execution measurement function may
be of type integer × integer → integer or integer × integer → real. These
measurement functions are used in the scheduling process (seeChapter 7). Partition-
wise RAPID functions need to store an additional size function. Information about
this function follows in Section 4.3.2. The exact type of the last member, the action
function, depends on the specific type of RAPID function. This member contains
the main functionality of a RAPID function. Therefore, the execution of a RAPID
function corresponds to an execution of its action function.

operation_function

type: rapid_function_type
name: identifier
measure: function
[size: function]
action: function

Figure 4.2: RAPID function data structure

RAPID function objects cannot be created directly with a constructor. Instead,
users have to define them using the following syntax:

rapid_function(name, type, action, [size,] measure);
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It is recommended to use the function definition syntax only in a static context
and with global visibility. This ensures that the RTE has an overview of all RAPID
functions already at system initialization. Users have to ensure that RAPID function
names are unique. Further, the type in a RAPID function definition must be one of
the following:

• map_t

• combine_t

• zipmap_t

• reduce_t

• map_partitions_t

• zipmap_partitions_t

• reorder_t

• reorder_partitions_t

The other parameters (action, size and measure) depend heavily on the RAPID
function’s type. These three are usually function-type parameters, only the mea-
surement parameter is of elementary type for some types of RAPID functions. For
function-type parameters, users may pass either a function pointer or a lambda ex-
pression. To ensure support of different hardware architectures, the given function
or lambda expression must be pure, i.e. its output only depends on the respective
input. Therefore, it is not allowed for the given function (or lambda expression)
to access arbitrary memory locations. The additional size parameter is only neces-
sary for partition-wise functions. More details about the different types of RAPID
functions follow in the next sections.

4.3.1 Element-wise Functions
Element-wise RAPID functions are used in map, combine, zipmap and reduce oper-
ations. These functions are applied individually to the elements in the input RAPID
(or tuples of elements from different RAPIDs in case of zipmap). The RAPID pro-
gramming model does not specify an order for the application of element-wise
function to the elements in a partition. Therefore, element-wise functions may be
executed in parallel to create the result elements.
Further, element-functions do not require the size parameter, since the number

of created elements follows directly from the function definition, and the element
size follows from the result element type. The execution measurement parameter in
element-wise functions expects a function with one parameter. Depending on the
implementation, this function may be of type integer → integer or integer →
real and represents the estimated runtime for a single function execution on the
processing element with the given index. To estimate the time it takes to apply the
function to a partition, this value is multiplied by the number of sequential function
executions during offline scheduling.
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Map functions appear in two different forms which differ in the type of their
action function. The two possible types are T → U and T → U[x], in which T and
U are types and x is an integer greater than one. Therefore, one execution of a map
function may create exactly one or a fixed number of elements of type U from an
element of type T. In case multiple elements are created, these elements will appear
next to each other in the result RAPID.

Combine functions take multiple elements and create one new element. There-
fore, their action functions’ type is T[x] → U for types T and U and an integer x
greater than one. When applied to a RAPID with 𝑛 elements, the action function is
executed 𝑚 = 𝑛

x times to create a RAPID with 𝑚 elements.

Zipmap functions also create one element out of multiple elements. But in
contrast to combine functions, these functions take elements from different RAPIDs,
and so their inputs may be of different type. The action function’s type is T1 × T2 ×⋯ × Tn → U, in which T1, T2, …, Tn and U are types and n is an integer greater than
one.

Reduce functions always take two elements and create one new element. All
elements must be of the same type. Thus, in case of reduce functions, the action
function’s type is T × T → T for a type T. Reduce functions are repeatedly applied
on the elements of a RAPID until only one element is left. Since the RAPID pro-
gramming model does not specify the order in which the function is applied on the
RAPID’s elements, users should only define associative reduce functions.

4.3.2 Partition-wise Functions
These RAPID functions take whole partitions as inputs and return new partitions.
Only map_partitions and zipmap_partitions functions fall into this category.
Partition-wise functions may create partitions with an arbitrary number of elements,
but the RAPID programming model requires that dataflow graphs contain size
information for all partition nodes. For this reason, users have to specify a size
function as an additional argument in the RAPID function definition. Its exact type
is different for the two types of partition-wise functions.

To give the user the possibility to specify the estimated execution time of element-
wise functions more precisely, the measurement parameter expects a function of
type integer × integer → integer or alternatively integer × integer → real
depending on the RTE implementation. This function is supposed to return the
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estimated runtime based on the number of created elements in the result partition
and the processing element executing the function.

Map_partitions functions create a new partition 𝑄 from an existing partition 𝑃.
Action functions are of type partition⟨T⟩ → partition⟨U⟩, in which T and U are
types. As mentioned above, partitions 𝑃 and 𝑄 do not need to contain the same
number of elements, so users have to specify a size function in the RAPID function
definition. This size function is of type integer → integer and returns the number
of elements in 𝑄 based on the number of elements in 𝑃.
Zipmap_partitions functions are similar to map_partitions functions. The dif-
ference is that zipmap_partitions functions havemultiple inputs. Action functions
are of type partition⟨T1⟩ × ⋯ × partition⟨Tn⟩ → partition⟨U⟩ with types T1, …,
Tn and U and an integer nwhich is greater than one. Like the action function, the
size function also has n parameters. Therefore, the type is integer×⋯×integer →
integer. This allows users to define zipmap_partitions functions whose result
partitions depend on the size of all partitions given as arguments. An example
would be a RAPID function creating a partition with an element count equal to the
sum of the arguments’ element counts. In this example, the size function would be𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛.
4.3.3 Reordering Functions
The last category of RAPID functions contains reordering functions. These functions
are used in reorder and reorder_partitions operations. All reordering functions
take an index and return a new index, but there are additional parameters which
are different for the two types of functions.
Since the reordering of elements does not depend on actual data, the time for a

single index calculation will be similar for all index values in most cases. Hence,
the measurement parameter in the function definition expects a function with one
parameter, as in the case of element-wise functions.

Reorder functions calculate new element indices. The action function has, be-
sides the source element index, three additional parameters which give users the
possibility to reorder elements depending on various other properties. Additional
parameters are the source RAPID’s size, the index of the partition which contains
the currently processed element and the partitioning of the source RAPID. There-
fore, the action function’s type is integer × integer × integer × partitioning →
integer.
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Reorder_partitions functions are similar to reorder functions and calculate
partition indices. But unlike element-based reordering functions, action functions of
reorder_partitions functions only have one additional parameter. This parameter
allows users to change the partition order based on the source RAPID’s number
of partitions. This causes the action function’s type to be integer × integer →
integer.

4.3.4 RAPID Functions Example

This section continues the example from Section 4.2.4 and highlights the RAPID
function add_function in more detail. Listing 4.2 shows the exact definition in the
C++ reference implementation. ARAPID function definition always beginswith the
keyword rapid_function followed by a list of arguments enclosed by parentheses.
The first argument is the RAPID function’s name, in this example add_function,
which is followed by the type (zipmap_t). Third, a lambda expression specifies
how the data is processed. A RAPID function with type zipmap_t always requires
a lambda expression (or pointer to a function) with at least three parameters, one
reference representing the result and two or more references to constant values
representing the inputs. It is important that a lambda expression passed to the
RAPID function definition does not capture any values, as shown in Listing 4.2 by
the empty brackets. The lambda expression in the example writes the sum of the
two inputs to the output reference. The last argument of the function definition is
an integer which can be used by scheduling heuristics. It says that one execution
of the given lambda expression takes ten time units. How this value is interpreted
depends on the exact scheduling algorithm.

Listing 4.2: RAPID function example
1 rapid_function(
2 add_function,
3 zipmap_t,
4 [](int& out, const int& in1, const int& in2) {
5 out = in1 + in2;
6 },
7 10
8 );
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4.4 RAPID Context

As already mentioned in the previous sections, RAPID operations are not executed
immediately, but instead a dataflow graph is built. Contexts represent the high-
level concept that allows users to access dataflow graphs to a limited extent. The
context data structure can keep track of one dataflow graph and multiple pre-
computed schedules so that the graph can be executed with different redundancy
configurations.

An overview of the provided functions is shown in Figure 4.3. Users may create
any number of contexts with the standard constructor. Contexts which were cre-
ated like this are initialized with an empty dataflow graph. To add nodes to the
dataflow graph, users need to pass the corresponding context to a parallelize
or distribute operation. Other RAPID operations deduce the context from their
input RAPIDs. If the contexts of RAPIDs passed to an operation with multiple
inputs do not match, an error is thrown.

The RAPID programming model does not forbid contexts with dataflow graphs
consisting of multiple unconnected subgraphs. Since graphs are scheduled and
executed as a whole, users may take advantage of this to create one graph from
two or more independent computations, which are then executed concurrently.

context

context()
actor_count(): integer
input_count(): integer
result_count(): integer
export_graph(l: identifier, i: identifier, f: format)
export_schedules(l: identifier, i: identifier, f: format)
import(l: identifier)
set_input(i: identifier, c: collection⟨T⟩)
get_result(i: identifier): collection⟨U⟩
move_result(i: identifier, j: identifier)
execute()
checkpoint()
schedule(a: scheduling_algorithm)
completed_section_count(): integer
set_section_redundancy(i: integer, c: criticality)
section_redundancy(i: integer): criticality

Figure 4.3: Functionality provided by contexts
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Chapters 6 and 7 provide more details on dataflow executions and scheduling
respectively.

Contexts provide various member functions for users to get information about the
dataflow graph. Users may check graph metadata, like the number of actor nodes
or number of input nodes in the graph, with the corresponding count functions.
Furthermore, users can access the import/export functionality through the context.
The export_graph function stores a graph in the given graph description format f
at a location specified by the given identifier l. How l is interpreted depends on
the RTE implementation. As an example, l could be interpreted as a file name if the
RTE runs on an operating system with a file system. With the second identifier i, a
name can be assigned to the graph. The C++ reference implementation supports
the DOT graph description language [GKN15] with some custom node attributes.
Exported graphs are compatible with many graph visualization tools since these
tools often ignore unknown attributes. Additionally, the context provides an import
function to construct graphs from a representation in a suitable format. As for the
dataflow graph, the static schedules of a context can also be imported and exported.
The import function automatically detects whether the loaded entity describes a
graph or schedule. For schedules, a simple custom format with a syntax similar to
exported graphs is used in the reference implementation.

4.4.1 Repeated Dataflow Executions
After a dataflow graph was constructed, users may start the dataflow execution
multiple times with different data. For repeated dataflow executions, contexts
provide a small set of functions, for example set_input and get_result. The
set_input function expects an identifier and a data collection as its arguments.
A given identifier must match one of the identifiers used in a parallelize or
distribute operation, otherwise an error is thrown. Another error is thrown if
the given collection’s size does not match the expected input size. Graph inputs
which have not been specified with the set_input function keep their data from
the previous dataflow execution. If no identifier has been specified in an initial
operation call, there is no way to change the data and the initially specified data is
used in all dataflow executions.
Repeated dataflow executions may be started either with the execute function

or the get_result function, which additionally returns a collection of result data.
As with set_input, the latter expects an identifier as its argument. This identifier
must have already appeared as an argument in a collect or finalize operation
or otherwise an error occurs. An important property of the RAPID programming
model is that graphs are always executed as a whole. This means that not all calls of
get_result start a dataflow execution. If a context contains multiple results which
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are all requested through subsequent get_result calls with different identifiers,
only the first call starts a dataflow execution. All other calls just return the corre-
sponding data collections. In general, whenever get_result or execute is called
on an already executed graph, dataflow execution is only started once again if some
input data changed since the last execution.

4.4.2 Checkpoints
One of the RAPID programming model’s design goals was to support fault-tolerant
dataflow executions through redundant actor execution. Furthermore, it should be
possible to change the degree of redundancy at runtime while the system keeps
following pre-computed schedules. However, changing the redundancy of a single
dataflow actor makes the graph’s schedule obsolete. For example, if the degree
of redundancy is changed from a single execution to two redundant executions
for some actor, the schedule does not consider the additional actor execution. The
insertion of new actors into an existing schedule at runtime has multiple drawbacks.
For large graphs with many data dependencies, checking these dependencies and
finding an appropriate place to insert an actor is not trivial and the overhead at
runtime may get quite large, especially if actor redundancies change often. It is also
not feasible to create one schedule for each combination of redundant actors. For𝑛 actors and 𝑥 possible redundancy configurations, the number of schedules would
be 𝑥𝑛.

To solve the described problems, the RAPID programming model allows users to
divide dataflow graphs into sections. In a graph section, all actors must be executed
with the same redundancy and changing the redundancy is only possible for sections
as awhole. This restriction leads to amuch simpler scheduling. Chapter 7 highlights
this topic in more detail.

The first section is always created along with the graph. For additional sections,
the graph’s corresponding context provides a member function called checkpoint.
This function requires no arguments. A checkpoint function call completes the
current section and creates a new one. New actors are always inserted into the
section that was created last. To avoid empty sections, checkpoint function calls are
ignored, if the current section is empty. Users may check into how many sections a
graph is divided with the completed_section_count function.
Graph sections are referred to by index in order of their creation, with the first

section’s index being zero. By passing a section index to member functions of
a context, users are able to influence dataflow executions of the corresponding
graph. The set_section_redundancy function allows users to manually specify
the redundancy of sections. Changing the section redundancy is only possible for
completed sections. Therefore, if this function is calledwith the currently incomplete
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section’s index, checkpoint is called implicitly. It is also possible to check the current
redundancy of a section by passing the section’s index to section_redundancy.
Whenever a dataflow graph is executed in offline scheduling mode, each non-

empty graph section needs a schedule. Because the RAPID programming model
only permits complete sections to be scheduled, the checkpoint function is called
implicitlywhen a scheduling heuristic is calledwhile the current section is not empty.
The offline scheduling process is started implicitly when a not fully scheduled graph
is about to be executed in offline scheduling mode. Users may also trigger the
schedulingmanuallywith the schedulemember function. By doing so, it is possible
to specify the desired scheduling algorithm (while otherwise the RTE’s standard
scheduling heuristic is used). Already scheduled sections remain the same, even if
they were scheduled with another scheduling algorithm. By calling the schedule
function right after the creation of each section, users are able to specify different
scheduling algorithms for each individual section. The function can also be used to
switch between the use of pre-computed schedules and online scheduling. Calling
the function with an online scheduling approach does not trigger a scheduling
heuristic, but instead marks the graph so that it is executed using online scheduling.
More information about online scheduling follows in Chapter 7.

4.4.3 Multiple Contexts

When users implement an application in the RAPID programming model, they
have to decide whether to use one single context or a set of contexts. Most programs
and algorithms consist of one or more loops. In such cases, users have the choice to
either express one or multiple iterations of the outer loop through one context or
use a single context containing the whole RAPID program. For dataflow graphs
executed in a loop, the context provides the function move_result, which can be
used to express that the output of a dataflow execution should be an input in the
next execution.
An example is depicted in Figure 4.4. The figure shows a generic (non-RAPID)

program starting in an initial state. After executing a sequence of instructions, the
program enters an intermediate state, which is revisited after each loop iteration.
The program then goes into its final state. Programs following this structure may
be implemented in the RAPID programming by using three contexts, as shown in
the figure. When the RAPID program is executed, the dataflow graphs of c1 and c3
are executed once, while the graph of c2must be executed 𝑛 times if it represents
one loop iteration. Another possibility would be to build up the dataflow graph of
c2 so that it represents 𝑥 loop iterations, where 𝑛 is divisible by 𝑥. In this case c2
would have to be executed only 𝑛𝑥 times.
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Initial State

Intermediate State

Final State

𝑛 loop
iterations

context c1
context c2

context c3

Figure 4.4: Using three contexts to express a program with one main loop

Each approach has its own advantages and disadvantages. Using a single context
for the whole program can lead to very large dataflow graphs since RAPID dataflow
graphs are acyclic and loops in the RAPID program are therefore automatically
unrolled in the graph. This leads to higher memory demand and longer offline
scheduling times due to the larger number of data dependencies. The advantage of
a single context is that DAG scheduling heuristics have an overview of the whole
program and may create schedules with lower makespan. Further, the completion
of a dataflow execution is an implicit barrier, so a single context does not lead to
barriers in the program execution like multiple contexts do.

4.4.4 Context Example
This section provides an example on how contexts can be used inRAPIDprograms.

Therefore, it extends the small program from Section 4.2.4. The code is shown in
Listing 4.3. Besides the two vectors vec_1 and vec_2, a context cx is declared. This
context is passed to the two calls of parallelize. Following RAPID operations can
automatically infer the context from their arguments because RAPIDs keep track of
the context they belong to. In contrast to previous examples, graph construction
is concluded by a collect operation, which does not start a dataflow execution.
After that, a function of the context is used to specify how the graph is scheduled,
in this example with the HEFT scheduling heuristic. The scheduled graph is then
executed two times with different data. Dataflow executions are started via the
get_result calls. In the first graph execution, the two initial vectors are processed.
For the second dataflow execution, the result of the first execution is used as the
first input, while the second input is not changed, so that the data of vec_2 is used
once again. It should be noted that this example only shows the most common
functions the context provides. The code in this example is not optimal, since it calls
the set_inputmethod in order to use the result of a dataflow execution as the next
input. This leads to a copy of the result data. To circumvent the copy, the context
provides the move_result function, which should be used preferably in such cases.
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Listing 4.3: Context example
1 vector<int> vec_1 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
2 vector<int> vec_2 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
3 context cx;
4
5 rapid<int> r_1 = parallelize(vec_1, 4, ”input_1”, cx);
6 rapid<int> r_2 = parallelize(vec_2, 4, ”input_2”, cx);
7 rapid<int> r = zipmap({r_1, r_2}, add_function);
8 collect(r, ”out”);
9

10 cx.schedule(static_heft);
11
12 vector<int> result = cx.get_result<int>(”output”);
13 // result is now {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
14
15 cx.set_input(”input_1”, result);
16 result = cx.get_result<int>(”output”);
17 // result is now {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

4.5 Characteristics of the C++ Reference
Implementation

After the previous sections already showed examples in the C++ reference im-
plementation, this section provides additional details. The RAPID programming
model benefits from many features of modern C++ standards. For the reference
implementation C++14 was chosen because compilers for embedded architectures
are in their development often behind standard x86 compilers and do not support
the latest C++ standards. RAPIDs are implemented as class templates and RAPID
operations as function templates. This allows the RTE to fully utilize the type de-
duction capabilities of C++14 so that users almost never have to specify template
arguments. Furthermore, the exact type of a RAPID can always be inferred from
the RAPID operation returning it. Therefore, users may use the keyword auto,
whenever they declare a RAPID. The only cases where the exact types must be
specified are the definition of RAPID functions and get_result function calls.

The reference implementation of the RAPID programming model was designed
to serve as a common basis for dataflow environments on different architectures.
Therefore, it consequently assigns unique IDs to RAPID functions. The reason
behind this is that in systems with distributed memories the same RAPID function
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appears in multiple memories at possibly different memory locations. Using unique
IDs in the communication between cores with their own local memories ensures
that both cores refer to the same function. Since RAPID functions do not have
any particular order, they cannot be numbered consecutively. Therefore, the C++
reference implementation applies a hash function on the RAPID function’s name
(which is always available in the source code) to generate a unique ID which
is consistent even over multiple compilations. This is important for distributed
hardware architectures in which processors may execute different binaries. SipHash,
a non-cryptographic hash function, was chosen for this purpose because of its
simple implementation and speed [AB12]. As with all hash functions, there is a
small chance that two different RAPID functions get the same ID. To avoid errors
during runtime, the uniqueness of all IDs is checked at system initialization.

4.6 Example Applications
The RAPID programming model allows users to implement many common appli-
cations from the domain of high-performance embedded computing. However,
not all programs are equally suitable. Applications that use large complex data
structures like graphs or trees are the most problematic. Such structures are usually
difficult to split into smaller parts in a sensible way. Using one single partition
for the whole data structure is possible, but has the disadvantage that it does not
allow parallel modifications. This leaves only such applications which solely need
to read from the data structure, for example tree searching algorithms. But on
distributed architectures with small local memories, putting a large data structure
in one partition might not be possible in the first place.
Since the RAPID programming model was designed with distributed architec-

tures in mind, it is not surprising that applications which are well suited for such
architectures also work well with the RAPID programming model. The following
sections describe a selection of common tasks in the high performance embedded
domain and how they can be implemented in the RAPID programming model,
using the C++ reference implementation as an example.

4.6.1 Matrix Multiplication
Matrix multiplication can be implemented in various ways. For an implementation
in the RAPID programming model, Cannon’s algorithm [Can69, p. 22–27] is a good
choice. In its original form, Cannon’s algorithm is a distributed algorithm for the
multiplication of two 𝑛 × 𝑛 matrices on 𝑛2 processors. The main idea behind the
algorithm is to shift the rows of the first matrix and columns of the second matrix in
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each step, multiply the matrices element-wise and add the result to an accumulator
matrix. Implementing the original algorithm in with RAPID operations would lead
to very small partitions (one data element per partition), a large dataflow graph and
a fine-grain dataflow. To reduce overhead in the dataflow execution and to decrease
the graph’s size, a common generalization of Cannon’s algorithm can be applied.
This generalization replaces matrix elements in the algorithm with submatrices,
and scalar additions and multiplications with matrix additions and multiplications.
In Algorithm 4.1 the steps to perform the generalized Cannon’s algorithm are

shown. If 𝑋 is a matrix, its submatrices are denoted with 𝑋(𝑖, 𝑗) analog to the ma-
trix elements (𝑋𝑖,𝑗). Splitting the matrices into 𝑠2 parts (line 2) corresponds to a
parallelize operation in the RAPID programmingmodel. But splitting alone does
not lead to appropriate partitions. Matrix elements are initially stored in a row-like
fashion, which means that partitions contain rows (or parts of rows) instead of
square submatrices. Therefore, elements of input matrices have to be rearranged
with reorder operations. The following initial shifting of submatrices can be done
with reorder_partitions operations. Block-wise matrix multiplications in the
main loop (lines 9 to 13) may be easily expressed with a zipmap_partitions op-
eration. The rest of the main loop consists of shifting block rows and columns of

Algorithm 4.1: Generalized Cannon’s algorithm
1 function MATMUL(𝐴 ∶ 𝑛 × 𝑛, 𝐵 ∶ 𝑛 × 𝑛) ∶ 𝑛 × 𝑛
2 split matrices 𝐴, 𝐵 and 𝐶 into 𝑠2 square blocks of size 𝑛𝑠 × 𝑛𝑠 ;
3 initialize all elements of 𝐶 with zeros;
4 for 𝑖 from 1 to 𝑠 do
5 shift block row 𝑖 of matrix 𝐴 by 𝑖 block columns to the left circularly;
6 shift block column 𝑖 of matrix 𝐵 by 𝑖 block rows upwards circularly;
7 end
8 for 𝑥 from 1 to 𝑠 do
9 for 𝑖 from 1 to 𝑠 do
10 for 𝑗 from 1 to 𝑠 do
11 𝐶(𝑖, 𝑗) ← 𝐶(𝑖, 𝑗) + 𝐴(𝑖, 𝑗)𝐵(𝑖, 𝑗);
12 end
13 end
14 shift block row 𝑖 of matrix 𝐴 by 1 block column to the left circularly;
15 shift block column 𝑖 of matrix 𝐵 by 1 block row upwards circularly;
16 end
17 return 𝐶;
18 end
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matrices 𝐴 and 𝐵. Since each partition contains one submatrix, shifting the rows or
columns block-wise corresponds to reordering the partitions. After the main loop,
the result matrix 𝐶 is stored in a block-wise fashion. Analogous to the initial element
shuffling, the row-wise element order can be restored with a reorder operation.

Listing 4.4 shows Cannon’s algorithm implemented in the RAPID programming
model. For optimization purposes, the implementation differs slightly from the
descriptions above. First, reordering the elements to blocks of submatrices and
shifting these submatrices is done in one step by the reorder operations in lines 6
and 7. The second difference is that the RAPID r which corresponds to matrix𝐶 in Algorithm 4.1 is not initialized with zeros. Instead, the RAPID is initially
created by the first block-wise multiplication (line 8). Another important aspect
about this example is that using the persist function of RAPIDs is required. The
matricesmust be persisted in each loop iteration since they are used in the block-wise
multiplication as well as the following block-wise reordering.

Listing 4.4: Cannon’s algorithm implemented with RAPID operations
1 int s;
2 std::vector<int> matrix1, matrix2;
3 ⋮ // initialize s, matrix1 and matrix2
4 auto m1 = parallelize(matrix1, s*s, ”matrix_1”);
5 auto m2 = parallelize(matrix2, s*s, ”matrix_2”);
6 m1 = reorder(m1, reorder_first).persist();
7 m2 = reorder(m2, reorder_second).persist();
8 auto r = zipmap_partitions({m1, m2}, multiply);
9 for (int i = 0; i < s - 1; ++i) {

10 auto nm1 = reorder_partitions(m1, rotate_left);
11 auto nm2 = reorder_partitions(m2, rotate_up);
12 m1 = nm1.persist();
13 m2 = nm2.persist();
14 r = zipmap_partitions({r, m1, m2}, multiply_add);
15 }
16 r = reorder(r, reorder_reverse);
17 auto result = finalize(r, ”output”);

4.6.2 Fast Fourier Transform
Fast Fourier transform (FFT) is an efficient way to compute the discrete Fourier
transform (DFT). It converts a discrete signal from its original domain into a rep-
resentation in the frequency domain. The most common algorithm to compute
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the FFT is the Cooley-Tukey algorithm [CT65], which follows a divide-and-conquer
approach. In its simplest form, the algorithm can only be applied to sequences
whose size is a power of two. The basic idea is to split the input sequence in half,
compute the DFT of both halves individually and combine the results of both halves
into the full DFT. Applying this method to the two halves recursively leads to al-
gorithm in 𝑂(𝑛 log𝑛). It is also possible to implement the algorithm in an iterative
fashion. The specification of such an iterative Cooley-Tukey algorithm is shown in
Algorithm 4.2. Since the RAPID programming model does not support recursion,
this version is preferable as a starting point for an implementation with RAPIDs. In
contrast to the original algorithm which implicitly changes the element order with
each recursive function call, the iterative version requires to reorder the elements
explicitly. Changing the element order only once, either before or after the main
loop, is sufficient. The iterative variant in Algorithm 4.2 is the basis of the following
RAPID FFT implementation.
Listing 4.5 shows the implementation of the described iterative Cooley-Tukey

algorithm in the RAPID programming model. The first parallelize operation
takes a vector of complex numbers and an integer p as its arguments. The given p has
to be a power of two andmust be less than the given vector’s size. Since the algorithm
is based on the iterative variant, the next RAPID operation is changes the element
order. After the reordering, a map_partitions operation is used to calculate the
FFT for each partition individually. Therefore, the given RAPID function fft_func

Algorithm 4.2: Iterative Cooley-Tukey algorithm
1 function FFT(𝑆 ∶ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥[𝑛]) ∶ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥[𝑛]
2 reorder 𝑆 by reversing the bits of each element’s index;
3 for 𝑙 from 1 to log(𝑛) do
4 𝑚 ← 2𝑙;
5 for 𝑘 from 0 to 𝑛 − 1 step 𝑚 do
6 for 𝑗 from 0 to 𝑚2 − 1 do
7 𝑡 ← 𝑆[𝑘 + 𝑗];
8 𝑆[𝑘 + 𝑗] ← 𝑡 + exp(−2𝜋𝑖𝑗𝑚 ) 𝑆[𝑘 + 𝑗 + 𝑚2 ];
9 𝑆[𝑘 + 𝑗 + 𝑚2 ] ← 𝑡 − exp(−2𝜋𝑖𝑗𝑚 ) 𝑆[𝑘 + 𝑗 + 𝑚2 ];
10 end
11 end
12 end
13 return 𝑆;
14 end
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Listing 4.5: Fast Fourier transform implemented with RAPID operations
1 vector<complex<double>> input;
2 int p;
3 ⋮ // initialize input and p
4 auto r = parallelize(input, p, ”input”);
5 r = reorder(r, shuffle_bit_reverse);
6 r = map_partitions(r, fft_func);
7 for (int i = 0; i < log2(p); ++i) {
8 auto [r1, r2] = divide_rapid(r, i);
9 auto ri = distribute(vector<int>{i}, p/2);

10 ri.persist();
11 auto r3 = zipmap_partitions({r1, r2, ri}, fft_left);
12 auto r4 = zipmap_partitions({r1, r2, ri}, fft_right);
13 r = merge_rapids(r3, r4, i);
14 }
15 auto result = finalize(r, ”output”);

is equal to a standard iterative Cooley-Tukey algorithm. The main loop (which
corresponds to the outer loop in Algorithm 4.2) starts in line 7. At the beginning
of each loop iteration, two RAPIDs r1 and r2 are created by a function called
divide_rapid. This function itself is not a RAPID operation, but it internally calls
the RAPID operations split and append. Its purpose is not to create new partitions
but to rearrange existing partitions so that the dataflow graph reproduces the
typical butterfly pattern of the algorithm’s data dependencies. The function also
calls persist for the two RAPIDs it returns. In Algorithm 4.2 the loop variables𝑘 and 𝑗 are responsible for creating this pattern as they serve as indices in the
computation (lines 7 to 9). The actual computation in the loop is implemented with
two zipmap_partitions operations. These RAPID operations separately compute
interim results for half of the elements. The respective lines in Algorithm 4.2 are
lines 8 and 9. Since the FFT computation depends on the loop index, in each iteration
an additional RAPID ri containing only one integer is required. This RAPID is
created by the distribute operation in line 9. In the end of the loop, a function
merge_rapids, which is inverse to the function in line 8, is used to restore the
original partition order.

4.6.3 Sorting
Since sorting is a very common task in applications, many sorting algorithms
were developed. Sorting algorithms can be divided into two categories, namely

67



4 The RAPID Programming Model

comparison-based and non-comparison-based sorting algorithms. In the following,
we focus on comparison-based sorting. A suitable algorithm for an implementation
in the RAPID programming model is bitonic sorting [Bat68]. In contrast to other
common sorting algorithms, likeMergesort or Heapsort, bitonic sorting is not asymp-
totically optimal, since the number of required comparisons is in 𝑂(𝑛 log2(𝑛)),
instead of 𝑂(𝑛 log(𝑛)). However, bitonic sorting is intrinsically parallel and scales
very well with an increasing number of processors. As the name suggests, the algo-
rithm is based on bitonic sequences. A sequence of 𝑛 keys 𝑥1, 𝑥2, … 𝑥𝑛 is a bitonic
sequence, if 𝑥1 ≤ 𝑥2 ≤ … ≤ 𝑥𝑖 ≥ … ≥ 𝑥𝑛 for some 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 or if it is a cyclic
shift of such a sequence.

A pseudo-code implementation of bitonic sorting is shown in Algorithm 4.3. This
most common form of bitonic sorting requires that the length of the input sequence

Algorithm 4.3: Bitonic sorting
1 function BITONIC_SORT(𝑆 ∶ 𝑘𝑒𝑦[𝑛]) ∶ 𝑘𝑒𝑦[𝑛]
2 if 𝑛 = 1 then
3 return 𝑆;
4 end
5 𝐴 ← BITONIC_SORT(𝑆 [1 … 𝑛2 ]);
6 𝐵 ← BITONIC_SORT(𝑆 [𝑛2 + 1 … 𝑛]);
7 reverse the element order of 𝐵;
8 return BITONIC_MERGE(CONCAT(𝐴, 𝐵));
9 end

10 function BITONIC_MERGE(𝑆 ∶ 𝑘𝑒𝑦[𝑛]) ∶ 𝑘𝑒𝑦[𝑛]
11 if 𝑛 = 1 then
12 return 𝑆;
13 end
14 𝑚 ← 𝑛2 ;
15 for 𝑖 from 1 to 𝑚 do
16 if 𝑆[𝑖] > 𝑆[𝑖 + 𝑚] then
17 SWAP(𝑆[𝑖], 𝑆[𝑖 + 𝑚]);
18 end
19 end
20 𝑆1 ← BITONIC_MERGE(𝑆[1 … 𝑚]);
21 𝑆2 ← BITONIC_MERGE(𝑆[𝑚 + 1 … 𝑛]);
22 return CONCAT(𝑆1, 𝑆2);
23 end
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is a power of two. The basic idea behind this algorithm is to sort the first half of a
sequence ascending and the second half descending so that the resulting sequence
is bitonic (lines 5 to 7 in Algorithm 4.3). Both halves are then merged together to
form an ordered sequence. The algorithm only needs to specify how the merge step
is performed since the sorting of the two halves can be done via recursion. Merging
is also a recursive function. After the merge was applied to the sequence as a whole
(lines 15 to 19 in Algorithm 4.3), it is called recursively on the two halves of the
sequence.
The recursion of bitonic sorting does not depend on element values but only on

the length of the given sequence. Hence, for a given sequence size, it is possible to
build a sorting network. Figure 4.5 shows an example network with eight keys in
form of a Knuth diagram [LB00]. In this diagram, horizontal lines represent element
positions in a sequence, with the input sequence being left and the output sequence
being right. Vertical arrows originating from black dots are comparators whose
arrow tips point to the element position, where the larger element of the two goes.
The gray boxes mark the three recursive steps, i.e. the sorting of the upper and
lower half and the merge phase afterwards.
Since sorting networks statically specify all data dependencies, they could be

considered as dataflow graphs. However, it is not advisable to write a RAPID
program which creates a dataflow graph with an explicit edge for each comparison
in the sorting network. In such a RAPID program, each partition would only contain
a single key. This would lead to a very large graph and fine-grain dataflow, which
would increase the overhead during runtime. To avoid overly large graphs, RAPIDs
must be divided into less but larger partitions. With bitonic sorting, this is easily
possible because of the recursive nature of the algorithm, which leads to recurrent
structures in the sorting network. If the bitonic sorting network can sort 𝑛 keys, valid
partition sizes for a RAPID program are all powers of two less than 𝑛. Comparisons
are then carried out on pairs of partitions through zipmap_partitions operations.

Figure 4.5: Knuth diagram of bitonic sorting with eight elements
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If elements are only compared with elements inside their respective partition, a
map_partitions operation has to be used instead. By following this approach, the
overall structure of the RAPID program remains almost the same. Only the resulting
dataflow graph resembles a smaller-scaled version of the data-dependencies in the
sorting network.

Based on these considerations, an implementation of bitonic sorting with RAPID
operations is shown in Listing 4.6. Since the data dependencies in bitonic sorting net-
works are similar to those in the Cooley-Tukey algorithm, the two RAPID programs
also show similarities. As with FFT, the two divide functions (lines 7 and 12) are not
RAPID operations themselves but call operations like split and append in order to
produce the RAPIDs r1 and r2. This division is done in a way that applying two
zipmap_partitions operations to these two RAPIDs leads to the desired butterfly
patterns in the dataflow graph. These butterfly patterns are also visible in the sorting
net in Figure 4.5. Compared to FFT, bitonic sorting requires more butterfly pattern
layers. This is the reason why there is an additional inner loop. Because the inner
and outer loop produce similar data dependency patterns in the dataflow graph,
the statements in the body of the inner loop closely resemble those in the body of
the outer loop. At the end of the outer loop, there is an additional map_partitions

Listing 4.6: Bitonic sorting implemented with RAPID operations
1 vector<int> input;
2 int p;
3 ⋮ // initialize input and p
4 auto r = parallelize(input, p, ”input”);
5 r = map_partitions(r, bitonic_inner_1);
6 for(int i = 0; i < log2(p); ++i) {
7 auto [r1, r2] = divide_rapid_1(r, i);
8 auto r3 = zipmap_partitions({r1, r2}, bitonic_lower_1);
9 auto r4 = zipmap_partitions({r1, r2}, bitonic_upper_1);
10 r = merge_rapids_1(r3, r4, i);
11 for(int j = i - 1; j >= 0; j--) {
12 [r1, r2] = divide_rapid_2(r, j);
13 r3 = zipmap_partitions({r1, r2}, bitonic_lower_2);
14 r4 = zipmap_partitions({r1, r2}, bitonic_upper_2);
15 r = merge_rapids_2(r3, r4, j);
16 }
17 r = map_partitions(r, bitonic_inner_2);
18 }
19 auto result = finalize(r, ”output”);
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call (line 17). As mentioned above, this RAPID operation is used in the algorithm
whenever only elements in the same partition are compared. In contrast to the first
use of map_partitions in line 5, where all partitions are completely unordered,
this second map_partitions operation is applied to partially ordered data and thus
requires fewer comparisons to sort the elements.

4.7 Summary
This chapter introduced a programming model similar to big data frameworks
like Apache Spark, which allows users to write dataflow programs via functional-
style operations. In contrast to other programming models, the set of operations
is reduced since it targets safety-critical embedded systems. These operations are
applied to partitioned collections of data elements called RAPIDs. From a user’s
perspective, RAPID operations are lazily evaluated functions. Internally, however,
operations build a dataflow graph. Via the execution context, users can access
the graph to a limited extent. An important functionality of the context is the
checkpoint function. This function is used to divide graphs into sections. The
advantage of multiple sections is that the redundancy configuration of each section
can be changed individually. Other member functions of the context allow users to
access inputs and outputs of the graph and repeatedly start dataflow executions.
The next chapter describes the basic structure of RAPID dataflow graphs and how
graphs are built from RAPID operations and their data dependencies.
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Because knowledge of dataflow graphs and their relation to RAPID operations is
essential for implementing efficient RAPID programs, dataflow graphs were already
mentioned in the previous chapter. This chapter specifies the structure of RAPID
dataflow graphs in more detail and describes how dataflow graphs are built from
RAPID operations.

It should be noted that RAPID programs are supposed to be executed on standard,
control-flow-based processors, while traditional dataflowmodels are often designed
for special dataflow processors. Because some characteristics of these dataflow
modelswould induce overhead if theywere applied to standard processors, dataflow
graphs in the RAPID programming model are closer to the graphs in modern larger-
scale computing frameworks.
The sections of this chapter cover the following topics. Section 5.1 describes the

different nodes of a RAPID graph in more detail. Graph nodes are constructed and
connected by RAPID operations. The construction rules are specified in Section 5.2.
In some situations, nodes can be removed from a graph during construction for
optimization purposes. A selection of such optimizations is presented in Section 5.3.
Some RAPID operations are already partially executed when the graph is created.
How those operations can be handled efficiently is proposed in Section 5.4. After
that, Section 5.6 describes characteristics of RAPID dataflow graphs in the C++
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reference Implementation. Lastly, Section 5.7 revisits the RAPID applications from
Section 4.6 and shows the resulting dataflow graphs.

5.1 Graph Nodes
RAPID dataflow graphs are bipartite and consist of two types of nodes, namely
partition nodes and actor nodes. The basic structure of a RAPID dataflow graph is
shown in Figure 5.1. Types marked with a * represent pointer types. Inside the
graph structure, partition nodes are stored directly in a set. Actor nodes, on the
other hand, are stored inside section structures. Sections additionally contain their
schedule and keep track of their redundancy. In contrast to partition nodes, graphs
have to store sections in a list rather than a set since sections are accessed by index
(see Section 4.4.2). Lastly, graphs contain map data structures for graph inputs
and results. These maps are essential for the set_input and get_result functions
from the RAPID programming model, which allow users to access certain partition
nodes by their identifier.

graph

sections: list⟨graph_section⟩
data_nodes: set⟨partition_node⟩
input_map:

map⟨identifier, partition_node*⟩
result_map:

map⟨identifier, partition_node*⟩

graph_section

actors: set⟨actor_node⟩
redundancy: criticality
schedule: section_schedule

Figure 5.1: Graph and graph section data structures

5.1.1 Partition Nodes
Partition nodes carry data during dataflow executions. Unlike the tokens in tradi-
tional dataflow models, data inside partition nodes is not consumed by actor nodes.
Instead, data remains in memory to avoid copies, if multiple actor nodes depend
on the same data. Partition nodes can be divided into four types. Depending on
their type, they may or may not have outgoing edges to actor nodes. In addition to
outgoing edges, a partition node can also have an incoming edge which originates
from the actor node computing its data during a dataflow execution. The four types
of partition nodes are defined as follows:
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• Input partition nodes represent entry points of graphs. These nodes do
not have incoming edges, since their data is not produced by actor nodes.
Instead, each input partition has a unique identifier, which allows to replace the
contained data for multiple dataflow executions. Identifiers of input partition
nodes are specified by users in parallelize and distribute operations.

• Output partition nodes are exit nodes of dataflow graphs and therefore
have no outgoing edges. Like input partition nodes, they have a unique
identifier, which allows to access its data after a dataflow execution. The
RAPID programming model allows users to specify multiple output partition
nodes for one graph.

• Constant partition nodes have neither incoming edges nor a unique identi-
fier. Data inside constant partition nodes remains the same for all dataflow
executions and is only cleared, when the graph itself is deleted.

• Inner partition nodes always have incoming and outgoing edges, and their
data may be deleted as soon as all dependent actor nodes have been executed.
If the dependent actors are redundant, however, the data has to be stored
longer, i.e. until the result has been verified.

Figure 5.2 shows the minimum required data members of partition nodes in
concrete implementations. Each partition node stores the size of its data, the size of
a single data element and a pointer to the actual data. Whether a partition node
contains any of the other members shown in Figure 5.2, depends on its type. All
partition nodes except output nodes need to keep track of successive actor nodes and
store pointers to them in a set. Input nodes and constant nodes do not have incoming
edges and therefore do not use the result_of pointer. Further, an identifiermember
is only present in input and output partition nodes.

partition_node

data_size: integer
element_size: integer
data: memory_address
[input_of: set⟨actor_node*⟩]
[result_of: actor_node*]
[name: identifier]

actor_node

type: actor_type
out: partition_node*
in: list⟨partition_node*⟩
[function: operation_function*]
[parameters[2]: integer]

Figure 5.2: Partition and actor node data structures
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5.1.2 Actor Nodes
Actor nodes form the second class of nodes in RAPID dataflow graphs. During
RAPID dataflow executions, actor nodes take data from partition nodes, run a
computation and store new data in another partition node. Figure 5.2 shows which
members an actor node structure at least has to include. All actor nodes need to
know what their type is, where their incoming edges originate and where their
outgoing edge leads to. Incoming edges have to be stored in a list since executed
functions of actor nodes do not need to be commutative. An example would be
an actor node performing the element-wise division of two integer arrays. For the
most part, types of actor nodes are named after the RAPID operation producing
them. More specifically, the possible types of actor nodes are:

• interval

• collect

• map

• map_partitions

• combine

• zipmap

• zipmap_partitions

• reduce

• reorder

• compare

Actor nodes may additionally store a pointer to a RAPID function and up to two
parameters. Whether an actor node stores a pointer to a RAPID function or param-
eters is determined by its type. In particular, a RAPID function pointer is necessary
in map, map_partitions, zipmap, zipmap_partitions, combine and reduce actor
nodes. Since partition nodes do not store information about the RAPIDs they belong
to, such information (whenever required) is stored in additional member of actor
nodes, called parameters. More details about the different types of actor nodes and
this special member follow in Section 5.2.

5.1.3 Redundant Actor Nodes
As described in Section 4.4, the redundancy of graph sections may be changed
during runtime. Redundancy changes affect all actor nodes in a section and may
add actor nodes and partition nodes to the dataflow graph or remove them. Fig-
ure 5.3 shows an increase of redundancy for a single zipmap actor node. Filled
circles represent partition nodes. The non-redundant zipmap node is replaced by a
structure consisting of two equivalent zipmap actor nodes, two partition nodes and
a comparison actor node.
In the example, the comparison actor node has two incoming edges. If the two

incoming edges provide different data, the two previous actor nodes have to be
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re-executed. However, RAPID graphs also support comparison actor nodes with
three incoming edges. In this case, the comparison node acts as a voter and previous
actor nodes do not need to be re-executed if one of its inputs is different.

zipmap

zipmap

zipmap

compare

Figure 5.3: Changing the redundancy of an actor

5.2 Graph Construction

RAPID dataflow graphs are constructed from RAPID operations and their data
dependencies. Most of the RAPID operations add new nodes to a dataflow graph.
Table 5.1 gives an overview of RAPID operations and the types of actor nodes they
create. All Operations which are not present in the table (distribute, append,
split and reorder_partitions) do not add actor nodes to the graph, since they
do not perform a computation involving partition data. Such operations can already
be executed at graph construction. It is also possible that RAPID operations are
partially executed at graph construction. This only applies to reorder and only if
a RAPID function instead of a list of element indices is provided. In this case, the
given RAPID function is called at graph construction to statically compute all new
element indices.

Table 5.1: Overview of actor node types

RAPID operation Types of produced actors
parallelize interval
repartition collect, interval
map map
map_partitions map_partitions
combine combine
zipmap zipmap
zipmap_partitions zipmap_partitions
reorder reorder, interval
reduce reduce, collect
collect/finalize collect
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RAPID operations must calculate for each partition node they create, how much
space in memory for the data is required during dataflow executions. For this, they
must know how much space a single data element of type T takes up in memory.
We assume that this amount of memory can be determined with a special function
sizeof (T). In the following sections, the behavior of RAPID operations with regard
to graph construction is described.

5.2.1 Initial and Finalization Operations

Parallelize creates one input or constant partition node and as many interval actor
nodes and inner partition nodes as partitions specified in the RAPID operation.
Whether an input or constant node is produced depends on whether the user
specifies an identifier or not. Figure 5.4a shows the graph nodes and edges created
by one execution of parallelize. The single input/constant partition node is
visualized by the diagonal pattern. This node’s data has the same size as the given
collection. Inner nodes’ data sizes correspond to the element counts specified in
the given partitioning multiplied by the size of one element. If instead only an
integer is given, a temporary partitioning with partition sizes as equal as possible
is calculated. As pointed out in the previous chapter, most RAPID operations (all
but finalization operations) return a RAPID containing a list of pointers to partition
nodes. In the case of parallelize, these nodes correspond to the constructed inner
nodes.

Distribute is another operation creating an input or constant partition node. In
contrast to parallelize, this operation does not divide its input data into smaller
partitions. To avoid the overhead of copying data, only a single partition node
containing the whole data is created. The returned RAPID contains a list of pointers,
but each one of them points to this exact node since there is only one partition node.

interval

interval

interval

⋮ ⋮

a) Parallelize

…

…

…

collect

⋮

b) Collect and finalize

Figure 5.4: Graphs constructed by initial and finalization operations
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Collect and Finalize are mostly equivalent operations and expand the dataflow
graph in the same way. Both create one collect actor which gathers the data of the
given RAPID’s partition nodes and one output partition node. In Figure 5.4b the
output node is visualized by the diagonal pattern. The size of its data is equal to the
sumof all preceding partition nodes. It isworth noting that theRAPIDprogramming
model allows multiple incoming edges of the collect node to originate from the
same partition node. In such cases, the same data will appear multiple times in the
graph output.

5.2.2 Mapping Transformations
Map constructs one map actor node and one inner node for each partition node
pointer in the given RAPID. New nodes and edges are shown in Figure 5.5a. The
memory demand for data in a new inner node is x⋅𝑠⋅sizeof (U)

sizeof (T) , where the action func-
tion’s type is T → U[x] and the memory demand for data in its preceding partition
node is 𝑠. Incoming edges of actor nodes do not need to be pair-wise different. In
case of a preceding distribute operation, for example, all incoming edges originate
from the same partition node.

Combine operations produce one actor node and one inner node for each partition
node pointer in the given RAPID (Figure 5.5a). Similar to map, the additional
memory demand for each new inner node is 𝑠⋅sizeof (U)

x⋅sizeof (T) , if the action function’s type
is T[x] → U and the size of the preceding partition node’s data is 𝑠.
Map_partitions also expands the graph in the same way as map. But since it is
not an element-wise operation, the RAPID function’s associated size function must

… map/combine/
map_partitions

… map/combine/
map_partitions

… map/combine/
map_partitions

⋮ ⋮ ⋮

a) Map, combine and map_partitions

…
⋮
…

zipmap/
zipmap_partitions

…
⋮
…

zipmap/
zipmap_partitions

…
⋮
…

zipmap/
zipmap_partitions

⋮ ⋮ ⋮

b) Zipmap and zipmap_partitions

Figure 5.5: Graph nodes and edges created by various transformations
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be taken into account to calculate the amount of memory required for data inside
partition nodes. The additional memory demand for each new partition node is
sizeof (U) ⋅ size( 𝑠

sizeof (T)), where size is the RAPID function’s size function, 𝑠 is the
data size of its preceding partition and partition⟨T⟩ → partition⟨U⟩ is the action
function’s type.
Map_partitions nodes belong to the category of actor nodes which require the

parametersmember. The two integers are used to store the index of the input parti-
tion node inside the superordinate RAPID and the number of partitions belonging to
this RAPID. These valuesmust be stored because usersmay specify map_partitions
functions that use this information (there are corresponding members in partition
structures, see Section 4.1.2).

Zipmap is similar to the previous transformations in the way it expands the
dataflow graph. Figure 5.5b shows that the only difference lies in the additional
incoming edges of actor nodes. Required memory for partition nodes can be calcu-
lated in the exact same way as in the case of map. It does not matter which one of
the preceding partition nodes is chosen for the size calculation, since all preceding
nodes of a zipmap node contain the same number of data elements.

Zipmap_partitions constructs new graph nodes and edges analogous to zipmap
(see Figure 5.5b), but the memory requirements of partition node data is calculated
similar to map_partitions. The difference is that the size function has to be called
with size information of all preceding partition nodes in the correct order.

For the same reason aswith map_partitions actor nodes, these nodes also need to
store two integers in their parametersmember. Two parameter fields are sufficient
because every input node of a zipmap_partitions actor node has the same index
inside its superordinate RAPID.

5.2.3 Other Transformations
Repartition behaves like a collect operation followed by a parallelize opera-
tion (with a different partitioning than before). Therefore, the graph expansion of a
repartition operation looks very similar to the graph snippets shown in Figure 5.4.
New graph nodes and edges are depicted in Figure 5.6. Instead of an input, output
or constant partition node, repartition constructs an additional inner node, which
connects the collect actor node with all interval actor nodes. The memory de-
mand of partition nodes is calculated exactly like in collect and parallelize. It
should be noted that repartition temporarily narrows the dataflow and therefore
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reduces the possible parallelism. To achieve higher performance, users should
reduce its usage to a minimum.

interval

interval

interval

⋮ ⋮

…

…

…

collect

⋮

Figure 5.6: Graph nodes and edges created by repartition

Reduce constructs multiple actor nodes of the same name and one collect actor
node, as shown in Figure 5.7. A reduce actor node applies its associated RAPID
function to the elements inside the preceding partition node until only one element
is left. As a result, each partition node following a reduce node only requires
additional memory for one element. If the action function’s type is T × T → T, the
required amount of memory is sizeof (T). Since all reduce actor nodes in Figure 5.7
use the same RAPID function, the single partition node before the right reduce
node requires memory in the amount of 𝑛 ⋅ sizeof (T), where 𝑛 is the number of
preceding partition nodes.

… reduce

… reduce

… reduce

⋮ ⋮ ⋮

collect reduce

Figure 5.7: Graph nodes and edges created by reduce

Reorder creates one actor node of corresponding type and multiple interval
actor nodes. An according graph snippet is shown in Figure 5.8. The reorder node
has incoming nodes from one constant partition node (crosshatched in Figure 5.8)
and multiple other nodes constructed by previous RAPID operations. The purpose
of this single constant node is to store the new element indices, so the amount
of required memory for its data is the number of elements in the given RAPID
multiplied with sizeof (integer). If a user specified a reorder function instead of an
index array, this function is used to calculate all new indices at graph construction.
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Data inside the single inner node following the reorder node requires the same
amount of memory as the data within the given RAPID. Besides the single reorder
node, the operation creates multiple interval nodes, which restore the original
partitioning. Similar to repartition, reorder narrows the dataflow temporarily
and should not be used frequently in a RAPID program.

interval

interval

interval

…

…

…

reorder

⋮ ⋮ ⋮

Figure 5.8: Graph nodes and edges created by reorder

Append and Split are two of the types of RAPID operations that do not expand
the dataflow graph. Both operations create RAPIDs which point to already existing
partition nodes. Figure 5.9 shows an example. From left to right, the figure illus-
trates a split operation which divides a large RAPID into small RAPIDs with two
partitions each. The other direction represents an append operation which returns
a single RAPID with pointers to all given RAPIDs’ partition nodes. Since no actor
nodes are created, both operations do not lead to additional costs at runtime. In-
stead, append and split affect the following transformations. An important aspect
about append is that the RAPID programming model does not prohibit to call the
operation with multiple references to the same RAPID. In such cases, the created
RAPID will have multiple pointers to some partition nodes in the graph.

…

…

…

…

⋮ ⋮

RAPID

split

append

…

…

…

…

⋮ ⋮

RAPID

RAPID

RAPID

Figure 5.9: Visualization of Append and split
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Reorder_partitions does not expand the dataflow graph either. The operation
only returns a new RAPID with a different order of partition node pointers. Like
with append and split, calling reorder_partitions affects the graph expansion
of following RAPID operations. An example is shown in Figure 5.10. The graph
snippet in the left half of the figure was created by a map operation, which was called
with a RAPID consisting of four partitions. The right side shows the same partition
nodes and the same map, but instead of calling map directly, the partition order is
changed before. This causes map actor nodes to have different incoming edges. The
first actor node now has the second partition node as its input, the second actor
node depends on the fourth partition node, etc.

… map

… map

… map

… map

a) Situation without reorder_partitions

… map

… map

… map

… map

b) Situation with reorder_partitions

Figure 5.10: Reorder_partitions affecting a following map operation

5.3 Graph Construction Optimizations
The previous section already mentioned that some RAPID operations reduce par-
allelism in the dataflow. Specifically, this applies to repartition and reorder.
Both of these operations usually involve merging data with a collect or reorder
node and splitting data with interval actor nodes (see Figure 5.6 and Figure 5.8).
However, there are some situations, where splitting or merging data is unnecessary
and can be avoided. One such situation is a reorder or repartition operation
appearing directly after parallelize. In this case, interval actor nodes produced
by parallelize are unnecessary (since the data is immediately merged again)
and may be removed. An example graph built by a parallelize operation and a
following reorder operation is shown in the upper half of Figure 5.11. The bottom
half shows, how the graph looks, after all excess nodes were removed. In case of
repartition, the removal of nodes is similar. The difference is that the collect
node can also be removed, whereas the reorder actor node must remain.

The second situation that allows to prune the dataflow graph is when a reorder or
repartition operation appears directly before a collect (or finalize) operation.
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interval interval

interval interval

interval interval

reorder

⋮ ⋮⋮ ⋮

a) Graph after a parallelize operation followed by reorder

interval

interval

interval

reorder

⋮ ⋮

b) Graph after removal of unnecessary nodes

Figure 5.11: Reorder optimization example

These specific combinations of RAPID operations lead to a collect actor node
preceded by multiple interval nodes. Since the single collect node cancels out
the preceding actor nodes, all of them may be removed from the graph.
Lastly, dataflow graphs can be pruned if the corresponding RAPID program

contains successive reorder and repartition operations. The removal of nodes
is analogous to the previous cases, with the only difference that pruning happens
inside the graph instead of in the front or rear.

As shown in Figure 5.11, graphpruning involves amongst other things the removal
of partition nodes. An important aspect is that most of the removed partition nodes
appear in the pointer lists of RAPIDs. The removal of nodes makes these RAPIDs
invalid. Graph modifications like this are the reason why RAPIDs can be used only
once as an argument by default. Users have to call the persistmember function of
a RAPID in order to use it multiple times in RAPID operations (see Section 4.1.1).
This member functionmarks the according partition nodes as persistent and thereby
prevents them from being removed from the graph.

5.4 Temporary Dataflow Graphs
This chapter already stated that some RAPID operations are already executed com-
pletely or partially at graph construction. It is possible that such a RAPID operation
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computes large amounts of data and therefore slows down graph construction. In
the proposed programming model, this only applies to reorder, which computes
the new element indices already at graph construction. An easy and architecture-
independet way to efficiently compute data at graph construction is by building
a small temporary graph and starting a dataflow execution. This way, all cores of
the underlying hardware can be utilized. An example for such a temporary graph
is shown in Figure 5.12. The graph’s constant partition node (leftmost circle) is
initialized with the partitioning of the RAPID that is supposed to be reordered.
Based on the partitioning, new element indices are computed in parallel with special
reorder_compute nodes. After a dataflow execution, the temporary graph’s output
partition is converted to a constant partition node and transferred to the actual
graph. The rest of the temporary graph can be discarded.

reorder_compute

reorder_compute

reorder_compute

reorder_compute

collect

Figure 5.12: Exemplary temporary graph for reorder

5.5 Import and Export of Dataflow Graphs
The previous sections described how dataflow graphs are built by RAPID oper-
ations. But as mentioned in Chapters 3 and 4, graphs can also be created from
representations in a suitable description format. To support an import and export
of graphs, it should be easy to reverse this process. A way to achieve this is by using
a direct transformation, in which each node and each edge in the RAPID dataflow
graph has a corresponding entity in the graph representation. This includes that all
required node attributes from Figure 5.2 are present and that all actor nodes are
part of a graph section.
The graph import and export functionality implemented in the reference imple-

mentation uses an extended DOT graph description format [GKN15] and represents
such a direct transformation. A small example is shown in Listing 5.1. The code
in this listing describes a minimal graph consisting of one actor node with two
incoming edges and one outgoing edge. After the graph name is defined in the
first line, all partition nodes are listed. These nodes have several custom attributes,
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Listing 5.1: Small graph in extended DOT format
1 digraph example_graph {
2 n_1 [uid=1, psize=256, esize=8, ptype=”input”, pname=”in_1”];
3 n_2 [uid=2, psize=256, esize=8, ptype=”input”, pname=”in_2”];
4 n_3 [uid=3, psize=256, esize=8, ptype=”output”, pname=”out”];
5 subgraph 0 {
6 n_4 [atype=”zipmap”, afunc=”add_function”];
7 }
8 n_1 -> n_4 [paramindex=”0”];
9 n_2 -> n_4 [paramindex=”1”];

10 n_4 -> n_3;
11 }

for example a unique ID, partition size and element size. It is followed by a list
of all actor nodes. These are divided into subgraphs, a standard DOT concept we
utilize in order to distinguish between the different graph sections. Like partition
nodes, actor nodes also have different non-standard attributes, for example a type
and RAPID function attribute. Starting in Line 8, all node dependencies are listed.
The custom attribute paramindex is used to ensure the right order of incoming edges.
DOT-specific IDs can be chosen arbitrarily, since they are only used to identify
dependencies between nodes. In this example IDs n_1 to n_4were chosen. It should
also be noted that it is possible to add DOT-specific attributes in favor of a better
graph visualization, for example the label and shape attributes. These DOT-specific
attributes are ignored by the import implementation.

5.6 Dataflow Graphs in The C++ Reference
Implementation

This section continues the topic of Section 4.5 and describes characteristics of RAPID
dataflow graphs in the C++14 reference implementation. Similar to the implemen-
tation of the RAPID programming model, graphs and graph construction rules
are implemented in a hardware-independent fashion. Dataflow graphs consist of
double linked nodes since many scheduling heuristics benefit from navigation in
both direction. Further, actor nodes include pointers to their redundant actor nodes
and the corresponding comparison node. Because all redundant actor nodes and
comparison actor nodes are already created during graph construction, switching
between redundancy configurations at runtime is fast.
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To reduce the size of the binary, partition nodes are implemented as ordinary
classes, not as class templates. As a result, partition nodes do not carry type informa-
tion of the associated data. The type of the elements in a partition node is restored
whenever the data is accessed by a RAPID function during dataflow executions.

5.7 Example Dataflow Graphs
This section revisits the RAPID applications described in Section 4.6 and shows
resulting dataflow graphs. These dataflow graphs are created from the respective
RAPID applications according to the rules described in Sections 5.2 and 5.3. Example
graphs in this section are depicted without redundant actor nodes. Furthermore,
illustrations of exemplary dataflow graphs do not show different sections, since we
assume that these graphs were constructed without checkpoints.

5.7.1 Dataflow Graph of Cannon’s Algorithm
In the RAPID implementation of Cannon’s algorithm (see Listing 4.4), the number
of submatrices into which the input matrices are divided can be varied. Different
divisions lead to smaller or larger dataflow graphs. The smallest possible graph
is depicted in Figure 5.13. It is easy to see that matrices are split into four blocks.
For this division, the main loop has to be run twice. In the graph, these two loops
correspond to the two layers of zipmap_partitions actor nodes. Splitting the input
matrices into more submatrices leads to both wider and deeper graphs with more
zipmap_partitions layers.
Cannon’s algorithm is a good example for the graph optimization techniques

since all reorder operations used for this algorithm are either at the beginning
or right before the final collect operation. All interval actor nodes before the
upper reorder nodes and all interval and collect actor nodes after the bottom
reorder nodes were removed from the graph. Besides reorder operations, the
RAPID implementation of Cannon’s algorithm also involves reorder_partitions
operations. These operations are not directly visible in Figure 5.13. Only their
impact can be seen in the rather complicated data dependencies between the two
layers of zipmap_partitions nodes.
The small difference between the RAPID program and Algorithm 4.1, which is

described in Section 4.6.1, can be observed in the upper part of the graph. In favor
of a smaller graph, the creation of partition nodes for the result matrix 𝐶 and the
initialization with zeros was left out. Instead, partition nodes between the two
layers of zipmap_partitions nodes are the first partition nodes in the graph that
correspond to matrix 𝐶.
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interval interval interval interval interval interval interval interval

reorder reorder

zipmap_partitions zipmap_partitions zipmap_partitions zipmap_partitions

zipmap_partitions zipmap_partitions zipmap_partitions zipmap_partitions

reorder

inner partition output partition

constant partition input partition

Figure 5.13: Dataflow graph of Cannon’s algorithm

5.7.2 Dataflow Graph of the Fast Fourier Transform

A possible dataflow graph constructed by the FFT RAPID program specified in
Listing 4.5 is depicted in Figure 5.14. The figure clearly shows a butterfly pattern.
This pattern is typical for the data dependencies in FFT algorithms. Similar to the
graph of Cannon’s algorithm, the more partitions the input is divided into, the
deeper the graph becomes. The FFT graph’s depth is logarithmic with respect to
the number of partitions the input vector is divided into. In this example, the input
is divided into four partitions. The middle part of the graph shows the two constant
nodeswhich contain the loop index. In theory, one constant nodewould be sufficient
and subsequent loop index nodes could be created at runtime with map actor nodes.
However, this would lead to additional data dependencies and therefore a more
complicated scheduling. Not only in this case but in general, it is often preferable
to compute as many values as possible already at graph construction time. The
graph also shows that this RAPID program, like the implementation of Cannon’s
algorithm in the previous section, benefits from graph optimization. In the upper
part of the graph, all interval nodes before the reorder node were removed.
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reorder

interval interval interval interval

map_partitions map_partitions map_partitions map_partitions

zipmap_partitions zipmap_partitions zipmap_partitions zipmap_partitions

zipmap_partitions zipmap_partitions zipmap_partitions zipmap_partitions

collect

inner partition

constant partition

output partition

input partition

Figure 5.14: Dataflow graph of the FFT algorithm

5.7.3 Dataflow Graph of Bitonic Sorting

An example graph for bitonic sorting created by the RAPID program fromListing 4.6
is shown in Figure 5.15. It is easy to see the similarities between RAPID dataflow
graphs for bitonic sorting and FFT, since both graphs contain butterfly patterns.
The main difference is that (for equal partitionings) bitonic sorting graphs are
much deeper because of the additional inner loop in the RAPID program (see
Listing 4.6). Further, FFT graphs only contain map_partitions actor nodes in the
beginning of the graph (see Figure 5.14), whereas bitonic sorting graphs contain
map_partitions actor nodes on multiple occasions inside the graph. These nodes
sort the elements inside the given partition entirely, whereas zipmap_partitions
actor nodes only compare two partitions element-wise. This means that in contrast
to the zipmap_partitions nodes map_partitions nodes contain multiple steps of
parallel comparisons.
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map_partitions map_partitions map_partitions map_partitions

zipmap_partitions zipmap_partitions zipmap_partitions zipmap_partitions
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zipmap_partitions zipmap_partitions zipmap_partitions zipmap_partitions

zipmap_partitions zipmap_partitions zipmap_partitions zipmap_partitions
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Figure 5.15: Dataflow graph of bitonic sorting

5.8 Summary

In this chapter, RAPID dataflow graphs were described in greater detail. Dataflow
graphs are bipartite and consist of partition nodes and actor nodes. The former
carry data during dataflow executions, while the latter contain information about
how this data is computed. The redundancy of actor nodes in the graph may be
changed by replacing an actor node with a structure of multiple redundant actor
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nodes and a comparison actor node. Graphs are successively constructed by RAPID
operations according to the specified construction rules. A few RAPID operations
narrow the dataflow and should be used as rarely as possible. In some cases, it
is possible to remove partition nodes and actor nodes from the dataflow graph at
graph construction for optimization purposes. How dataflow graphs can be actually
executed on different hardware architectures is the topic of the next chapter.
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6
Dataflow Execution on Different Hardware

Architectures

The previous chapters introduced the RAPID programming model and RAPID
dataflow graphs, and described their reference implementation in C++14. As al-
ready mentioned, the programming model’s reference implementation is hardware
independent and can serve as a basis for dataflow runtime environments (RTEs)
on various architectures, in particular those with distributed memories. The imple-
mentation abstracts from the dataflow execution and only covers the construction of
dataflow graphs based on RAPID programs. In general, the interface between the
RAPID programming model and a compatible dataflow RTE on a specific hardware
architecture is small. It only consists of functions for graph execution (with and
without online scheduling), offline scheduling and memory allocation.

In this chapter two dataflow RTEs for different hardware architectures based on
the RAPID programming model are proposed. The focus lies on graph execution.
Scheduling is the topic of Chapter 7. Since this chapter focusesmore on the execution
of actor nodes and less on the structure of graphs, actor nodes are often referred to
as actors and analogously partition nodes as partitions.

The structure of this chapter is as follows: The first section introduces a dataflow
RTE for shared-memory architectures, while the second section describes how
RAPID dataflow graphs can be executed on hardware architectures based on a
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network-on-chip (NoC). Both sections describe the basic routines for the execution of
graph sections and point out possible optimizations in the RTE.

6.1 Shared-Memory Dataflow Runtime Environment
Shared-memory architectures can be utilized in many application areas. Their
use ranges from low-power embedded systems up to high-performance desktop
computers. Shared-memory systems consist of multiple processing cores which
access one main memory. Most of the time, all cores are homogeneous, have full
access to any memory location and no core is privileged in terms of access latency.
The implementation of a RAPID-compatible dataflow runtime environment on

shared-memory architectures is rather simple since each core can freely navigate
through the dataflow graph and has direct access to the fixed schedule or online
scheduling data structures. This means that each core is able to check on its own
which actor is the next one to execute according to its schedule and whether all
the required data is available. When multiple cores concurrently access shared
data, there is often a risk that race conditions might occur. To avoid race conditions,
the proposed shared-memory dataflow runtime environment uses special data
structures which are described in the following section.

6.1.1 Runtime State Data
Runtime state data covers different values that are important during dataflow execu-
tions. The proposed runtime environment encapsulate these values as members in a
data structure of type runtime_data, which is shown in Figure 6.1. Every partition
node in a RAPID graph exclusively owns one runtime_data object. Since multi-
ple cores may concurrently modify runtime values of the same node, each access
to a member of runtime_data must be atomic. Because all members are integer
or boolean values, there are no mutexes or other locks required if the hardware
supports atomic operations.
The first member, is_complete, is a flag which is set when partition data is

present. This flag can be used to check whether an actor is ready to be executed.
When actors are executed redundantly, however, it is not sufficient to store only
one bit for the partition’s state. Partition data may be present, but the subsequent
comparison actor has not yet declared the data as correct or has already declared it
as incorrect. These two states are stored in the second field redundancy_state.

Remaining data members are primarily used to accelerate graph executions. The
first of these two, delete_counter, is used for memory management purposes.
Whenever an actor is finished, the delete counter of all preceding partitions is
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runtime_data

is_complete: atomic⟨boolean⟩
redundancy_state: atomic⟨integer⟩
delete_counter: atomic⟨integer⟩
ready_counter: atomic⟨integer⟩

Figure 6.1: Shared-memory runtime state data

decremented. If the counter reaches zero, data inside this partition is no longer
needed and the memory can be freed. Therefore, the delete counter has to be
initialized with the number of outgoing edges of the partition node. To avoid race
conditions, which could lead to freeing the memory multiple times, the decrement
has to be implemented via an atomic fetch-and-subtract instruction. The advantage
of such a counter is that it offers a fast way to check whether memory can be freed.
Without a counter the executing core would have to navigate through the graph in
order to check whether memory can safely be freed whenever an actor is finished.
However, this could lead to high overhead. In the worst case, the core would have
to iterate nearly through the whole graph just to check if a single partition is no
longer required (for example if nearly all actors depend on this one partition).

The last member, ready_counter, is used to determine whether an actor is ready
to be executed. Analogous to the other members, one ready counter is stored for
each partition, although this counter conceptually belongs to an actor. Since each
actor node in a RAPID dataflow graph has exactly one outgoing edge to a partition
node, the ready counter of this particular node is used for the actor. The ready
counter of an actor is decreased, whenever the computation of an input is finished.
When the counter reaches zero, the actor is ready for execution. This means that
for each actor the ready counter must be initialized with the number of incoming
edges, excluding edges from input partition nodes and constant partition nodes.
Besides the acceleration of graph executions, the ready counter serves another
purpose. In online scheduling mode, the scheduling routine has to be invoked
whenever an actor gets ready. It is important that an actor only gets scheduled once.
This can be ensured by implementing the decrement with a fetch-and-subtract
instruction. Synchronization would be much more difficult if the system had to
check the is_complete flags of all inputs instead of a single ready counter.

6.1.2 Supported Redundancy Configurations
As already mentioned in Section 5.1.3, the proposed RTE was designed to support
redundant actor executions. Based on this, the proposed shared-memory dataflow
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runtime environment supports five different redundancy configurations, which
are shown in Figure 6.2. The first possible configuration is no redundancy at all.
This configuration clearly achieves the highest performance, but it lacks the ability
to detect errors in the computation of data. The four redundant configurations
are combinations of the number of redundant executions and the way redundant
actors are executed. Executing actors three times has the advantage that results can
be compared by a voter and a single error does not cause a rollback, but it clearly
results in more computing time than executing the actor twice.
If redundant actors are executed on the same core, scheduling gets easier since

the two (or three) redundant actors and their comparison node can be scheduled
as one actor with longer runtime. However, the downside of this approach is that
errors which occur consistently, for example due to a faulty core, cannot be detected.

Single Execution Redundant Execution

Double Execution Triple Execution

Same Core Different Cores Same Core Different Cores

Figure 6.2: Redundancy configurations in the shared-memory RTE

6.1.3 Graph Execution
Whenever a RAPID graph is executed, the first step is to run an initialization routine
which correctly sets the initial runtime values of all partitions in the graph, as
described in Section 6.1.1. After the initialization phase is done, all cores enter the
main graph execution loop. As mentioned in previous chapters, graph sections
are always executed separately. A barrier ensures that cores do not enter the next
section immediately while they are working on the current section. Changing
the redundancy configuration of a section may change the graphs structure and
therefore may require a different schedule. Barriers between sections ensure that
the next section’s redundancy configuration can always be changed safely.

Graph Execution with Offline Scheduling Themain graph execution loop of one
section in offline scheduling mode is shown in Algorithm 6.1. In every iteration of
the outer loop, the core waits until the next actor according to the schedule is ready,
i.e. its inputs are complete. All further steps depend on the section’s redundancy
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configuration. In case of no redundancy or redundant execution on the same core,
the actor is executed without additional synchronization (lines 20 and 22). The
remaining, more complicated case relates to redundant actor executions on different
cores. In this case, the core executes the actor (line 8) and then either waits for
the comparison actor (line 16) or executes the comparison actor itself (line 11).
This process is repeated until the comparison actor is successful. In case of double
executions, this requires that both results match, while in case of triple executions,
at least two results must be equal.
The described section execution is easy to implement and analyze, but the per-

formance of redundant actor executions on different cores may be reduced due to

Algorithm 6.1: Shared-memory section execution with offline scheduling
1 function EXECUTE_SECTION_FIXED_SCHEDULE(𝑠 ∶ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)
2 𝑎 ← 𝑠.BEGIN();
3 while 𝑠 not done do
4 wait until 𝑎 ready;
5 if 𝑠 redundant on different cores then
6 𝑐 ← 𝑎.COMPARISON_ACTOR();
7 repeat
8 EXECUTE_ACTOR(𝑎);
9 if 𝑐 = 𝑠.NEXT(𝑎) then

10 wait until 𝑐 ready;
11 EXECUTE_ACTOR(𝑐);
12 if 𝑐 successful then
13 𝑎 ← 𝑠.NEXT(𝑎);
14 end
15 else
16 wait until 𝑐 done;
17 end
18 until 𝑐 successful;
19 else if 𝑎 redundant on same core then
20 EXECUTE_ACTOR_REDUNDANTLY(𝑎);
21 else
22 EXECUTE_ACTOR(𝑎);
23 end
24 𝑎 ← 𝑠.NEXT(𝑎);
25 end
26 end

97



6 Dataflow Execution on Different Hardware Architectures

waiting for the comparison actor to complete (line 16). Therefore, the proposed
shared memory dataflow runtime environment provides the option to execute such
redundant actors more optimistically. To illustrate this, an example with two cores
that execute a redundant actor 𝐴 is shown in Figure 6.3. Core 2 starts with the
execution of 𝐴 a little later. The comparison actor 𝐶𝐴 is executed on core 1. On the
left side of the figure, the pessimistic actor execution (without errors) is shown.
The second core waits until the comparison has been successful before proceeding
with the execution of actor 𝐵. In optimistic mode, core 2 does not wait until the
first core has executed the comparison actor and instead proceeds with its schedule.
This is under the assumption that 𝐵 does not depend on the result of 𝐴. Otherwise,
the second core would wait nonetheless because the optimistic execution is not
speculative and actors are only executed with verified data. It should be noted that
the waiting for comparison actors in pessimistic mode is an additional dependency
between actors which has to be considered by offline schedulers because otherwise
a non-executable schedule might be computed.
The execution mode influences the RTE’s behavior in case an error is detected.

In pessimistic mode, re-execution of 𝐴 starts on both cores at time 𝑡. If identical
computations take roughly the same time on all cores, core 1 does not have to wait
long for the re-execution of 𝐶𝐴. In optimistic mode on the other hand, core 2 must
finish the execution of actor 𝐵 to re-execute 𝐴. Therefore, core 1 must likely wait
some time until the comparison actor can be re-executed. But under the assumption
that errors occur much less frequent than correct computations, this runtime mode
effectively reduces idle times.

Time

Core 1

Core 2

𝐴
𝐴

𝐶𝐴 …

𝐵
𝑡

a) Pessimistic Execution
Time

Core 1

Core 2

𝐴
𝐴

𝐶𝐴 …

𝐵
𝑡

b) Optimistic execution

Figure 6.3: Shared-memory execution modes with offline scheduling

Graph Execution with Online Scheduling Graph execution with online schedul-
ing slightly differs from the previously described execution based on a fixed sched-
ule. The routine in Algorithm 6.2 has one parameter, which represents an abstract
scheduling object. Since it is possible to implement the methods of this object in
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different ways, the RTE is compatible with various online scheduling algorithms. At
the beginning of the main loop, the core first waits until there is work to do or until
the execution is finished. The get_work call in line 5 makes the RTE compatible
with work stealing approaches. For other scheduling procedures, for example work
sharing approaches, this method can be implemented as an empty function. When
the core leaves the waiting loop because there is work to do, an actor is extracted
from the schedule (line 8). As before with static scheduling, there are three cases
for different redundancy configurations. The non-redundant and locally redundant

Algorithm 6.2: Shared-memory graph execution with online scheduling
1 function EXECUTE_SECTION_ONLINE_SCHEDULING(𝑠 ∶ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔_𝑠𝑡𝑟𝑢𝑐𝑡)
2 loop
3 while no work to do and execution not done do
4 wait some time;
5 s.GET_WORK();
6 end
7 if execution done then return ;
8 𝑎 ← 𝑠.POP();
9 if 𝑎 redundant on different cores then
10 EXECUTE_ACTOR(𝑎);
11 𝑐 ← 𝑎.COMPARISON_ACTOR();
12 if 𝑐 ready then
13 EXECUTE_ACTOR(𝑐);
14 if 𝑐 successful then
15 𝑠.SCHEDULE(𝑐.READY_SUCCESSORS());
16 else
17 𝑠.SCHEDULE(𝑐.PREDECESSORS());
18 end
19 end
20 else if 𝑎 redundant on same core then
21 EXECUTE_ACTOR_REDUNDANTLY(𝑎);
22 𝑠.SCHEDULE(𝑎.READY_SUCCESSORS());
23 else
24 EXECUTE_ACTOR(𝑎);
25 𝑠.SCHEDULE(𝑎.READY_SUCCESSORS());
26 end
27 end
28 end
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cases (lines 20 and 23) are straightforward. After the actor is executed, a dynamic
scheduling routine is called. This routine schedules all subsequent actors that are
now ready. In case of redundant actor execution on different cores, the core that
finishes a redundant actor last executes the corresponding comparison actor. If the
comparison is successful, subsequent actors are scheduled like in the other cases.
However, if the comparison fails, the redundant actors are scheduled again (line 17).

6.1.4 Copy Avoidance
Section 5.2 described that some RAPID operations (more precisely append, split
and reorder_partitions) do not modify data at runtime and are already executed
at graph construction. Similar to such operations in a RAPID program, interval
and collect actors in the graph do not compute new data.
An interval actor only extracts a portion of data from its input partition and

stores it in its output partition. This copy can be avoided by allowing the input and
output partitions of an interval actor to share memory as shown in Figure 6.4.
The input node maintains a pointer to a continuous block of memory (gray area),
where its data is stored. This exact memory is then reused for the actor’s output
partition, which contains only a portion of the whole data (area with diagonal
pattern). Sharing the memory between the two partitions reduces not only number
of copy instructions but also the amount of required memory.
Sharing memory is also possible for collect actors. However, avoiding copies

entirely like with interval actors is not always possible. Collect actor nodes have
multiple incoming edges from not necessarily distinct partition nodes. So whenever
some partition data is collected multiple times, this data must be copied to obtain a
contiguous block of data.

It should be noted that the described procedure of copy avoidance is advantageous
under the assumption that all cores are able to access any memory location equally
fast, but it may not lead to a better performance in all cases. OnNon-UniformMemory
Access (NUMA) architectures, for example, it can be beneficial to copy data to a
memory location with faster access to accelerate following computations.

data data

interval

… …partition
data

Figure 6.4: Interval actor copy avoidance
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6.2 Network-on-Chip-based Dataflow Runtime
Environment

Hardware-architectures based on a NoC usually require special programming.
Cores only have small local memories and cannot access memories of other cores
directly. Instead, data is sent over the NoC via explicit send and receive instructions.
In the development of the RAPID programming model NoC-based, possibly clus-
tered, hardware architectures were considered from the beginning. Therefore, an
efficient runtime environment can be developed without larger pitfalls. On such
architectures, the RAPID programming model greatly simplifies programming. It
allows users to fully utilize the underlying hardware in a high-level fashion, i.e.
without the need to use low-level send or receive instructions. In case of a clustered
NoC-based architecture, the runtime environment also partially takes care of the
synchronization between cores inside a cluster. An abstract NoC-based system is
described in the next section, and all concepts described in the following sections
are based on this architecture.

6.2.1 Hardware Architecture Overview
The basic hardware architecture which serves as the basis for the following sections
is shown in Figure 6.5. It consists of multiple tiles, which are connected through
a NoC of arbitrary topology. Each tile contains a network adapter, a small tile-
local memory and multiple cores. The tile-local memory is shared amongst all
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⋮

Figure 6.5: Abstract clustered hardware architecture
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cores of a tile. To exchange data between tiles, two ways of communication are
supported. First, tiles may communicate via sending and receiving short messages
with the size of a few integers. It is assumed that the hardware supports blocking
and non-blocking variants of send and receive instructions. The second way is by
asynchronously transferring data directly into other memories or requesting data
directly from other memories. Besides the standard tiles, one tile additionally has
access to a larger off-chip memory, for example a DDR-memory. This tile is called
the driver tile.

6.2.2 Compute Tile Dataflow Execution
Tile-local memories are small, and so both the dataflow graph and fixed schedules
are usually too large to fit. Therefore, only a few partitions and the current actor are
stored in local memories of compute tiles. Since the small memory is supposed to
contain as much partition data as possible during runtime, the binary for compute
tiles is rather minimalistic. It consists of a small main loop, code for message passing
and the different types of actors as well as RAPID functions. All compute tiles are
initialized with the same binary containing all RAPID functions. This ensures that
after, for example, switching to online scheduling, any tile is able to execute any
actor. Furthermore, small portions of memory are required for communication
buffers and to store a list of available partitions. The largest part of the tile-local
memory, however, is reserved for actual partition data. This contiguous part of
memory is divided into 𝑛 equally sized chunks, where 𝑛 is configurable before
compilation.
Algorithm 6.3 shows the compute tiles’ dataflow execution loop. It is assumed

that an array called 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 has already been initialized before the compute tile
enters the loop. This array has one entry for each of the 𝑛 chunks of memory
and stores information about the partition whose data is currently available in the
respective chunk. Inside the loop, the tile first waits for a message from the driver
tile. When a message is received, the further steps depend on the type of message.
Types of messages are:

• partition message
• delete message
• clear message

• exit message
• actor message

If the receivedmessage is a partition message, partition information is extracted and
the partition is added to the array of partitions. Besides partition information, the
message also contains a target tile ID. This ID belongs to one of the tiles that have the
partition’s data in their tile-local memory. In case this ID matches the driver tile’s
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Algorithm 6.3: Compute tile graph execution
1 function EXECUTE_COMPUTE_TILE()
2 loop
3 wait for message from driver tile;
4 𝑚 ← GET_MESSAGE();
5 if 𝑚 is partition message then
6 𝑝 ← 𝑚.GET_PARTITION();
7 𝑐 ← 𝑚.GET_CHUNK();
8 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠[𝑐] ← 𝑝;
9 𝑡 ← 𝑚.GET_TARGET_TILE();

10 if 𝑡 ≠ driver tile then
11 𝑟 ← 𝑚.GET_REMOTE_CHUNK();
12 transfer partition data from chunk 𝑟 on tile 𝑡 to local chunk 𝑐;
13 wait until transfer done;
14 notify driver tile;
15 end
16 else if 𝑚 is delete message then
17 𝑐 ← 𝑚.GET_CHUNK();
18 CLEAR_CHUNK(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠, 𝑐);
19 else if 𝑚 is clear message then
20 CLEAR_ALL(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠);
21 else if 𝑚 is exit message then
22 return;
23 else if 𝑚 is actor message then
24 𝑝 ← 𝑚.GET_PARTITION();
25 𝑐 ← 𝑚.GET_CHUNK();
26 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠[𝑐] ← 𝑝;
27 𝑎 ← 𝑚.GET_ACTOR();
28 EXECUTE_ACTOR(𝑎);
29 notify driver tile;
30 end
31 end
32 end

ID, the compute tile is done since the driver tile already transferred the partition
data into the right chunk. Otherwise, the compute tile must initiate a transfer from
the target tile’s local memory into its own tile-local memory. Information about the
remote chunk which contains the required partition data can be extracted from the
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message. After the transfer is done, the driver tile is notified about the successful
transfer via a small notification message.
Another type of message from the driver tile is the delete message. This message

is the counterpart to a partition message. After receiving this type of message, the
compute tile clears the corresponding entry in the partition array. Since memory
management is done via simple equal-sized chunks, no memory freeing routine is
required. Transfers or computations can simply overwrite previous data in chunks.
Further, there are small messages for initialization and termination purposes.

Clear messages are similar to delete messages. When such a message arrives, the
partition array is reset to an empty state. It is important to always clear tile-local
memories between graph executions or otherwise the runtime environment could
process wrong data. Via another short message, namely the exit message, the driver
tile allows a compute tile to exit the main loop. This is required to shut down the
runtime environment.

Lastly, the driver tile sends actor messages to assign work to a compute tile. Here,
the first step is to extract partition information from the message. The extracted
partition represents the actor’s output partition. After the actor was extracted from
the message, the compute tile starts the actor execution. Based on the redundancy
configuration, this actor may be executed redundantly. In the end, the driver tile is
notified about the completed actor execution via a small message.

6.2.3 Driver Tile Dataflow Execution

The driver tile is responsible for managing dataflow graphs and schedules since it
is the only tile with direct access to the large off-chip memory. However, because
accessing the tile-local memory is faster than accessing the off-chip memory, only
large data structures, i.e. dataflowgraphs, schedules and partition data, are stored in
the off-chip memory. Everything else, for example code and communication buffers,
is stored in the driver’s tile-local memory. Analogous to the partition array described
in the previous section, the driver tile stores one partition array per compute tile.
This allows the driver tile to keep track of all tile-local memories. Knowledge about
tile-local memories is important for the driver to check whether a tile is ready to
execute the next actor in its schedule and, therefore, whether an actor can be sent to
the tile.
As in the shared-memory implementation, each partition node in the dataflow

graph is linked to some runtime state data. The concrete attributes are depicted in
Figure 6.6. Two members, is_complete and delete_counter, have pendants in the
shared-memory implementation. The two other attributes keep track on which tiles
a partition is available. This enables a faster lookup method than iterating through
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runtime_data

is_complete: boolean
delete_counter: integer
holding_tiles: bitvector
in_off_chip_memory: boolean

Figure 6.6: Clustered architecture runtime state data

all partition arrays. Since runtime data members are only accessed by one core,
there are no atomic operations are required.

The procedure of executing a section is shown in Algorithm 6.4. Variables 𝑐𝑛 and𝑑𝑛[𝑖] represent the next actor in the schedule of the driver tile and compute tile𝑖, respectively. These variables are initialized with the first actor of each schedule
(lines 2 to 6). After that the driver enters the main loop (lines 7 to 17) and stays in
the loop until all schedules (driver tile schedule and compute tile schedules) are
fully processed. Inside the loop, the driver repeatedly checks if any ongoing transfer
is now complete (line 8), sends actors to compute tiles (line 11) and executes actors
on its own (line 15). It is important to note that the check whether an actor is ready

Algorithm 6.4: Driver tile section execution with offline scheduling
1 function EXECUTE_DRIVER(𝑐𝑠 ∶ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑖𝑙𝑒_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠, 𝑑𝑠 ∶ 𝑑𝑟𝑖𝑣𝑒𝑟_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒)
2 𝑛𝑐 ← number of compute tiles;
3 for 𝑖 from 0 to 𝑛𝑐 − 1 do
4 𝑐𝑛[𝑖] ← 𝑐𝑠[𝑖].BEGIN();
5 end
6 𝑑𝑛 ← 𝑑𝑠.BEGIN();
7 while actors in 𝑐𝑠 or 𝑑𝑠 remaining do
8 (𝑑𝑛, 𝑐𝑛) ← POLL_NOC_EVENTS(𝑐𝑠, 𝑐𝑛);
9 for 𝑖 from 0 to 𝑛𝑐 − 1 do

10 if compute tile 𝑖 has work to do and is idle and 𝑐𝑛[𝑖] is ready then
11 EXECUTE_ON_COMPUTE_TILE(𝑐𝑛[𝑖], 𝑖);
12 end
13 end
14 if driver tile has work to do and 𝑑𝑛 is ready then
15 (𝑑𝑛, 𝑐𝑛) ← EXECUTE_ON_DRIVER_TILE(𝑑𝑠, 𝑐𝑠, 𝑑𝑛, 𝑐𝑛);
16 end
17 end
18 end
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only ensures that required partition data is available somewhere and, in case of
redundant actor executions, that the result of the previous actor in the schedule has
been verified. The check for partition data being in the correct memory takes place
in the respective functions(execute_on_compute_tile and execute_on_driver).
Further, the variables 𝑐𝑛 and 𝑑𝑛 in Algorithm 6.4 are reassigned via the functions
poll_transfer_events and execute_on_driver. Under the assumption that all
tiles (including the driver) are able to execute comparison actors, both variables
may be modified by both functions since an unsuccessful comparison actor leads to
a rollback in the schedule of up to three tiles (also including the driver).

6.2.4 Driver Tile Routines for Actor Execution
Algorithm 6.5 highlightes the procedure execute_on_compute_tile from Algo-
rithm 6.4 in more detail. This function initiates the communication with a compute
tile in order to execute an actor on this specific tile. If there are not enough free
chunks on the target tile to send a partition or an actor, an evict routine is called.
The evict function chooses a partition in the local memory of the given compute tile
and sends an appropriate delete message. If there is no partition on the tile which is
not required any more, a partition is transferred into the off-chip memory before the
message is sent. Depending on the redundancy configuration, up to three chunks
must be available on the target tile before the actor can be transferred. In case there
are enough free chunks on the tile, the driver checks whether all required partitions
are in its local memory. If this is not the case for a partition, the driver either starts
an asynchronous data transfer (line 8) or sends a partition message (line 11) telling
the target tile which other tile has the required partition in its tile-local memory (see
Section 6.2.2). In case all requirements are met, the given actor can be transferred
to the compute tile via an actor message by calling the according function (line 16).
As shown in Algorithm 6.4, actors may also be executed on the driver tile. All

actors whose input or output data does not fit into a chunk of memory on the
compute tiles definitely must be executed on the driver tile. Executing actors on
the driver is unfavorable since the driver is unable to respond to notifications from
compute tiles and to initiate asynchronous transfers during its own actor execution,
which likely causes additional idle time on compute tiles. For most types of actors,
an execution on the driver can be avoided by writing RAPID programs in which
RAPIDs are divided into more but smaller partitions. However, interval, collect
and reorder actors are always executed on the driver. For the former two types
of actors, copy avoidance like described in Section 6.1.4 can be applied. Therefore,
only reorder actors cause additional load on the driver tile.

Algorithm 6.6 shows the procedure that is calledwhen the driver itself executes an
actor. Similar to the procedure of actor execution on a compute tile (Algorithm 6.5),

106



6.2 Network-on-Chip-based Dataflow Runtime Environment

Algorithm 6.5: Routine for actor executions on compute tiles
1 function EXECUTE_ON_COMPUTE_TILE(𝑎 ∶ 𝑎𝑐𝑡𝑜𝑟, 𝑐 ∶ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑖𝑙𝑒)
2 if not enough free chunks on tile 𝑐 then
3 EVICT_PARTITION(𝑐);
4 else
5 foreach required partition 𝑝 of 𝑎 do
6 if 𝑝 not in local memory of tile 𝑐 then
7 if 𝑝 in off-chip memory then
8 SEND_DATA(𝑝, 𝑐);
9 else

10 𝑡 ← FIND_TILE_WITH_PARTITION(𝑝);
11 SHIFT_PARTITION(𝑝, 𝑐, 𝑡);
12 end
13 return;
14 end
15 end
16 SEND_ACTOR(𝑎, 𝑐);
17 end
18 end

Algorithm 6.6: Actor execution routine on the driver tile
1 function EXECUTE_ON_DRIVER_TILE(𝑑𝑠 ∶ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑐𝑠 ∶ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠, 𝑑𝑛 ∶ 𝑎𝑐𝑡𝑜𝑟,𝑐𝑛 ∶ 𝑎𝑐𝑡𝑜𝑟𝑠) ∶ (𝑎𝑐𝑡𝑜𝑟, 𝑎𝑐𝑡𝑜𝑟𝑠)
2 foreach required partition 𝑝 of 𝑑𝑛 do
3 if 𝑝 not in local memory of tile 𝑐 then
4 𝑡 ← FIND_TILE_WITH_PARTITION(𝑝);
5 REQUEST_PARTITION(𝑝, 𝑡);
6 return 𝑑𝑛;
7 end
8 end
9 EXECUTE_ACTOR(𝑑𝑛);

10 if 𝑑𝑛 is comparison actor and not all values match then
11 return ROLLBACK(𝑑𝑠, 𝑐𝑠, 𝑑𝑛, 𝑐𝑛);
12 else
13 return (𝑑𝑠.NEXT(𝑑𝑛), 𝑐𝑛);
14 end
15 end
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the driver first checks whether partition data of all required partitions is in the
off-chip memory and otherwise starts an asynchronous transfer (line 5). If all
requirements are met, the actor is executed and a pointer to the next actor in the
schedule is returned. In case the actor was a comparison actor and not all values
match, a rollback routine which returns the new pending actors is called (line 11).
This rollback routine requires all currently pending actors and all schedules as its
arguments. The reason for this is that any tile may be involved in a redundant
actor execution and therefore any of the pointers to pending actors may need to be
modified. In this function, the driver tile also sends delete messages to all compute
tiles whose data is considered as incorrect. When an actor is executed on three
different tiles and one result does not match, the driver only sends a delete message
to the corresponding tile.

6.2.5 Driver Tile Event Polling

The last remaining function from Algorithm 6.4 is poll_noc_events. Algorithm 6.7
shows how this function is implemented. There are basically two types of events
that have to be polled repeatedly. On one hand, the driver needs to check if any of its
asynchronous data transfers is complete, on the other hand there may be notification
messages from compute tiles in its message queue. Notification messages from
compute tiles can be either actor done messages or transfer done messages. Compute
clusters send notifications of the latter type when they completed a data transfer
from the local memory of another compute tile into their own local memory.

Events of asynchronous transfers are handled in lines 3 to 12. If the asynchronous
transfer was a transfer from the off-chip memory into a tile-local memory, the driver
sends a partition message to the corresponding tile to indicate that partition data is
now in its tile-local memory. Then, the driver updates its knowledge about partition
memories. In the second case, the asynchronous transfer was from a tile-local
memory into the off-chip memory. Here, it is sufficient to update the partition’s
runtime data by marking it as available in the off-chip memory.
The message queue is checked in line 13. If there is a transfer done message in the

queue, the driver only updates the corresponding partition’s runtime data and its
knowledge about the tile’s local memory. In case of an actor done messsage, the driver
also updates the corresponding memory array and runtime data and reassignes the
pointer to the current actor (lines 23 to 24). There is also the possibility that the
actor was a comparison actor and not all values match. In this case, the driver has
to call the rollback routine (see Section 6.2.4) which updates the pending actors
and sends delete messages to all tiles with incorrect or potentially incorrect data.
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Algorithm 6.7: Polling routine on the driver tile
1 function POLL_NOC_EVENTS(𝑑𝑠 ∶ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒, 𝑐𝑠 ∶ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠, 𝑑𝑛 ∶ 𝑎𝑐𝑡𝑜𝑟,𝑐𝑛 ∶ 𝑎𝑐𝑡𝑜𝑟𝑠) ∶ (𝑎𝑐𝑡𝑜𝑟, 𝑎𝑐𝑡𝑜𝑟𝑠)
2 𝑛𝑐 ← number of compute tiles;
3 for 𝑖 from 0 to 𝑛𝑐 do
4 if asynchronous data transfer to compute tile 𝑖 complete then
5 𝑝 ← partition, whose data was transferred;
6 SEND_PARTITION(𝑝, 𝑖);
7 UPDATE_MEMORY_ARRAYS_AND_RUNTIME_DATA(𝑝, 𝑖);
8 else if asynchronous data transfer from compute tile 𝑖 complete then
9 𝑝 ← partition, whose data was transferred;

10 UPDATE_RUNTIME_DATA(𝑝);
11 end
12 end
13 while message queue 𝑚𝑞 is not empty do
14 𝑚 ← 𝑚𝑞.EXTRACT_MESSAGE();
15 𝑡 ← 𝑚.GET_TILE();
16 if 𝑚 is transfer done message then
17 𝑝 ← 𝑚.GET_PARTITION();
18 UPDATE_MEMORY_ARRAYS_AND_RUNTIME_DATA(𝑝, 𝑡);
19 else if 𝑚 is actor done message then
20 if 𝑐𝑛[𝑡] is comparison actor and not all values match then
21 (𝑑𝑛, 𝑐𝑛) ← ROLLBACK(𝑑𝑠, 𝑐𝑠, 𝑑𝑛, 𝑐𝑛);
22 else
23 UPDATE_MEMORY_ARRAYS_AND_RUNTIME_DATA(𝑐𝑛[𝑡], 𝑡);
24 𝑐𝑛[𝑡] ← 𝑐𝑠[𝑡].NEXT(𝑐𝑛[𝑡]);
25 end
26 end
27 end
28 return (𝑑𝑛, 𝑐𝑛);
29 end

6.2.6 Data-Parallel Actor Execution

The previous sections only described how actors are sent to compute tiles and
explained that some actors are executed on the driver tile. Since each tile, possibly
including the driver tile, contains multiple cores which are able to access the whole
tile-local memory or, in case of the driver tile, the off-chip memory, there is another
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level of parallelism the runtime environment can exploit. To utilize all cores of the
clustered architecture, actors are executed in a data-parallel fashion. For most types
of actors, this is easily possible because partitions usually contain more elements
than there are cores on a tile and elements are processed individually. Figure 6.7
shows an example with a map actor which is executed in parallel by the four cores
of a tile. The actor applies a RAPID function doubling its argument to all elements
in the left partition. As shown in the example, the runtime environment distributes
the elements as evenly as possible on all available cores.
It is important to note that the described data-parallel approach only works for

element-wise actors. In partition-wise actors, the processing of an element may
depend on other elements. To utilize as many cores as possible during the execution
of such actors, the runtime environment provides a function that allows users to
manually specify parallelism. This function represents a parallel for-loop. The
declaration of this function is as follows:

parallel_for(start: integer, end: integer, step: integer,
loop_function: integer → void)

The given function loop_function is executed once for each loop iteration. Since
the loop is executed in parallel, there are no guarantees about the order of iterations.
Analogous to the parallel execution of element-wise actors, loop iterations are
distributed as evenly as possible to cores. It should be noted that, when using the
parallel for-loop function, it is up to the user to ensure correct synchronization
between the cores on a tile.
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Figure 6.7: Parallel execution of a map-actor with RAPID function 𝑓 (𝑥) = 2𝑥
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6.2.7 Runtime Memory Management

When an actor is supposed to be executed on a compute tile, it might happen that
there are not enough free chunks in the tile-local memory. If this is the case, one
or more partitions in the local memory must be deleted. Since it is the only tile
that is able to check data dependencies between actors and schedules, the driver
tile determines which partitions are deleted. For this, an eviction policy is used.
Different eviction policies influence the number of data transfers and therefore the
time graph executions take. The runtime environment’s eviction policy is as follows:

• Find a partition that is no longer needed
• Else find a partition whose data is already in the off-chip memory
• Else look one actor ahead in the schedule and find a partition which is not

required by this future actor
• Else choose the first partition the pending actor does not depend on

The driver tile iterates through the corresponding memory array and tries to
find a partition which is not needed anymore because all actors depending on this
partition were already executed. If there is no such partition, the driver iterates
through the array again to find a partition whose data is already in the off-chip
memory. Such partitions have the advantage that a small delete message is sufficient
and no data transfer is required. In case no suitable partition is found, the driver tries
to keep the number of transfers low by looking at the tile’s schedule. It therefore
picks the actor right after the currently pending actor and iterates through the
memory array a third time in order to find a partition this actor does not depend
on. This prevents partitions that are required soon from being replaced. When an
appropriate partition is found, its data must first be transferred into the off-chip
memory before a delete message can be sent to the tile. Otherwise, the first partition
without a connection to the currently pending actor is chosen.

Another aspect the driver has to consider are data transfers between compute
tiles. If a tile 𝑡 is receiving partition data from another tile 𝑢, the driver must not
overwrite the affected chunk on tile 𝑢 because otherwise 𝑡 would receive wrong
data. Therefore, the driver marks chunks with an active transfer as locked in its
memory arrays. Partitions with data stored in locked chunks are then ignored in
the eviction routine. However, this could lead to situations in which no partition on
a tile can be deleted since the only possible choices are locked. When this happens,
the driver has to wait until one of the transfers have finished proceeding with the
eviction routine.
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6.2.8 Additional Runtime Characteristics and Improvements

The dataflow runtime environment on clustered architectures supports the same
execution modes as the already described shared-memory implementation. Redun-
dant actors can be executed either on the same tile or different tiles. In contrast to
the shared-memory runtime environment, redundant actor execution on the same
tile has to detect some forms of permanent errors. On clustered architectures, each
cluster contains multiple cores so that a faulty core can be detected by comparing
its results with the results of other cores. Further, redundant execution on the same
tile has the advantage that the amount of transferred data does not increase in
comparison to a non-redundant execution.
Previous sections focused on actor execution with pessimistic redundancy (in

case redundant actors are executed on different tiles). Analogous to the shared-
memory implementation, an optimistic redundancy mode can also be implemented
in the runtime environment for clustered architectures. Optimistic redundancy, of
course, does not affect actors which are only executed on the driver tile.
Online scheduling is implemented analogous to the shared-memory runtime

environment. In this mode the driver tile assigns actors dynamically to the tiles
based on the online scheduling policy (work stealing in the proposed RTE imple-
mentation). The driver tile itself is also included in the process of online scheduling,
i.e. it is possible for the driver to assign actors to itself.

The described runtime environment treats comparison actors as ordinary actors
with input and result partitions. Whenever actors are executed redundantly on
different tiles, all resulting partitions have to be sent to one of the executing tiles in
order to compare the results. These transfers can be avoided if comparison actors
are executed indirectly, for example by only comparing checksums of the data. Each
tile is able to calculate the checksum of its computed data independent of other tiles
and, therefore, checksum calculations can be executed in parallel. The subsequent
comparison of checksums is fast and can be executed on the driver. To avoid idle
times on compute tiles, comparison actors can be removed from the driver’s fixed
schedule since it is easily possible to include these short comparisons in the polling
routine. Further, it is possible to keep the number of messages low by including the
checksums in the payload of notification messages about finished actor executions.
Another way to reduce the number of messages in the NoC is to mark those

partitions that are only required by a single actor. If such a marked partition is sent
to a compute tile, the tile can safely delete the partition after the corresponding actor
was executed or the result data of this actor was confirmed in case of a redundant
actor. Based on the dataflow graph, this small optimization has the potential to
greatly reduce the number of required delete messages.
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6.2.9 Runtime Environment on Existing Hardware Architectures
Examples for existing hardware architectures that meet all assumptions from Sec-
tion 6.2.1 are the Kalray MPPA-256 Andey [Din+14] and its successor, the Kalray
MPPA2-256 Bostan [Sai+15]. Both include 16 compute tiles containing 16 cores each,
a two megabyte tile-local memory and a NoC interface. In addition, there are two
IO subsystems with 4 cores each, which have access to larger DDR memories and
two IO subsystems with access to Ethernet interfaces. With regard to IO subsystems,
Bostan differs from Andey since one DDR subsystem is coupled with one Ethernet
subsystem so that there are only two larger IO subsystems in total. On both MPPAs,
any IO subsystem with access to a DDR memory may be used as the driver tile. The
NoC topology of both MPPAs is a bi-directional 2D torus in which IO subsystems
have a wider NoC interface than compute tiles. This is beneficial for dataflow exe-
cutions because it allows multiple simultaneous transfers between the driver tile
and compute tiles at high speed. Especially the beginning of dataflow executions,
when data must be initially sent to the compute tiles, and the completion, when the
results are collected, benefit from parallel transfers.

6.3 Summary
In this chapter, two dataflow runtime environments based on the RAPID program-
ming model were proposed. The first implementation targets shared memory
architectures. On such architectures all cores can freely access the dataflow graph,
offline schedules and online scheduling data structures. Since dataflow graphs
are not modified during dataflow executions, synchronization is easy. The run-
time environment supports five redundancy configurations, offline scheduling with
optimistic or pessimistic execution modes and online scheduling.
On clustered architectures there is one driver tile and multiple compute tiles.

Only the driver tile can access dataflow graphs and schedules. Therefore, the driver
has to coordinate the dataflow execution. This includes keeping track of all tile-
local memories. Compute tiles only execute actors that were transferred to them
by the driver. The implementation on clustered architectures supports the same
redundancy and scheduling modes as the shared memory runtime environment.
The next chapter builds on the proposed runtime environments of this chapter and
describes how offline and online scheduling can be implemented.
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Scheduling in the proposed runtime environment (RTE) involves the assignment of
actors to processing elements (PEs) and the order in which the actors are executed
on the respective PE. Since scheduling is an important aspect in the RTE, some
basic information about this topic was already provided in previous chapters. The
proposed RTE is able to execute graphs either by following fixed schedules, which
are computed before graph execution (offline), or in a more dynamic fashion with
all scheduling decisions being made during graph execution (online). Using fixed
schedules is the preferred way to execute graphs in the proposed RTE. The main
benefit is the better analyzability compared to online scheduling. A disadvantage is
that it is more difficult to react to unexpected events during runtime, like component
failures. Performance-wise, none of the approaches is clearly superior. Provided
that the actor runtimes and transfer costs are estimated realistically, common DAG
scheduling heuristics are able to produce schedules which utilize the available
hardware very well.

An important aspect which separates the proposed RTE from similar approaches
is its support for adaptive fault tolerance. At first glance, adaptive fault tolerance
contradicts the use of fixed schedules. Actor re-executions resulting from transient
errors and redundancy changes during runtime are events which affect graph exe-
cutions but cannot be predicted precisely. The previous chapters already mentioned
that the RAPID programming model allows users to divide graphs into sections for
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the purpose of specifying checkpoints during graph execution at which redundancy
changes can occur. This chapter gives a more detailed insight into this topic and
other characteristics of scheduling with regard to fault tolerance.

It should be noted that in this chapter we use the term PE for the hardware entities
considered in the scheduling process. This means that PEs can be either cores, in
case of shared-memory architectures, or tiles, in case of clustered architectures.
Furthermore, special characteristics of hardware, for example memory constraints
in the clustered architecture, can make hardware-dependent modifications of the
standard scheduling approaches necessary.

The rest of this chapter is structured as follows. Section 7.1 showswhich properties
the RTE must provide to be compatible with a variety of scheduling heuristics.
Extensions of standard DAG scheduling heuristics which are required to support
concepts like different redundancy configurations and graph sections are discussed
in Section 7.2. TheHEFT algorithm serves as an example on how thesemodifications
can be implemented. As mentioned above, the proposed RTE is also able to execute
graphs in a more dynamic fashion with online scheduling. Section 7.3 provides
details on this topic. Lastly, Section 7.4 describes possible ways to realize graceful
degradation in case of faulty PEs. Since online scheduling approaches can easily
react to the omission of a PE, the focus of this section lies on graceful degradation
with offline scheduling.

7.1 Scheduling Prerequisites
In order to make appropriate scheduling decisions, it is important that scheduling
heuristics are able to estimate the execution time of actors as well as data transfer
times. Further, it is mandatory to consider the underlying hardware architecture and
additional constraints due to redundancy in the scheduling process since otherwise
non-executable schedules may be the result.

7.1.1 Properties Used in the Scheduling Process
There are many properties related to the dataflow graph and the underlying hard-
ware architecturewhich can be used to implement a variety of scheduling algorithms.
This section provides an overview of properties used by scheduling heuristics in
the reference implementation for the two hardware architectures introduced in pre-
vious chapters. RTE implementations for other architectures may have to consider
additional properties in order to produce reasonable schedules.

• Number of elements in a partition: Each partition node in the graph stores
information about the memory requirements of its data and the size of a single
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data element. This information can be used by the scheduling algorithm to
estimate the runtime of an actor or the transfer latency of a partition.

• Runtime estimation of RAPID functions: Users can pass runtime estimations
to the definition of RAPID functions. These estimations are functions whose
exact type depends on the type of RAPID function. Scheduling algorithms use
the estimation functions to compute runtime estimations of dataflow actors.
The next section provides more details on this topic.

• Data transfer rates: In order to compute reasonable schedules it is important
for scheduling algorithms to estimate the time it takes to transfer data from
one PE to another. In the proposed RTE, transfer times are estimated from
the number of transferred bytes and a constant bandwidth. Other typical
properties which may be required for other hardware architectures are, for
example, transfer initialization times or different bandwidths for different
pairs of PEs.

• Available processing elements: Another important property is the set of
PEs that scheduling algorithms are supposed to consider. For maximum
performance this set should contain all PEs in the system. However, it may be
useful to limit the set of considered PEs to a subset, for example if an external
program is supposed to run next to the RTE on the hardware architecture or
if some PEs should serve as spare components.

• Memory constraints: The NoC-based architecture we assume contains one
small local memory for each tile and one large off-chip memory which is only
accessible directly by a special driver tile. Therefore, scheduling algorithms
have to make sure that actors processing large partitions are assigned to the
driver tile. Shared-memory architectures do not require such a constraint.

• Constraints because of redundancy: Some redundancy configurations can
introduce additional constraints. An example would be the restriction that
each comparison actor must immediately follow one of the corresponding
redundant actors in the schedule, which is necessary for the pessimistic re-
dundancy mode. Section 7.2.2 provides more details about scheduling with
regard to different redundancy configurations.

The described properties provide enough information to implement many DAG
scheduling heuristics. The RTE’s reference implementation uses the HEFT schedul-
ing algorithm described in Section 2.3.3. Additionally, the insertion-based policy
of HEFT can be disabled in the RTE. This makes the scheduling process faster but
may produce schedules with larger makespans, i.e. longer schedules. For some
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redundancy-related features, the insertion-based policy must be disabled to ensure
a correct graph execution. The following sections will highlight this in more detail.

Actor re-executions due to errors are currently not considered by the implemented
HEFT algorithm. This has two reasons. First, errors are quite rare under normal
circumstances, and scheduling algorithms should therefore compute schedules
which perform well when no errors occur. Second, errors are not accurately pre-
dictable, and the number of re-executions per error varies since there are different
types of errors. Transient errors can be resolved by a single re-execution. Permanent
errors, on the other hand, require multiple re-executions to be identified and are
more expensive to resolve. This makes it difficult to estimate re-executions in the
scheduling process.

7.1.2 Runtime Estimation of Dataflow Actors
The process of estimating an actor’s execution time depends on the type of the
actor. In particular, estimating the runtime differs for actors applying partition-wise
RAPID functions and those applying element-wise functions. Further, actors that
do not apply a RAPID function at all have to be treated specially.

Element-wise RAPID functions are applied to elements or tuples of elements (in
case of combine and zipmap) individually. Therefore, the first step is to determine a
runtime estimation for a single function application by passing the index of the PE
which is supposed to apply the function to the user-provided estimation function.
Then, the runtime of a corresponding actor can be estimated by multiplying this
value with the number of function applications. The latter is in many cases equal to
the number of elements in the actor’s input partitions. In fact, the only exception
is combine, which processes 𝑛 elements from the same partition in a single RAPID
function call for a given 𝑛.

The procedure described so far only holds for shared-memory architectures. For
clustered architectures another step is required since actors are executed in a data-
parallel manner. Therefore, the number of function applications has to be divided
by the number of cores in the corresponding tile (with rounding up to the next
integer).

Partition-wise RAPID functions differ from element-wise functions as users have
to specify manually how the elements in a partition are accessed. In contrast to
element-wise functions it is, for example, possible to iterate over all elements in a
partition multiple times in different order. To avoid duplicate code, partition-wise
RAPID functions are not bound to firm partition sizes but can be applied to arbitrary
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large partitions. For a better runtime estimation of a corresponding dataflow actor,
the definition of a partition-wise function expects an estimation function with an
additional parameter. With this estimation function, a user specifies how long
one execution of the RAPID function takes depending on the processing element
executing the function and the number of elements in the input partitions. During
scheduling, all partition sizes are known, so scheduling algorithms can execute
the user-specified estimation functions for the actors to compute a concrete value
representing the actor’s runtime.
Similar to the element-wise functions, the data-parallel actor execution on dis-

tributed architectures has to be considered for an accurate runtime estimation. Since
users have to manually specify the parallelism inside a partition-wise function, it is
also up to the user to provide an appropriate estimation function.

Actors not applying a function are estimated by scheduling algorithms without
user-provided values or functions. These actors only copy the data of partitions
from one memory location to another, for example to change the element order
or to create a contiguous sequence of values. Thus, an estimation depends on
the number of copied bytes. Like described in Section 6.1.4, it is often possible
to avoid copy operations for many actors that do not apply a function. If such
optimizations are applied, the execution of corresponding actors only takes a very
short constant amount of time. It is important that scheduling algorithms are aware
of the implemented optimizations in order to estimate this type of actors accordingly.

7.2 Offline Scheduling
For graph executions with fixed schedules, the proposed RTE aims at bridging
the gap between analyzability and fault tolerance. On one hand, the RTE should
be able to dynamically react to unpredictable events, like actor re-executions and
redundancy changes, but on the other hand, it should be possible to determine
the worst case execution time of graph executions without large overestimation.
Some aspects about offline scheduling in the proposed RTEwere already mentioned
in Chapter 6. Graph executions according to fixed schedules do not follow exact
timings. Instead, the RTE only considers information about the assignment of
dataflow actors to PEs and the order in which the PEs execute these actors. The
actual time an actor is executed at runtime depends on the availability of data.
This approach is a trade-off between completely static schedules (with exact

timings), which are rigid and do not allow actor re-executions, and graph executions
with online scheduling, which are difficult to analyze statically. A static actor
assignment and execution order can be used in the analysis of a graph execution,
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while the lack of exact timings allows the RTE to insert additional actor executions
into the schedule at runtime whenever an error is detected and a re-execution is
required.
In the course of this section, scheduling under different redundancy configura-

tions and on different hardware architectures is examined. Some configurations
and architectures require a modification of the standard DAG scheduling heuristics.
Such modifications depend on the specific algorithm. In the following, the HEFT
algorithm serves as an example. Since the NoC-based architecture considered in
this thesis has memory constraints which are not covered by standard HEFT, Sec-
tion 7.2.1 describes how the HEFT algorithm can be made compatible. Section 7.2.2
then discusses the different redundancy configurations.

7.2.1 Scheduling under Memory Constraints

In the considered NoC-based architecture each compute tile only has direct access to
a small local memory (with, for example, a few hundred kilobytes), which contains
a statically allocated memory region for partition data. This region is divided into a
fixed number of uniform slots. Thus, there are two scenarios preventing actors from
being executed on compute tiles. The first scenario concerns actors with too many
inputs. If the number of input partitions plus the actor’s single output partition
is higher than the number of partition slots, the actor must be executed on the
driver. In practice, this usually applies to interval, collect and reorder actors.
For the former two types of actors, copy avoidance strategies like those described
in Section 6.1.4 can be applied so that only reorder actors generate workload on
the driver. The second scenario covers actors which either require or produce an
oversized partition. Since partition sizes depend on the application program, this
might be the case for any type of actor.

Modifying HEFT to consider memory constraints is rather straightforward. Since
the dataflow graph contains information about the memory requirements for all
partitions as well as all data dependencies, actors that have to be executed on
the driver tile can be identified easily. Algorithm 7.1 shows the modified HEFT
algorithm for the assumed NoC-based architecture. The additional lines compared
to standard HEFT are highlighted. A single conditional block checking the number
of inputs and memory requirements in the outer loop is sufficient because compute
tiles are homogeneous in the considered architecture. For more heterogeneous
architectures with differently sized local memories additional conditional blocks in
the inner loop (lines 12 to 14) would be required.
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Algorithm 7.1: HEFT scheduling on the NoC-based architecture
1 function HEFT_NOC-BASED(𝑠 ∶ 𝑔𝑟𝑎𝑝ℎ_𝑠𝑒𝑐𝑡𝑖𝑜𝑛)
2 compute mean values for all node and edge weights in 𝑠;
3 compute the upward rank for all nodes in 𝑠;
4 create a sorted list of nodes by nonincreasing order of upward ranks;
5 while the scheduling list is not empty do
6 let 𝑛 be the first node in the list;
7 remove 𝑛 from the list;
8 if 𝑛 has too many inputs or 𝑛 processes too much data then
9 compute the earliest finish time (EFT) of 𝑛 on the driver tile;

10 assign 𝑛 to the driver tile;
11 else
12 for each compute tile 𝑡 do
13 compute the EFT of 𝑛 on compute tile 𝑡;
14 end
15 assign 𝑛 to the tile with the lowest EFT;
16 end
17 end
18 end

7.2.2 Support for Different Redundancy Configurations
The adaptive fault tolerance concept requires that actors can be executed in at
least two different redundancy configurations. The RTE supports five different
redundancy configurations. An overview of available configurations was already
given in Section 6.1.2 but for convenience they are listed below:

• Non-redundant execution
• Double execution on different PEs
• Triple execution on different PEs
• Double execution on the same PE
• Triple execution on the same PE

Redundancy over multiple PEs

Different redundancy configurations require their own schedule since the number
of actors varies. To compute schedules with redundancy over multiple PEs, schedul-
ing algorithms must be altered. Otherwise, the heuristics could assign redundant
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actors to the same PE. For the HEFT scheduling heuristic, such a modification is
easy. Algorithm 7.2 shows the extended algorithm for the case of two redundant
actor executions. The general principle behind this extension also works for three
redundant executions per actor. As before, additional lines are highlighted. By
default, HEFT iterates over all graph nodes and considers all PEs as possible candi-
dates for actor assignments. In order to generate suitable redundant schedules, it is
necessary to check for each actor whether one of its associated redundant actors
is already assigned to the currently considered PE so that this PE can be excluded
temporarily from the scheduling process. Line 12 in Algorithm 7.2 contains the
corresponding check. Similarly, the modified HEFT heuristic assigns comparison
actors always to a PE which also executes one of the redundant actors (line 14).
The modified HEFT always schedules redundant actors and their associated

comparison actor in direct succession (line 10). When HEFT is applied to a graph

Algorithm 7.2: HEFT scheduling with redundant executions
1 function HEFT_REDUNDANT(𝑠 ∶ 𝑔𝑟𝑎𝑝ℎ_𝑠𝑒𝑐𝑡𝑖𝑜𝑛)
2 compute mean values for all node and edge weights in 𝑠;
3 compute the upward rank for all nodes in 𝑠;
4 create a sorted list of nodes by nonincreasing order of upward ranks

ignoring all redundant and comparison nodes;
5 while the scheduling list is not empty do
6 let 𝑛 be the first node in the list;
7 remove 𝑛 from the list;
8 let 𝑛′ be the redundant node belonging to 𝑛;
9 let 𝑛𝑐 be the comparison node belonging to 𝑛 and 𝑛′;

10 for 𝑥 in [𝑛, 𝑛′, 𝑛𝑐] do
11 for each PE 𝑝 do
12 if 𝑥 is 𝑛′ and 𝑛 was assigned to 𝑝 then
13 proceed with next PE;
14 else if 𝑥 is 𝑛𝑐 and both 𝑛 and 𝑛′ were not assigned to 𝑝 then
15 proceed with next PE;
16 end
17 compute the earliest finish time (EFT) of 𝑥 on PE 𝑝;
18 end
19 assign 𝑥 to the PE with the lowest EFT;
20 end
21 end
22 end
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without the insertion-based policy, this ensures that each comparison actor is the
direct successor of one of the redundant actors in the schedule. Despite the modifi-
cation, actors are still scheduled in a topological order so that correct schedules are
produced. Furthermore, redundant actors and comparison actors can be skipped
when the scheduling list is created.

With regard to the different redundancy configurations, it is also useful to adjust
the EFT computation. As described in Section 2.3.3 the EFT is usually computed
with the formula:

𝐸𝐹𝑇(𝑛𝑖, 𝑝𝑗) = 𝑤𝑖,𝑗 + max{𝑎𝑣𝑎𝑖𝑙[𝑗], max𝑛𝑚∈𝑝𝑟𝑒𝑑(𝑛𝑖)(𝐴𝐹𝑇(𝑛𝑚) + 𝑐𝑚,𝑖)}
This formula only considers direct predecessors for communication costs. In re-
dundant sections, the direct predecessors of non-comparison actor are comparison
actors. Therefore, it makes sense to also consider the preceding actors of the com-
parison actors since the corresponding PEs performed the actual computation and
have the data in their local memory or cache.

It should be noted that the described modified HEFT algorithm in Algorithm 7.2
is only suitable for the shared-memory architecture. In order to get an appropriate
algorithm for the NoC-based architecture, the concepts from Algorithm 7.1 and
Algorithm 7.2 have to be combined. The scheduling heuristic must also consider
optimizations like the dynamic execution of checksum-based comparisons on the
driver tile which was described in Section 6.2.8.

Another important aspect is related to the two execution modes our RTE supports.
In pessimistic mode, a PE waits until the results of the current actor have been
compared before it continues with the next actor. Thus, it is important to run the
extended HEFT scheduler without the insertion-based policy because otherwise a
cyclic dependency, i.e. a deadlock, during graph execution could occur. In optimistic
mode where PEs do not have to wait there is no such restriction, and it is possible
to use HEFT with the insertion-based policy.
An example schedule computed with the modified HEFT algorithm is shown

in Figure 7.1. On the left side, a DAG with node and edge weights is depicted. In
favor of a more concise illustration, redundant and comparison nodes are excluded
from the figure. In analogy to the hardware architectures which are supported by
the RTE’s reference implementation, all PEs in this example are identical so that no
computation cost matrix is required. Further, we assume that duplicate actors have
the same node weight as their pendant, comparison nodes have a weight of 2 and
edges between redundant nodes and comparators have a weight of 1 (for example
because only checksums instead of actual data are transferred and compared). The
redundant schedule created by the described variant of HEFT is shown on the right.
Its makespan is 56. The small dark boxes in the schedule represent the execution of
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heuristic

Figure 7.1: Redundant schedule example

comparison nodes. In this example, each comparison node in the schedule compares
the result of its predecessor node (which is why the schedule is unambiguous even
though comparison nodes are not labelled). In this example, the modifiedHEFT has
successfully identified the critical path (𝑎1, 𝑎5, 𝑎7, 𝑎8, 𝑎10) and assigned the nodes
in the correct order to the first and second PE.

Redundancy on the same PE

For redundant executions on the same PE, it is possible to use standardDAG schedul-
ing heuristics. Redundant actors and the following comparison or voting actor are
executed without interruption by other actor executions or transfers and can thus
be considered as one longer lasting execution in the scheduling process. In contrast
to redundant execution over different PEs, these redundancy configurations have
the advantage that fewer transfers are required. But despite the reduced number
of transfers, redundancy on the same PE may not be beneficial to the performance
of graph executions. An example is shown in Figure 7.2. This schedule is suitable
for the graph in Figure 7.1a and consists exclusively of redundant actor executions
on the same PE. In this case, the schedule’s makespan is 86, and adding more PEs
would not help to lower the makespan. The critical path in the example graph is
dominant, and there is not much parallelism due to the data dependencies. There-
fore, the makespan of the redundant schedule in Figure 7.1b (which is 56) is lower
despite the additional transfers. Redundancy on the same PE can only improve the
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Figure 7.2: Schedule for the graph from Figure 7.1a with redundant actor executions
on the same PE

performance if the degree of parallelism in the graph is high enough to utilize the
available PEs.
Since schedules with redundancy on the same PE are generated with standard

heuristics, it is possible to use non-redundant schedules for the respective redun-
dancy configurations. The downside of this approach is that the non-redundant
schedule is possibly less suited for a redundant execution than a separately com-
puted schedule because of the difference in the ratio of transfer to computation.
However, this approach is chosen in the RTE’s reference implementation since it
lowers the overall scheduling workload and redundancy across multiple PEs is the
preferred form of redundancy in the RTE.

7.2.3 Simultaneous DAG Executions

The proposed RTE considers graphs as sets of nodes and edges and executes actor
nodes in the order provided by the schedule. It is not required that graphs are
weakly connected, i.e. DAGsmay consist of multiple unconnected parts. This makes
the RTE compatible with applications involving multiple simultaneously executed
DAGs. To schedule unconnected DAGs, the HEFT implementation provided by
the reference implementation uses the same standard process that is commonly
used to schedule graphs with multiple entry or exit nodes. Before the actual HEFT
scheduling heuristic is applied, the (unconnected) graph is temporarily extended by
two nodes with a weight of zero as shown in Figure 7.3. The first node has outgoing
edges to the entry nodes of all independent subgraphs, while the second node has
incoming edges from the exit nodes of the subgraphs. Analogous to the new nodes,
the additional edges have a weight of zero. Since the resulting graph represents a
weakly connected DAG, the actual HEFT scheduling heuristic can be used without
a further modification.
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Figure 7.3: Composition of two DAGs by introducing new entry and exit nodes

The described method is the easiest way to extend scheduling so that arbitrary
heuristics are able to schedule multiple graphs. A disadvantage of this approach
is that it does not consider any fairness aspects in the scheduling process. There
are, however, other more complicated methods which can be applied to scheduling
heuristics and which do consider fairness aspects. Zhao and Sakellariou compared
six different approaches (including the basic approach described above), which
were applied to two scheduling heuristics (with one being HEFT), with regard
to fairness and makespans [ZS06]. The authors define fairness via differences in
slowdowns of the individual graphs resulting from the simultaneous execution.
Since the proposed RTE is highly customizable, a user can easily extend a scheduling
routine implementation in case an application requires fairness in a simultaneous
graph execution.

7.2.4 Impact of Graph Sections
As mentioned in previous chapters, graphs can be divided into different sections
which are scheduled independently. These sections are executed one after another
with barriers in between. The barriers serve as checkpoints to switch to a different
redundancy configuration, i.e. to a different schedule. It is important to choose the
section boundaries and the order in which sections are executed in a way that the
graph remains executable. The checkpoint function from the RAPID programming
model guarantees a correct sectioning, but this has to be ensured externallywhen the
RTE’s graph import functionality is used. If a graph consists of multiple sections, it
is possible to check whether the sectioning is correct by looking at the dependencies
between sections. There is a dependency between two sections 𝑎 and 𝑏 (with
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𝑎 ≠ 𝑏) if and only if there is a data dependency between an actor node from 𝑎
and an actor node from 𝑏. A correctly sectioned graph must not contain any cyclic
dependencies between sections, i.e. the dependencies between sections must also
form a DAG. Otherwise, it would not be possible to specify an order in which
sections are executed. In the following, the DAG consisting of sections as its nodes
and section dependencies as its edges is called Meta-DAG. After verifying that the
sectioning of a graph forms a correct Meta-DAG, the execution order of sections
(given by their indices) must be checked. To be correct, the order of sections must
follow the dependencies between sections, i.e. it must represent a topological sort
of the Meta-DAG.

Graph sections are always DAGs on their own. Therefore, the described schedul-
ing techniques can be applied to individual sections without any modifications.
Scheduling sections independently clearly has an impact on the performance of
graph executions. This has two reasons. First, the more sections a graph is divided
into, the less information about the overall graph structure scheduling heuristics can
use. Second, sections prevent scheduling algorithms to optimize the execution order
of actors over section boundaries. These two factors lead to a high probability that
the execution of a graph with many small sections takes longer than the execution
of the same graph with fewer but larger sections.

7.3 Online Scheduling

Even though graph executions following fixed schedules are preferred in the RTE,
there is also support for online scheduling. In online scheduling mode, decisions
about the assignment and execution order of actors are made during graph exe-
cution. The focus here is solely on adaptability and performance. If application
has requirements regarding the analyzability of graph executions, it is advisable to
utilize statically computed schedules instead since online scheduling approaches
are usually more difficult to predict.
In the RTE’s reference implementation, dynamic scheduling follows the work

stealing approach described in Section 2.4. For standard, non-redundant dataflow
executions on shared-memory architectures, there are no major differences between
the work stealing implementations in the proposed RTE and other frameworks. But
as for theHEFT algorithm, implementations on other hardware architectures require
some extensions to the standard work stealing procedure. Further, the different
redundancy configurations the RTE supports lead to additional modifications of
the standard routine.
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7.3.1 Work Stealing on Different Hardware Architectures

As described in Section 2.4, work stealing is usually based on double-ended queues.
On shared-memory architectures, each core has access to all scheduling queues and
the dataflow graph. Thus, cores can identify actors which are ready to be executed
and insert them into their queue by themselves. Since other cores may access the
queue concurrently due to the stealing of elements, synchronization between cores
is required. In many proposals, double-ended queues are implemented as lock-
free data structures. This has the advantage that it allows simultaneous access
on both ends of the queue. However, since critical sections are rather short, the
RTE’s reference implementation uses standard queues protected by locks. Proper
synchronization is also required to identify which actors are ready to be executed
because otherwise an actor could be inserted by multiple cores. In the reference
implementation this is realized through the ready_counter (see Section 6.1.1).
Each actor has its own ready_counter which is initialized with the number of
predecessors in the graph. The counter is decreased atomically with a fetch-and-
add instruction each time one of the preceding actors has been executed. This
ensures that only one core detects the counter reaching zero.
In case of the considered clustered architecture, there is no synchronization

required. Since compute tiles do not have access to the dataflow graph, the driver
is the only tile which can identify if an actor is ready. As a result, the driver tile
has to manage all queues and run the work stealing procedure on behalf of the
other tiles. The driver has also a special role in the scheduling process since it is
responsible for the execution of actors processing large partitions. Therefore, actor
nodes must not be stolen from the driver’s queue. Further, to ensure that the driver
can focus on managing NoC communication and other driver-specific tasks, the
driver itself should not steal actors from the queues of other PEs. Instead, actors
which have to be executed on the driver must be identified as soon as they are ready
and inserted in the driver’s queue. So for this special tile, the work stealing aspect
has to be undermined in favor of an approach more closely to work sharing.

7.3.2 Redundancy and Fault Tolerance

The different redundancy configurations also require modifications in the work
stealing procedure. As with offline DAG scheduling heuristics, there are no modifi-
cations necessary for configurations with redundant actor executions on the same
PE. Algorithms 7.3 and 7.4 showmodified insertion and stealing routines for the case
of two redundant actor executions. Corresponding functions for three redundant
actor executions are analogous.
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Algorithm 7.3: Work stealing insertion routine with redundant actors
1 function INSERT_REDUNDANT(𝑎 ∶ 𝑎𝑐𝑡𝑜𝑟, 𝑝 ∶ 𝑃𝐸)
2 insert 𝑎 at the front of 𝑝’s queue;
3 if a is comparison actor then return;
4 𝑠 ← empty set;
5 𝑙𝑝 ← list of predecessor actors of 𝑎;
6 for actor 𝑎𝑝 in 𝑙𝑝 do
7 𝑙 ← list of PEs which have executed 𝑎𝑝 or one of its redundant actors;
8 insert all PEs from 𝑙 into 𝑠;
9 end

10 remove 𝑝 from 𝑠 if present;
11 if 𝑠 is not empty then
12 𝑝𝑟 ← random PE from 𝑠 whose queue contains the least amount of

actors;
13 else
14 𝑝𝑟 ← random PE which is not 𝑝 and whose queue contains the least

amount of actors;
15 end
16 insert 𝑎’s redundant actor at the front of 𝑝𝑟’s queue;
17 end

The insertion routine in Algorithm 7.3 first inserts the given actor 𝑎 into the PE’s
queue, just like in the case of standard work stealing. For comparison actors there is
nothing else to do since actors of this type have no redundant actors. Otherwise, a
PE for the redundant actor has to be chosen. To preserve data locality, the routine
iterates over all predecessors of 𝑎 and inserts all PEs that have executed a predecessor
into a temporary set 𝑠. It is important to note that these predecessors may have a
different redundancy since they are not necessarily in the same graph section. This
is considered in line 7. After the set of possible candidates has been identified, the
routine chooses the one whose queue contains the least amount of actors (line 12).
If the queue containing the least amount of elements is not unique, a random one
of them is chosen. There is also the chance that 𝑠 is empty. This can only happen
if 𝑎 has no predecessor actors or all predecessors were executed non-redundantly
by 𝑝 itself. In this case, the procedure is similar. The only difference is that all PEs
besides 𝑝 are considered as possible targets (line 14). Lastly, the redundant actor is
inserted into the corresponding queue (line 16).
Stealing (Algorithm 7.4) also differs from the non-redundant case since it has

to consider which actors are in the thief’s queue and which actor it has already
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Algorithm 7.4: Stealing routine with redundant actors
1 function STEAL_REDUNDANT(𝑝 ∶ 𝑃𝐸)
2 𝑙 ← ordered list of all PEs with non-empty queue;
3 shift the elements in 𝑙 in a cyclic manner 𝑥 times for a random 𝑥;
4 for 𝑝𝑐 in 𝑙 do
5 𝑎 ← last element in 𝑝𝑐’s queue;
6 𝑎𝑟 ← 𝑎’s redundant actor;
7 if 𝑎𝑟 is not in 𝑝’s queue and 𝑎𝑟 was not executed by 𝑝 then
8 move 𝑎 into 𝑝’s queue;
9 return;

10 end
11 end
12 end

executed. For the given thief 𝑝, the routine first creates a list 𝑙 of all PEs whose
queue is not empty. This implicitly ensures that 𝑝’s own queue is not considered
for stealing. Elements in the list are then shifted 𝑥 times in a cyclic manner for
a random 𝑥. Because of the shift, the RTE iterates over the list beginning with a
random element (line 4). In each iteration, the procedure checks whether the last
element in the corresponding queue is suitable for being stolen. This is the case if
its redundant actor is not in 𝑝’s queue and was not executed by 𝑝. As soon as an
appropriate actor is identified, it is stolen and the procedure is exited (lines 7 to 10).
Because only the last element in a queue is considered for stealing, there is a chance
that the described routine does not find an actor for stealing even though at least
one of the queues contains a suitable actor. However, this has no drastic effect on
the performance since PEs do not only receive work by stealing but also through
the scheduling of redundant actors (see Algorithm 7.3).
With regard to redundancy and fault tolerance, online scheduling has some

advantages over offline scheduling. Redundancy changes and component failures
are unpredictable events and therefore difficult to bring in line with fixed schedules.
As described in previous sections, redundancy changes always affect all actors
in a section to keep the number of schedules reasonable. In online scheduling
mode, however, no such restriction is required and the RTE could be extended quite
easily to support redundancy changes of individual actors. This would remove the
necessity of barriers between sections since no replacements of the active schedule
are required. However, graph sections and the barriers in between are still useful
since they allow the RTE to switch from online scheduling to fixed schedules when
a barrier is reached.
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7.4 Graceful Degradation in Case of Component
Failure

Permanent failure of an actively used component can be difficult to handle. This
section discusses component failure from a general scheduling perspective. Impacts
of malfunctioning PEs not related to scheduling would be, for example, the loss of
data. The focus of this section lies on faulty PEs, i.e. PEs that, from an arbitrary point
during graph execution, do not respond anymore or regularly produce incorrect
data and are therefore considered as malfunctioning. For the clustered architecture,
we assume that permanent faults do not affect the driver tile.

If a graph is executed using the work stealing approach described in the previous
section, adding graceful degradation is straightforward. The work stealing proce-
dures can simply ignore malfunctioning PEs in the scheduling process. However, if
analyzability is a requirement and the RTE executes graphs using statically com-
puted schedules, it is more difficult. The main problem is that faulty PEs cannot
execute actors anymore but appear in schedules and thus have a workload assigned
to them. So in order to ensure progress in the system, other PEs have to take over
the workload of a faulty one. There are multiple ways to add graceful degradation
despite the use of fixed schedules, each with benefits and drawbacks. In the rest of
this section, some possible ways are described.

7.4.1 Spare Processing Elements
One possible solution is to have spare PEs in the system. Spare PEs can replace
actively used PEs that have become faulty. An advantage of this approach is that the
schedules can still be used in case a PE fails. Furthermore, if the replacement PE is
identical to the faulty PE, the performance of the system stays the same. Following
this approach it is easily possible for the system to cope with multiple faulty PEs
during its lifetime as long as enough spare PEs are available. The disadvantage is
that not all functional PEs in the system are continuously utilized and thus either
the performance is lower than in other approaches or the hardware costs are higher.

7.4.2 Spare Schedules
A different solution is to use all available PEs in the system by default and provide
additional schedules that require only a subset of all PEs. If a permanent error
in some PE is detected, the system can change to a different schedule in which
no actors are assigned to the faulty PE. Besides the advantage that the available
hardware can be fully utilized, there are also disadvantages. Hardware constraints
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can make the number of required spare schedules quite large, especially if all
redundancy configurations should be still available after some PE became faulty.
On relatively homogeneous systems, like the considered shared-memory or NoC-
based architecture, PEs are interchangeable. Thus, only one set of spare schedules
is enough to cope with the failure of an arbitrary PE. In heterogeneous systems,
however, it may not be possible to run every actor on every PE, so multiple sets of
spare schedules may be required to cover all cases of failing PEs.

7.4.3 Rescheduling at Runtime
Another possibility is to run the scheduling algorithm whenever a PE becomes
unusable. Advantages compared to the approaches considered so far are that the
available hardware is always fully utilized and no additional memory is required.
The disadvantage is that rescheduling at runtime greatly increases the recovery
time in case of a permanent error. How long the process of rescheduling takes
also depends on the hardware architecture. A prerequisite for DAG scheduling
heuristics is the ability to navigate through the graph. On the assumed clustered
architecture, only the driver tile has access to the off-chipmemory containing graphs
and schedules. So for this hardware architecture, most of the computing power
cannot be used in the scheduling process.

7.4.4 Modification of Existing Schedules
The availability of different schedules due to the adaptive fault tolerance capabilities
in the proposed RTE allows a fourth solution. In the available redundant schedules,
each actor is executed by at least two different PEs. Therefore, if one PE fails,
new schedules can be obtained by removing actors from existing schedules. More
specifically, when a permanent error is detected, a non-redundant schedule can
be created from a schedule with two executions for each actor by processing the
following steps:

1. Remove the faulty PE from the schedule
2. Remove all comparison actors from the schedule
3. Remove duplicate actors evenly from the schedule

In step 3, duplicate actors should be removed from the schedule evenly, i.e. the
work should be divided as evenly as possible between the functional PEs.

An example is shown in Figure 7.4. Since dataflow executions do not depend on
exact timings, only the actor assignment and order are depicted. The left side of the
figure consists of a redundant schedule where each of the four actors (𝑎1 to 𝑎4) is
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executed on two different PEs. Out of the three PEs, the second one is considered
as faulty by the system. To obtain a new schedule from the existing one, all actors
assigned to the faulty PE as well as all duplicate actors and comparison actors
assigned to other PEs are removed. This leads to the schedule in Figure 7.4b which
does not utilize the faulty PE and has no redundant actor executions anymore.

Analogous to this example, it is possible to modify a schedule with three redun-
dant actor executions in order to obtain a schedule with two redundant executions
per actor. In case the results of redundant actors are compared dynamically (see
Section 6.2.8), the procedure can be applied as described above. However, if com-
parison actors are part of the schedule, some extra considerations are required.
The reason for this is that comparison actors are necessary for the graph execution
but might be assigned to the faulty PE. These comparison actors have to be moved
to other PEs which is not trivial. Moving such an actor directly after one of the
two remaining redundant actors can lead to a cyclic dependency and thus a non-
executable schedule. There are two possible solutions to solve this issue. The first
solution is to check all data dependencies when moving a comparison actor. This,
however, leads to a more complex reconfiguration and thus increases the reaction
time when a permanent error is detected. The second solution is to compute the
schedule with three redundant actor executions in a way so that moving comparison
actors is easy. In case of HEFT, this can be accomplished by assigning redundant
actors and their comparison actors always in direct succession and by placing actors
always at the end of the PE’s schedule (i.e. run HEFT without the insertion-based
scheduling policy).
Modifying existing schedules has the same advantages as rescheduling, i.e. the

hardware is always fully utilized and there are no increased memory requirements
due to additional schedules. Further, the modification of existing schedules is
faster than computing entirely new schedules by running the scheduling algorithm.
Modifying an existing schedule like shown in the example only requires iterating
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Figure 7.4: Modification of a redundant schedule as a result of a faulty PE
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through the schedule once. An implementation of the HEFT algorithm, for example,
has to iterate through the graph at least twice and consider each PE as a candidate
for each actor.
However, a disadvantage is that the available degree of redundancy is reduced

when a PE becomes faulty, which may be unacceptable in highly critical environ-
ments. Furthermore, it is likely that the makespan of a modified schedule is higher
compared to a schedule which was computed by a reasonable scheduling algorithm
if both schedules utilize the same number of PEs.

7.4.5 Comparison of Graceful Degradation Approaches
The previous sections described various approaches to realize graceful degradation
in case of a faulty PE. For graph executions with work stealing, adding support
for graceful degradation is straightforward. Regarding graph executions following
pre-computed schedules, graceful degradation can be realized in different ways.
The advantages and disadvantages of each approach are summarized in Table 7.1.
Spare PEs and spare schedules are simple ways to ensure graceful degradation.
Main drawbacks of the former are that, at least as long as no permanent error occurs,
the hardware is not fully utilized and that heterogeneous systems will likely require
more than one spare PE. Spare schedules on the other hand allow the system to fully
utilize the available hardware but permanently occupy some amount of memory.
The more distinct types of PEs a system contains, the more spare schedules are
required in order to cope with arbitrary failing PEs. In contrast to spare PEs and
spare schedules, rescheduling at runtime has no drawbacks as long as no permanent

Table 7.1: Comparison of graceful degradation approaches with offline scheduling

Approach Advantages Disadvantages

spare PEs no additional memory required,
very fast reconfiguration

hardware not fully utilized,
expensive for heterogeneous
systems

spare schedules hardware fully utilized,
very fast reconfiguration

higher memory requirements
(especially on heterogeneous
systems)

rescheduling at
runtime

hardware fully utilized,
no additional memory required slow reconfiguration

modification of
existing schedules

hardware fully utilized,
no additional memory required,
fast reconfiguration

lower performance after
permanent error,
decrease in redundancy after
permanent error
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error occurs. The disadvantage lies in the slow error recovery since running a
scheduling heuristic takes much longer than activating a spare PE or switching
to a spare schedule. Modifying existing schedules also has no drawbacks under
normal circumstances. In comparison to rescheduling, the reconfiguration effort
is much smaller. The downsides are a reduced performance in case a permanent
error occurs since the modified schedules usually have a higher makespan than
computed schedules and a reduction in the available degree of redundancy, which
might be unfavorable in environments with high safety requirements.

7.5 Summary
This chapter highlighted the different aspects of graph scheduling in the proposed
RTE. To give users the opportunity to implement a variety of scheduling techniques,
the RTE provides access to different properties of graph nodes and the underlying
hardware architecture. Standard scheduling heuristics must be modified to be able
to generate redundant schedules and to consider the memory constraints of the
clustered architecture the RTE targets. The previous sections described extensions
of HEFT as an example.
Besides graph execution following pre-computed schedules, the RTE also sup-

ports graph executions with online scheduling. In the reference implementation,
this kind of graph execution is based on work stealing, a technique commonly used
in parallel computing frameworks and dataflow systems. As for the DAG schedul-
ing heuristics, work stealing has to be extended to support the different hardware
architectures and redundancy configurations.
The last part of this chapter discussed graceful degradation from a scheduling

perspective. While extending work stealing is easy, graceful degradation is more
complex to implement when graph executions follow fixed schedules. In this regard,
four different approaches, each with its benefits and drawbacks, were discussed.

As mentioned at the beginning of this chapter, by supporting fixed schedules, the
RTE bridges the gap between analyzability and fault tolerance. The next chapter
provides information on the analyzability of graph executions when fixed schedules
are used.

135





8
Analyzability

This chapter focuses on the analyzability of dataflow executions with varying de-
grees of redundancy on different types of hardware architectures, in particular the
two types of hardware architectures introduced in Chapter 6. Similar to previous
chapters, this chapter highlights the topic from a software perspective without
going into the hardware details. A general assumption in this chapter is that it
is possible to determine an estimation for the worst-case execution time (WCET)
of sequential code on any core with sufficient accuracy. For the shared-memory
runtime environment (RTE), this assumption also applies to actor executions as
they are always executed sequentially. On clustered architectures, however, the RTE
can make use of parallelism within actor executions. A necessary assumption for
this chapter is that a sufficient WCET estimation can be determined nonetheless.
For element-wise actors this assumption is realistic since all cores in the executing
tile act in a data-parallel fashion, with only one fork at the beginning and one join
at the end of the actor execution. In between, each core exclusively processes a set
of elements. Therefore, each core can be analyzed individually for the most part.
Partition-based actors give the user greater control over the parallelism inside the
actor and allow a much more complicated synchronization of cores. It is up to the
user to ensure the analyzability of such actors.

Since graph executions with online scheduling target maximum flexibility and do
not have any properties that would simplify the analysis, this chapter only covers

137



8 Analyzability

dataflow executions according to fixed schedules although an analysis of dataflow
executions with online scheduling might also be possible.
The rest of this chapter is structured a follows. Section 8.1 focuses on standard

graph executions without redundant actor executions. Aspects described in this
section are essential for an analysis regardless of the hardware architecture. While
the introduced formula is adequate for basic graph executions on shared-memory
architectures, additional factors must be considered in the presence of a network-on-
chip (NoC). Section 8.2 elaborates a formula that takes these aspects into account.
Sections 8.3 and 8.4 focus on the analyzability of redundant dataflow executions and
graph executions with possibly occurring faults. In contrast to previous sections, no
concrete formulas are provided since the analysis is similar and the formal notation
would be cumbersome. Instead, these two sections only describe the different
aspects which must be considered in an analysis informally. Lastly, Section 8.5 gives
a short conclusion on the analyzability of dataflow executions.

8.1 Basic Dataflow Executions
The most basic case is a graph execution without actor re-executions or redundancy
changes. Graphs consist of one or more sections, which again consist of multiple
actors. Following this hierarchy, WCET estimations of graph executions can be
broken down to the WCET estimation of their sections, which can be again broken
down to the analysis of individual actors. The general relation between the WCETs
of graphs, sections and actors becomes clear with the small example graph in
Figure 8.1. There are only two sections with only two data dependencies directed
in the same way between them. But even if there were more sections and the
dependencies between them were more complex, sections are always executed one
after another in the order of their index, and the WCET estimation of a graph can
thus be computed by summing up the WCET estimations of sections. For sections,
however, estimating the WCET is more difficult. Actors are executed in parallel and
so it is necessary to determine the longest path inside a section in terms of WCET

Section 1 Section 2

Figure 8.1: Example graph where the longest path is highlighted in each section
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estimation. Such a longest path does not only need to consider data dependencies
but also the execution order of actors given by the schedule. Furthermore, longest
paths do need to connect to each other at section boundaries (such as in Figure 8.1).
The next three sections describe the relation between the WCETs of graphs, sections
and actors more thoroughly in a top-down fashion. It should be noted that in all
following sections, the abbreviation WCET and similar terms like finish time always
refer to proper estimations since the real WCET cannot be determined in almost all
practical settings.

8.1.1 Worst-Case Execution Time Estimation of Graph
Executions

For the estimation, an arbitrary graph 𝑔with 𝑛 sections 𝑠1, … , 𝑠𝑛 is considered, where
the WCET for one execution of 𝑔 is denoted with 𝑊𝑔 and the WCET of 𝑠𝑖 with 𝑊𝑠𝑖
for 𝑖 = 1, … , 𝑛. Since each section has its own schedule and is executed individually,
the WCET estimation for one execution of the whole graph can be computed by
adding up WCETs of all sections. Between two section executions, there is a portion
of sequential code, for example to read error and performance counters, make a
decision about the upcoming section and change the redundancy configuration
accordingly. In the following, the WCET for the intermediate code between section𝑠𝑖−1 and 𝑠𝑖 is denoted with 𝑊𝑟𝑖 . Lastly, graph executions contain sequential initial-
ization and termination routines with WCETs 𝑊𝑏 and 𝑊𝑡, respectively. Altogether,
this leads to the following formula:

𝑊𝑔 = 𝑊𝑏 + 𝑊𝑠1 + 𝑛∑𝑖=2 (𝑊𝑟𝑖 + 𝑊𝑠𝑖 ) + 𝑊𝑡
If a graph is not divided into sections, i.e. there is only one section, the large sum
disappears so that only the WCET estimations for the initialization and termination
routines and 𝑊𝑠1 remain.

8.1.2 Worst-Case Execution Time Estimation of Section
Executions

The formula to compute the WCET of a graph depends on the WCETs of all sections
in the graph. Each section in a graph consists of a set of actors. The execution time of
a section is equivalent to the time from the beginning of the first actor execution to
the end of the last actor execution. Thus, if the start time of the first actor execution
is defined to be at 𝑡 = 0, the section WCET is equivalent to the worst-case finish
time of the last actor execution.
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Let 𝑠 be an arbitrary section with 𝑚 actors 𝑎1, … , 𝑎𝑚 and 𝐹𝑎𝑖 the worst-case finish
time of actor 𝑎𝑖. With the considerations from above, a formula for the WCET of 𝑠 is:

𝑊𝑠 = max1≤𝑖≤𝑚 𝐹𝑎𝑖
Due to the data dependencies, the worst-case finish time of an actor depends

on the worst-case finish time of its preceding actors. Therefore, the problem of
computing the WCET of a section corresponds to the problem of finding a longest
path in the graph. For directed acyclic graphs, this problem can be solved in linear
time by finding a topological sort and successively annotating each node with the
length of the longest path ending at that node. The topological ordering ensures that
the longest paths of preceding nodes are known whenever a new node is processed.
For computing the WCET of a section, the general procedure is the same. The only
difference is that node annotations do not represent longest paths but correspond
to worst-case finish times.

8.1.3 Basic Worst-Case Finish Time Estimation
To determine the worst-case finish time of an actor two parameters must be available,
its worst-case start time and its WCET. As mentioned in previous sections, a general
assumption in this chapter is that actor WCETs can be determined with appropriate
tools and are thus known. The second important factor, the worst-case start time,
depends on the worst-case finish time of the actor’s predecessors since an actor
can only be executed if the required data is present. An additional dependency
may result from the schedule because an actor can only be executed when the
execution of its predecessor in the schedule has been finished. In the example graph
section depicted in Figure 8.2, there is such an additional dependency (visualized
by the dashed arrow) between 𝑎4 and 𝑎3 caused by the schedule. With regard to
the overall procedure described in the previous section, it is important to note that
the topological sort which determines the order in which finish times are computed
must also consider the additional dependencies resulting from the schedule.

To estimate the worst-case start time 𝑆𝑎 of an actor 𝑎, it is necessary to determine
the maximum of the worst-case finish time of all predecessors in the section (includ-
ing the predecessor according to the schedule). If Pred𝑎 is the set of predecessors
of 𝑎, the worst-case start time can be estimated with the following formula:

𝑆𝑎 = max𝑑∈Pred𝑎 𝐹𝑑
To compute 𝑎’s worst-case finish time 𝐹𝑎, the worst-case execution time 𝑊𝑎 on the

processing element (PE) specified by the schedule must be added to the worst-case
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start time. It is important to consider optimization techniques, for example the
copy avoidance technique described in Section 6.1.4, for the corresponding types of
actors. If such an optimization is implemented, the WCET of some actors can be
greatly reduced. Further, 𝑊𝑎 should also consider any necessary preparations for
the execution of actor 𝑎. Altogether, the resulting formula for 𝐹𝑎 is:

𝐹𝑎 = 𝑆𝑎 + 𝑊𝑎 = max𝑑∈Pred𝑎 𝐹𝑑 + 𝑊𝑎
An example is shown in Figure 8.2. For a better overview, only the actor nodes

are shown in the graphical representation of the section. Actors 𝑎1 and 𝑎2 do not
depend on the data of other actors in this section and do not have a predecessor
in the schedule. Therefore, both actors are executed immediately at the beginning
of the section execution. Since the starting time is zero for these two actors, their
worst-case finish time is equal to their respective WCET. Actor 𝑎3 is the only actor
where the predecessor according to the schedule (actor 𝑎4) is not a predecessor
according to the data dependencies. Because of this additional dependency, the
worst-case finish time of 𝑎3 is 𝐹𝑎3 = 𝐹𝑎4 + 𝑊𝑎3 = 14.

𝑎4
𝑎3

𝑎5

𝑎1

𝑎2
𝑎6

𝑎7

𝑎8
PE 2

PE 1

𝑎2 𝑎5 𝑎6 𝑎8
𝑎1 𝑎4 𝑎3 𝑎7

Actor W F𝑎1 5 5𝑎2 8 8𝑎3 2 14𝑎4 7 12𝑎5 3 11𝑎6 5 17𝑎7 4 21𝑎8 6 23

Figure 8.2: Example section (excluding data nodes) with schedule for two PEs, actor
WECTs and worst-case finish times

8.2 Dataflow Executions on the
Network-on-Chip-based Architecture

The estimation in the previous sectionmay be sufficient for shared-memory architec-
tures, but it is less suitable for NoC-based architectures due to additional factors that
need to be considered. Since different NoC-based architectures usually show their
own specific characteristics, an analysis is usually specific to a certain architecture.
As mentioned in the beginning of this chapter, the abstract architecture specified
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in Section 6.2.1 is the basis for the considerations in this section. In contrast to a
shared-memory based system, three additional aspects must be considered. First,
partition and actor transfers are an essential part of graph executions in the system.
Second, local memories are small so that there are situations where partitions have
to be displaced from tile-local memories. And lastly, actor executions can take place
on compute tiles or the driver. Since these two types of tiles fulfill different roles in
graph executions, it is clearer to use separate formulas for both cases.
Because the WCET estimation for graphs and their sections is the same for the

two hardware architectures, only the worst-case finish times of actors is covered
in the following sections. The basis for the considerations is an arbitrary actor 𝑎
which is executed on a tile 𝑡𝑥. To cover the general case, 𝑎 only depends on the
results of other actors (and not on data already available at the beginning of the
section). An additional assumption that 𝑎 is not an initial actor in the schedule
and its worst-case execution time is 𝑊𝑎. The following section describes some
prerequisites regarding the considered hardware architecture before the actual
execution of actors is discussed.

8.2.1 Additional Assumptions
To specify a formula for the estimation of actor worst-case finish times on the
NoC-based architecture, some additional assumptions regarding the hardware
architecture have to be made:

• There are 𝑝 compute tiles and one driver tile available in the system. The
driver tile is denoted with 𝑡0 and the compute tiles with 𝑡1, … , 𝑡𝑝.

• Tile-local memories have a limited size, and thus the number of partitions
which can be stored simultaneously is limited.

• The time it takes to transmit 𝑥 bytes of data from tile 𝑡𝑖 to 𝑡𝑗 in the worst case
is 𝐷𝑥𝑖,𝑗. For the driver tile, data transfers always involve the off-chip memory.
Further, the size of partitions sent over the NoC is bound in the RTE. Thus,
the time to transfer such a partition can be denoted with 𝐷𝑖,𝑗. In the following
sections, 𝐷𝑖,𝑗 is always used to estimate data transfers since it simplifies the
formulas and each occurrence can be easily replaced by a suitable 𝐷𝑥𝑖,𝑗 in a
concrete analysis.

• Since control and status messages are small, one worst-case time is used in the
following sections for all messages regardless of their size. The time it takes
to transfer a message from 𝑡𝑖 to 𝑡𝑗 in the worst case is denoted with 𝑀𝑖,𝑗.
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• There is only one active data transfer per tile at a time. Additionally, a tile can
initiate one message transfer at a time but receive arbitrary many messages
concurrently. Furthermore, the NoC itself does not limit the overall number
of concurrent transfers.

• An upper bound for the execution time of sequential code between two trans-
fers or between a transfer and an actor execution on tile 𝑡𝑖 is 𝑅𝑖.

For a better overview, Table 8.1 lists all variables introduced so far and describes
their meaning. The table also contains all symbols which will become relevant in
the following sections.

Table 8.1: Overview of all symbols used in this chapter

Symbol Meaning𝑎, 𝑑 actors𝑔 graphs𝑠 sections𝑊𝑥 WCET of 𝑥, where 𝑥 may refer to a graph, section, actor or sequential
code outside of sections𝐹𝑎 worst-case finish time of actor 𝑎𝑆𝑎 worst-case start time of actor 𝑎

Pred𝑎 predecessor actors of 𝑎 including the predecessor from the schedule (if
existent)𝑡 tiles in the NoC-based system, 𝑡0 is the driver𝐷𝑖,𝑗 upper bound for the time it takes to transfer partition data from 𝑡𝑖 to 𝑡𝑗𝑀𝑖,𝑗 upper bound for the time it takes to transfer a small message from 𝑡𝑖 to 𝑡𝑗𝑅𝑖 upper bound for sequential code between two transfers or a transfer and
an actor execution on 𝑡𝑖𝑃𝑖,𝑗 upper bound for the time it takes to transfer a partition (including
metadata, actual partition data and acknowledgements) from 𝑡𝑖 to 𝑡𝑗Γ𝑎 upper bound for the time it takes to transfer all partitions required for the
execution of actor 𝑎 to the proper tile including partition displacementsΦ𝑎 upper bound for the potential delay of a partition transfer required for
the execution of actor 𝑎 due to actor executions on another compute tileΨ upper bound for the potential delay of a partition transfer due to an actor
execution on the driver tileΩ𝑎 upper bound for time it takes to transfer actor 𝑎 from the driver to the
compute tile including all potential delays
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8.2.2 NoC Transfers

The protocol for transferring partition data is always initiated by the driver tile since
it is the only tile that is able to check the graph and schedule. Partition transfers take
place in several ways. The first possibility is a partition transfer from the off-chip
memory to the local memory of a tile 𝑡𝑥 (with 𝑥 ≠ 0). In this case, the driver first
starts a data transfer from the off-chip memory to the tile’s local memory. After
the data transfer is complete, the driver tile sends a notification message containing
metadata, for example the partition size, to the compute tile. Therefore, an upper
bound for the times this procedure takes in total is:

𝑃0,𝑥 = 𝐷0,𝑥 + 𝑅0 + 𝑀0,𝑥
Besides data transfers between the off-chip memory and local memory, there are

also transfers between two local memories. A data transfer between two tile-local
memories is initiated by the compute tile after receiving a message from the driver
about the exact location of the required partition. Thus, three transfers are required
in total, namely amessage transfer from the driver to the compute tile, a data transfer
between two local memories and the transfer of a short acknowledgement message
back to the driver tile after the data transfer is complete. If 𝑡𝑦 is the compute tile on
which the desired partition is available, an estimation for the time is:

𝑃𝑦,𝑥 = 𝑀0,𝑥 + 𝑅𝑥 + 𝐷𝑦,𝑥 + 𝑅𝑥 + 𝑀𝑥,0
Lastly, there are data transfers from tile-local memories to the off-chip memory.

Depending on whether the transferred partition is supposed to be removed from
the local memory or it should remain there as a copy, the estimation is different. In
the latter case the communication protocol is easier since there are no notification
messages required and 𝐷𝑥,0 alone is suitable as an upper bound. The other case
requires an additional message that tells the tile to delete the partition. Hence, in
this case the estimation is:

𝑃𝑥,0 = 𝐷𝑥,0 + 𝑅0 + 𝑀0,𝑥
However, not all message transfers in graph executions are related to a partition

transfer. This includes, for example, messages about finished actor executions or
delete messages for partitions which are already present in the off-chip memory.
Further, a message is required to transfer the relevant information about an actor
from the driver to a compute tile. A suitable estimation for these transfers is either𝑀𝑥,0 or 𝑀0,𝑥 depending on the direction.
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8.2.3 Actor Execution on Compute Tiles
The general assumption for this section is that in order to execute 𝑎 on 𝑡𝑥 𝑙 partitions
have to be removed from the tile-localmemory and 𝑘 partitions have to be transferred
to the tile-local memory. Summing up the estimation for all transfers leads to total
communication costs of:

Γ𝑎 = ∑𝑖∈𝑇 (𝑃𝑖,𝑥 + 𝑅0) + 𝑙 (𝑃𝑥,0 + 𝑅0) ,
where 𝑇 is a multiset containing 𝑘 tile indices, one for each required partition in the
memory of the respective tile. The left part is an estimation for partition transfers
into the local memory of 𝑡𝑥, while the right part covers partition displacements.

It is difficult to determine when the required partition transfers may start exactly.
A generally suitable estimation is the worst-case start time described in Section 8.1.3
since all required partitions have been computed at this time:

𝑆𝑎 = max𝑑∈Pred𝑎 𝐹𝑑
In practice, some partitions may be transferred earlier in case the data is available
and 𝑎’s predecessor according to the schedule has already been executed.

Tile 𝑡𝑥, however, is likely not the only tile with a pending transfer. Because of the
assumption that the NoC interface does not support parallel data transfers, addingΓ𝑎 to 𝑆𝑎 is not enough. In the proposed RTE, the driver treats all actors equally
regardless of the tile they are running on, and data transfers are initiated in the
order in which they become pending. In the worst-case all compute tiles (except 𝑡𝑥)
have a pending transfer between the local memory of 𝑡𝑥 or the off-chip memory and
their own local memory, so 𝑡𝑥 may have to wait for the transfers of all other tiles to
finish. Altogether, a general upper bound for this kind of delay is:

Φ𝑎 = 𝑝∑𝑖=1,𝑖≠𝑥 (max (𝑃𝑥,𝑖, 𝑃0,𝑖) + 𝑅0)
The value of the maximum in this formula depends on whether transfers between
two tile-local memories or between a tile-local memory and the off-chip memory
are slower on the hardware architecture. It should be noted that the two formulas
above represent the absolute worst case. If the concrete graph and schedule are
available, there is a chance that delays can be predicted more accurately, and thus
the overestimation is less drastic. It is also important to note that such delays may
occur for each transfer required for the execution of 𝑎.
Another factor which has to be considered are actors executed on the driver

tile and the potentially associated transfers. Thus, each transfer required for the
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execution of 𝑎 could be delayed by either a transfer or an actual actor execution on
the driver tile. If both cases should be considered, a possible upper bound for the
delay is: Ψ = max (𝑊𝑑, 𝐷𝑦,0) + 𝑅0,
where 𝑑 is the actor in the driver’s schedule with the longest WCET and 𝑦 is the
index of the tile with the lowest data transfer rate.

Lastly, amessage from the driver with details about 𝑎 to initiate the actor execution
and a notification message afterwards is required. Again, the first message may be
delayed by transfers of other tiles. Only message transfers must be considered in
this case because of the assumption that each tile is able to send a message even if a
data transfer is ongoing. Therefore, one message transfer for each other tile has to
be taken into account in the worst case. In combination with the actual execution of𝑎, estimated by 𝑊𝑎, this leads to:

Ω𝑎 = 𝑝∑𝑖=1,𝑖≠𝑥 (𝑀0,𝑖 + 𝑅0) + 𝑀0,𝑥 + 𝑅𝑥 + 𝑊𝑎 + 𝑅𝑥 + 𝑀𝑥,0.
Considering all the factors discussed above, a general upper bound for the finish
time of actor 𝑎 (which is executed on tile 𝑡𝑥) is:𝐹𝑎 = 𝑆𝑎 + Γ𝑎 + Ω𝑎 + (𝑘 + 𝑙) (Φ𝑎 + Ψ)
8.2.4 Actor Execution on the Driver Tile
Actor executions on the driver tile can be estimated similarly. The biggest difference
is of course that the driver tile actor executions cannot delay each other and thus only
transfers between the off-chip memory and other tiles must be considered. Further,
the driver tile has direct access to the off-chip memory so that no displacements
are required and thus no displacement-related delays can occur. However, an actor
execution itself can be delayed by data transfers with compute tiles. Hence, the
resulting formula is 𝐹𝑎 = 𝑆𝑎 + Γ𝑎 + 𝑊𝑎 + (𝑘 + 1) Φ𝑎,
with a slightly modified formula for Φ𝑎, where all compute tiles are considered,
and a slightly modified Γ𝑎 without displacements:

Φ𝑎 = 𝑝∑𝑖=1 (𝑃0,𝑖 + 𝑅0)
Γ𝑎 = ∑𝑖∈𝑇 (𝑃𝑖,0 + 𝑅0) ,
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where 𝑇 is a multiset consisting of one tile index for each required partition in the
memory of the respective tile.

8.2.5 Worst-Case Finish Time Example
To illustrate the formulas from the previous sections, the example graph from
Figure 8.2 is revisited, and the worst-case finish time of actor 𝑎6 is determined.
The formulas specified in the previous sections require some values to be known.
Figure 8.3 provides an overview of all important values. For convenience, the figure
also shows the dependencies between actors and the schedule which are the same
as in Figure 8.2. The only difference is that Figure 8.3 explicitly shows that the driver
tile 𝑡0 does not execute actors from this graph section.
Actor 𝑎6 is executed on tile 𝑡2 and has two predecessors, 𝑎4 and 𝑎5. The latter is

also executed on 𝑡2, while the former is executed on 𝑡1, requiring the result of 𝑎4
to be transferred from 𝑡1 to 𝑡2. In this example, it assumed that there is enough
memory available on 𝑡2 for not only this partition but also the result of 𝑎6 so that no
partition has to be moved to the driver tile. The time to transfer one partition from𝑡1 to 𝑡2 is:

𝑃1,2 = 𝑀0,2 + 𝑅2 + 𝐷1,2 + 𝑅2 + 𝑀2,0 = 1 + 1 + 4 + 1 + 1 = 8
Since only one partition has to be transferred and no partitions have to be displaced
(𝑙 = 0), the computation of Γ𝑎6 is quite short:

Γ𝑎6 = 𝑃1,2 + 𝑅0 = 8 + 1 = 9
As described in previous sections, Γ𝑎6 represents an upper bound for the total transfer
costs required for the execution of 𝑎. Due to the constraints given by the assumed
architecture, transfers related to other actor executions might cause a delay. In this
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𝑎8 𝑡2
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𝑎2 𝑎5 𝑎6 𝑎8
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Variable Value𝐹𝑎4 36𝐹𝑎5 32𝑊𝑎6 15𝐷𝑖,𝑗 4𝑀𝑖,𝑗 1𝑅𝑖 1𝑖, 𝑗 ∈ {0, 1, 2}
Figure 8.3: Example section (excluding data nodes) with schedule and overview of

values required to compute 𝐹𝑎6
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example there is one possible scenario that could cause such a delay. Tile 𝑡1 might
need to move a partition to the off-chip memory in order to make space for the result
of actor 𝑎3 because the memory may contain partitions from previous sections. For
the purpose of a more detailed example, let this be the case. The partition transfer
between 𝑡0 and 𝑡1 occupies the NoC interface of 𝑡1 so that the partition transfer from𝑡1 to 𝑡2 is delayed. Hence, the delay value for this actor is:

Φ𝑎6 = 𝑃1,0 + 𝑅0 = 𝐷1,0 + 𝑅0 + 𝑀0,1 + 𝑅0 = 4 + 1 + 1 + 1 = 7
The second delay value Ψ which is related to actor executions on the driver tile is
irrelevant in this example since the driver’s schedule is empty. Lastly, we need to
determine an upper bound for the transfer of 𝑎6 itself. In the assumed architecture
a tile is able to start a message transfer, although a data transfer is ongoing. Thus,
the transfer of 𝑎6 from 𝑡0 to 𝑡2 may be delayed only by another message transfer, for
example the transfer of actor 𝑎3 from 𝑡0 to 𝑡1. Along with the actual actor execution
and the required transfers, this results in:

Ω𝑎6 = 𝑀0,1 + 𝑅0 + 𝑀0,2 + 𝑅2 + 𝑊𝑎6 + 𝑅2 + 𝑀2,0 = 1 + 1 + 1 + 1 + 15 + 1 + 1 = 21
Summing up all values and adding the maximum worst-case finish times of the
predecessors gives the desired upper bound for the worst-case finish time of 𝑎6:

𝐹𝑎6 = 𝐹𝑎4 + Γ𝑎6 + Ω𝑎6 + Φ𝑎6 = 36 + 9 + 21 + 7 = 73
8.3 Redundant Dataflow Execution

Since the proposed RTE supports different redundancy configurations, each section
must be analyzed multiple times. For shared-memory architectures where no
transfers have to be considered, estimations for all configurations can be determined
as described in Section 8.1. The only aspect that has to be taken into account is
whether the RTE is configured to operate in optimistic or pessimistic redundancy
mode (see Section 6.2.8). In pessimistic mode, a PE has to wait until the result of
its previously executed actor has been verified. This leads to an additional implicit
dependency for some actors. If the RTE is configured to operate optimistically, there
are no additional dependencies.

On the NoC-based architecture each redundancy configuration requires a differ-
ent number of transfers. The next two sections therefore focus on redundant section
executions on this architecture.
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8.3.1 Redundant Actor Execution on the Same Tile
Estimations for redundant actor executions on the same tile are similar to the stan-
dard case as long as no re-execution is required. But since two or three unoccupied
partition slots in the tile-local memory are necessary to store the results, there is a
high chance that more data transfers take place due to additional displacements.
A small difference is that the second and possibly third actor execution follow im-
mediately after the first one with no intermittent transfers in between. This also
applies to the comparison actor. Only if the comparison was successful, a message
about the completed actor execution is sent to the driver tile. Thus, the combination
of two or three redundant actors and their associated comparison actor could be
considered as single piece of code with an appropriate WCET estimation in the
analysis.

8.3.2 Redundant Actor Execution on Different Tiles
The second type of redundancy involves redundant actor executions on different
tiles. As long as no errors occur, an upper bound for the worst-case finish time
of redundant actors can be determined similarly to that of non-redundant actors.
It is important to consider potential optimizations, in particular those regarding
comparison actors. Such an approach was described in Section 6.2.8. With this opti-
mization, comparison actors must be treated specially in an analysis because their
execution corresponds to a single comparison of checksums on the driver. Compute
tiles include the checksums in the payload of messages sent to the driver after a
finished actor execution. As a result, the execution of comparison actors does not
require any previous data transfers. Furthermore, since checksums are computed
immediately after the result of an actor is available, checksum computations must
be included in the WCET estimation of actor executions on compute tiles.

8.3.3 Actor Re-Executions
In case an error is detected, redundant actors have to be re-executed. An analysis
has to distinguish between the different redundancy configurations. For redundant
executions on the same PE, re-executions are transparent to other PEs and can be
treated as delays in the estimation on an actor. This is also possible on the clustered
architecture since a tile does not initiate a transfer as long as all results differ.
In case of redundancy over different PEs, the RTE supports two different exe-

cution modes. The pessimistic mode was designed with the intention to keep the
overestimation for re-executions smaller. On shared-memory architectures, the
re-execution can be treated as a delay on all PEs involved in the actor execution. On
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the clustered architecture, additional message transfers are requiredwhen the driver
is informed by another tile about a failed comparison or has executed the failed
comparison itself. In this case, the driver needs to send messages to all involved
tiles in order to initiate the deletion of the invalid data and the re-execution. Other
transfers are not necessary since all partitions required for the actor executions are
still available in the tile-local memories. In optimistic mode, however, PEs proceed
with other (unrelated) actors even though their previous result was not yet verified.
This makes an analysis more complex because re-executions may be delayed by
an actor execution. On the clustered architecture, additional data transfers may
be required because partitions may have already been displaced from the local
memories when the comparison is complete. This might be the case for all tiles
involved in the redundant actor execution. Furthermore, based on the schedule, it
might be difficult to estimate how far a tile has proceeded in its schedule. In the
worst-case it must be assumed that all required partitions have been replaced.

Regardless of the redundancy configuration, the WCET estimation of a section
becomes more expensive if one or more arbitrary re-executions are considered.
Based on the schedule it can be difficult to determine the actor whose re-execution
prolongs the section execution the most. If a section contains 𝑥 actors, 𝑥 section
WCETs must be computed in the worst case to find this actor. More re-executions
of arbitrary actors may further increase the number of WCETs that have to be
computed in order to find the combination of actors whose re-executions cause
the highest delay. For 𝑦 re-executions the number of possible combinations and
therefore an upper bound for the number of WCETs is 𝑥𝑦. In practice, if the number
of combinations is too large, a possible approach is to split a graph into smaller
sections. This leads to more sections, but it reduces the number of combinations
significantly.

8.3.4 Changing the Redundancy Configuration at Runtime
Adding redundancy changes to the analysis is rather straightforward. Redundancy
changes can only occur between two graph sections, and so the corresponding
WCET estimations can be determined regardless of section WCETs. Changing the
redundancy of a single actor takes only a small amount of time so that a single
WCET for the different types of actors and redundancy configurations is sufficient.
Because redundancy changes are applied to each actor in a section sequentially, the
WCET can be computed by multiplying the WCET of a single redundancy change
with the number of actors in the section.

Redundancy changes during runtime have an impact on the execution of a
dataflow graph because they add or remove redundant actors and comparison
actors. This has to be considered in the WCET analysis. In the worst-case, the
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redundancy configuration is changed for each section to the one with the largest
WCET. Based on the requirements it might be beneficial to restrict the number of
redundancy changes in the analysis to a realistic value in order to get a tighter upper
bound for the WCET of a graph.

8.4 Permanent Faults
Chips contain different components which can potentially show a malfunction.
The previous chapter described possible strategies to handle permanent faults
in PEs, i.e. failing cores in case of shared-memory systems and compute tiles in
case of a clustered architecture. Section 8.4.1 briefly discusses the influence of
these procedures on the analyzability of graph executions. For the latter type of
architecture, the failure of a single core does not lead to an entirely broken tile.
Therefore, Section 8.4.2 provides some additional information about the influence of
faulty cores on an analysis. Other components, however, are essential for a proper
functioning of the tile. A defect in the tile’s NoC interface or local memory, for
instance, can make the entire tile unusable.
The consideration of malfunctioning components has a major influence on the

analysis since it has a permanent impact on the execution of graphs. On hetero-
geneous architectures, the number of possible executions increases sharply when
multiple permanent faults are taken into account. In contrast, on mostly homoge-
neous architectures like the two architectures described in this thesis where PEs are
interchangeable, the number of combinations which have to be considered is more
limited, and thus the analysis is less expensive.

8.4.1 Malfunctioning Processing Elements
Section 7.4 described different strategies to continue with dataflow executions in
case a PE becomes unusable. On the NoC-based architecture, there is a chance
that the local memory of a faulty tile is not accessible anymore and its content is
lost. To simplify the analysis, it is beneficial to always restart the current section
entirely whenever a PE becomes faulty, regardless of the hardware architecture.
This requires to keep all partitions which are between two or more sections in the
off-chip (or shared memory) memory as long as dependent sections have not been
executed. Otherwise, it would be necessary to re-execute the entire graph in case
partition data was lost.
To add the notion of faulty PEs to an analysis, two additional factors have to

be considered, namely the reconfiguration and re-executing of the current section.
Based on the strategy (see Section 7.4), subsequent sections might be executed
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with altered schedules. This applies to all strategies except for spare PEs. In case
of rescheduling at runtime and altering schedules the outcome of the respective
strategy has to be determined in the analysis. Although in contrast to spare schedules
the effort is significantly higher, both approaches are deterministic and an analysis
is possible. If spare PEs or schedules are chosen, it is sufficient to add a minimal
additional reconfiguration time to the WCET estimation.

On the clustered architecture, restarting a section additionally involves a memory
reset on each compute tile. To perform a memory reset, a message from the driver
is necessary. Thus, the reconfiguration WCET has to include an estimation for the
respective broadcast. After the reset, the content of each tile-local memory from the
first beginning of the section has to be restored. These additional transfers must
also be added to the WCET estimation.

8.4.2 Malfunctioning Cores on the NoC-based Architecture
On the considered clustered architecture, each tile contains multiple homogeneous
cores. Therefore, if one of the cores becomes faulty, the affected tile is able to execute
actors with decreased performance. In this case, the current schedule can still be
used, and a restart of the section is not required. The analysis only has to consider
the potential restart of the currently executed actor.
Another aspect to take into account is that the impact of a reduced number of

cores depends on the type of actor. Element-wise actors are executed on the tile in a
data-parallel fashion, and elements are split as evenly as possible among the cores.
For partition-wise actors it is up to the user to define the parallelism. In the best case,
all other cores can take over some of the faulty core’s work, and the performance
drop is linear, while in the worst case the share of work cannot be divided, and one
of the remaining cores has to handle it entirely.

8.5 Conclusion on the Analyzability of Graph
Executions

As the previous sections described, it is possible to compute WCETs for standard
graph executions, redundant graph executions and error cases. For the discussed
cases, the RTE’s design ensures that each functional PE is always able to make
progress in a predictable amount of time. If the RTE is able to identify permanent
faults, it is also possible to compute an upper bound in case a PE becomes faulty. The
more faults and redundancy changes are considered, the more costly the analysis
of a graph execution becomes. Thus, for large graphs it might be necessary to make
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a compromise about which kinds of dynamic events are considered in the analysis
and to which degree.
The analysis of an application executed on a NoC-based architecture is more

complex because the different types of transfers must be considered. Since the
displacement of partitions from tile-local memories is deterministic, it is possible to
identify the memory content after each actor execution and therefore to determine
the required transfers at design time. To simplify the analysis, previous sections
made various assumptions regarding transfers. Real hardware architectures are
often less restrictive and may allow, for example, multiple concurrent data transfers
involving the off-chip memory. This can help to reduce the delays that have to be
considered in the analysis so that the general overestimation is reduced.

8.6 Summary
In this chapter, the analyzability of dataflow executions was discussed. The WCET
computation for a whole graph execution can be broken down to the WCET com-
putation of graph sections and sequential code executed between sections. To
determine the WCET of a section, the worst-case finish time of each actor in the
section has to be computed. Two main factors must be taken into account here. First,
since most actors depend on the results of other actors, the worst-case finish time
of preceding actors has to be considered in the analysis. Additional dependencies
result from the order of actors in the schedule. The second factor is the actual actor
execution which is expressed in the analysis via the actor’s WCET.

On the clustered architecture, the analysis must also consider data and message
transfers. The number of transfers of each type that are required for an actor
execution can be determined from the graph and schedule. In this regard, there may
also be delays due to restrictions in the hardware, for example a limited amount of
concurrent transfers.

Besides standard executions, it is also possible to analyze graph executions under
events like redundancy changes and faults. There is no real upper bound regarding
the number of events that could be considered in the analysis of an application.
However, if the number of redundancy changes and faults is too large, the analysis
may become unfeasible in practice.
The next chapter shows how the RTE’s reference implementation performs on

different hardware architectures with different redundancy configurations for the
three example applications described in Chapter 4.
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Chapter 4 described three exemplary RAPID programs which represent commonly
used algorithms. In this chapter, the three applications are used to investigate the
performance of the RTE’s reference implementation. A characteristic of these appli-
cations is that they provide the necessary parallelism for distributed architectures
and manycore processors. Thus, the applications themselves are not a limiting
factor, and the influence of the runtime environment (RTE) on the execution time
can be determined more precisely. As described in previous chapters, the RTE is
able to execute graphs in many possible ways. The goal of this chapter is to cover
all features of the RTE. However, the following sections will not provide results for
all possible RTE configurations since the number of combinations is too large for
the scope of this thesis.
Section 9.1 first covers the two hardware architectures used in the evaluation

and provides information on their internal structure as well as how the RTE and
benchmark applications were compiled. This is followed by additional details
on the three benchmark applications. Dataflow execution times for a selection of
non-redundant configurations are presented in Section 9.2. The results show the
influence of different partitionings, varying numbers of graph sections and the
supported scheduling techniques on the execution time. How the performance of
graph executions under the different redundancy configurations compares to these
results is the topic of Section 9.3. After that, Section 9.4 puts the execution time of
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graph construction and scheduling on the two architectures into perspective, and
Section 9.5 provides results of experiments related to the RTE’s adaptive redundancy
features.

9.1 Evaluation Hardware and Application Overview
The proposed RTE was evaluated on two different hardware architectures which
match the abstract hardware architectures described in Chapter 6. More precisely,
benchmark applications were run on a standard x86 multicore processor and the
Kalray Bostan massively parallel processor array (MPPA). The benchmark appli-
cations that were used in the course of the evaluation are RAPID programs for
Cannon’s algorithm, the Cooley-Tukey algorithm and bitonic sort.

9.1.1 Shared-Memory Architecture
The shared-memory system used in the evaluationwas a standard x86 personal com-
puter equippedwith an Intel Core i7-7700 CPU and 32 GB ofmemory. The operating
system running on the machine was based on GNU/Linux with Kernel version
5.8. All benchmarks and the RTE were compiled with GCC 10.2.0 and with all
optimizations available for the processor (compiler flags -O3 and -march=native).
The minimum required language standard to compile the RTE’s reference imple-
mentation is C++14, but since the compiler on this architecture supports more
recent standards, the RTE and applications were compiled according to the C++17
standard (-std=c++17).
The x86 RTE implementation features all optimizations described in previous

chapters and is based on POSIX threads. In the initialization routine, the RTE starts
a fixed number of threads which is configurable before compilation. For the rest of
the RTE’s runtime, threads are thenmaintained in a thread pool. Since the processor
in the evaluation hardware consists of four cores with Hyper-Threading (Intel’s
simultaneous multithreading implementation), the RTE was compiled with eight
threads for all experiments.

9.1.2 Clustered Architecture
To evaluate the execution of dataflow graphs on a clustered manycore architecture,
a Kalray Bostan MPPA [Sai+15] was utilized. The internal structure of the MPPA
is shown in Figure 9.1. This manycore processor consists of sixteen compute tiles
and two I/O tiles. Each compute tile consists of sixteen compute cores and one
resource management (RM) core which all share the same very long instruction
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Figure 9.1: Kalray Bostan processor architecture (left part of the figure from
[Sai+15], slightly modified)

word (VLIW) core architecture. Further, all cores on the tile are able to access a
multi-banked local static memory (SMEM) with a capacity of 2 MB. Each of the I/O
tiles consists of two quad-core CPUs, a shared SMEM, PCIe and Ethernet interfaces
as well as a DDR3 memory controller. DDR memories in the MPPA used for this
evaluation had a capacity of 2 GB. One quad-core in the I/O tile has direct access to
the respective DDR memory. To run any kind of computation on a tile other than
the driver, data has to be transferred from the DDR memory to the respective local
memory over the network-on-chip (NoC). The topology of the NoC is a 2D torus
consisting of 32 nodes. Each compute tile is connected to one node and each I/O
tile to eight nodes. Four of these connections per I/O tile can be used to transfer
data between the DDR memory and local memories.

It is often stated (for example in [Sai+15]) that the Kalray Bostan MPPA usually
operates between 400 MHz and 800 MHz. However, the development board used in
the evaluation did not allow a stable execution above 540 MHz, not even for small
dataflow graphs. To ensure stability, all benchmarks were run at 500 MHz. A few
benchmarks were additionally run at 400 MHz to observe the influence of different
clock speeds and for the purpose of comparability with Kalray’s OpenCL framework.
For the evaluation, one I/O tile and all sixteen compute tiles were utilized. The
I/O tile functioned as the driver and executed the main program. In contrast to
the shared-memory implementation, the RTE for the Kalray MPPA runs bare metal
without an operating system. Furthermore, all optimizations described in previous
chapters were implemented. The benchmark programs and the RTE were compiled
with a Kalray-specific GCC 4.9.4 which supports the required C++14 features to
compile the RTE (compiler flag -std=c++1y). The optimization level was set to -O3.

157



9 Evaluation

9.1.3 Benchmark Applications
The benchmark applications that were used in the evaluation are implementations
of Cannon’s algorithm, a method for calculating the matrix multiplication, the
Cooley-Tukey fast Fourier transform (FFT) algorithm and bitonic sort. Details on
how the three algorithms can be expressed in the RAPID programming model were
described in Section 4.6. Each benchmark was implemented to run on datasets of
different sizes and with configurable partitionings. The three applications were
specifically chosen for two reasons. On the one hand, all three benchmarks are
based on algorithms which are commonly used in practice. On the other hand the
applications differ in their computational complexity and focus on different types
of instructions, namely integer arithmetic, floating-point arithmetic and load/store
instructions.

Each configuration that was evaluated was run ten times, and input values were
computed randomly for each benchmark execution. RAPID programs for Cannon’s
algorithm and bitonic sort are based on integers. The Coley-Tukey algorithm im-
plementation, in contrast, uses complex numbers where the real and imaginary
part are double-precision floating-point numbers. It should also be noted that there
are some restrictions regarding the input datasets of the three benchmark applica-
tions. Cannon’s algorithm is only compatible with square matrices, and the FFT
and bitonic sort implementations require input vectors with a size equal to a power
of two.
To measure the execution time, the steady_clock from the C++ chrono library

was used. This clock is recommended for measuring time intervals since it is
monotonic, i.e. its value cannot decrease as physical time moves forward, and the
time between ticks is constant. The resolution of this clock depends on the hardware
architecture and C++ library implementation. For the two hardware architecture
used in the evaluation, the resolution is one nanosecond.

9.2 Non-Redundant Dataflow Execution
This section focuses on non-redundant graph executions and shows the influence of
different RTE configurations and graph properties. Section 9.2.1 provides runtime
measurements for dataflow executions of non-sectioned graphs on the two hardware
architectures. The experimental results from this section represent the baseline to
which the execution times of other configurations are compared. Therefore, this
section covers all benchmarks, input sizes and hardware architectures. But since
the number of possible combinations is large, most subsequent sections focus on a
particular benchmark or input size.
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9.2.1 Standard Graph Executions

In this section, execution times for the three benchmark applications and two hard-
ware architectures are provided. All executions followed a fixed schedule which
was computed by the RTE’s implementation of the heterogeneous earliest finish
time (HEFT) heuristic. It is important to note that all provided values only include
the actual graph execution. Graph construction and scheduling are not part of the
execution times. How long these two procedures take is the topic of Section 9.4.
To put the results in a general context, all benchmarks were also implemented

in a commonly used computing framework which is available on the respective
platform. On the x86 architecture, the three dataflow applications are compared to
OpenMPversions of the algorithms. These reference benchmarkswere implemented
as the standard iterative versions of matrix multiplication, FFT and bitonic sort,
with the outermost suitable loop being executed in parallel. In order to obtain
reference execution times on the Kalray MPPA, Kalray’s OpenCL framework was
used. For a fair comparison, the data was arranged in a way that is advantageous for
Kalray’s OpenCL paging mechanism. In case of the OpenCL matrix multiplication
benchmark, thematriceswere enlarged slightly (e.g. from 2000×2000 to 2048×2048),
and the second matrix was transposed so that memory pages contain full rows or
columns. The OpenCL implementation of this benchmark is actually not completely
fair since the preparation of input matrices is done by the host system while the
dataflow matrix multiplication benchmark prepares the input matrices itself. In the
experiments, the paging mechanism of Kalray’s OpenCL implementation did not
handle the transposition of the second matrix very well, and thus including it in
the benchmark would make the comparison less meaningful.
Execution times of the benchmarks on the x86 platform are shown in Figure 9.2.

To eliminate rare cases of excessively large or small execution times, benchmarks
were run ten times for each input size and the graphs show the respective average
values. The figure shows that the execution of RAPID dataflow graphs is faster
than the execution of the respective OpenMP implementation for two of the three
benchmarks. In this regard it is important to note that the number of partitions
into which the input data is divided matters, and for each execution an optimal
partitioning with regard to the size of the input data was chosen. An advantage
of small partitions is that they fit in the data cache. However, dividing data into
many small partitions leads to large dataflow graphs consisting of short actors. The
drawback of such short actors is that the overhead introduced by the RTE is more
significant. Section 9.2.2 provides more information on this topic.
Bitonic sort is the only benchmark where the execution of the dataflow graph

takes longer than the execution of the OpenMP program. Amajor reason for this lies
in the design of the programming and execution model. To re-execute a redundant
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Figure 9.2: Execution times of benchmarks on x86

actor in case of an error, the actor’s inputs must still be available. As a consequence,
actors are not able to work in-place on their input data. With regard to bitonic
sorting, this means that an actor always has to copy all elements from the input
partition to the output partition. The OpenMP program, on the other hand, has to
write less data since two elements can often stay in place after they were compared.

Experimental results for the Kalray MPPA are shown in Figure 9.3. Similar to x86,
to achieve the best performance, partition sizes were chosen as close to the size of
partitionmemory slots as possible. For this configuration, all benchmark application
were executedwith 400MHz and 500MHz since the Kalray OpenCL documentation
does not specify at which frequency programs are executed (only that themaximum
OpenCL frequency is 600 MHz) or how to configure the hardware to execute an
OpenCL program with the desired clock frequency. It is most likely that OpenCl
programs are executed at the default frequency, i.e. 400 MHz.

The OpenCL benchmarks outperforms the dataflow RTE consistently in the FFT
benchmark, for small matrices in the matrix multiplication benchmark and for large
input vectors in the bitonic sort benchmarks. There are multiple reasons for these
performance differences, mostly related to the RTE’s redundancy mechanism. One
reason is that data is immutable in the dataflow execution model and actors only
create new data. This is an essential aspect of the redundancy mechanism and
allows the system to re-execute actors in case of a faulty execution. The OpenCL FFT
and bitonic sort benchmark applications, however, work in-place. Bitonic sort, for
example, benefits from an in-place execution as it compares pairs of elements and
only needs to swap them when they are in the wrong order. A second reason is that,
in favor of easier rollbacks, dataflow actors are limited one output. This reduces the
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Figure 9.3: Execution times of benchmarks on Kalray

performance of the dataflow FFT benchmark since in favor of a smaller dataflow
graph and easier scheduling, some computation is repeated. Another factor lies in
the use of fixed schedules. The RTE’s HEFT implementation estimates the execution
time of actors and data transfer times according to user-defined measurement
functions and the amount of processed or transferred data. Especially transfer
times are difficult to predict accurately since the exact timing of transfers at runtime
can vary, so it is difficult to determine offline which transfers will occur in parallel.
Section 9.2.4 shows that using work stealing instead of fixed schedules can lead to
increased performance in some cases.
Compared to the x86 architecture, execution times on the Kalray MPA are con-

sistently higher. However, these results must be put into perspective since the two
architectures are typically used in different scenarios. Based on the clock frequency,
the Kalray MPPA has a typical power consumption of 10-20W [Sai+15] and targets
embedded applications, while the Intel CPUwas primarily designed for use in desk-
top computers. The algorithm which performs the worst on the MPPA compared
to the x86 architecture is FFT. In this application, the execution time is roughly ten
times as high as on the x86 processor. Without detailed information about processor
internals it is difficult to determine the exact reason for this. Since the implementa-
tions of Cannon’s algorithm and bitonic sort used in the evaluation are based on
integer arithmetic, it is possible that the high amount of floating-point computations
in the FFT benchmark is a significant factor. Further, the experiments of this and
following sections suggest that non-sequential direct accesses to the DDR memory
are quite slow on the Kalray architecture. However, such accesses are required to
reorder the data elements before the actual FFT computation can take place. While
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the matrix multiplication also requires a reordering of the data elements, the impact
is significantly lower due to the higher computational complexity of the algorithm.
In contrast to the respective graph in Figure 9.2, the FFT graph for the Kalray

MPPA only provides execution times for input vectors with up to 224 elements. The
reason for this is that the RTE utilizes only one of the two I/O tiles and the 2 GB of
DDR memory are not sufficient for graph executions with larger input vectors.
When comparing the graphs for the two different frequencies, it is noticeable

that increasing the frequency by 25% leads to a reduction in the execution time
by roughly 17% for Cannon’s algorithm, 13% for FFT and 15% for bitonic sort.
Cannon’s algorithm benefits the most from an increased frequency since it is the
most expensive algorithm out of the three with a complexity in 𝑂(𝑛3). This higher
overall complexity directly affects the complexity of individual actors instead of
leading to overly large graphs and the associated runtime overhead. Thus, in
comparison to the other algorithms the influence of actual computation on the
overall execution time is higher.

9.2.2 Impact of Different Partitionings
The previous section already showed that the number of partitions the input data
is split into has an influence on the execution time of applications. This section
focuses on the influence of different partitionings on the execution time for the
Cooley-Tukey FFT algorithm. The input vectors that were used for the benchmark
execution on x86 and Kalray consisted of 225 and 223 elements, respectively. The
measured execution times are shown in Figure 9.4. As before, this section only
considers graph execution, and all results represent average execution times.
For the x86 shared-memory architecture, the optimal number of partitions is

512. Since each complex number in the input vector occupies 16 bytes of memory
(two 64 bit floating-point numbers), this division leads to partitions with a size
of 1 MB. Most actors in the graph are zipmap_partitions actors which read two
partitions of this size, and there are always two such actors which process the same
data and can be executed concurrently by two different cores. In the best case, the
four physical cores of the Intel Core i7-7700 process the data of four partitions, i.e.
4 MB of data, at a time. Adding the data created by the four concurrently executed
actors leads to 8 MB in total, which is also the size of the shared L3 cache. Therefore,
this partitioning allows the system to efficiently use the processor cache. For fewer
but larger partitions, the cache cannot be utilized in such an efficient way, and thus
the execution times are much higher. Smaller partitions on the other hand also
allow an efficient use of the cache. However, the more partitions the input vector is
split into, the more actors are required to process these partitions, and the overhead
for navigating through the graph and for the synchronization of cores increases.
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Figure 9.4: Execution times of FFT for different partitionings

Compared to the optimal partitioning, this leads to longer execution times, but the
effect is much less significant than in case of larger partitions.

Figure 9.4 also shows execution times for the Kalray MPPA. In comparison with
x86, the graph for the Kalray MPPA has a different shape. This is a consequence of
the limited memory on the compute tiles. As mentioned in previous chapters, local
memories are divided into fixed slots. For this evaluation, the RTE was configured
so that each local memory contains eight slots with a size of 160 KB each. Therefore,
splitting the input vector into less than 1024 partitions is not possible since the
partitions would be too large. As the graph shows, 1024 is the optimal number of
partitions. In this case, each partition is 128 KB in size. If the input vector is split into
smaller partitions, the graph becomes larger, and more data and message transfers
are required. Further, slots are filled to a lesser degree, and memory in the tile-local
memories is wasted. As a result, overly small partitions affect the execution time
much more than in the shared memory system.

9.2.3 Impact of the Number of Graph Sections
Similar to the partitioning, dividing a graph into multiple sections has an influence
on the execution time. This section provides experimental results for Cannon’s
algorithm. Two 6000×6000 matrices were used as input data on the x86 architecture
and two 4000 × 4000 matrices on the Kalray MPPA. On the x86 architecture, input
matrices were split into 900 and on the Kalray architecture into 400 square blocks.
This leads to graphswith 28803 and 8803 actor nodes in total, respectively (excluding
all the redundant actor nodes created by the RTE). From the 28803 (8803) actors,
two are responsible for rearranging the memory of the input matrices, 1800 (800) for
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splitting them into blocks and one for reordering the elements of the output matrix.
The remaining 27000 (8000) actors are zipmap_partitions actors and perform the
actual computation. These actors were divided evenly into sections.
As mentioned in Section 4.4.2, graph sections can only be specified via the con-

text’s checkpoint function in the RAPID programming model. This way of creating
sections ensures that sectioned graphs are always executable, but the number of
possible sectionings is limited. For the graph considered in this section, the 27000
(8000) zipmap_partitions actors are arranged in 30 (20) layers consisting of 900
(400) actors each. There are no data dependencies between the actors of a layer.
Since each layer is constructed by a zipmap_partitions operation, section bound-
aries can only be between two layers. With this in mind, the graph was divided into
2, 5 and 10 sections consisting of 15 (10), 6 (4) and 3 (2) layers each, respectively.

The results are shown in Figure 9.5. As a reference, execution times for the graph
without a sectioning (which is equal to a graph with one section) are also included
in the figure. For this benchmark, dividing the graph into sections does not lead
to significantly higher execution times. On the x86 architecture, there is no perfor-
mance drop at all. There are two main reason why the execution times are almost
the same. First, the schedules do not have large gaps since actors are homogeneous
and the work can be divided evenly across all processing elements. Second, even
though sections could be scheduled in parallel, the RTE was configured so that
sections are scheduled sequentially. This allows the HEFT scheduling heuristic to
make use of the mapping of previous sections and therefore produce a schedule
which attaches to the previous schedules quite seamlessly.
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Figure 9.5: Execution times of the matrix multiplication benchmark for different
numbers of sections

164



9.2 Non-Redundant Dataflow Execution

9.2.4 Online Scheduling

In addition to the use of fixed schedules, the RTE also supports graph executions
based on work stealing. To compare the performance of such graph executions with
graph executions according to fixed schedules, all three benchmark applications
were additionally executed in online scheduling mode. As before, only the graph
execution times were measured. Figure 9.6 shows the results for the x86 architecture.
In two cases thework stealing approach slightly outperforms the statically computed
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Figure 9.6: Dataflow execution times with fixed schedules (offline) and work steal-
ing (online) on x86
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schedule since cores are not bound to a fixed actor mapping and order, so the cores
can be utilized more efficiently. For Cannon’s algorithm, both approaches lead to
nearly identical execution times.

Results on the Kalray MPPA are different to those on x86 as Figure 9.7 shows. For
Cannon’s algorithm and bitonic sort, the execution times are lower when the RTE
operates in online scheduling mode. The Cooley-Tukey FFT algorithm, however,
shows that there are cases where a statically computed schedule leads to a better
performance. Work stealing does not consider data dependencies and transfers,
which have a big impact on the graph execution time on NoC-based architectures.
Further, the number of stolen actors can also have an influence on the performance
because it is likely that additional transfers are required when a random actor is
stolen from another PE. Table 9.1 shows how many actors are stolen on average for
the three benchmark applications with various input sizes. Because these numbers
alone are not verymeaningful, the table also puts them in relationwith the respective
total number of actors in the graph (excluding the redundant actors created by the
RTE). It is noticeable that the percentage of stolen actors decreases for larger graphs.
In the matrix multiplication benchmark the relative number of stolen actors is the
lowest, with only 0.3% of all actors being stolen for the largest graph, while in the
FFT benchmark it is the highest, with 5.2% for the largest graph.

Table 9.1: Number of stolen actors on the Kalray MPPA

Input Size Partitions Actors in Total Average Stolen Percent

M
at
M
ul

10002 25 178 10.4 5.8%20002 100 1203 31.9 2.7%30002 225 3828 48.8 1.3%40002 400 8803 65.5 0.7%50002 625 16878 82.7 0.5%60002 900 28803 91.6 0.3%

FF
T

220 128 1154 331.8 28.8%221 256 2562 459.0 17.9%222 512 5634 674.2 12.0%223 1024 12290 1050.1 8.5%224 2048 26626 1382.5 5.2%

Bi
to
ni
c

222 128 4737 1339.5 28.3%223 256 11777 1812.3 15.4%224 512 28673 2317.6 8.1%225 1024 68609 2987.7 4.4%226 2048 161793 4166.8 2.6%
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9.3 Redundant Dataflow Execution

9.3 Redundant Dataflow Execution
After the previous sections provided information about standard dataflow exe-
cutions, the following sections focus on redundancy. As before, the results from
Section 9.2.1 act as a baseline. For better comparability, all redundant graph execu-
tions used the same partitionings as in Section 9.2.1 and followed a fixed schedule
whichwas computed by the RTE’s implementation of the HEFT scheduling heuristic.

The proposed RTE executes only those actors redundantly that perform an actual
computation. This means that all actors which only copy data from one memory
location to another, i.e. interval, collect and reorder actors, were only executed
once in the experiments. Since interval and collect actors in the three benchmark
applications are affected by the optimization strategies described in Section 6.1.4 and
are thus, regardless of the redundancy configuration, in most cases not executed at
all, only reorder actors are executed non-redundantly. Depending on the amount
of reordering an application requires and how fast the hardware is able to reorder
data elements in memory, it is possible that executing a graph in a redundant
configuration requires less than twice (or three times) the baseline execution time.

9.3.1 Redundant Actor Execution on Different Processing
Elements

This section covers graph executions with redundant actor executions on different
processing elements. As described in previous chapters, the RTE supports two
modes for such types of redundancy configurations. In this section, the results
for pessimistic actor executions are shown. Thus, the extended HEFT scheduling
heuristic had to be applied without the insertion-based policy (see Section 7.2.2).
Results for the x86 architecture are shown in Figure 9.8. As described in the

previous section, due to the fact that the expensive reorder actors are not executed
redundantly, the times for redundant execution are not quite twice or three times
as long in case of FFT. This can also be observed for Cannon’s algorithm with
small matrices. For larger matrices, however, the normalized execution times are
higher. The reason for this is that the computing actors perform a standard matrix
multiplication which is quite time-consuming for large matrices due to the cubic
runtime. Therefore, the reordering is less significant, and the normalized execution
time is higher. Bitonic sort graphs do not contain any reorder actors, and thus it
is not surprising that executing the graph redundantly takes more than twice (or
three times for triple execution) as long as the baseline execution time.
On the Kalray architecture (Figure 9.9), execution times are different because

there are additional influencing factors. One important aspect are data and message
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Figure 9.8: Dataflow execution times with redundancy over different PEs on x86
normalized to non-redundant execution times
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Figure 9.9: Dataflow execution times with redundancy over different PEs on Kalray
normalized to non-redundant execution times

transfers between the tiles. Redundant actor executions on different tiles clearly
require more communication than non-redundant executions since each actor must
be transferred from the driver to multiple tiles, and consequently partitions must be
present in additional local memories. Depending on how well transfers and actor
executions can occur in parallel, it is possible that redundant graph executions take
not quite twice (or three times) as long as the baseline even though there are no
reorder actors in the graph. The second difference between the x86 and Kalray
architecture is the I/O subsystem. Only cores in the I/O subsystem have direct
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9.3 Redundant Dataflow Execution

access to the DDR memory which contains the dataflow graph and schedule. These
cores are also responsible for the execution of reorder actors in the benchmarks
because the involved partitions are too large to fit into a local memory. Therefore, the
fact that the I/O subsystem executes only non-redundant code in the benchmarks is
another reason for relatively short redundant execution times. The results for the
matrix multiplication (see Figure 9.9) are an example. Asmentioned in Section 9.2.1,
accessing the DDR memory in a non-sequential fashion from the I/O cores is quite
slow, and thus the I/O subsystem is a potential bottleneck. However, there seems to
be no other way to reorder large amounts of data or navigate through a large graph
and schedule on this platform.

9.3.2 Redundant Actor Execution on the Same Processing
Element

Redundant actor execution on the same processing element is especially beneficial
on the Kalray platform because the number of transfers is lower compared to
redundancy across different tiles. However, in comparison to the non-redundant
execution, the number of transfers is possibly higher. The reason for this is that a
redundant actor execution on a tile requires multiple memory slots for the results
and hence more partition displacements are required. However, since PEs do not
have to wait for comparisons, there is also a performance benefit on x86.
Figure 9.10 shows results for the x86 architecture. Execution times are lower

compared to redundancy over different PEs, but otherwise the shape of the graphs
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Figure 9.10: Dataflow execution times with local redundancy on x86 normalized to
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Figure 9.11: Dataflow execution times with local redundancy on Kalray normalized
to non-redundant execution times

is similar to those in Figure 9.8. As before, bitonic sort graphs do not contain reorder
actors, and thus the execution times are higher than for the other benchmarks.
The results for the Kalray architecture shown in Figure 9.11 reveal that there is

a significant overhead in the dataflow executions since the redundant execution
times are very low compared to standard graph executions. FFT is an extreme case
where redundant execution increases the execution time only by 15% at most. As
before, the reorder actor is a significant factor for this. Furthermore, since almost
all transfers involve the I/O subsystem, it is possible that the preparation of transfers
which requires navigation through the graph and schedule on the I/O cores is a
bottleneck. Another possibility is that the I/O subsystem’s NoC interface or the
connection to the DDR memory limits the performance. However, it seems that
transfers and the rearrangement of data elements do not only have a large influence
on the execution times in the proposed RTE but also in OpenCL because otherwise
the performance difference between the two frameworks would be higher.

9.3.3 Optimistic and Pessimistic Redundancy Modes

With regard to redundant actor executions on different PEs, the RTE provides two
different modes. Section 9.3.1 only showed results for the pessimistic mode. The
considerations in Chapter 8 also focused on the pessimistic execution mode be-
cause optimistic execution increases the complexity in the analysis of error cases.
However, executing graphs in optimistic mode leads to a higher performance. This
section exemplarily shows the performance benefit for the x86 architecture. Fig-

170



9.4 Graph Construction and Scheduling

ure 9.12 shows the difference of both modes with regard to execution time. In
this figure, the dataflow execution times in optimistic mode are normalized to the
corresponding execution times in pessimistic mode. Since all values are smaller
than 1, optimistic mode consistently increases the performance of dataflow exe-
cutions for all benchmarks and redundancy configurations. It is also noticeable,
that the performance benefit heavily depends on the specific graph and schedule.
The biggest performance increases were measured for the FFT benchmark with
three redundant executions per actor. For one FFT graph (the one with 223 input
elements), the average execution time with optimistic redundancy was only 77% of
the average execution time with pessimistic redundancy.
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Figure 9.12: Dataflow execution timeswith redundancy over two or three PEs on x86
in optimistic mode normalized to the corresponding execution times
with pessimistic redundancy

9.4 Graph Construction and Scheduling
Previous sections provided execution times for the three benchmarks executed in
various RTE configurations. Since the execution time of graph construction and
scheduling are probably less important for a productive use of the RTE than the
execution time for actual graph executions, the focus in the RTE implementation
was primarily on the optimization of graph executions. Nonetheless, the following
two sections show how the RTE performs for these tasks. As before, there will not be
experimental results for all possible combinations of benchmarks and configurations
but rather for the most interesting aspects.
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9.4.1 Graph Construction

How long the construction of a graph from a RAPID program takes depends on two
aspects. The first and most obvious factor is the number of nodes in the resulting
graph. To investigate the impact of the number of nodes, the RAPID implementation
of bitonic sort was run with different partionings. For this experiment, the number
of elements in each partition is irrelevant because only the number of partitions
has an influence on the size of the graph. Results for different partitionings on x86
and Kalray are shown in Figure 9.13. The figure also contains a table which lists
the corresponding number of constructed nodes for each partitioning including all
redundant actor nodes, comparison actor nodes and data nodes. Therefore, these
numbers are between seven and eight times as high (three redundant actors and
one comparison actor for all actor types except interval, collect and reorder
plus the required data nodes) as the numbers in Table 9.1. The diagrams show
that construction time scales with the number of actors in the graph. Graph con-
struction on the Kalray platform is significantly slower than on the x86 platform.
The difference between the two architectures is much larger than for dataflow ex-
ecutions. This is not surprising since RAPID programs are sequential C++ code,
and thus graphs are built mostly sequentially. Furthermore, graphs are always
constructed in the DDR memory because they are usually quite large. Altogether,
the longer graph construction times on the Kalray platform are a result of the low
single-core performance and the slow non-sequential access to the DDR memory
on this architecture.
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Figure 9.13: Graph construction time and number of constructed nodes for bitonic
sort with different partitionings on x86 and Kalray
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The second factor is what type of RAPID operations are used in the RAPID
program. Some types of operationsmay require complex computation during graph
construction. In the current state of the programming model only reorder falls
into this category. However, extensions of the programming models with similar
operations are conceivable. The reorder operation computes new element indices
at graph construction. As a consequence, graph construction times also depend on
the number of elements whenever at least one such operation is present. Cannon’s
algorithm and FFT are examples for this. In Figures 9.14 and 9.15, measurements for
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Figure 9.14: Graph construction times and number of constructed nodes for matrix
multiplication and FFT on the x86 architecture
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these two algorithms are shown. It clearly stands out that graph construction times
for these two benchmarks are significantly higher than for bitonic sort when graphs
of similar size are compared, especially on the x86 architecture. Since the index
computation (which is equally complex for all partitionings) is mostly responsible
for the graph construction time, the optimal partitioning for each input size was
used. Nonetheless, the two figures also show a table with information about the
number of partitions for a better comparison with Figure 9.13. As before, these
numbers include all constructed redundant actor nodes, comparison actor nodes
and data nodes.

9.4.2 Scheduling
After the previous sections covered dataflow execution and graph construction,
this section provides execution times for the extended HEFT scheduling heuristic
described in Chapter 7. Since the scheduling performance is less important for the
RTE than the performance of dataflow execution, the section focuses on bitonic sort
graphs and only presents measurements for non-sectioned graphs. The choice fell
on bitonic sort since its graphs are the largest for the input data sets used in the
experiments (see Table 9.1). With regard to sectioning, the scheduling of a sectioned
graph has the potential to take less time, since it may be possible to schedule some
sections in parallel. In theory, all sections could be scheduled in parallel, but in order
to reduce graph execution times, it is beneficial to consider the data dependencies
between sections in the scheduling process and only schedule independent sections
in parallel.
How long the execution of the scheduling routine takes depends on multiple

factors. The first and most obvious factor is the number of nodes in the graph.
However, the dependencies between nodes are also important since the HEFT
heuristic iterates over the predecessors of each node. In this regard, the graphs for
the three benchmark applications are similar, since most actor nodes depend on two
or three data nodes. The third factor is the number of processing elements. Except
for some actors on the Kalray architecture, which have to be executed on the driver
tile, HEFT considers each processing element as a possible candidate for each actor
node. Lastly, the RTE’s HEFT implementation can be run either with or without the
insertion-based policy (see Section 2.3.3). Based on the graph structure, the search
for suitable gaps in the schedule can have a huge impact on the execution time of
the scheduling heuristic.
Results for the x86 architecture are shown in Figure 9.16. It should be noted

that the RTE always computes three schedules in order to support the different
redundancy configurations. Thus, each time in the figure represents the sumof three
executions of HEFT. The total number of scheduled actor nodes for each partitioning
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Figure 9.16: Scheduling time and number of scheduled actors for bitonic sort graphs
scheduled with the two variants of HEFT on x86

is shown in the table on the right. For each type of actor that supports redundancy
eight actors are scheduled in total. Such actors are executed once in a non-redundant
graph execution and two or three times in redundant graph executions, i.e. they
have to be scheduled six times in total. The two remaining actors are the comparison
and voting actor required in redundant graph executions. For each actor that does
not support redundancy, on the other hand, only three actors are scheduled in total.
The number of actors in the graph excluding redundancy-related actors can be
found in Table 9.1 for comparison. Figure 9.16 shows that the difference between
HEFT with and without the insertion-based policy is quite large so that the former
may become unfeasible for larger graphs with a similar structure.

Figure 9.17 shows measurements for the same graphs on the Kalray architecture.
Scheduling on the Kalray takes significantly more time than on x86. This has two
reasons. First, the Kalray has sixteen compute tiles and one driver tile compared
to the eight threads (due to the four physical cores with Hyper-Threading) which
have to be considered in the scheduling process on the Intel CPU. Second, the
HEFT scheduling heuristic is a single-threaded algorithm, and the Kalray’s single-
core performance is rather low, especially when the DDR memory is involved.
Furthermore, the considered bitonic sort graphs only consist of one section. If the
graphs had multiple sections, it would be possible to schedule them in parallel.
However, since scheduling requires access to the graph, it is limited to the IO
subsystem and thus only four sections at most can be scheduled in parallel. In
contrast to Figure 9.16, the graph for insertion-based HEFT does not show results
for 512 and 1024 partitions. For dataflow graphs this large, the insertion-basedHEFT
heuristics becomes infeasible on the Kalray. If a user wishes to use insertion-based
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Figure 9.17: Scheduling time and number of scheduled actors for bitonic sort graphs
scheduled with the two variants of HEFT on Kalray

HEFT, it is advisable to compute the schedule on a different hardware architecture,
for example x86, and load it into the Kalray’s DDR memory via the RTE’s import
functionality.

9.5 Adaptive Redundancy
This section provides experimental results related to the adaptive redundancy
methods described in previous chapters. For this purpose, two experiments were
conducted. The first experiment shows the overhead caused by redundancy changes
during runtime on the x86 and Kalray architecture, while the purpose of the second
experiment was to determine the quality of schedules created by the modification
approach described in Section 7.4.4.

9.5.1 Redundancy Changes

Since the evaluated RTE uses the same graphs and schedules for non-redundant
graph executions and those with redundancy on the same PE, switching between
these configurations causes nearly no overhead. For the other redundancy configu-
rations, however, the system needs to switch to a different schedule and restructure
the graph in order to handle redundant actors and comparison actors correctly.
Therefore, this section focuses on redundancy changes involving configurations
with redundancy over different PEs.
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Figure 9.18: Overhead caused by one change of the redundancy configuration for
the matrix multiplication with different numbers of sections

In the RTE implementation, all redundancy-related actors are created along with
the standard actors, and thus the system only has to modify the edges between
actors. The left side of Figure 9.18 shows how much overhead a single redundancy
change for the matrix multiplication application on the x86 architecture would
cause. The execution times from Section 9.2.3 were used as a baseline. Since the
difference in the graph structure between no redundancy at all and three redundant
executions per actor is the largest, the reconfiguration time is the longest in this
case. The shape of the three curves is also quite as expected. Because the section
boundaries in the three benchmark applications were chosen so that the sections
are as equal in size as possible, the overhead for a redundancy change in case of two
sections is about halved compared to the situation with one section (i.e. changing
the redundancy of the entire graph). Overall, the overhead of a redundancy change
on the x86 architecture is very low.

While the shape of the curves is similar, the overall numbers are much higher on
the Kalray architecture. This is due to the structure of the Kalray Bostan architecture.
In contrast to transfers of larger portions of data between the DDR memory and a
local memory, random accesses to the DDR memory, which are required to restruc-
ture graphs, are rather slow. However, using the DDR memory to store graphs is
the only option because the local memories on the chip are too small.
Figure 9.18 shows only the overhead for an increase in the level of redundancy.

Further experiments showed that on Kalray, a decrease in the redundancy level
takes less time than an increase. Differences of 10% to 34% between redundancy
level increases and decreases were measured, with the difference being lower for a
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redundancy change of two levels. In contrast to the Kalray architecture, redundancy
increases and decreases take a similar time on x86.

9.5.2 Schedule Modification

The purpose of the last experiment was to determine the effects of schedule modifi-
cations as described in Section 7.4.4. To estimate how big the difference between
the makespan of modified schedules and computed schedules is, the two types of
schedules were compared for various graphs. In this regard, it is important to note
that it is difficult to make a general statement on the quality of modified schedules.
The main problem here is basically the same as for comparisons between different
DAG scheduling heuristics and lies in the construction of suitable DAGs. A thor-
ough comparison requires a wide variety of graphs, and thus different algorithms
for generating random DAGs were proposed. However, it is difficult to estimate
how realistic randomly generated DAGs are, i.e. to which degree the results from
experiments with randomly generated graphs apply to task graphs of real applica-
tions. A description and comparison of random DAG generation approaches was
published by Canon et al. [CSH19].

For the experiment, the classic Erdős-Rényi method was used. In this approach, a
randomupper-triangular adjacencymatrix is generated by setting the corresponding
entries with a firm probability 𝑝 to a non-zero value. Based on their comparison of
random graph generation methods, Canon et al. came to the conclusion that edge
probabilities between 0.05 and 0.15 lead to the most interesting graphs [CSH19].
Therefore, a probability of 𝑝 = 0.15 was chosen for the experiments. Node and
edge weights were generated from a uniform integer distribution with nodes having
higher weights on average. Furthermore, all comparison nodes and all edges from
redundant nodes to comparison nodes had very small weights (for example because
only two checksums are compared). An overview of all parameters that were used
for the generation of random graphs is shown in Table 9.2.

Table 9.2: Overview of parameters used for graph generation

Parameter Value
Number of Nodes 500
Edge Probability 0.15
Possible Node Weights {10, 11, … , 50}
Possible Edge Weights {5, 6, … , 15}
Comparison Node Weight 1
Comparison Edge Weight 1
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The HEFT scheduling heuristic was used to schedule the generated graphs for
different numbers of PEs. Since all hardware architectures covered in this thesis are
relatively homogeneous, the schedule modification mechanism was only evaluated
for homogeneous PEs. For each number of PEs the following steps were executed
100 times:

1. Generate a random graph using the Erdős-Rényi method
2. Compute a schedule 𝐴 for 𝑥 PEs using the HEFT scheduling heuristic
3. Compute a redundant schedule 𝐵 for 𝑥 + 1 PEs using the extended HEFT

heuristic that assigns redundant actors to different PEs
4. Choose a random PE and create a non-redundant schedule 𝐶 for 𝑥 PEs by

modifying schedule 𝐵
5. Determine the makespans 𝑀𝐴 and 𝑀𝐶 of schedules 𝐴 and 𝐶, respectively
6. Compute the relative makespan 𝑀𝑎𝑣𝑔 as follows: 𝑀𝑎𝑣𝑔 = 𝑀𝐶𝑀𝐴

The procedure for the experiment with schedules with three redundant executions
per actor was analog.

Figure 9.19 shows the results. The upper and lower curves represent the smallest
and largest observed relative makespan respectively, while the curve in the middle
shows the average of all 100 relative makespans for each number of PEs. The left
side shows the normalized makespans of non-redundant schedules resulting from
the modification of redundant schedules. An observation is that the described
modification mechanism works best when there are at least eight PEs in the system
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(note that the figure shows the number of PEs after a permanent fault). Less than
eight PEs lead to a larger difference since the impact of the modification is higher.
For smaller numbers of PEs, up to 63% larger makespans were observed. The
makespan of the best schedule was about 3% larger than the corresponding HEFT
schedule. For 12 or more PEs, the modified schedules have a 23% larger makespan
on average.
The right side shows the same curves for result schedules with two redundant

actor executions, i.e. schedules with three executions per actor were modified. For
14 or more PEs, the difference between modified and HEFT schedules is 29% on
average. Most noticeable is the low difference in the setting with 5 PEs. In this
case, the initial schedule before modification was computed for 6 PEs. Since it
is a multiple of three, this number of PEs is beneficial for a schedule with three
redundant executions per actor. Using HEFT to compute a schedule with two
redundant executions per actor for a system with 5 PEs on the other hand leads to a
relatively poor result, and thus the difference between the modified schedule and
the HEFT schedule is rather small.

As described in Section 7.4.5, an advantage of schedule modification is the faster
error recovery compared to running a scheduling heuristic at runtime. In order
to evaluate the difference in recovery time between schedule modification and re-
scheduling, the time it takes to modify the schedule and the time it takes to compute
a new schedule with HEFT were measured for different numbers of processing
elements on x86. Figure 9.20 shows times for schedule modification normalized to
the times of HEFT scheduling. Since schedule modification is in contrast to HEFT
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Figure 9.20: Time for schedule modification normalized to the HEFT scheduling
time for different numbers of PEs on x86
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rather independent of the number of PEs, the performance benefit increases with
the number of PEs. For 64 PEs, the modification process takes less than 10% (and
less than 6% for a result schedule with two redundant executions per actor) of the
time for computing a new schedule with HEFT.

9.6 Summary
This chapter provided execution time measurements for the three RAPID applica-
tions described in Section 4.6 under various RTE configurations. The two hardware
architectures used in the experiments were a standard x86 personal computer and
a Kalray Bostan MPPA. A large portion of the chapter discussed dataflow execu-
tions since the execution time of graph construction and scheduling routines are
less important in practical use. Varying different properties of the graph or RTE
settings may or may not have a large influence on the graph execution time. For the
three benchmark applications, the number of partitions into which the input data
is divided had a much greater impact than the number of graph sections. The use
of online scheduling based on work stealing was in all cases slightly beneficial on
the x86 architecture but lead to a lower performance for FFT on the Kalray architec-
ture. Because only computation (and neither memory restructuring actors nor data
transfers) is executed redundantly, redundant graph executions often take less than
twice (or three times) the baseline execution time. The chapter also covered graph
construction and scheduling. Since these two procedures require a high single-core
performance, it is advisable to rather use the RTE’s import/export functionality
on the Kalray and create graphs and schedules on an x86 machine. In the last
part of the chapter, two aspects related to the adaptive redundancy features of the
proposed RTE were evaluated. Redundancy changes only cause a small overhead
in graph executions, especially when the graph is divided into smaller sections.
Schedule modification leads to higher makespans compared to schedules created
with a proper scheduling heuristic. However, the procedure is more suitable for
graceful degradation compared to re-scheduling due to the lower complexity and
thus lower error recovery times.
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To meet the requirements of different application areas and to cover a variety of
hardware architecture, numerous dataflow systems have been developed. Many
dataflow systems are designed for use in large computer clusters, but there are
some approaches that are usable in smaller systems. Further, since fault tolerance is
an important aspect for not only small embedded systems but also large computer
clusters, suitable dataflow systems with built-in fault tolerance have been proposed.
Some dataflow approaches include fault tolerance mechanisms from the beginning
while other dataflow systems were extended in later proposals. This chapter ad-
dresses related approaches from the domain of dataflow-based frameworks. A
selection of systems is described, and similarities and differences to the proposed
programming model and runtime environment (RTE) are discussed.
Section 10.1 shows computing frameworks for large-scale distributed systems.

Even though these frameworks target big data applications and are less suitable
for smaller systems, there are some interesting similarities to the proposed RTE,
for example in the programming model and the use of dataflow graphs. After
that, frameworks that are suitable for smaller system, like single workstations or
embedded systems, are discussed in Section 10.2. Some big data frameworks from
Section 10.1 already exhibit fault tolerance mechanisms up to a certain degree, but
there are also dataflow approaches with special focus on fault tolerance. A small
selection of such approaches is shown in Section 10.3.
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10.1 Computing Frameworks for Large-Scale
Distributed Systems

The emergence of big data applications in recent years has lead to the development of
frameworks which are able to run computations on large-scale distributed systems.
Since dataflow is an efficient way to handle the required parallelism, many of these
frameworks are based on the dataflow principle. This section provides information
about four big data frameworks, which are related to the proposed RTE because of
their programming model and dataflow characteristics. What these frameworks
have in common is that they allow users to write parallel programs by providing a
set of high-level operations. The framework then handles communication and work
distribution automatically.

10.1.1 Apache Spark
The latest version of Apache Spark [Zah+12] supports multiple programming
models. This section focuses on the original programming model based on data
structures called resilient distributed datasets (RDDs). From a user’s point of view,
RDDs are partitioned read-only collections of data elements. Internally however,
RDDs do not contain data at all times but instead keep track of their lineage, i.e. how
their data can be computed from the data of other RDDs. Users specify the lineage
of RDDs via transformations. Besides transformations, the programming model
provides actions to start the graph execution. The lineage of all RDDs involved in a
Spark program forms a directed acyclic dataflow graph, called lineage graph. When
such a lineage graph is executed, the Spark RTE distributes the work to the nodes
in the cluster. To improve performance, Spark tries to make use of data locality
whenever it is possible. Another important aspect of lineage graphs is that they
consist of stages. Each stage contains as many transformations with only narrow
dependencies as possible. The difference between narrow and wide dependencies is
shown in Figure 10.1. Transformations with wide dependencies lead to an expensive
shuffling at runtime and therefore such operations should only be used when they
are necessary. Apache Spark also provides a fault tolerance mechanism. The error
model of Spark only considers node failures. If a node fails, lost partitions of this
node are recomputed from the previous checkpoint. The programming model
provides functions that allow users to specify which RDDs in the lineage graphs
are checkpoints.
The biggest similarity between approach from this thesis and Apache Spark is

the programming model, with RAPIDs serving the same purpose as RDDs. But
since the RAPID programming model targets small embedded systems, the number
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Narrow Dependencies Wide Dependencies

Figure 10.1: Examples of narrow dependencies and wide dependencies [Zah+12]

of provided operations is reduced, especially the number of operations with wide
dependencies. Only reorder and repartition belong to this category. Another
similarity is the use of directed acyclic graphs as dataflow graphs. However, lineage
graphs differ from RAPID dataflow graphs in their structure because they are based
on RDDs. RAPID dataflow graphs, on the other hand, are based on partitions, and
it is not always possible to reconstruct the exact RAPID program that lead to a given
graph.

A difference between the two approaches is that the proposed RTE does not only
support online scheduling like Spark but is also able to execute graphs according to
fixed schedules. Further, it allows users to specify the online scheduling policy or
offline scheduling algorithm. Another major difference lies in the fault tolerance
aspect. Apache Spark only considers node failures, while the proposed dataflow
RTE can execute graph nodes redundantly and is therefore able to detect errors in
computations. The concept of checkpoints is also quite different in both approaches.
While checkpoints in Spark are used to recompute data in case of a node failure,
checkpoints in the RAPID programming model are used to specify the granularity
of the adaptive redundancy.

10.1.2 The Stratosphere Project

The Stratosphere project [Ale+14] is the origin of Apache Flink. Its software stack
consists of three layers, namely the Sopremo layer, PACT layer and Nephele layer.
These layers provide different programming models, each with a different level of
abstraction. The programming model of the Sopremo layer is the most declarative
and therefore high-level one, while the Nephele layer provides the most low-level
functionality out of the three. Programs in the Sopremo layer are expressed through
Meteor scripts. The functionality is similar to other query languages since it provides,
for example, selection, projection, join, group and union operators. Meteor scripts
are transformed into Sopremo plans by the Meteor parser. Sopremo plans are DAGs
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whose nodes are Sopremo operators. Edges in the graph result from the variables
in the Meteor script.
A program assembler then translates the Sopremo plans into PACT programs,

which are also DAGs. PACT programs are usually larger than the Sopremo plans
they are created from because each operator in the Sopremo plan is translated into
one or more operators in the PACT program. These operators correspond to the
second-order functions PACT provides, for example map and reduce. Second-order
functions require a dataset and a first-order user-defined function (UDF) as arguments.
Therefore, an operator consists of a PACT second-order function and concrete UDF
instance. Further, it contains information on how datasets are partitioned into
parallelization units (PUs). During graph execution, theUDF of an operator is applied
to each PU independently. Figure 10.2 shows an exemplary Sopremo plan and the
PACT program returned by the assembler. Inner boxes in the PACT program graph
represent UDFs. This example illustrates on multiple occasions that one operator in
the Sopremo plan is usually translated into multiple operators in the PACT program.
The Remove Duplicates operator in Figure 10.2a, for example, corresponds to three
operators in Figure 10.2b, namely Cross, CoGroup andMap.

In the next step, a PACT program is compiled into a Nephele job graph by Strato-
sphere’s optimizer. The optimization of a PACT program consists of multiple phases.
After the optimization is complete, the job graph is submitted to the Nephele ex-
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Figure 10.2: Stratosphere graph examples [Ale+14]
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ecution engine, which spans it to the execution graph. The difference between a
Nephele job graph and an execution graph is that the latter contains a node for each
parallel instance of a node in the former. Execution graphs are the representation of
a program that is finally executed on the computer cluster.
Stratosphere provides a fault tolerance mechanism which is predicated on log-

based rollback recovery. Similar to Apache Spark, intermediate results are material-
ized by the system, and lost data is recomputed from the last materialized results
when an error occurs. However, the rollback system in Stratosphere is more complex
than in Apache Spark. Since Stratosphere supports streaming (in contrast to Spark
which uses the blocking operator model), operators can be executed if their input data
is only partially available. In case the execution of an operator fails, dependent
operators may have been started already and must be considered for the rollback.

The proposed dataflow RTE shares several similarities to the Stratosphere project.
While it does not provide an abstraction layer equivalent to Sopremo, the RAPID
programmingmodel is similar to the PACT programmingmodel. RAPID operations
correspond to second-order PACT functions and RAPID functions represent the
counterpart to the UDFs in PACT. But as mentioned in the comparison with Apache
Spark, the RAPID programming model provides a reduced functionality since it
also targets smaller embedded systems.

Other similarities lie in the use of DAGs as dataflow graphs and the construction
of graphs. One RAPID function usually leads to multiple nodes in the RAPID
dataflow graph. This is quite similar to the graph transformations in Stratosphere.
The more a graph is transformed while it passes through the layers of Stratosphere,
the more it gets expanded. After all transformations are complete, an execution
graph in Stratosphere contains nodes for all parallel instances of nodes in previous
graph revisions. Therefore, execution graphs are closest to RAPID dataflow graphs.

With regard to fault tolerance, the error model of Stratosphere is similar to Apache
Spark. Thus, the similarities and differences described in the comparison with
Apache Spark also apply to Stratosphere.

10.1.3 Thrill
Thrill [Bin+16] is a framework with the goal to improve the performance of big
data applications by running native binaries on the nodes in the computer cluster.
In contrast, both Apache Spark and Flink run bytecode in the Java Virtual Machine.
The programming model of Thrill is similar to Apache Spark. It is based on a data
structure, called distributed immutable array (DIA) and provides various operations,
likemap and reduce. A difference is that DIAs are based on arrays, i.e. data structures
with a fixed element order, whereas RDDs in Spark are based on sets. Like in the
other discussed frameworks, operations in Thrill build a directed acyclic dataflow
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graph. The execution of programs in Thrill, however, works differently than in other
frameworks since every node in the computer cluster executes the same binary. In
contrast to Apache Spark and Flink, Thrill does not provide fault tolerance.
With regard to the importance of element order, DIAs are similar to RAPIDs.

Therefore, operations in the RAPID programming model are closer to Thrill op-
erations than Spark operations. In Spark, for example, the zip operation requires
key-value-pairs. A difference, however, is that users are not able to explicitly specify
a partitioning in Thrill. DIAs are always distributed evenly among the workers by
the RTE. As a result, Thrill’s programming model does not provide partition-wise
operations like the RAPID programming model does. Data elements in Thrill do
not have to be of fixed size. It is only required that suitable serialization and de-
serialization methods are available. Thus, RAPID programs using partition-wise
operations can also be expressed in Thrill. A selection of operations is shown in
Table 10.1. For most of the listed operations an equivalent RAPID operation exists,
sometimes with a different name, for example Generate (parallelize), Window
(combine) and AllGather (finalize). Exceptions in the table are Filter and Sort. For
these Thrill operations, no corresponding RAPID operations exist.

A similarity to the dataflow systemof this thesis is the use of C++ to achieve a high
performance. But, in contrast the RTE implementation for NoC-based architectures,
Thrill does not have a special driver node in the computer cluster. All nodes in
Thrill execute the same binary. In the proposed NoC-based RTE implementation,
compilation returns two binaries, one for the driver tile and one for the compute
tiles to overcome the limited memory of compute tiles on the target architecture.

Table 10.1: Selection of Thrill operations [Bin+16]

Operation User Defined Functions
Generate(n): [0,…,n-1]
Generate(n,g): [A]

n: DIA size
g: unsigned → A

Map(f): [A] → [B] f: A → B
FlatMap(f): [A] → [B] f: A → list⟨B⟩
Filter(f): [A] → [A] f: A → bool
Sort(c): [A] × [A] c: A × A → bool
Concat(): [A] × [A] × ⋯ → [A]
Zip(z): [A] × [B] × ⋯ → [C] z: A × B × ⋯ → C

Window(k,w): [A] → [B]
k: window size
w: Ak → B

Execute()
AllGather(): [A] → list⟨A⟩

[A] is a shorter notation for DIA⟨A⟩.
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10.1.4 TensorFlow

A computation framework that has gained much importance in recent years is
Google’s TensorFlow [Aba+15; Aba+16]. The focus of TensorFlow is different to
the other discussed frameworks since it lies onmachine learning, but its dataflow ap-
proach is quite similar. TensorFlow supports various operations that are commonly
used in the implementation of neural networks, for example matrix multiplication,
convolution and sigmoid. A computation in TensorFlow is described by a directed
graph. To create graphs, TensorFlow provides frontends in different programming
languages, like C++ and Python. Graphs consist of nodes representing the instanti-
ation of TensorFlow operations. Since TensorFlow supports heterogeneous systems,
it distinguishes between operations and kernels. Operations represent an abstract,
high-level concept, while kernels are concrete implementations for devices like
CPUs, GPUs or hardware accelerators. Besides operations, tensors are the second
important concept in TensorFlow. Formally, tensors are multi-dimensional arrays
whose exact type can often be inferred at graph construction. During graph execu-
tion, tensors flow along the data edges of the graph. Besides data edges, TensorFlow
graphs may also contain edges which specify how control information is exchanged
between nodes during graph execution. Since operations in TensorFlow are not
necessarily stateless, such control dependencies can, for example, be used to enforce
the right order of node executions.

There are some notable similarities and differences between the proposed frame-
work and TensorFlow. Both TensorFlow and the RAPID programming model
encourage users to build a graph once and execute it many times with different
data. A difference is that graph nodes in TensorFlow can involve state, so that they
behave differently in subsequent graph executions. In RAPID dataflow graphs, data
nodes have to be declared as input nodes and their data has to be changed between
graph executions to achieve a similar effect.

A major characteristic that separates TensorFlow from the other discussed frame-
works and from the proposed RTE is the use of potentially cyclic graphs as program
representations. This leads to the concept of dynamic dataflow described in Sec-
tion 2.1.3. For this purpose, TensorFlow provides a small set of control flow nodes,
for example switch and merge nodes, which can be used to skip subgraphs during
execution. Consequently, a token matching mechanism is necessary. Tags imple-
mented in the TensorFlow RTE are conceptually very similar to tags in the MIT
Tagged-Token machine.

Because of the potentially cyclic graphs, node placement is more difficult in
TensorFlow. By supporting only acyclic graphs, the proposed RTE can use standard
DAG scheduling heuristics. In TensorFlow, node placement requires a simulated
execution of the graph based on a greedy heuristic.
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TensorFlow provides a mechanism, which is similar to the fault tolerance in
Apache Spark, to handle node failures during the training of neural networks. In
TensorFlow, users have to explicitly specify checkpoints via the provided checkpoint-
ing library. It is important to note that the creation of checkpoints and the neural
network training are executed concurrently. Since checkpointing in TensorFlow in-
volves no synchronization by default, checkpoints may not be consistent. However,
there are workarounds for the case that consistent checkpoints are required.

10.2 Graph-Based Frameworks Suitable for Smaller
Systems

The frameworks described in previous sections target large computer clusters and
are well suited for big data computations. Using their reference implementation on
single machines would lead to unnecessary overhead. Other graph-based frame-
works are better suited for small systems. This section provides information about
some approaches regarding this topic.

10.2.1 TensorFlow Lite
TensorFlow Lite [Goo; Lee+19] is a machine learning framework targeting mo-
bile devices and embedded systems. In comparison to standard TensorFlow its
functionality is limited. Only a subset of all TensorFlow operators is supported
by TensorFlow Lite. The reason behind this is to keep the size of binaries low. To
reduce the binary size even further, the training of neural networks is not supported.
TensorFlow Lite currently only supports pre-trained networks. The workflow is
usually as follows: Users first create a dataflow graph using the programming
interface of standard TensorFlow. This graph represents a neural network and is
trained on a high-performance architecture. The trained model is then exported to
a file and converted into a TensorFlow Lite-compatible format. In TensorFlow Lite,
the file is imported and executed arbitrarily often with different input data.
Similar to TensorFlow and TensorFlow Lite, the RAPID programming model

also gives users the possibility to import and export graphs. In the proposed RTE,
graphs can be built on the developer’s workstation, for example, and exported for
use in the target embedded system. The training of neural networks is expensive
and thus TensorFlow Lite-compatible models are trained before they are used in the
target system. Since the RAPID programming model does not focus on machine-
learning but general-purpose computing, there is no training phase in general.
However, offline scheduling also has the potential to be expensive. Therefore, the
RTE described in this thesis provides an import function for schedules.
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10.2.2 DARTS

The Delaware Adaptive Run-Time System (DARTS) [SZG13] is an implementation
of the codelet model. Codelets are non-preemtive collections of machine instructions
and represent the scheduling quantum in the codelet execution model. The system
expects codelets to behave like pure functions, but it does not forbid to specify
codelets that modify the global state. Codelets are similar to dataflow actors. The
difference to the latter lies in the firing. A codelet can fire as soon as all events are
met. Not only data dependencies can serve as events but also other conditions
with regard to, for example, shared resource requirements, bandwith or power. A
codelet graph (CDG) consists of codelets that are linked together and act as producers
and/or consumers. Result data of a codelet can be used by multiple subsequent
codelets. The codelet model also introduces the concept of threaded procedures (TPs),
which represent containers for codelet graphs. Multiple TPs can be linked together
to form a larger dataflow graph. Instances of TPs are always bound to clusters.
In the codelet model, clusters are parts of chips which are connected through
arbitrary interconnects and consist of multiple cores and memories. Each cluster
must contain exactly one scheduling unit (SU), which is a special core responsible
for the scheduling of TPs. All other cores in the cluster are compute units (CUs).
In contrast to SUs, CUs run a micro scheduler which manages the scheduling of
codelets. In DARTS, a work-stealing scheduling approach is used for the distribution
of TPs over clusters. Furthermore, a central queue distributes the codelets to the
CUs inside a cluster.
The codlet model targets different kinds of multicore architectures, from single-

processor systems up to large computer clusters. DARTS is an implementation of the
codelet model which is suitable for single nodes with possibly multiple processors.
However, it does not explicitly target embedded systems.

Further, codelets are very similar to RAPID functions in the RAPID programming
model. Instances of codelets correspond to actor nodes in RAPID dataflow graphs.
In both DARTS and the RAPID programming model, users can divide the graph in
TPs and sections, respectively. However, the purpose of this division differs in both
systems. While TPs in the codelet model are used in favor of hierarchical scheduling,
graph sections are an important concept for the adaptive redundancy concept of
the proposed RTE.
Another difference is that the codelet model allows users to specify loops in

dataflow graphs. To reduce complexity in the RTE, only three types of loops are
allowed, namely a serial loop, a TP-parallel for-each loop and a codelet-parallel
for-each loop. The latter two require that all loop iterations are independent of each
other, while the first assumes that each iteration depends on the previous one.
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10.2.3 Concurrent Collections

Another programming model with a similar focus is the Concurrent Collections
(CnC) language family [Bud+10]. A CnC specification is a graph consisting of
instances of step collections, data collections and control collections. Step collections
represent computation and are therefore comparable to procedures. Consequently,
instances of step collections correspond to procedure invocations. In CnC, a control
collection prescribes a step collection. This means that a control collection instance
can cause a step collection instance to execute with the former as an input. Steps
also read and write instances of data collections. The dependencies between the
three kinds of nodes form a CnC graph. An example graph is shown in Figure 10.3.
The graph models an application that takes a set of strings, splits them into words
and puts the words in uppercase. Inputs are provided from the outside of the
CnC application, called the environment (env). Similarly, results are passed to the
environment again. It should be noted that CnC is a coordination language, i.e.
CnC specifications are required to assemble the steps which are implemented in a
separate programming language.

Having different kinds of nodes in the graph is a concept in both RAPID and CnC.
However, there are no control nodes in RAPID dataflow graphs. CnC is based on
dynamic dataflow, and control collections are required to forward tags in the CnC
graph. RAPID graphs are more static and therefore do not require tags.
Another similarity is the data-parallel execution of step collections in CnC. El-

ements of data collections are possibly processed in parallel based on the imple-
mentation. This is comparable to the data-parallel execution of actors in the RTE
implementation for the Kalray MPPA described in this thesis. As with the RAPID
programmingmodel, it is possible to develop implementations of CnC for hardware
architectures with shared memory as well as distributed memories.

[inputs] (splitString)

<stringTags>

[words] (uppercase)

<wordTags>

[results]

env

env env

[name] data collection (name) step collection <name> control collection

data dependency control/step relation

Figure 10.3: CnC graph example [Bud+10]
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10.2.4 TeamPlay Coordination Toolchain

The last approach addressed in this section is the coordination toolchain from the
TeamPlay project [Roe+20]. This project targets embedded systems based on off-the-
shelf heterogeneous multicore processors. Major part of the TeamPlay toolchain is a
compiler for the specially developed coordination language. This language is used
to specify the components of an application. Components refer to functions specified
in a different language (usually C) and can have various properties regarding, for
example, deadlines or security. The entirety of the components in an application
forms a DAG, in which edges correspond to FIFO queues connecting to the input
and output ports of components. Conceptually, components are stateless, but it is
possible to model state information by introducing state ports. These special ports
only allow self loops in the graph. Each component can have an arbitrary number
(including zero) of input, output and state ports.

The coordination language puts the focus especially on the non-functional prop-
erties of code execution. More precisely, the three considered non-functional prop-
erties are energy, time and security (ETS). While time and energy consumption vary
for different hardware architectures, security is a property affecting the implementa-
tion of components. An abstract component is shown in Figure 10.4. This example
actually shows the most general form of component, also called a multi-version
component. The inner boxes visualize the different versions, each with its own name,
code and ETS-contracts.
The most important part of the toolchain is a coordination compiler which runs

various analyses on a given coordination program, computes a suitable scheduling
policy and generates code in the target programming language. Once the com-
pilation of the coordination program is finished, the application can be compiled
a second time with a standard compiler, for example a WCET-aware C-compiler.
Based on the application requirements, the coordination compiler has different
options regarding the execution of generated programs. Components in the gener-

component
<name>

functional
contracts:
input
output
state

<name> code
ETS-contracts
<name> code
ETS-contracts

state *

input * output *

Figure 10.4: Abstract component in TeamPlay [Roe+20]
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ated program may either be executed at statically determined time slots (where the
required data is guaranteed to be present) or data-driven similar to the execution
of actors dataflow-based frameworks.

While the coordination language and its compiler-based toolchain is quite differ-
ent to the RAPID programming model, the use of DAGs as the main representation
for programs is similar. A feature that separates the TeamPlay toolchain and the
proposed RTE from many other approaches is its support for offline scheduling.
However, fixed schedules generated by the coordination compiler are fully static
with exact timings whereas statically computed schedules in the proposed RTE only
specify the actor assignment and order. Further, both approaches have a different
focus regarding program executions. While the coordination toolchain in the Team-
Play project aims at involving ETS-properties into program executions, the focus of
the RTE described in this thesis lies in the support for adaptive redundancy.

10.3 Fault-Tolerant Dataflow Approaches
Section 10.1 already described that many big data frameworks provide a fault
tolerance mechanism. However, since fault tolerance is a secondary goal in these
frameworks, it is limited to node failures in the computer clusters. This section
highlights some dataflow-based systems which focus on fault tolerance. Some
systems utilize redundancy and can therefore detect errors in computation, storage
or data transfers. Further, the described approaches provide error recovery through
rollback mechanisms.

10.3.1 Fault-Tolerant Dataflow in a Teradevice System
Weis et al. describe fault tolerance in a teradevice dataflow system [Wei+16]. A
tiled multiprocessor is assumed as the underlying hardware architecture for this
type of system. In the processor, nodes are connected through a 2D mesh-based
interconnection network. Each node consists of multiple cores, memory and a
node manager, which are connected via a crossbar. The node manager consists
of a distributed thread scheduling unit (D-TSU) and a distributed fault detection unit
(D-FDU). Further, each core contains a local thread scheduling unit (L-TSU) and a
local fault detection unit (L-FDU). The L-FDU gathers information about errors in
the core and periodically sends health messages from the core to the D-FDU. These
messages include, among other things, information about errors in caches, the bus
unit and load-store unit. The D-FDU then analyzes the information and makes
predictions about the reliability of cores. If a core is considered faulty, the D-FDU
transmits this information to the D-TSU which will then adjust the scheduling
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accordingly. Other important tasks of the D-FDU are the monitoring of the D-
TSU as well as the monitoring of other nodes’ D-FDUs. This ensures that as many
errors as possible can be detected. Redundancy is introduced via double execution
of dataflow threads. The D-TSU manages the coordination of redundant thread
executions. Redundant threads can be scheduled normally, with the only additional
constraint that two redundant threads must not be executed on the same core.
The L-FDUs compute 32-bit signatures of the thread results. Checksums are then
compared by the node’s D-FDU. If error recovery actions must be taken, the D-TSU
can restart dataflow threads. The rollback mechanism is rather simple due to the
side-effect-free execution of threads in the coarse-grain dataflow approach.
Although the described system represents a hardware-based fault tolerance ap-

proach, there are similarities to the proposed RTE. First, both systems run on similar
tiled hardware architectures. However, the RTE described in this thesis targets
embedded manycore processors, and thus the execution of dataflow actors is dif-
ferent. While dataflow actors are assigned to tiles and executed in a data-parallel
manner, teradevices have bigger tile-local memories than the embedded manycore
architectures, like the Kalray MPPA, so that threads can be mapped to individual
cores. While the mapping can be determined offline or online in the proposed
dataflow system, the fault-tolerant teradevice system always uses an online schedul-
ing approach.

Redundancy is another aspect with some interesting similarities and differences.
In both systems, redundant executions of nodes in the dataflow graph are used to
detect errors in computations. The degree of redundancy in the described system is
limited to double execution of dataflow threads. The redundancy approach of the
proposed RTE additionally provides triple execution of actors and the switching be-
tween different redundancy configurations at runtime. However, the fault tolerance
approach in [Wei+16] has the benefit that uses special hardware units. Therefore,
it has the potential to detect faults that are very difficult or maybe impossible to
detect in software.

10.3.2 Dataflow Error Recovery
A software-based approach for fault-tolerant dataflow is Dataflow Error Recovery
(DFER) [Alv+14]. Like for most dataflow fault tolerance approaches, redundancy
is established by adding redundant nodes to the dataflow graph. Additional commit
nodes are responsible for comparing the results of redundant executions. If the
system detects that a computation produced wrong results, the respective graph
node has to be re-executed. The execution of nodes in DFER is speculative, i.e.
subsequent nodes are executed with possibly uncommitted values. In case of a fault,
this can lead to a domino effect since nodes may have already been executed with
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incorrect data. Further, whenever redundant nodes are executed with uncommitted
data, it does not make sense to compare their results for errors. If an error occurs,
not only the first commit node but also subsequent commit nodes might detect the
error, and multiple re-executions would be initiated in the worst case. Therefore,
DFER introduces additional dependencies called wait edges between commit nodes.
Wait edges ensure that commit nodes are executed in an appropriate order so that
nodes are only re-executed once per error. In some areas, the latency introduced
by the described domino effect in case of an error might be undesirable. Therefore,
DFER provides the possibility to insert additional edges between a commit node and
all nodes that process the corresponding data. These additional dependencies cause
subsequent nodes to wait until the required data has been compared. However, the
additional dependencies in the graph may lead to reduced performance.
The redundancy mechanism in DFER with its redundant nodes and commit

nodes is very similar to the redundancy approach of RAPID. A difference is that
the RTE presented in this thesis does not provide speculative execution in favor of
better analyzability. Instead, the RTE provides an adaptive redundancy mechanism
that can be used to enhance performance in exchange for a reduction in the degree
of redundancy arbitrarily during runtime.

10.3.3 Systematic Event Logging and Theft-Induced
Checkpointing

Jafar et al. describe two different fault tolerance approaches [Jaf+05] for the Kernel
for Adaptive, Asynchronous Parallel Interface (KAAPI) [GBP07]. KAAPI consists
of a dataflow programming model and runtime system. Its programming model is
based on the Athapascan interface [Gal+98] and represents a slight extension of
C++. Dataflow graphs in KAAPI are built dynamically at runtime from KAAPI
programs. These graphs consist of tasks and their dependencies. Internally, the
framework itself is also implemented in C++ and uses a custom variant of the POSIX
thread interface. There are two types of threads in KAAPI, user threads (or KAAPI
threads) and kernel threads. KAAPI sees kernel threads as virtual processors that
execute user threads. The latter are responsible for the execution of the tasks in the
dataflow graph. An important property of user threads is their non-preemptive
nature. With regard to task scheduling, a work-stealing approach was chosen.
One of the fault tolerance techniques described in [Jaf+05] is Systematic Event

Logging (SEL). The idea behind SEL is to log all modifications of the dataflow graph
during runtime, i.e. all additions and deletions of graph nodes. When a processor
fails, the log is used to rebuild the associated subgraph from the checkpoint file.
Since checkpoints are created on each graph modification, this approach allows the
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runtime system to re-execute single dataflow tasks. The other described fault toler-
ance technique is Theft-Induced Checkpointing (TIC). In TIC, checkpointing is done
periodically or by the theft of a task (with regard to the work-stealing scheduling
policy). Checkpoints created on task thefts are called forced checkpoints. Only the
virtual processor from which a task was stolen creates such a checkpoint. Normal
checkpoints, on the other hand, are created by all virtual processors periodically.
Recovery in TIC is similar to SEL, but since not every graph modification is logged,
there may be more task re-executions required than in SEL.
KAAPI and the two described fault tolerance mechanisms heavily differ from

the RAPID programming model and the associated RTE. The programming model
of KAAPI does not follow a functional style like the RAPID programming model.
Further, graphs in KAAPI dynamically grow and shrink during runtime, whereas
RAPIDgraphs are fully constructed before their execution. While KAAPI’s approach
has the advantage that less memory is required (since the graph never exists as a
whole), periodic checkpoints have to be created in order to allow re-executions of
graph nodes.

10.4 Summary
In the last two decades, many dataflow frameworks have been proposed. This
chapter presented a selection of dataflow systems and highlighted the similarities
and differences to the proposed RTE. For a better overview, Table 10.2 lists all
approaches and compares them with the proposed RTE in terms of their target
hardware architecture, programming model, scheduling and fault tolerance.
Many modern big data frameworks are based on the dataflow principle. These

frameworks provide a programming model which is used to build dataflow graphs.
Graphs are then executed on large computer clusters. While Spark, Flink and Thrill
only support DAGs, dataflow graphs in TensorFlow may contain cycles. Some
big data frameworks have built-in fault tolerance mechanisms. Spark, Flink and
TensorFlow can detect node failures in the cluster and continue with the dataflow
execution. Lost data is recovered by re-executing the corresponding graph nodes.
There are also frameworks based on the dataflow principle which are suitable

for smaller systems. In their core, these dataflow systems are similar the big data
frameworks that were discussed before. The biggest difference is their reduced
functionality. TensorFlow Lite, for example, does not provide a programming
model by itself. Instead, it only consists of an RTE which can execute graphs created
with standard Tensorflow. DARTS, Concurrent Collections and the coordination
toolchain developed in the TeamPlay project are other DAG-based systems that can
be implemented efficiently on smaller-scale hardware. All of them provide some
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kind of programming model or coordination language which is used to specify
dataflow graphs.
Lastly, there are dataflow proposals which directly focus on fault tolerance. In

contrast to the fault tolerance mechanisms provided by big data frameworks, which
can only recover from node failures, some of these approaches also utilize redun-
dancy to detect errors in computations. The teradevice dataflow system and DFER
are two examples. KAAPI, another dataflow framework, follows a rather unique
aproach and builds dataflow graphs dynamically during dataflow executions. Its
logging-based extensions SEL and TIC create checkpoints to recover from process
failure but are not able to detect errors in computations.
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Table 10.2: Comparison of the proposed RTE with related work

Framework Target Hardware
Architecture Programming Model Scheduling Fault Tolerance

Spark [Zah+12] computer clusters functional-style online job scheduler based on checkpoints

Stratosphere [Ale+14] computer clusters
multiple models with
different levels of
abstraction

online job scheduler based on checkpoints

Thrill [Bin+16] computer clusters functional-style online, balances work
equally no fault tolerance

TensorFlow [Aba+15;
Aba+16] computer clusters high-level, declarative offline node placement,

otherwise online
checkpoints during
training

TensorFlow Lite [Goo] mobile devices,
embedded systems

none (executes trained
models from files) online no fault tolerance

DARTS [SZG13] multicore and
manycore systems object-oriented hierarchic online

scheduling no fault tolerance
Concurrent Collections
[Bud+10]

multicore and
manycore systems coordination language online (implementa-

tion-dependent) no fault tolerance
TeamPlay Toolchain
[Roe+20] embedded systems coordination language offline (currently) or

online (planned) planned

Teradevice Dataflow
Redundancy [Wei+16] manycore systems

based on
coarse-grained
dataflow threads

hierarchic online
scheduling

redundant execution
with hardware-based
fault detection

DFER [Alv+14] multicore and
manycore systems

based on TALM
[Mar+10] not specified redundant execution

and commit nodes
SEL & TIC [Jaf+05] cluster and grid

architectures
based on Athapascan
[Gal+98] online based on logging and

checkpoints

proposed RTE
(embedded)
multicore and
manycore systems

functional-style offline or online adaptive redundancy199
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11.1 Summary
This thesis presented a runtime environment (RTE) that is suitable for use in com-
plex embedded systems which utilize multi- and manycore processors. The RTE
consists of a functional-style programming model and a dataflow execution model
based on directed acyclic graphs. The programming model is similar to commonly
used parallel computing frameworks, especially Apache Spark. Its main data struc-
ture is a partitioned collection of data elements called RAPID. To construct and
process RAPIDs, the programmingmodel provides a set of RAPID operations. From
a user’s perspective, RAPID operations are lazily evaluated high-order functions.
By passing suitable RAPID functions to them, users can specify how the data is
processed.

Internally, RAPID operations build a directed acyclic dataflow graph which con-
sists of data nodes and actor nodes. After a graph was built, it can be executed
arbitrarily often. Alternatively, it is possible to export the graph in an extended DOT
graph description format. The graph can then be imported on a different system.
Since the DOT format is human-readable, it is also possible to specify graphs directly
in this format. A special property of graphs in the proposed RTE is that they can be
divided into sections. This allows the RTE to change the redundancy configuration
of parts of the graph individually. The division into sections is specified by the user,
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either by calling special checkpoint functions in a RAPID program or by defining
them directly in the DOT representation of the graph.
One of the requirements of the execution model was that it is well-suited for

various hardware architectures. Consequently, this thesis described possible RTE
implementations for two hardware architectures, a shared-memory and a network-
on-chip-based (NoC-based) architecture. On the latter, local memories are too
small for a graph or schedule. Only a special driver tile has direct access to a large
off-chip memory which contains all graphs and schedules. Since only the driver has
global knowledge, its main task is to coordinate transfers and actor executions on
the compute tiles. However, if an actor requires a large amount of memory, it must
be executed on the driver. On the shared-memory architecture, all cores have access
to graphs and schedules, and thus there is no global coordination required. Each
core is able to check whether all required partitions for its next actor are available.

Scheduling is very similar on the two architectures. The only major difference is
that a scheduler must consider the driver tile and map all actors which process large
amounts of data always onto this tile. This thesis presented two commonly used
scheduling techniques that were modified to support graph sections with different
redundancy on both architectures. The first scheduler is an extended version of the
HEFT scheduling heuristic which computes an actor mapping and order before the
graph is executed. The second scheduler is based on work stealing and determines
the actor mapping and order at runtime. In order to handle redundant actors
correctly, the scheduler has to deviate from the work stealing concept in some cases.

Graph executions according to fixed schedules can be predicted with reasonable
effort. However, the analysis of a graph execution gets more costly the more details
are considered. While the consideration of data and message transfers is mandatory
for an accurate analysis on the NoC-based architecture, the number of redundancy-
related events (for example redundancy changes or actor re-executions) considered
in the analysis can be chosen depending on the application requirements.
To determine the performance of the proposed execution model on different

architectures, the RTE was implemented on a standard x86 shared-memory system
and the Kalray Bostan platform. In addition, three benchmark applications were im-
plemented in the RAPID programmingmodel to evaluate different graph properties
and RTE configurations. These applications are Cannon’s algorithm, fast Fourier
transform and bitonic sort. The results show that the influence of different graph
properties and RTE settings varies. For the three applications, the partitioning that
was chosen for the input data had a much greater impact than the number of graph
section. Using online scheduling was beneficial in most cases. Only for the FFT
benchmark on the Kalray architecture the performance was lower. Regarding re-
dundancy, graph executions often take less than twice (or three times) the baseline
execution time because only actual computation is executed redundantly.
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11.2 Future Work

Although the presented RTE supports different architectures and offers a variety
of options to execute graphs with different redundancy, there is room for further
development. An important aspect that deserves a closer look is redundancy. This
thesis only described the basics of the adaptive redundancy concept, i.e. how the
redundancy configuration at runtime can be changed while maintaining an appro-
priate predictability. How the RTE could make a decision to change the redundancy
configuration is still an open question, especially since the supported redundancy
configurations are two-dimensional (execution on same vs. different processing
elements and double vs. triple execution) and can be adjusted in different ways.
Furthermore, RTE management code is currently executed without redundancy.
One possible extension would be to utilize hardware redundancy to increase the
fault tolerance of RTE-internal routines. On NoC-based architectures, one lockstep
processor per tile would be sufficient for this.
Besides transient faults which can be corrected by either voting or re-executing

actors, there are also permanent faults. This thesis briefly discussed possible ways
to react to a failing hardware component on a theoretical level, but the actual RTE
implementation does not support graceful degradation at themoment. The addition
of different mechanisms to handle failing hardware units could further increase the
versatility of the proposed RTE.

Another possible extension of the RTE would be the ability to determine graph
sections automatically instead of the currently required manual division. However,
an entirely automatic sectioning would reduce the flexibility. Users should be able
to specify the adaptive redundancy requirements of an application, so the sectioning
routine can determine the number of sections and section bounds accordingly.
Additional multi and manycore architectures may also be worth studying. The

evaluation in Chapter 9 showed that the I/O tiles are possibly a limiting factor
for graph executions. Thus, the successor to the Kalray Bostan MPPA, the Kalray
Coolidge MPPA [Din19], is an interesting architecture for the dataflow-based exe-
cution model. This processor consists of five tiles connected through a NoC. The
tiles themselfs are similar to the compute tiles of the Kalray Bostan MPPA. However,
a major difference between the Coolidge and its predecessor is that the former does
not contain I/O tiles. Instead, the five tiles can access the DDR memory via an
AXI fabric. If the bandwidth and latency of the AXI fabric are appropriate, an RTE
implementation on this architecture has the potential to utilize the Kalray Coolidge
MPPA more efficiently than the Bostan MPPA. Furthermore, an RTE for this archi-
tecture could overcome the disadvantages of large partitions which are present in
the RTE on its predecessor.
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11.3 Conclusion
This thesis presented a concept to leverage multi and manycore processors in em-
bedded systems. The proposed RTE uses a dataflow-based execution model which
allows to change the redundancy of parts of the application at runtime. By us-
ing fixed schedules and restricting redundancy changes to certain points during
runtime, dataflow executions can be analyzed with reasonable effort. Regarding
performance, experimental shows that the proposed RTE is on par with existing
parallel computation frameworks that focus on high performance and thus provide
no redundancy-related features. At the moment, the RTE’s redundancy capabilities
only cover the execution of dataflow actors. In a practical setting, the RTE internals
should be fault-tolerant as well. A possible way to achieve this with only minimal
modification of the RTE is the use of hardware redundancy. Furthermore, with
the addition of a mechanism for determining at runtime when the redundancy
configuration should be changed, the RTE can fully utilize the adaptive redundancy
concept.
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