

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Dohmke, Thomas (2008) Test-driven development of embedded control
systems: application in an automotive collision prevention system.
PhD thesis.

http://theses.gla.ac.uk/239/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Test-Driven Development of Embedded

Control Systems: Application in an

Automotive Collision Prevention System

Thomas Dohmke

Submitted for the degree of Doctor of Philosophy in the

Department of Mechanical Engineering, Faculty of Engineering,

University of Glasgow, February, 2008

c© Thomas Dohmke 2008

Abstract

With test-driven development (TDD) new code is not written until an automated test
has failed, and duplications of functions, tests, or simply code fragments are always
removed. TDD can lead to a better design and a higher quality of the developed
system, but to date it has mainly been applied to the development of traditional soft-
ware systems such as payroll applications. This thesis describes the novel application
of TDD to the development of embedded control systems using an automotive safety
system for preventing collisions as an example.

The basic prerequisite for test-driven development is the availability of an auto-
mated testing framework as tests are executed very often. Such testing frameworks
have been developed for nearly all programming languages, but not for the graphi-
cal, signal driven language Simulink. Simulink is commonly used in the automotive
industry and can be considered as state-of-the-art for the design and development of
embedded control systems in the automotive, aerospace and other industries. The
thesis therefore introduces a novel automated testing framework for Simulink. This
framework forms the basis for the test-driven development process by integrating the
analysis, design and testing of embedded control systems into this process.

The thesis then shows the application of TDD to a collision prevention system.
The system architecture is derived from the requirements of the system and four
software components are identified, which represent problems of particular areas for
the realisation of control systems, i.e. logical combinations, experimental problems,
mathematical algorithms, and control theory. For each of these problems, a concept
to systematically derive test cases from the requirements is presented. Moreover two
conventional approaches to design the controller are introduced and compared in
terms of their stability and performance.

The effectiveness of the collision prevention system is assessed in trials on a driv-
ing simulator. These trials show that the system leads to a significant reduction of
the accident rate for rear-end collisions. In addition, experiments with prototype
vehicles on test tracks and field tests are presented to verify the system’s functional
requirements within a system testing approach. Finally, the new test-driven develop-
ment process for embedded control systems is evaluated in comparison to traditional
development processes.

i

Contents

1 Introduction 1

1.1 Automotive Safety Systems . 2
1.1.1 History . 2
1.1.2 Design of Automotive Safety Systems 3

1.2 Control System Design . 5
1.2.1 History . 5
1.2.2 The Basic Feedback Loop . 6
1.2.3 Process of Control System Design 7

1.3 Software Development Processes . 9
1.3.1 History . 9
1.3.2 Test-Driven Development Process 12
1.3.3 Design Patterns . 13

1.4 Thesis Contributions . 15
1.5 Thesis Outline . 18

2 Methods and Tools 20

2.1 Model-Based Development . 20
2.1.1 Definition . 20
2.1.2 Overview of Simulink . 24

2.2 Model-Based Testing Framework . 26
2.2.1 Testing Frameworks for Simulink 26
2.2.2 The xUnit Family . 28
2.2.3 Assertions . 29
2.2.4 Creating and Executing Tests 32
2.2.5 Fixtures . 36
2.2.6 Exceptions . 38
2.2.7 Further Patterns for slUnit . 39
2.2.8 Summary . 40

2.3 Using Tests for Verification . 41
2.3.1 Testing Techniques . 42
2.3.2 Test Design Techniques . 45
2.3.3 Test Evaluation Techniques . 50

ii

Contents

2.4 Using Tests for Design . 53
2.5 Testing Different Layers of an Automotive Safety System 56

3 Development of a Collision Prevention System 59

3.1 Collision Prevention Systems . 60
3.1.1 Overview . 60
3.1.2 Definition . 60

3.2 Requirements . 63
3.3 Architecture . 65

3.3.1 State-Space Approach . 66
3.3.2 Layer Approach . 70
3.3.3 Comparison of the State-Space Approach and the Layer Approach 72

3.4 Realisation . 74
3.4.1 Activation . 74
3.4.2 Driver Assessment . 82
3.4.3 Situation Assessment . 88

3.5 Summary . 95

4 Development of a Longitudinal Vehicle Controller 96

4.1 Controllers for Longitudinal Control 96
4.2 Conventional Approach . 100

4.2.1 Synthesis with Pole Placement and LQG Optimisation 100
4.2.2 Stability and Robustness . 101
4.2.3 Performance . 102
4.2.4 Choice of the Parameters . 105

4.3 Test-Driven Development Approach 109
4.3.1 Concept . 109
4.3.2 Basic Implementation . 110
4.3.3 Extended Implementation . 115

4.4 Comparison . 123
4.4.1 Stability and Robustness . 123
4.4.2 Performance . 125
4.4.3 Conclusions . 127

4.5 Summary . 130

5 Evaluation of the Collision Prevention System 132

5.1 Trials on a Driving Simulator . 132
5.1.1 Methods . 132

iii

Contents

5.1.2 Results . 134
5.2 Experiments with Prototype Vehicles 134

5.2.1 Introduction . 134
5.2.2 System Testing on Test Tracks 135
5.2.3 Acceptance Testing in Real Life 137

5.3 Summary . 140

6 Analysis of the Test-Driven Development Process 142

6.1 Comparison to Design Patterns . 142
6.1.1 TDD Tuning Process . 143
6.1.2 TDD Design Process . 146

6.2 Comparison to the Traditional V-Model Approach 150

7 Conclusions and Outlook 154

7.1 Conclusions . 154
7.2 Outlook and Further Work . 156

iv

List of Figures

1.1 Milestones of automotive safety systems 3
1.2 Sensors for environment detection . 4
1.3 The basic feedback loop . 7
1.4 The process of control system design 8
1.5 The Waterfall model . 10
1.6 The Spiral model . 10
1.7 The Multiple V-model . 11
1.8 Comparing the cycle times of the different development models 12
1.9 The development cycle of test-driven development 13

2.1 Different models for the same activation subsystem 22
2.2 Basic Elements of Simulink . 25
2.3 Core classes of the xUnit architecture 28
2.4 Behaviour of the Assert and Assert State Change block 32
2.5 Example for a user-defined assertion 32
2.6 Tree of Test Suite and Test Case Objects 34
2.7 Architecture of a slUnit model . 35
2.8 Example for a slUnit system . 36
2.9 The four-phase test with xUnit and slUnit 41
2.10 Different test setups for embedded systems 43
2.11 Relationship between different testing techniques 45
2.12 Example classification tree for a collision avoidance system 47
2.13 Example control-flow model with labelled transitions 49
2.14 Difference between regression and back-to-back testing 52
2.15 Acceptance and unit tests in test-driven development 55
2.16 Layers for an automotive safety system 58

3.1 Definition of a rear-end collision . 62
3.2 Red light with a triangular shape in the instrument cluster 64
3.3 Block diagram of the state-space representation 66
3.4 State-space approach for the Collision Prevention System 69
3.5 Layer 2: Architecture of the control units 70

v

List of Figures

3.6 Layer 3: Architecture of the software components 71
3.7 Layer 3: Architecture of the CPS subcomponents 72
3.8 Combination of the layer and the state-space approach 73
3.9 Concept for deriving tests from the classification tree 75
3.10 Classification tree for the component Activation 76
3.11 Test setup with a foam object . 77
3.12 Test sequence with the classification-tree method 79
3.13 Test sequence with slUnit . 80
3.14 The realisation of the component Activation 81
3.15 Concept for using tests for experimental problems 83
3.16 Example trajectories for braking manoeuvres 85
3.17 Classification of braking manoeuvres 86
3.18 Defining the threshold by a synthetic trajectory 87
3.19 Implementation of the component Driver Assessment 88
3.20 Concept for deriving tests for mathematical problems 90
3.21 Definition of the reaction time . 90
3.22 Motions of System Vehicle and Object: Reaction time exists 91
3.23 Motions of System Vehicle and Object: Reaction time not exists . . . 92
3.24 Implementation of the component Situation Assessment 95

4.1 Range-vs-Range-Rate diagram . 97
4.2 Virtual Bumper approach . 98
4.3 Concept of fuzzy control for a longitudinal vehicle controller 99
4.4 Relationship between the peak value and a collision 103
4.5 Influence of λ . 107
4.6 Concept for deriving tests for control systems 110
4.7 Simplified control loop with only one state 111
4.8 Manipulating the Object’s acceleration to prevent the collision 117
4.9 Implementation of the component Controller 120
4.10 Plots for different values of Kref . 122
4.11 Simulation for the initial configuration of Equation (4.50) 126
4.12 Simulation for the initial configuration of Equation (4.51) 127
4.13 Simulation for the initial configuration of Equation (4.52) 128
4.14 Simulation for different values of ∆v and ∆s 129

5.1 Results from the Driving Simulator . 134
5.2 Verification and reproduction of measurement data 136

vi

List of Figures

5.3 Comparison between simulation results and measurement data 137
5.4 Two examples for real situations . 139

6.1 Origins of a new test . 146
6.2 The Model-View-Controller pattern . 147
6.3 Test-Driven Development as a Design Process 149
6.4 The Test-Driven Process . 152
6.5 Usage of different process models . 153

vii

List of Tables

2.1 Modelling tools for production purposes 24
2.2 The architectures of xUnit and slUnit 41

4.1 Gain and phase margins of the different controllers 124
4.2 Comparison of performance criteria for the three examples 129

viii

Acknowledgements

It feels like a long time that has passed since I started my PhD project five years ago.
A time, in which I witnessed and actively participated in the development of a new
car. A time, in which I visited countries all over the world and stayed abroad for an
average of 14 weeks each year. A time, in which I met a wonderful woman and, on a
beautiful and unforgettable day, married her. This page is dedicated to the people,
who have been part of my live during this time and helped me, not to loose focus on
my thesis.

First and foremost I would like to acknowledge my supervisors Dr Henrik Gollee
and Prof Ken Hunt for their advice, patience and guidance over the last years. Their
detailed knowledge about control theory was very helpful and kept me continuously
rethinking my ideas and the concepts of my thesis. Sometimes it was hard to bridge
the distance between Scotland and Germany by means of modern communication, but
especially Henrik’s questions and the resulting discussions have been of tremendous
benefit to me. I couldn’t have asked for better supervision and I’m very grateful.

Furthermore I wish to acknowledge Dr Volker Schmid, who has been my project
leader at DaimlerChrysler from the beginnings in 2003 until I left the company at
the end of 2006. Together, we had a great spirit to drive the project forward and the
feeling that nobody can stop us. I will never forget some key moments: when the
system was running in the car for the first time in 2003, when we did a test-drive (or
was it a roadtrip?) through the whole of the USA in 2004, and of course, when we
presented the final system to journalists in 2005.

Finally, I am very appreciative of my wife Sarah, who was a big support in every
moment I can remember: when I came home from office and immediately sat down
in front of my laptop every day during the last one and half years; when I worked on
my thesis on most weekends, without doing my part of taking care of the household;
when I was frustrated about control theory, somehow demotivated, or distracted by
browsing through the internet and discovering interesting things which had nothing
to do with my thesis. Sarah, I owe you a lot of hugs and I will always love you.

ix

Chapter 1

Introduction

Functional software is one of the most essential parts of automotive electronics, in a
sector of automotive development which will realise products with the most added
value of a new car in a few years. A modern car has already built-in more than 80
electronic control units. This includes telematic systems like a navigation system, an
mp3 player or a mobile phone, safety systems like an anti-lock brake system or an
airbag, and driver assistance systems such as automatic headlight control.

With the increased complexity of electronic systems quality problems are also ris-
ing. In May 2004 Mercedes-Benz was forced to start the biggest product recall in its
history. About 680,000 cars of the E- and SL-Class had to be checked, because in ap-
proximately 2 out of 1000 cases an error in the brake-by-wire system SBC might lead
to a reduction of the brake force. Only one year later, DaimlerChrysler announced
another even bigger recall of about 1,300,000 cars because of problems with the same
system. Besides the loss of reputation and the inconvenience to the customer such a
recall is quite expensive for the company.

Especially new safety systems, which are the focus of many manufacturers to
achieve a technological leadership in safety due to its high rating by customers, have
to deal with a development time frame that is shortened with every new car, and
a rise in functionality at the same time. Furthermore these systems must never be
activated if the situation is not critical, but always if it is, which is difficult to realise
for control systems as the design of the plant model often leads to a simplification,
e.g. through omitting non-linear influences.

1

Chapter 1 Introduction

In the field of software development several new methods were presented in the
last years to improve the engineering process as well as the product itself. In 2001
Kent Beck published an article about a new style of development called test-driven
development (TDD). With TDD the code is tested before it is written. Despite its
test-centric approach, test-driven development is considered to be a design technique,
not a testing technique. To date TDD has mainly been applied to the development
of traditional software systems, but not to the design of control systems. This thesis
introduces a new test-driven approach to develop embedded control systems with the
focus on automotive safety.

1.1 Automotive Safety Systems

This section gives an historical overview of automotive safety systems and introduces
the fundamental design principles of such systems.

1.1.1 History

It was in 1886 when Carl Benz invented and built the automobile [1]. He was the
first of a number of today famous men like Gottlieb Daimler, Rudolf Diesel, Henry
Ford, Wilhelm Maybach, Nikolaus Otto and Armand Peugeot who amongst others
laid the way for the modern car [2, 3]. From the first cars at the end of the 19th
century the total number of vehicles produced has grown to 38.6 million per year in
1980 and 66.5 millions in 2005 [4]. With this still increasing number of vehicles a lot
of problems arose, which can be mainly divided into two categories: pollution of the
environment and traffic safety [5].

In 2005, 43,443 persons were killed on the streets of the USA due to traffic accidents,
compared to 51,091 in 1980. Taking into account that the vehicle miles travelled have
increased by nearly 100% during this time (from 1,527 billion to 2,990 billion miles),
the fatality rate per 100 million vehicle miles travelled has decreased from 3.35 to 1.45
[6]. In Germany the absolute number of persons killed decreased more significantly
from 15,050 in 1980 to 5,361 in 2005 (that is 1.25 per 100 million vehicle miles
travelled) [7]. The cause for this decrease is primarily the progress made through the
so called safety systems [8].

Automotive engineers are trying to improve the safety of the automobile nearly
as long as the automobile exists. In 1932 Chrysler was the first manufacturer who
introduced power-assisted brakes to help to prevent accidents [9]. Those systems are
called active safety systems. Their counterpart, the passive safety systems, try to

2

Chapter 1 Introduction

mitigate the damage of an accident when the accident is unavoidable, and in doing so
their effects unfold not until the collision is happening. An example are the crumple
zones, which came to market with the legendary “tailfin” Mercedes-Benz W111 in
1959 [9]. The era of electronic safety systems started with the anti-lock brake system
(ABS), presented by Mercedes-Benz and Bosch in 1978 [10]. Since then, the number
of new safety systems has grown steadily, as shown in Figure 1.1. Today, car makers
as well as customers consider those kind of systems as some of the most important
features of a new car [11, 12, 13, 14].

ABS (1978)

Airbag (1981)

ASR (1986)

1960 1980 1990 2000

ESP (1995)

ACC (1998)

BAS (1996)

PRE‐SAFE (2002)

CMS (2003)

LDW (2004)

Night View (2005)

Park Assist (1996)

1970 2010

Seat Belt Pretensioner (1981)

Seat Belt

Crumple Zones (1959)

1950

Safety Cell

Side Impact Protection (1992)

ABS: Anti‐lock Brake System ACC: Adaptive Cruise Control
ASR: Acceleration Slip Regulation BAS: Brake Assist
CMS: Collision Mitigation System ESP: Electronic Stability Program
LDW: Lane Departure Warning

Low

High

Sa
fe
ty
Po

te
nt
ia
l

ABC (1999)

Figure 1.1: Milestones of automotive safety systems [15]

1.1.2 Design of Automotive Safety Systems

The design of a modern automotive safety systems consists basically of four parts:
sensors, controller, actuators and the human-machine-interface (HMI). This subsec-
tion gives an overview of the role of each component.

Sensor: Depending on the system, one or more sensors measure the states of the
vehicle and of the driver as well as observe the environment. The states of
the vehicle usually include physical values such as the speed, e.g. measured by
wheel impulse counters, the acceleration, e.g. measured by an accelerometer, or

3

Chapter 1 Introduction

the steering wheel angle; but also values such as the state of the turn indicator
signal, the headlights, the wiper or the selected gear. The environment can
be detected using ultrasonic, LIDAR (Light Detection and Ranging), RADAR
(Radiowave Detection and Ranging), or vision-based sensors, see Figure 1.2.
The sensors’ data can be handled not only stand-alone, but also combined using
sensor fusion algorithms. Finally, the state of the driver can be estimated with
both groups of sensors, either directly by monitoring him/her with infrared
or vision-based sensors, or implicitly by analysing the vehicle data, e.g. the
steering wheel angle to detect fatigue [16].

Figure 1.2: Sensors for environment detection (from left to right): Ultrasonic sensor, infrared

camera, and RADAR sensor (Photos: Robert Bosch GmbH)

Controller: The controller processes the data of the sensors to decide whether the
system should be activated or deactivated, and to calculate the control signals
for the actuators.

Actuator: The basic actuators of an active automotive safety system are the brakes,
the engine (including the gearbox) and the steering, which are the same actu-
ators the driver is using for controlling the vehicle. In contrast, passive auto-
motive safety systems typically trigger a nonrecurring action, for example the
ignition of a gas generator propellant to inflate an airbag. More advanced sys-
tems for combined active and passive safety also control the chassis (suspension
and dampers)1 and different servo motors, e.g. for the position of the headlights
or for reversible seatbelt tensioners [17].

1The suspension and dampers not only influence the driving comfort and the driving dynamics, but

can also be used to reduce the pitching of a vehicle during a braking manoeuvre, or to help the

driver to perform an evasive steering manoeuvre.

4

Chapter 1 Introduction

Human-Machine-Interface (HMI): The communication between the driver and the
system is done through the Human-Machine-Interface. It includes operating
elements such as buttons or menu options for switching the system on or off as
well as for adjusting parameters, and output elements to display the activation
or error state, to warn the driver, or as the system’s function itself, e.g. in
the Night View system which displays the image of the camera directly in the
cluster instrument. Furthermore also the throttle, the brake pedal and the
steering wheel can be considered as input elements.

These components are usually distributed over different parts and control units of
the car, which are connected by a network system like LIN, CAN or FlexRay [18].
Therefore these systems belong to the group of distributed embedded real time sys-
tems [15].

An example is the Adaptive Cruise Control System (ACC). It consists of a RADAR
sensor mounted behind the grille to measure the distance and relative speed of the
vehicle ahead, an Electronic Control Unit (ECU) which implements the controller
and whose results are sent as brake commands to the ECU of the Electronic Stability
Program (ESP) and as acceleration commands to the ECU of the engine (including
also brake commands using the drag torque of the engine). The states of the vehicle,
in particular the speed and the acceleration, are usually received from the ESP, which
calculates them using the wheel impulse counters and accelerometers. Furthermore
the ACC sends information to the cluster instrument to display the activation state,
the desired cruise speed, the distance to the vehicle in front as well as its speed.

1.2 Control System Design

This section gives an historical overview of control system design and introduces the
basic concept of a feedback loop. Furthermore, the basic design process for control
systems is outlined.

1.2.1 History

When looking at the history of control, a number of events occurred which can all be
seen as its starting point. For instance, in 1788 James Watt designed one of the first
centrifugal governors as a part of the steam engine. A centrifugal governor controls
the engine’s speed by using the centrifugal force to regulate the amount of steam
admitted. In other words, it uses the principle of proportional control to maintain
a constant speed independent of the load or fuel supply conditions. About 50 years

5

Chapter 1 Introduction

later, Airy published one of the first theoretical works on control by mentioning insta-
bility of closed-loop systems and introducing differential equations for their analysis
[19]. In 1868 Maxwell wrote his famous paper “On governors”, in which he analysed
different devices (including Watt’s governor) by regarding them as a feedback control
system [20]. He also showed that a system is stable if the roots of the characteris-
tic equation have negative real parts. In 1892 Lyapunov discussed the stability of
nonlinear differential equations [21].

Until the 1920’s all mathematical analysis was carried out in the time domain.
Frequency domain methods were first applied in control by Black in 1927, when he
invented the negative feedback amplifier to reduce the distortion in repeater ampli-
fiers2 [22]. In the following years Nyquist with his stability criterion [23] and Bode
with the magnitude and phase frequency plots [24] developed two major theoretical
tools in classical control. In 1922 Minorsky first used a PID controller [25], whose
tuning was (and still is) often governed by empirical techniques such as the formulae
of John Ziegler and Nathaniel Nichols [26]. In 1948 Evans presented his root locus
technique, which determines the closed-loop pole locations in the s-plane [27].

The era of modern control began in 1960, when Kalman and Bertram introduced
the concept of internal system states and brought control theory back to the time
domain [28]. With the invention of digital computers in the middle of the 20th
century, sampled-data systems were developed by Ragazzini and Zadeh in 1952 [29]
and Åström analysed digital control in 1970 [30].

Finally a new control theory, which takes the best features of classical and modern
techniques, evolved in the 1970’s and 1980’s. In 1974 Rosenbrock and in 1977 Mac-
Farlane and Postlethwaite extended the classical frequency domain techniques by the
inverse Nyquist array [31] and the generalized Nyquist stability criteria [32]. Then
Doyle and Stein showed in 1981 the importance of the singular value plots versus
frequency [33], which allowed the use of many classical frequency-domain techniques
for modern design.

1.2.2 The Basic Feedback Loop

In control theory, a dynamic system is often described as a set of mathematical
formulae and a block diagram [34]. A block diagram representing the basic feedback
loop is shown in Figure 1.3. It has three components: the plant consisting of the
actuator and the process, the sensor and the controller. The plant represents the
object to be controlled, whose input u is called the control variable, and whose output

2This was necessary to amplify the voice in long telephone lines, but not the noise.

6

Chapter 1 Introduction

y is called the plant variable modified by the disturbance z. The plant variable is
measured by the sensor, which adds a measurement disturbance d. The controller
generates the input of the process from the reference variable w and the sensor output
r. In this thesis, the naming convention in Figure 1.3 is used.

Controller

Sensor

Process
w

r

u y

z

d

Figure 1.3: The basic feedback loop

It has to be mentioned that the variables are named with different letters in different
literature. In figure 1.3 the variables are named after [35]. Other books like [36] or
[37] uses for example r for the reference variable.

If the feedback is cut off between the sensor and the controller, it is called an open
loop system, whereas the basic feedback loop is often called a closed loop system.
Closed-loop control has the advantage that it can implicitly compensate for distur-
bances to the system and account for changes in the plant. For example, in a model
of a vehicle, external disturbances would be caused by drag or the slope of the road.
The aim of the controller design is then to make the acceleration of the vehicle follow
a desired acceleration while external disturbances are rejected.

1.2.3 Process of Control System Design

The process of control system design is divided into two basic activities: analysis
and synthesis. The major purpose of the analysis is the identification of the system
in defining the equations that govern the plant’s dynamics. The model is either
built from known physical, usually differential, equations, e.g. for a mass-spring-
damper system, or identified by using system identification [38]. With this, the
system is stimulated with different input signals while measuring the output signals
and trying to determine a mathematical relation between the two, e.g. using least-

7

Chapter 1 Introduction

squares optimisation [38]. In general, the obtained model can not entirely describe the
real physical system as nominal parameters are never known with absolute precision.
Furthermore for complex systems with non-linear behaviour or dead time it might be
necessary to choose a simplified representation of the system to allow the creation of
a controller at all [35].

The derivation of the controller, e.g. a feedback compensator, from the mathe-
matical model is called synthesis. Different strategies are known, for example the
above mentioned PID controller with its tuning techniques, direct pole-placement in
calculating the feedback matrix with desired positions of the poles [35], or optimal
control, which tries to minimize a performance index [39].

Real System

Mathematical
Model

Controller

Source Codem

k

c

x

Analysis

)t(xc)t(kx)t(xm ...K
Synthesis

Automatic Code Generation

uint16 controller(x, k, c)

uint16 K = …;
u = ‐Kx;
return u;

Figure 1.4: The process of control system design

A modern technique for control system design is model-based development [40,
41, 42]. In model-based development, the system is designed as a graphical model
including all parts of the control loop [43, 44]. Such a model can be created with
the tool Simulink [45], which furthermore allows the simulation of the model’s states
as well as the animation of the system, for example to show the trajectory of a
controlled vehicle. Most important in model-based development is that the model
represents the central artefact of the development process, which is systematically
refined throughout the different process steps.

The controller represents the final product of this process and is usually imple-
mented as software. This can be supported by the automatic generation of the soft-
ware’s source code from the graphical model, see Figure 1.4. The source code is
then translated to binary code by a compiler and executed at the system’s ECU. The
ECU can be considered as a special-purpose computer system designed to perform a
number of dedicated functions. It is embedded into a more complex device, e.g. a
vehicle, which consists of further electronic and mechanical parts, e.g. an actuator as
described in Section 1.1.2. Such systems are called embedded control systems.

8

Chapter 1 Introduction

As a consequence, the process of control system design can use two kinds of models.
The analysis of the system is done with mathematical models, the realisation from a
prototype for an initial idea up to the final product by graphical models.

1.3 Software Development Processes

Similar to the previous introductions to automotive safety systems and control system
design, this section gives an historical overview in the first subsection. This overview
describes different software development processes. Then a second subsection out-
lines the characteristics of the test-driven development process. Finally, the concept
of design patterns, which describe common development practises in the form of a
problem and its solution, is introduced.

1.3.1 History

A software development process describes the activities and sequences for the devel-
opment of a software product. In the past, numerous models for such a process were
developed. One of the oldest and best-known models is the Waterfall model, proposed
by Winston W. Royce in an article published 1970 [46], which focusses on a distinct
separation of the development phases to allow a lightweight way of planning and con-
trolling the project, see Figure 1.5. Furthermore it offers a high efficiency for projects
with stable requirements and limited complexity. However the waterfall model is only
applicable to small projects, particularly because of its inflexibility against changes
and the late recognition of defects. Ironically, Royce himself regarded this process as
unsuitable for large projects and proposed several methods in the same article, which
are comparable to an iterative approach.

In 1988 Barry Boehm introduced the Spiral model which divides the development
process into different phases circling around the beginning of the project like a spiral,
cf. Figure 1.6 [47]. Furthermore the coordinate system is cut into four quadrants
with activities that define the objectives and constraints (north-western quadrant),
evaluate the alternatives and identify as well as resolve risks (north-eastern quadrant),
develop and verify the software (south-eastern quadrant) and finally plan the next
cycle (south-western quadrant). The major advantage of such a model is the adaption
of the project plan onto the progress of the project as well as onto the development of
new technologies and the changing needs of the market. Disadvantageous is however
the generalization of the actual development in one quadrant without specifying the
relationship between the activities, e.g. implementation and test.

9

Chapter 1 Introduction

Requirements

Design

Implementation

Verification

Maintenance

Figure 1.5: The Waterfall model

Plan next phase

Evaluate alternatives
Identify and resolve risks

Develop
Verifiy

Determine objectives,
alternatives, constraints

Costs

Figure 1.6: The Spiral model

10

Chapter 1 Introduction

Requirements

Design

Implementation

Verification

Validation

Model Prototype Final Product

Requirements

Design

Implementation

Verification

ValidationRequirements

Design

Implementation

Verification

Validation

Figure 1.7: The Multiple V-model

The V-model separates the development process into phases, where the activities
for design and implementation are positioned opposite to their respective activities
for verification and validation [48]. Therefore the V-model belongs to the group of
symmetric process models. The verification is done bottom-up, which means that,
prior to the test of the complete system, all components have to be tested, beginning
with the smallest entity, the software unit, which is usually defined as a function or
method of the respective programming language. In consequence, the final product
can be validated not until the final phase of the process which makes it complicated
to react to failures in the early phases, primarily related to the design. The Multiple
V-model is an attempt to solve this issue through dividing the process into multiple
smaller V-models, which should allow the same flexibility as the Spiral model [49, 50].
An example realisation with three V-models is shown in Figure 1.7.

The software unit is also an important key element of Extreme Programming (XP),
invented by Kent Beck and others in 1996 during the Chrysler C3 project3 and first
published in 1999 [51, 52, 53]. XP defines four basic programming practises - coding,
testing, listening and designing - which form the major focus of the process. It differs
from traditional methodologies primarily in placing a higher value on adaptability
than on predictability, which is also expressed through its slogan ”Embrace Change”.
The process is centred around short iterations (2-3 weeks) which focus on simple
solutions to design for the needs of the current release. Figure 1.8 shows a comparison
of the cycle times of the different development processes.

With extreme programming, testing plays an important role as tests are executed
very often and a test is written for every new feature - the so called acceptance test -
and for every software unit - the so called unit test. Typically the code is tested before
it is written, which is referred to as test-first programming. In 2001 Beck presented

3C3 was the abbreviation for the Chrysler Comprehensive Compensation system whose aim was to

realise the payroll processing for all employees of the Chrysler Corporation.

11

Chapter 1 Introduction

Requirements

Design

Implementation

Verification
Time

(a) Waterfall model

Time

(b) Multiple V-model

Time

(c) Extreme Programming

Figure 1.8: Comparing the cycle times of the different development models

this idea as a separate process, the test-driven development process [54]. Although
the name includes the word test, test-driven development is considered to be a design
technique, not a testing technique [55]. The reason is that a better design can be
realised by the programmer, who just writes code to solve a problem - the failing test
- and not to create a “masterpiece of software”. This leads to a cleaner code, because
defects in functions are found sooner as there is already a client for the function - the
test [56, 57, 58]. Research studies showed that software created with TDD consists of
more and smaller units which are less complex and highly tested [59, 60]. Furthermore
when a function is changed later in the development process, the tests assure that no
functionality is broken [61]. TDD can increase the productivity [62, 63], but might
also affect it in a negative way due to the effort of more frequent testing [64, 65].

1.3.2 Test-Driven Development Process

In test-driven development there are two rules: New code is written only if an au-
tomated test has failed, and duplication is always removed. Therefore the following
development cycle is defined [66]:

1. Write a test.

2. Run the test, which means

• make it compile, and

• run it to see that it fails.

3. Make it run, which means

• make a change which solves the test.

4. Remove duplication.

12

Chapter 1 Introduction

Write a test.

Run the test.

Make a change.

Remove
duplication.

[Fail]

[Pass]

Figure 1.9: The development cycle of test-driven development

This cycle is represented as a state diagram in Figure 1.9.
In order to run automated tests, Beck also describes the development of a testing

framework called xUnit for the programming language Python [66]. With xUnit, the
programming language and the language to define a test are the same. Thus running
an automated test is as simple as running the actual program. During test execution
a progress bar shows how many tests have already been completed. At the end, a red
bar means that one or more tests have failed, while a green bar shows that all tests
have passed. For a failed test additional information is shown, for example the line
number of an error. More recently a number of similar testing frameworks for most
programming languages have been development: JUnit for Java, CppUnit for C++
or NUnit for the .NET platform [67]. Today the family of those frameworks is called
xUnit [68].

1.3.3 Design Patterns

The origins of design patterns reach back to the architect Christopher Alexander
who presented solutions for various architectural problems as “a pattern language”
in 1977 [69]. A pattern in this sense is defined as “a three-part rule, which expresses
a relation between a certain context, a problem and a solution” [70, p. 247]. It
presents a solution for a well-defined problem which occurs under the circumstances
of the described context. Thus patterns serve as a kind of design guideline or reference

13

Chapter 1 Introduction

description.
10 years later, Ward Cunningham and Kent Beck adapted the concept of patterns

to the design of object-oriented software [71]. Then in 1994, the probably most influ-
ential work on design patterns for software was published by Erich Gamma et al. [72].
Their book, “Design Patterns - Elements of Reusable Object-Oriented Software”, uses
patterns to name, identify and extract the key aspects of common architectural and
implementation structures, and with this, to create a reusable software design.

The characteristics of these software design patterns are similar to Alexander’s
structure: name, context, problem, and solution. The description of a pattern is not
bound to a textual description. Instead the Pattern Schemata can also be represented
by a model such as a block diagram. Common to all patterns is that they are created
by analysing existing (successful) solutions and identifying (recurring) designs within
these solutions. This process is called Pattern Mining. In addition, patterns can be
used as a part of the system’s documentation to describe a design decision by the
three-part rule (context, problem, solution).

A number of patterns which are interrelated within a certain domain and grouped
into a collection are denoted by a pattern language [69]. Nowadays, such languages
exists for programming languages, software systems and software processes [73], and
also for processes which are not bound to the software domain.4 Several pattern
languages have been introduced for the domain of control engineering and embedded
systems [74]. These include patterns for time-triggered systems [75, 76], distributed
systems [77, 78], controlling autonomous vehicles [79], real-time applications [80, 81],
and generic real-time modelling [82]. The work on specific application domains has
also been described with patterns, e.g. the design of an avionics control system [83].
In fact, even most textbooks on control theory include design patterns but do not use
the typical pattern schemata. An example for this is the Feedback pattern (adapted
from [74]):

Pattern Feedback

Context

The system has a measurable output and a controllable input. A system
model may or may not be available. A desired reference signal exists.

4A good example for the wide scope of the pattern concept is the book “Fearless Change: Pat-

terns for Introducing New Ideas”, M.L. Manns and L. Rising, Addison-Wesley, 2005; it describes

techniques for introducing new ideas with the help of a pattern language.

14

Chapter 1 Introduction

Problem

The system output does not behave as desired. The response may be too
slow, too oscillatory, unstable, or non-linear, for example.

Solution

The plant input is determined from the difference between the reference
signal and the plant output by a feedback controller as shown by the fol-
lowing block diagram.

Controller Plant–

Feedback

+

Reference Output

Disturbances

1.4 Thesis Contributions

Automotive safety systems are already one of the most important ingredients for a
new car and will gain even more relevance in the next years. Their development is
driven by the vision of accident-free driving, thus to reduce the number of collisions
and fatalities, as well as by the need for features to differentiate a new car from
its predecessor and from low-cost vehicles. With this increasing functionality the
systems must handle more and more complex traffic situations while processing data
from different sensors and controlling multiple actuators of the car. At the same time
a system should never be activated if the situation is not critical, but virtually always
if it is.5 In consequence it is necessary to consider as many conditions as possible
during the design of the system while preventing a development process which is too
complex or does not fit into the development cycle of a new car [Issue 1].

Such safety systems consist of the components sensor, controller, actuator and
human-machine interface. The design of the controller is typically based on math-
ematical design approaches in the frequency and/or in the time domain. At first a

5Typically, it is acceptable that a system is not activated at certain (borderline critical) situations,

e.g. the airbag may not be inflated at low impact speeds.

15

Chapter 1 Introduction

model for the plant – the vehicle, the driver and its environment – is created using
system identification techniques. The resulting plant is simplified to realise a model
which is suitable for controller design. Such a simplification might lead to an insuf-
ficient behaviour of the final system in situations which are not considered by the
model [Issue 2].

The next step is the synthesis of the controller, for example using the pole-placement
method. In this case, the position of the poles is restricted by the stability criterion,
which requires that all poles have negative real parts, and by the limits of the input
value of the actuator. Moreover it is defined by a desired rise time, settling time,
maximum overshoot, etc. These values must be determined by the developer [Issue
3].

In addition, model-based development allows the creation and evaluation of the
controller not only with mathematical calculations, but also with graphical tools like
Simulink. This allows for example the numerical simulation of non-linear charac-
teristics of the plant, which are difficult to solve with mathematical analysis tools.
Furthermore the model can be transformed into software by using automatic code
generation. This software and the ECU, at which it is executed, represent the con-
troller’s implementation as an embedded control system. A crucial aspect of such
embedded control systems is that they do not only implement the controller itself,
but also realise components with more or less complex decision logic, e.g. for the
system’s activation. The influences of this decision logic are typically not part of
the modelling of the control loop, but have to be considered during the development
process [Issue 4].

The quality of an embedded control system is not only described by the performance
of the controller, but also through other characteristics such as the stability and the
robustness over the lifespan, and the number of defects, which are in most cases not
zero. Therefore testing becomes more and more important for the developer. In
contrast to traditional testing which is done after the design of the software, test-
driven development introduces the concept of testing first. No code is written before
a test has failed. To date, test-driven development has only been applied to common
programming languages such as Java and to common software systems like payroll
applications, but not to graphical signal driven languages like Simulink and to the
design of control systems implemented with it [Issue 5].

In addition, it has to be considered that the controller is implemented as software,
i.e. the results of the mathematical design approaches are transformed into a different
representation.

Therefore the goal of this thesis is to use testing as a design method for control

16

Chapter 1 Introduction

systems to address the issues defined above. A new design process will be presented
which is based on test-driven development and considers the characteristics of control
system design. This process is then applied to an automotive collision avoidance sys-
tem which helps the driver to prevent collisions through an acoustical warning before
an imminent collision and through increasing the brake force up to the maximum if
necessary. Finally this system is evaluated based on three criteria. First, the system
is reviewed for aspects of control system design, e.g. stability or robustness. Second,
measurement data from a pre-series vehicle are analysed for different use cases and
situations. Third, the new methods are compared to alternative design methods and
to patterns for test-driven development.

Some of the work reported in this thesis has been published in the following paper:

[84] Test-Driven Development of a PID Controller, T. Dohmke and H. Gollee,
IEEE Software, 2007

The paper describes the novel application of test-driven development to control sys-
tem design using a simplified vehicle system as an example. Furthermore an auto-
mated testing framework is implemented with the graphical programming language
Simulink.

Additionally, more detailed information about the Collision Prevention System can
be found in the following patents:

[85] Method for Identifying Critical Collision Situations from the Rear,
B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, A. Spieker, 2006

[86] Method for Identifying Rear End Collision-Critical Situations in Lines
of Traffic, B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, A. Spieker, 2006

[87] Method and Vehicle Assistance System for Preventing Collisions or
Reducing the Severity of a Vehicle Collision, B. Danner, T. Dohmke, J.
Hillenbrand, V. Schmid, A. Spieker, 2006

[88] Method for Operating a Collision Avoidance System of a Vehicle
and Associated Collision Avoidance System, B. Danner, T. Dohmke, J.
Hillenbrand, V. Schmid, A. Spieker, 2006

[89] Method for Operating a Braking Assistance System in a Vehicle, B.
Danner, T. Dohmke, J. Hillenbrand, V. Schmid, A. Spieker, 2006

[90] Method for Avoiding a Collision or for Reducing the Consequences
of a Collision and Device for Carrying Out Said Method, B. Danner,
T. Dohmke, J. Hillenbrand, V. Schmid, A. Spieker, 2006

17

Chapter 1 Introduction

[91] Method for Adapting Intervention Parameters of an Assistance Sys-
tem of a Vehicle, B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, A.
Spieker, 2006

[92] Method for Operating a Collision Avoidance System or Collision Se-
quence Reducing System of a Vehicle, and Collision Avoidance Sys-
tem or Collision Sequence Reducing System, B. Danner, T. Dohmke, J.
Hillenbrand, V. Schmid, A. Spieker, 2006

[93] Method for Operating a System for Avoiding Collisions or for Reduc-
ing the Consequences of a Collision for a Vehicle and a Corresponding
System for Avoiding Collisions or for Reducing the Consequences of
a Collision, B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, A. Spieker,
2006

[94] Method for Operating an Assist System for a Vehicle and Park Assist
System, T. Dohmke, V. Schmid, 2006

The patents can be divided into the following groups: (i) the assessment of driv-
ing situations to identify potential collisions [85, 86, 90], (ii) the assessment of the
driver’s behaviour to allow the activation of a collision prevention system [89], (iii) the
definition of threshold values and the adaption of parameters for a collision preven-
tion system [88, 91], and (iv) the realisation of a collision prevention system which
outputs a warning to the driver and carries out an automatic braking manoeuvre
[87, 92, 93, 94].

1.5 Thesis Outline

This chapter outlined the motivation for the development of a test-driven design
process for embedded control systems and formulated the goals of the thesis.

Chapter 2 introduces the methods and tools for this process. First, the development
of a novel automated testing framework for the graphical programming language
Simulink is explained along with the structure and patterns of the xUnit family.
Then the new development process is defined based on the multiple V-model and
test-driven development. Furthermore, a layer concept of the automobile is presented
to show how TDD can be applied during different development phases.

Chapter 3 describes the application of the test-driven design process to an auto-
motive safety system using a collision prevention system as an example. First the
complete system is specified using the different layers from the second chapter. Then

18

Chapter 1 Introduction

the test-driven development process is explained for the activation of the system based
on three components. The realisation of a fourth component, which implements the
controller of the system, is done by a conventional approach as well as a test-driven
approach. These two approaches are described in Chapter 4. Furthermore, the sys-
tem is analysed using control criteria such as stability and performance. Chapter
5 then presents the results of the experimental evaluation of the developed system
based on measurements from test-drives with prototype vehicles and statistics from
trials with a driving simulator.

Chapter 6 discusses the new test-driven development process in terms of design
patterns for software development, testing and test-driven development. Two spe-
cific patterns are derived for the test-driven development of embedded control sys-
tems. Using these patterns, the process is evaluated in comparison to traditional
development processes. In addition, the application to different kinds of embedded
components is explained.

Finally, in Chapter 7 the thesis addresses the conclusions which can be drawn
from the work presented. An outlook to future work on test-driven development for
embedded control systems is given.

19

Chapter 2

Methods and Tools

The purpose of this chapter is to describe the methods and tools of the test-driven
design process for embedded control systems. First, model-based development and
its notations are described, including an overview of the modelling tool Simulink.
Furthermore the xUnit family is introduced with its structure and patterns. These
patterns are used in the development of a novel automated testing framework for
Simulink. Simulink and the new framework are the primary tools for the new devel-
opment process, which is based on the multiple V-model and test-driven development
(TDD). The last part of the chapter presents a layer concept of the automobile to
show how TDD can be applied during different development phases.

2.1 Model-Based Development

2.1.1 Definition

The origins of model-based development are reaching back to the so-called Computer
Aided Software Engineering (CASE), which describes the use of software-based tools
for the development and maintenance of software itself [95, 96]. CASE can signifi-
cantly increase the productivity of the development process and the quality of the
final product [97, 98]. Therefore CASE provides tools for automatic code generation,
revision control and change management. The system is usually represented as a
model which describes the architecture as well as the function. These models can be
created with three paradigms:

20

Chapter 2 Methods and Tools

Functional Notation / Data-Flow Models

The functional notation is based on mathematical functions, whose purpose is to
transform input data to output data. Such functions have no side-effects and no
states. Moreover a value can be assigned to a variable, but not changed. Therefore
the execution order of a statement is negligible, for example the following statement

y = f(x) + f(x)

is identical to

y = 2 * f(x)

because the function f always returns the same output value for the same input value
of x. Recursion is used instead of iteration as variables are invariable and functions
have no state. In consequence, an algorithm is described through a sequence of
functions, often including differential equations.

Usually data-flow models, e.g. block diagrams, are used to describe systems by the
functional notation [99, 100]. The models represent the basic elements in terms of
vectored lines (signals) and blocks (functions), either as built-in functions for basic
algorithms like addition or as user-defined functions composed from a sequence of
built-in functions, cf. Figure 2.1(b). Typically there are also blocks which have a
state, e.g. blocks to integrate or differentiate a signal. This can be understood either
as initial value of a function, e.g. f(0) = f0, or as the realisation of functions which
depend on the time, e.g. f(ti) = x + f(ti−1).

Imperative Notation / Control-Flow Models

The imperative notation is based on the operation of computers. It describes the
stepwise execution of a process, including statements, conditions and loops. In con-
trast to the functional notation, functions can have side-effects and states, e.g. due
to the assignment of a global variable. Thereby the aggregation of the states of all
functions is considered as the program’s state.

Besides the well-know programming languages like C or Pascal this notation can
be reflected through control-flow models. The three major forms of such models
are Nassi-Shneidermann diagrams [101], flowcharts [102, 103] and statecharts [104].
Both Nassi-Shneidermann diagrams and flowcharts are state-less. While the first use
a kind of tabular scheme with basic cells for process steps, conditional decisions and
loops, the latter are described with a diagram of geometrical forms and vectored lines.
With this, the geometrical forms specify the same actions as the cells, e.g. a rhombus

21

Chapter 2 Methods and Tools

represents a conditional decision. In contrast, statecharts are build with transitions
and, as the name implies, states. It is possible to compose states to superstates and
concurrent states, i.e. the model can have more than one active state at the same
time. A transition can be annotated with a condition which activates the transition
and therefore allows the creation of branches, and an action which is executed during
the transition.

Figure 2.1 shows a comparison of a data-flow model to a flowchart and a statechart
model for the activation subsystem of an automotive safety system as an example.

Situation
Assessment

Start

Stop

Situation
critical?

Driver
brakes?

Activate
system

Deactivate
system

No

No

Yes

Yes

(a) Flowchart

&

Situation
Assessment

Activation

Distance

Speed

Driver brakes
System active

Situation critical

(b) Data-flow

System
active

System
not active

Driver brakes and
Situation critical

Driver brakes not or
Situation not critical

Situation
critical

Situation
not critical

....

(c) Statechart

Figure 2.1: Different models for the same activation subsystem of an automotive safety system

Object-Oriented Notation and Models

The object-oriented paradigm classifies data based on its attributes and applicable
operations [105, 106]. The notation is represented through so-called classes, which
encapsulate similar attributes and related operations (methods). An instance of a
class is named an object. As a real world example, the construction plan of a car can
be considered as a class; an object is then a car built from this plan. Furthermore
classes can be derived from other classes inheriting both attributes and methods
(generalization). In doing so, so-called polymorphy allows to use the same interface

22

Chapter 2 Methods and Tools

for accessing different objects of the same base class, but considering the respective
implementation. Continuing the example of the car, a second construction plan for
a sport variant would inherit all features of the first construction plan, but use a
different engine. Then pressing the throttle will accelerate both kinds of cars, but the
value of the acceleration will depend on the engine. Moreover it is possible to define
a general relationship between classes (association) as well as part-whole relationship
(aggregation, composition).

In the last years the Unified Modelling Language (UML) has become a standard
to model object-oriented systems [107, 108]. It offers two basic types of diagrams:
(i) structure diagrams, e.g. class diagrams, component diagrams or deployment di-
agrams, and (ii) behaviour diagrams, e.g. activity diagrams, sequence diagrams or
state diagrams. The latter use the same notation as the statecharts of the imperative
paradigm. In consequence, all object-oriented programming languages, such as C++,
Java or Smalltalk, include also control-flow or procedural parts.

•

With CASE, notations like data-flow or control-flow models were mainly used to
describe a prototype of the system, while the implementation was done with common
programming languages [109]. In contrast, model-based development focusses on the
model as the central and primary artefact throughout the whole development process
[44, 43, 110].1 The architecture, the components and the system itself are described
using different models, which are partly or fully abstracted from the implementation
platform. Usually it is possible to check for the consistency of these models, to execute
a simulation and to generate automatically source code from them. The source code
can be translated to binary code by a compiler and then executed at the system’s
implementation platform. An overview of tools which realise this model-based process
not only for prototyping, but also for production purposes is given in Table 2.1 [114].

To date, the tools Simulink and Stateflow from the company The Mathworks are
commonly used in the automotive industry and can be considered as state-of-the-art
for the design and development of embedded control systems for automotive safety
systems [115, 116]. Therefore these tools were the basis of this work to introduce
a test-driven development process for model-based development and to develop the
example vehicle system.

1Furthermore several sub-techniques emerged, e.g. model-based testing [111, 112] and model-based

verification [113].

23

Chapter 2 Methods and Tools

Vendor Name Notations

ETAS ASCET block diagrams, statecharts

The MathWorks Simulink & Stateflow block diagrams, statecharts

Rational Rose RealTime UML

Telelogica Rhapsody UML

Telelogic Tau UML

Table 2.1: Modelling tools for production purposes

aThe former vendor I-Logix was acquired by Telelogic in March 2006.

2.1.2 Overview of Simulink

The tool Simulink, whose first version came to market in 1990 [117], is based on the
numerical computing environment MATLAB, which offers a mature set of functions
to solve mathematical problems using vectors and matrices [118, 45]. Simulink imple-
ments a graphical programming language with the basic elements signal and block,
cf. Figure 2.2. A block transforms input values into output values using a math-
ematical function and is drawn as a rectangle with incoming and outcoming ports.
Furthermore, each block can be assigned a name using a label. A signal represents
a scalar value and is displayed as a vectored line, optionally also with a label. It is
always connected with a minimum of two blocks, one as the source of the signal, one
or more as the sinks. In consequence, Simulink models can be considered as data-flow
diagrams.

The type system of Simulink consists of all known basic data types, i.e. Boolean,
fixed point and floating point values. The data type is assigned to a signal at the
output port of its block. For example, the result of an addition of two input values of
the type double is again a value of the type double, while the comparison of the same
values with a conditional operator creates a Boolean value. Moreover it is possible to
combine different signals to a vector or to a bus. The difference between a vector and
a bus is that only a bus can contain signals with different data types. In addition,
the bus is displayed as a triple line and the signals in it retain their labels.

Two further elements of Simulink are the subsystem and the model. A subsystem
encapsulate blocks and signals into a (logical) group, where two special types of blocks
represent the interface of the subsystem: inports for the input interface, and outports
for the output interface. Both can connect to all three kinds of signals: scalar values,

24

Chapter 2 Methods and Tools

Model

Blocks

Subsystem

Figure 2.2: Basic Elements of Simulink

vectors and buses. A subsystem can not only be labelled with a name, but also
marked with a masked type, i.e. an attribute. While the name of a block has to
be unique within the subsystem’s level, the mask type can be re-used and therefore
allows a classification of similar blocks. Furthermore, a subsystem can be masked
with an icon and a graphical user interface, so that it behaves like a block.

The model is the top-level subsystem and is represented by a single file. Moreover,
models can be marked as libraries. Such a library is the Simulink library. It includes
the basic blocks for the creation, conversion and routing of signals, for mathematical
and logical operations or for the output of signals as plots as well as additional blocks
in the form of subsystems, e.g. blocks for various forms of controllers or to represent
dynamic models in a transfer function or state space form. Therefore the model’s
file can contain the top-level system with the implementation of all subsystems, but
also references to subsystems which are part of a library or another model (model
referencing).

In addition, elements to model control-flow structures are part of the Simulink
library. These provide the developer with special blocks for for, if-else, switch or
while constructs, and with tools to generate statechart or flowcharts diagrams using
the Stateflow block. Hence it is possible to design and implement complex systems
using data-flow as well as control-flow models with Simulink.

25

Chapter 2 Methods and Tools

Finally, Simulink can be extended by add-on products, so-called toolboxes. For
the automatic generation of source code from a Simulink model several toolboxes are
available, the most important are Real-Time Workshop from The MathWorks and
TargetLink from dSpace. With both it is possible to generate stand-alone ANSI C
code directly from a Simulink model. To date, the high quality of the code generators
as well as the efficiency and flexibility of the generated code led to a wide adoption
of the model-based process for the production of embedded systems [119, 120].

2.2 Model-Based Testing Framework

With the concept of extreme programming and test-driven development and its tech-
nique of automated testing a number of testing frameworks for most programming
languages have been developed in recent years. The concept and architecture of all
these frameworks are reaching back to SUnit, a unit test framework for the Smalltalk
language published by Kent Beck in 1994 [121]. Due to its simplicity, a consequence,
amongst other things, of the philosophy that tests are written in the same language
as the actual program, SUnit was ported to Java in 1998, creating JUnit [122]. To-
day a whole family of these frameworks exists, called the xUnit family, e.g. CppUnit
for C++, PyUnit for Python or NUnit for the .NET framework [67]. Furthermore
a framework for the MATLAB programming language has been realised during this
thesis project, called mlUnit [123].

For Simulink several testing frameworks were developed in the last years. In this
section, these frameworks are first evaluated for the compliance with the test-driven
development cycle, cf. Chapter 1.3.2. Then the architecture of the xUnit family is
described. As a result, the concept and realisation of a new testing framework, slUnit,
is explained by analysing the six main patterns of xUnit and deriving a realisation for
Simulink. Finally further patterns discuss different practises for the usage of slUnit.

2.2.1 Testing Frameworks for Simulink

The different testing frameworks for Simulink can be divided into two groups:

Manual Test Design: The frameworks of this group allow the manual design of tests
using MATLAB variables or scripts, test vectors, the classification-tree method
(see 2.3.2) or separate tabular files created for example with Microsoft Excel.
The test execution is divided into two steps: First a test bed is automatically
generated from the model, then a single test, a set of tests or all tests can be
executed. Furthermore different techniques are provided for the analysis of the

26

Chapter 2 Methods and Tools

results, for example regression with other tests or comparison with expected
output values. All steps are supported by a graphical user interface.

Members of this group are dSpace MTest [124, 125] and MathWorks SystemTest
[126].

Automatic Test Design: With these frameworks, the tests are created automatically
from the test objective. Therefore the developer does not define test cases,
but designs patterns for the test generator, which automatically generates test
scripts from these patterns and the Simulink model. The test scripts link the
test patterns with the Simulink model, i.e. they describe the test vectors for the
stimuli of different input signals. The first step of the test execution is again
the automatic creation of the test bed. Then the tests are run for a number
of iterations. After each iteration, different criteria, for example statement or
branch coverage, are evaluated and subsequent tests modified in such a way
that previously uncovered elements are included. The frameworks also provide
a graphical user interface to support the testing process.

Members of this group are Reactis Tester for Simulink [127, 128] and T-VEC
Tester for Simulink [129, 130].

It is not possible to implement test-driven development with the group of frame-
works for automatic test design. In this case, tests would be created by analysing a
model which does not yet exist. Moreover the test design from patterns destroys the
simplicity of the development cycle as patterns are more general than a single test
and can not be used for an incremental development cycle.

The group of frameworks for manual test design do in general allow a test-driven
development process. In contrast to xUnit, the tests are not specified in the same
language as the test objective, but with an external tool such as MATLAB, CTE or
Microsoft Excel. This is only feasible if the tests are simple and input data does not
depend on output values. To use a plant model inside a test case for the testing of
a closed-loop system, the plant model has to become part of the test objective (as
seen by the testing framework). Then the test stimuli are defined as input values of
this system, modifying (initial) parameters of the plant model which stimulates the
original test objective (as seen by the developer). Such a concept requires that the
model and the test framework are implemented in the same language.

All four frameworks, i.e. MTest, SystemTest, Reactis Tester and T-VEC, are closed
source and commercial products. Therefore a new testing framework was developed
within the scope of the PhD project with three main objectives:

27

Chapter 2 Methods and Tools

1. Based on the xUnit family.

2. Using Simulink for the design and execution of tests as well as the development
of the test objective.

3. Available as open source although it is based on the commercial tool Simulink.

The new testing framework is called slUnit. The remainder of this section will describe
the architecture of xUnit, analyse its patterns and derive a realisation that considers
the specific characteristics of Simulink.

2.2.2 The xUnit Family

The basic design of the xUnit family is based on an object-oriented architecture with
a set of key classes, which are shown in Figure 2.3 [67]. In its centre stands the
class Test which allows, in combination with inheritance, to easily create a test, to
manage hierarchies of tests and to prevent duplication (Test Case, Test Suite, and
Test Fixture). A test is executed using an instance of the class Test Runner and the
results are collected in an instance of Test Result.

Test

Test Runner

Test Result

Test Suite Test Case

Test Fixture

run(Test)

run(Test Result)addError(Test, ...)
addFailure(Test, ...)

run(Test Result)
addTest(Test)

run(Test Result)
setUp()
tearDown()

setUp()
tearDown()

collects
results

runs

inherits
from

inherits
from

Figure 2.3: Core classes of the xUnit architecture [67]

28

Chapter 2 Methods and Tools

The major question for the design of a testing framework for a model-based tool
like Simulink is how to translate the class-based hierarchy of xUnit into the graphical
notation, which uses models, blocks and signals.2 Besides having the same architec-
ture, all testing frameworks allow certain patterns for testing ([66], chapter “xUnit
Patterns”, pp. 157ff). These are:

Assertion: How to check that the tests worked correctly?

Test Method: How to represent a single test case?

All Tests: How to run all tests together?

Fixture: How to create common objects needed by several tests?

External Fixture: How to release external resources in the fixture?

Exception Test: How to test for expected exceptions?

In the following sections the concept of the new unit testing framework, called slUnit
[132], is described. As the xUnit architecture is not one-to-one portable to the ele-
ments of Simulink, the focus will be on the above patterns and the testing techniques
of xUnit [68]. Another fundamental difference is the time-dependent behaviour of the
model-based approach, which needs to be taken into account by the new framework.
With xUnit, the developer is able to test the return values of a function call with
static arguments while the signals and states of a Simulink system always depend on
the point in time at which the simulation step is calculated.

2.2.3 Assertions

The Assertion is the basic element for automatic testing as it is evaluating whether
a result or output value meets the expectation or not and thereby checks, whether a
test has passed or failed.

Generic Concept (xUnit)

Most xUnit frameworks provide a basic set of built-in assertion methods, divided into
the following groups:

Single Outcome Assertions always behave in the same way, usually to let a test fail
which is not finished yet, or within the try-branch of a try/catch-mechanism

2One adaptation of the xUnit architecture to message sequence charts as a model-based approach

has been developed by Yuefeng Zhang [131].

29

Chapter 2 Methods and Tools

to detect a missing expected exception (see section 2.2.6). The only parameter
is an error message – common to all assertion methods –, which is collected in
the test result and displayed by the test runner. Example:

fail(’Unfinished test.’);

Stated Outcome Assertions accept a parameter which states whether the assertion
will fail or not. The most widely used variant handles a Boolean input, e.g.:

assert(y > foo(x));

y is the expected value, foo(x) a function which is the test objective. Here,
the assertion fails if the output of the test objective is smaller than or equal to
y, i.e. if the Boolean expression is false.

Equality Assertions compare its two parameters, the expected value and the actual
value, and fail if the outcome of the comparison is not true. The relational
operator is usually specified through the name of the assertion, e.g.

assert_equals(y, foo(x));

checks whether the values of y and foo(x) are equal. The idea behind this is
to display a more descriptive error message than with single or stated outcome
assertions. Assuming that the value y was set to 2 and the function foo(x)

returns 3, the error message will be automatically set to

Expected <2>, but was <3>.

Furthermore an optional third parameter allows to specify a tolerance, e.g.:

assert_equals(1.41, sqrt(2), 0.01);

will pass if the result of sqrt is greater than or equal to 1.40 and smaller than
or equal to 1.42.

More complex assertions can be built using methods or functions of the correspond-
ing programming language. The aim of these user-defined assertions is to prevent
duplication in reusing code and to avoid conditional test logic.

If an assertion fails the test is stopped at the line of the assertion. However the
execution of the next tests is continued as tests are independent of each other in

30

Chapter 2 Methods and Tools

xUnit. After all assertions associated with a specified test have passed, the test
passes which is typically indicated by a green bar. If one assertion fails, the test fails
which is usually indicated by a red bar. With the red bar a list of failures including
the expected result, the line of the failure or the optional message is shown, so that
the developer is able to find the position and the reason for the problem.

Realisation (slUnit)

With slUnit, the Assertion is implemented as the Assert block. It has one Boolean
input similar to the method assert, describing whether the assertion should pass
– the Boolean input is true – or fail – the Boolean input is false. The state of the
assertion is displayed as the background colour of the block – green for success, red for
failure. This allows on the one hand the evaluation of the test without the need for an
additional graphical user interface or an output on the command line, on the other
hand it is easy to locate the failed assertions. In contrast to the xUnit assertion,
the Assert block has to consider the time-dependent behaviour of its input signal.
The Assert block is failing if the input signal becomes false and will not pass for
the remainder of the test, but it will not stop the test. Therefore the assertions are
independent from each other, i.e. more than one assertion can fail during a test in
slUnit. This is typical for Simulink-based tests as they mostly analyse the behaviour
of different signals. If consecutively executed Assertions are required they can be
built through additional Simulink components such as enabled Subsystems or state
machines.

An extension of the Assert block is the Assert State Change block, which evaluates
whether the input changes from a value x to a value y during the simulation. It fails
if this change does not happen. The difference to the Assert block is that the Assert
State Change block can not fail until the end of the simulation, because until then it
is not proved that the state change will not happen. Figure 2.4 shows the difference of
both blocks for a number of static and dynamic inputs. In general, the Assert block
only gets passed if it is stimulated by a constant Boolean input with the value true.
In contrast, the requirements of the Assert State Change block are never fulfilled by
a constant input, but by dynamic inputs which describe the specified number of state
changes.

A similar block to the method assert_equals is not provided as the comparison
of two time-dependent signals is in most cases much more complicated than a = b.
Instead, the Propagate block provides the propagation of the background colour of
the Assert blocks to the belonging subsystem. This allows the creation of user-defined

31

Chapter 2 Methods and Tools

(a) Static Inputs

(b) Dynamic Inputs

Figure 2.4: Behaviour of the Assert and Assert State Change block for different inputs

assertions based on the two basic assertion blocks and all common Simulink blocks.
Figure 2.5 shows an example assertion which checks the boundaries of its input signal.
Finally it is also possible to automatically open Scope blocks or Figure windows for
debugging purposes.

Figure 2.5: Example for a user-defined assertion

2.2.4 Creating and Executing Tests

The pattern test method which describes how to represent a single test case, and
the pattern all tests which explains how to run all tests together, will be discussed

32

Chapter 2 Methods and Tools

together in the next section. Both build up the basic architecture of xUnit as they
specify the way of defining a single test case, a set of test cases, the relationship
between them and the execution of tests.

Generic Concept (xUnit)

A single test case is represented as a method whose name begins with “test”, called
Test Method. The designated name was chosen to allow an instance of the class Test
Runner to find of these methods. Depending on the programming language some
frameworks now use attributes or annotations for this purpose, e.g. with Java 5 and
JUnit 4 a test is defined by

@Test public void emptyStack() {

stack = new Stack<String>();

assertTrue(stack.isEmpty());

}

with the annotation @Test marking the method as a Test Method [133].
A Test Method can contain various numbers of assertions which are checked con-

secutively. It fails as soon as an assertion fails. The subsequent assertions are not
executed as they might depend on each other, e.g.

assert_not_equals(0, foo(x));

assert(0 < (1 / foo(x)));

Moreover the method can use all structural features of the respective programming
language, e.g. if- and while-clauses, function calls or subroutines, and therefore the
assertions might be also part of these structural features.

Test Methods are organized in classes as most xUnit frameworks are implemented
in an object-oriented programming language. Typically those Test Methods which
are sharing a single fixture (see section 2.2.5) are methods of the same class. The basic
class is called Test Case and consists of at least one test method. Instances of Test
Case, therefore called Test Case Objects, are aggregated in the Test Suite Object.
A Test Suite Object can be also part of another Test Suite Object. Comparing this
organisational structure to a tree, Test Suite Objects are the nodes while Test Case
Objects are the leaves, see Figure 2.6. Thus for each Test Method one Test Case
Object is created. Furthermore it is also possible to have two instances of the same
test case class with the same Test Method, e.g. to test the same Test Objective with
different input values specified through a parameter of the respective class instance,
see test 4 and 5 in Figure 2.6.

33

Chapter 2 Methods and Tools

Suite A:Test Suite

Suite B:Test Suite

Test Method I
Test Method II
Test Method III

Test 1:Test Case Test 2:Test Case

Test Method I
Test Method II
Test Method III

Test 3:Test Case

Test Method I
Test Method II
Test Method III

Test 5:Test Case

Test Method I
Test Method II
Test Method III

Test 4:Test Case

Test Method I
Test Method II
Test Method III

Figure 2.6: Tree of Test Suite and Test Case Objects

The members of the xUnit family provide several forms of command-line or graph-
ical applications to run one or more test cases, which are all realised as an inherited
class from Test Runner. These classes are based upon a standard object-oriented
interface, which allows the execution of a set of tests in a unified manner regardless
to the kind of test runner. The tests to be executed can be defined using the following
techniques:

Enumeration: Each Test Method is added manually using the constructor of the test
case class, which is called with the name of the test method as a parameter.
With this, also a single test method can be executed.

Discovery: The test methods are discovered automatically by the framework. To
enable discovery a naming convention or annotation is used depending on the
features of the programming language as described above.

Selection: In addition to the discovery, the test runner is invoked together with
special test selection criteria specifying a subset of tests. The criteria are usually
based on additional attributes or annotations to every test case class or test
method.

The test process is documented during the execution through some form of real-time
progress indicator, including a count of executed tests, of failures and errors and a
coloured bar, which turns red as soon as a failure or error has occurred.

34

Chapter 2 Methods and Tools

Test
Objective

Test
Method

Test
Method

Test
Composite

Test
Method

Test
Method

Test
Method

Multiplexer

Common
Code

Figure 2.7: Architecture of a slUnit model

Realisation (slUnit)

The design of slUnit translates the class-based hierarchy of xUnit into the structure of
Simulink in representing the test objective as well as the test cases as subsystems. The
test methods have to be marked with a certain mask type to distinguish them from
other subsystems used either for structural meanings or as the test objective. The
mask type is an attribute to classify Simulink subsystems and therefore comparable
to the attributes or annotations used in other xUnit frameworks. Furthermore a
subsystem can also represent a test case class or a test suite. As there is actually no
difference between the subsystems for a test case and a test suite, these subsystems
are called Test Composites in the following. A Test Composite consists of further
subsystems, which represent either a Test Method or another Test Composite. The
model itself corresponds to a Test Composite with the only difference that it contains
additionally the test objective. Figure 2.7 shows the architecture of such a slUnit
model and Figure 2.8 shows an example model.

With slUnit the tests are executed as the model is simulated, which means that
the signals and states of the model are calculated for a number of simulation steps.
Each simulation should execute only one of the defined test methods. Therefore
the Assert blocks have to be activated and deactivated automatically at run-time,
so that only those Assert blocks are enabled whose test method is executed. This
is done by the major element of the slUnit framework, the Multiplexer block. It
enables the Assert blocks of the active test method and disables all other Assert
blocks. Furthermore it switches the outputs of the active test to the input of the

35

Chapter 2 Methods and Tools

test objective. In consequence, the Multiplexer block is part of each test composite,
either the top-level model or further subsystems, and allows a nested architecture of
tests.

The set of tests which should be executed is defined by the same techniques as
with xUnit. Enumeration is only supported for a single test method, which is run
by using the designated “Run” button within the test’s subsystem. Discovery is
realised through a “Run All” button at the top-level of the model. For selecting
specific groups of tests, the user can create additional blocks, which execute those
tests, whose subsystems also contain a block with the same name. In consequence,
this name translates the concept of marking tests with attributes to slUnit.

Figure 2.8: Example for a slUnit system

The results of a test are displayed as the background colour of the subsystem and
are inherited from all assertions, which means that the colour of the block is set to
red if at least one Assert block failed. With an additional simulation command it is
also possible to execute all tests of a test composite. The result of this is displayed
as the background colour of the subsystem and inherited from the results of the test
methods or test composites included within this subsystem.

2.2.5 Fixtures

Fixtures share common code between test methods, usually in combination with the
test case class, aggregating all these methods. They prevent duplication and assure
that each test is independent of the others even if external resources are used. For
this reason the methods for test preparation and clean-up are always called before
and after the execution of each test method.

36

Chapter 2 Methods and Tools

Generic Concept (xUnit)

The xUnit family provides the methods set_up() and tear_down() to manage the
fixture. The following pseudo-code shows two example methods which test for a
simple switch with two states: the test method test_off() asserts that the switch
is off (default), the test method test_on() checks that it is on:

external ignition;

var switch;

set_up() {

switch = new generic_switch(ignition);

}

test_off() {

assert_equals(false, switch.is_on());

}

test_on() {

switch.on();

assert_equals(true, switch.is_on());

}

tear_down() {

switch.off();

}

The duplication of the variable switch is avoided by using the method set_up, which
is called before each test method. The switch is furthermore connected to the ignition
of a car. It has to be ensured that this external resource is released independent of
the test results. This is realised with the method tear_down, which is always called
after each test method has been executed.

Realisation (slUnit)

Fixtures are realised with slUnit by aggregating the test methods into a test com-
posite, so that it is possible to share common code by extracting it to the same level
as the test methods. The outputs of the test methods are then no longer only the
inputs of the test objective, but also of the common code, whose outputs themselves

37

Chapter 2 Methods and Tools

become inputs of the test objective and/or the test methods. The test composite in
Figure 2.7 uses this concept. For this model-based common code there is no need to
release the Fixture, except for interaction with the MATLAB workspace which can
be done using a callback function.

2.2.6 Exceptions

Exception handling is a mechanism available in (most modern) programming lan-
guages, for example Java, to handle the occurrence of a condition, called exception,
which changes the normal control flow of execution and signals an error. Usually
exceptions do not occur unexpectedly, but are designed by the developer to enforce
the termination of the current method and activate an error handler. Therefore it
should be possible to test the implemented exceptions.

Generic Concept (xUnit)

If the developer wants to test for an expected exception, the exception has to be
caught and ignored, and the test fails if the exception is not thrown. Continuing the
example from the last section, the switch should throw an exception if it is switched
on twice:

test_already_on() {

try {

switch.on();

switch.on();

fail();

}

catch (SwitchAlreadyOnException e) {

}

}

If the switch is raising an exception within the second call of switch.on(), the catch
branch is activated and the test passes. Otherwise, the control flow goes on to the
next statement, fail(), which lets the test fail.

Realisation (slUnit)

Simulink has no comparable concept, therefore slUnit does not realise a technique to
test for exceptions.

38

Chapter 2 Methods and Tools

2.2.7 Further Patterns for slUnit

This section describes additional patterns for slUnit, which provide solutions for
questions that arise from working with slUnit.

Integration of the Test Objective

In most cases the test objective is part of a bigger system and therefore integrated
into a complex Simulink model, here called complete system. Its subsystem is then
part of at least two Simulink models – the test bed and the complete system. With
TDD, we assume that the developer implements the test objective within the test
bed. For this reason it has to be ensured that changes made to the test objective at
the test bed are reflected in the complete system. This can be achieved by different
solutions:

Library approach: The subsystem, which realises the test objective, is developed in-
side a Simulink library. Both the test bed and the complete system contain only
a link to the library block. Every change is made in the library. The references
between library, test bed and complete system are automatically renewed when
the model is loaded, updated or simulated.

Copy-To-System approach: The test objective is developed together with the test
cases in the test bed. After finishing the development, the subsystem is copied
by the developer or by a script to the complete system. Every time additional
changes are necessary, these changes have to be done in the test bed and the
copying has to be repeated. As there is no possibility to prevent the modification
of the test objective when it is integrated into the complete system, e.g. by
adding a read-only attribute, the risk of having two different versions of the
test objective in the test bed and in the complete system is high.

Model Referencing approach: With version 6 of Simulink a new concept was intro-
duced, which allows a model to include other models as components. Thus the
models are not copied, but referenced by their filenames. With this approach,
large hierarchies of subsystems can be created by reusing modular components
(the referenced models). Furthermore incremental loading and code generation
is supported [134]. Employing this model referencing approach, the test objec-
tive is created in a separate model and referenced in the test bed as well as in
the complete system.

The difference between the first and the third approach is the way library blocks
are handled by Simulink in contrast to referenced models. Simulink does not allow

39

Chapter 2 Methods and Tools

to modify a test objective which is linked to a library within the test bed, unless
the developer breaks the link. Such a broken link can be manually restored, but
as with all manual processes this is error-prone. In contrast, Simulink always uses
transparently the source file of a referenced model. This means that even if the user
tries to open and modify the subsystem of a referenced model the original model file
is changed. Therefore this approach is the preferred one.

Differentiation between Test Objective and Test

A way to differentiate visually between the test objective and a test is useful to sup-
port the navigation through the model and the understanding of the tests. Therefore,
the direction of the signal flow is inverted for the modelled tests. The common signal
flow of Simulink is from left to right [135], i.e. the inputs of the test objective are
on the left side, the outputs on the right side, and the signal lines mainly have a
horizontal orientation. Hence, with the inverted signal flow the inputs are arranged
on the right side and the outputs on the left side. Furthermore, this clarifies the
correlation between the test objective and the tests as the outputs of a test are the
inputs of the test objective and vice versa.

2.2.8 Summary

In the previous subsections the concept and the realisation of the testing framework
slUnit were presented, which translates the patterns of the xUnit family to the graph-
ical modelling tool Simulink. The resulting architecture is summarised in table 2.2 in
comparison to the components of xUnit. slUnit is fully integrated into Simulink and
provides two additional basic elements: the Assert block and the Multiplexer block.
The test objective as well as the tests are represented as subsystems within a single
model – the test bed. While the Assert blocks check whether a test has passed or
failed, the Multiplexer blocks switch between the tests and assure their independence.

A test is executed by simulating the model. Thereby xUnit defines four distinct
phases for each test, called the four-phase test as shown in Figure 2.9(a) [68]. With
slUnit, the phases setup and teardown play a minor role as they are primarily used
for the interaction with the MATLAB workspace, e.g. for loading named parameters.
Although the phases execute and verify are also processed consecutively, this subse-
quent order is only appropriate for a single simulation step. In general, the process
can be described as in parallel due to the time-dependent behaviour of Simulink, cf.
Figure 2.9(b).

In consequence, it is possible to define and execute tests with slUnit which fulfil the

40

Chapter 2 Methods and Tools

xUnit slUnit

Assertion Method Block

Fixture Class Subsystem

Test Case Class Subsystem

Test Method Method Subsystem

Test Suite Object Subsystem

Test Runner GUI Simulation

Table 2.2: The architectures of xUnit and slUnit

Setup

Exercise

Verify

Teardown

(a) xUnit

Exercise Verify

Setup

Teardown

(b) slUnit

Figure 2.9: The four-phase test with xUnit and slUnit

requirements of xUnit and consider the characteristics of Simulink. slUnit therefore
allows a combined approach to model-based and test-driven development.

2.3 Using Tests for Verification

The common goal of testing is the verification of implementation, design and archi-
tecture of the system and the validation of the requirements. Therefore the term
Testing is defined by the IEEE as follows: [136]

(1) The process of operating a system or component under specified con-
ditions, observing or recording the results, and making an evaluation of
some aspect of the system or component.

41

Chapter 2 Methods and Tools

(2) The process of analysing a software item to detect the differences
between existing and required conditions (that is, bugs) and to evaluate
the features of the software items.

Testing is a process of technical investigation, which is intended to reveal quality-
related information about the product with respect to its requirements and opera-
tional context. This includes, but is not limited to, the process of executing a system
with the intent of finding errors [137]:

Testing is the process of executing a program or system with the intent
of finding errors.

Further definitions can be found in [138, 139].
With traditional development processes like the Waterfall model, the Spiral model

or the V-model (see Chapter 1.3), the activities of testing are carried out after the
implementation of the system. The following sections describe these activities in
terms of testing techniques as well as test design and test evaluation techniques.

2.3.1 Testing Techniques

The techniques for testing can be divided into two main groups which are defined by
their point of views:

What is tested?

In general, there are three levels within a software being tested: units, groups of
units, and the system. The testing of the first level is called unit testing, in which
the smallest entity, the software unit, is executed to verify that it is coded correctly.
Usually such a unit consists of a single function or method, a single class or a single
subsystem.

When those small components are combined and tested as a group, this is called
integration testing. The purpose of integration testing is to confirm the system’s
design and architecture. Therefore the groups are executed together through their
interfaces to check the specified interaction between them. Usually the number of
units within a group is progressively increased during this process.

Finally, the software is integrated to form the final product and then tested as a
complete system with system testing. The purpose of system testing is to evaluate
the system’s compliance with the specified requirements. A special kind of system

42

Chapter 2 Methods and Tools

testing is acceptance testing, which is usually conducted by the customer3 at the end
of a development cycle or prior to delivery.

How is it tested?

Even early prototypes of traditional software products are usually verified within
their final environment, e.g. a word-processing program on a PC. In contrast, the
testing of embedded systems requires simulation environments to (a) get defined test
conditions by simulating exact environmental situations, and (b) minimise damage
by malfunctions. This reduces the costs as defects can be found before building the
real system, e.g. an electronic brake system of a car, and without any risks for the
system’s host or the environment, e.g. crashing the car. Therefore several kinds
of test setups are commonly used for the model-based development of such systems
[44, 50].

System Model Plant Model

Desktop PC

Simulation Environment

(a) Model-in-the-Loop

System Model
Plant Model

Stub

Code

Desktop PC

Simulation Environment

(b) Software-in-the-Loop

Real‐time
Simulation

System
Code

Low‐Level
Libraries

Operating
System

Target ECU Test Server

Physical Connection

(c) Hardware-in-the-Loop

System
Code

Low‐Level
Libraries

Operating
System

Target ECU Real Environment

Physical Connection

(d) Target

Figure 2.10: Different test setups for embedded systems [44]

3The customer does not necessarily have to be an external person, but can also be defined as a role

within a software development team.

43

Chapter 2 Methods and Tools

With model-in-the-loop (MiL) tests, the implementation model of the system (the
test objective) is simulated in a closed loop together with a plant model which rep-
resents the real environment, see Figure 2.10(a). In this setup, the system is not
executed in real-time and the simulation is run on a desktop PC4. A similar approach
are model tests (MT). Model tests do not require a closed loop, but stimulate the
test objective with specific inputs, e.g. defined with the classification-tree method
(see Section 2.3.2).

After the automatic code generation from the implementation model and the fol-
lowing compile process, the target software is tested with software-in-the-loop (SiL).
Using the test setup of model-in-the-loop, the test objective is replaced by a stub
which executes the object code, cf. Figure 2.10(b). Again the simulation is per-
formed on a desktop PC disregarding real-time aspects, but the compiled object code
can either run on the same PC or on a special evaluation board with the target CPU.
Such an evaluation board is connected to the desktop PC using an I/O interface
which communicates with the stub. The goal of this test setup is to verify the results
of the source code generation as well as to analyse differences between the modelling
language and the generated source code, which result for example from different data
types or imprecise mathematical library functions.

The fully integrated system is first executed with hardware-in-the-loop (HiL) test-
ing using its target hardware and physical I/O interfaces, cf. Figure 2.10(c). The
electronic control unit is therefore physically connected to a test bench. It provides a
real-time simulation of the environment and can optionally include or control further
hardware components, e.g. hydraulic actuators. Therefore HiL tests aim to show
the correct interaction between the modelled system, the operating system, and I/O
drivers, as well as the proper implementation of the ECU’s interface. Furthermore
they are used for the validation of the system, which can not be tested or only at
high costs in reality, e.g. a crash simulation for an occupant restraint system.

The last setup is called target testing5. Here the test bench of the previous setup is
replaced by the real environment. This means that the target software and hardware
are tested with the real I/O interface, periphery, user interface, network management
etc. This might also include further systems, e.g. an object vehicle, see Figure 2.10(d).

The relationship between these setups and the four test scenarios described above
is shown in Figure 2.11. While unit testing is only feasible with MiL and SiL testing,

4If the test execution can be done (semi-)automatically, e.g. with a number of batch tests, it is also

possible to run the simulation on a kind of testing server.
5Other publications call this setup also system testing [44], this is avoided here to prevent confusion

with the same term from the previous section.

44

Chapter 2 Methods and Tools

Unit Testing Integration Testing System Testing Acceptance Testing

Model‐in‐the‐Loop Testing

Software‐in‐the‐Loop Testing

Hardware‐in‐the‐Loop Testing

Target Testing

feasible feasible with restrictions not feasibleLegend:

Figure 2.11: Relationship between different testing techniques

integration testing can also be used with HiL and target testing, when the group of
jointly tested software units includes at least the operating system. A special use
case for such tests is the verification of the system’s interface and network manage-
ment, which is usually done for the first time on an early development stage. For
example, during the prototype stages of a new car the correct implementation of the
communication between all electronic control units is more important than the real
functionality of these systems. In contrast, both system testing and acceptance test-
ing can be combined with all test setups, but some restrictions have to be considered
for the tested model and software as both do not implement the whole system.

2.3.2 Test Design Techniques

Since software testing was first introduced, developers have thought about how to
create tests systematically and therefore defined so-called test design techniques. Test
design techniques allow the structured derivation of test cases by means of formal
methods, which can be divided into two domains: black-box testing and white-box
testing.

Techniques for Black-box Testing

The aim of black-box testing is to verify whether the test objective satisfies its specifi-
cation or not. Therefore only the interface and the requirements of the test objective
are taken into consideration for the definition of a test. The test’s result are evaluated

45

Chapter 2 Methods and Tools

by analysing the output values with regard to the input stimuli and the specification.
No internal knowledge about the implementation is used, the developer considers the
test objective only from an external perspective – like a black-box [137]. Typical
methods for this technique are:

Classification-Tree Method: The classification-tree method divides the input do-
main of a test objective into classification and classes and represents them as
a tree [140, 141, 142, 143, 144, 145]. A classification influences the functional
behaviour of the system in general, whereas a class is a subset whose members
result in the same kind of behaviour (equivalence partitioning). Each classifi-
cation consists of one or more classes. A test case is generated by combining
classes from different classifications.

Figure 2.12 shows an example classification tree for the controller of a colli-
sion avoidance system with six example test cases.6 In addition to the textual
descriptions shown, classes can have additional attributes, especially the cor-
responding signal or state name and a certain value or a range of values, e.g.
[0.6, 0.8] for the value of the road friction at wet conditions. Moreover it is
possible to define test sequences, which consists of a number of test cases and
allow the transition between them, e.g. the transition between wet and dry
friction.

Evolutionary Algorithms: Evolutionary algorithms are based on the evolution the-
ory of Darwin. Test cases are generated from a “start population”, which
changes through “recombination” and “mutation” in an iterative testing pro-
cess [146]. The so-called survival of the fittest is the driving force to find defects
of the test objective. With evolutionary algorithms, testing is transformed into
an optimization problem, which formulates the test aim as a search for input
values that fulfil the respective test aim, e.g. finding defects or verifying re-
quirements [147, 148].

State Transition Testing: Different modelling notations were described in chapter
2.1.1, including statecharts. With state transition testing, test cases are derived
from the states and transitions of these models, composing a state-event table
and a transition tree [50]. While the state-event table consists of all possible and
impossible combinations of states and events, the transition tree describes valid
paths through this table starting from the initial state. The aim of the technique

6The classes and classifications marked with [..] are left out for simplification, the complete tree is

more complex.

46

Chapter 2 Methods and Tools

Object System Vehicle Environment

Road FrictionSpeed AccelerationSpeed AccelerationDistance

[..] [..]

[..]

None Low Medium High [..] None Low Medium High Dry Wet μLow

Figure 2.12: Example classification tree for a collision avoidance system

is to cover all of these paths and to test for the impossible combinations. State
transition testing is only possible, if the test objective is or can be modelled as
a statechart. A similar technique is control-flow testing. Here the test cases
are derived from a flowchart of the test objective and are created in such a
way, that they cover all possible combinations of actions (paths of the diagram)
[149, 150].

It should be noted that state transition testing as well as control flow testing
can be considered as both black-box and white-box techniques depending on
their objective. They are used for black-box testing if the underlying model
is the description of the specification of the system, and for white-box test-
ing if it serves as the implementation of the system. Thus with model-based
development the boundaries between both techniques can become blurred.

Statistical Usage Testing: The purpose of statistical usage testing is the simulation
of the real situations of a system to detect defects concerning the operational
usage. The probability of the different events is determined (according to the
current state and the history of the events or states) to produce a relevant
set of test cases [151, 152]. Events, which occur very infrequently (rare), are
often relevant for safety aspects of the systems. In contrast to statistical usage

47

Chapter 2 Methods and Tools

testing, but with similar methods, rare event testing, can be used to handle
these events [50].

Techniques for White-box Testing

In contrast to black-box testing, white-box testing uses an internal knowledge of
the system to design tests. Here, the tester defines input stimuli to exercise paths
through the code and determines not (only) the appropriate outputs, but also how
the elements of the control flow are exercised by the tests. Therefore, three major
coverage criteria define the techniques for white-box testing [153]:

Statement Coverage: With statement coverage, each statement of a control flow is
executed at least once. It ensures that no dead code exists within the system.
Statement coverage is considered as the weakest coverage criterion, because the
singular invocation of every statement does not guarantee the coverage of every
logical path through the control flow and is in consequence only sufficient for
the detection of simple defects [137].

Branch Coverage: The set of tests is defined in such a way that all decisions or
jumps are tested at least once. Therefore both the then-branch and the else-
branch of an if-statement have to be passed through, including also empty
branches. In reality this is often complicated, because subsequent conditions
are commonly dependent on prior decisions and the resulting paths. This might
lead to complex or even impossible input constellations.

Path Coverage: Path coverage requires that all paths of a program are tested. In
practise, this is often impossible as even small programs can have a huge or
infinite number of paths due to conditional loops. Therefore several other struc-
tural testing strategies have been developed to reach a high percentage of path
coverage without the need of verifying all paths, e.g. boundary-interior path
testing [154].

Figure 2.13 shows an example control-flow model of a simple activation algorithm
for a collision avoidance system based on the time left until a collision would occur.
The physical meaning of these variables is explained in Section 3.1. The transi-
tions of this model are labelled with capital letters. 100 per cent statement coverage
within this example can be realised through the input vectors (0, 0, 0), (5, 10, 10)
and (5, 10, 5)7, which cover the paths ABCL, ABDEGJK and ABDEGHIEGJK. For

7Note that other combinations of input values also provide this.

48

Chapter 2 Methods and Tools

a complete branch coverage only the path ABDEGHIEFL is missing, therefore an-
other input vector is defined (5, 10, 15). Finally the last possible path ABDEFL is
addressed by (5, 15, 15) reaching 100 per cent path coverage. Please note that the
path can never be executed by a correct implementation of the algorithm. Hence, the
occurrence of this path indicates a wrong assignment of the variable ds.

ds = da

t = ds / dv

dv = 0?

Start

Stop

t ≤ 2

ds = db

ds = db?

active = 1 active = 0

read dv, da, db

A

B

C

true

false

false

true

true

false D

E

F

G

J

H

I

K L

Figure 2.13: Example control-flow model with labelled transitions

The techniques commonly applied to reach a high percentage of these coverage cri-
teria basically consist of the above mentioned state transition testing and control-flow
testing, and another technique called elementary comparison testing. This technique
evaluates the paths of a function by identifying its logical conditions in the source
code and translating them into pseudo-code [155]. The pseudo-code is used to specify
so called test situations, i.e. to find input values which satisfy the identified condi-
tions and those which do not. Tests are created from these situations trying to cover
each result of each condition at least once. In contrast to state transition testing and
control flow testing, no model of the test objective is necessary.

49

Chapter 2 Methods and Tools

Another group of white-box techniques is based on data-flow analysis. They eval-
uate the interaction between the definitions of a program variable and subsequent
references to it. The simplest type is called 2-dr interaction and consists of one
definition and one reference reached by this definition [156]. Testing each of these
interactions is similar to statement coverage, i.e. branch coverage can not be guaran-
teed. Hence, the required pairs strategy creates a set of pairs for each 2-dr interaction
depending on the occurrence of the definition or the references [157]. If a definition
is placed for example within a loop, two iteration counts are used: one for exiting
the loop as soon as possible, the other for a distinct number of iterations. Other
data-flow based strategies are presented in [158, 159].

2.3.3 Test Evaluation Techniques

In general, the determination of the test’s result is carried out by the comparison of the
outputs with expected values that arise from the requirements of the test objective.
This comparison can be either done manually or automatically. The advantage of the
automatic evaluation is that an overall result can be created, generating a statement
about the success of the test execution – pass or fail. With xUnit, this is for example
displayed as a red or green bar, see Chapter 2.2.3.

Typically, the automatic evaluation is done by two techniques, assertions and re-
gression testing, which are described in the following sections.

Assertions

The concept of the assertion, which is represented by a Boolean expression, was first
defined by Robert Floyd in 1967 to express the intended behaviour of a program
[160]. Based on this concept, Hoare introduced the following notation in 1969 (today
known as the Hoare triple):

P{Q}R (2.1)

It means that if the assertion P is true before the execution of the program Q, then
the assertion R is true after its execution [161]. The intention of this notation is the
formal verification of the program. In practise, assertions were often used for design-
by-contract [162] and for the run-time checking of program states [163, 164, 165].
With the techniques of extreme programming and test-driven development they first
became important for the evaluation of test results [54].

Embedded systems typically interact with the real world through sensors and ac-
tuators. The signals processed or created by them are dependent on the time, i.e. the
value of a signal changes over time. This change can be either discrete or continuous

50

Chapter 2 Methods and Tools

for the time as well as the signal magnitude. Therefore the signals are divided into
four groups: analogue, time-discrete, value-discrete or digital [166]. For the evalua-
tion of such signals the Boolean expression of the assertion has to be extended by a
time-dependent behaviour. Different techniques can be realised based on the Assert
block from chapter 2.2.3 [167, 168]:

Boundary Checks: Boundary checks evaluate whether the values of a signal remain
inside or outside of a specified range. It is possible to define either static or
dynamic borders. In addition, one-sided boundaries can be implemented by
setting the opposite border to infinity. A special case of boundary checks is the
comparison of a signal with a constant expected value (both borders are set
to the same value), which can also be extended by symmetric and asymmetric
tolerances (the upper border then equals the expected value plus a tolerance,
the lower border equals the expected value minus a tolerance).

Gradient Checks: The gradient check is actually not a separate technique, because
the gradient of a signal can be considered as an independent signal whose eval-
uation is carried out by boundary checks. Therefore the gradient check is only
listed as an example for a group of checks, which combine a signal processing
unit with a boundary check.

Type Checks: Type checks involve two tasks: The verification of the signal’s data
type and its range. This is particularly useful when the co-domain is a set of
discrete values.

Regression Testing

Regression testing generally specifies the re-running of all or a part of all test cases
to identify the impact of modifications of already successfully tested systems [137,
138]. Here test’s outputs are evaluated by comparing them with the outputs of a
previous test execution. A difference is made between actual regression tests which
test different versions of the same representation of the system, e.g. different versions
of the model, and the so-called back-to-back tests which check the equivalence of
different representations of the system, e.g. between the model and the source code
[169], cf. Figure 2.14. The outputs of the first test execution have to be initially
evaluated, because no reference values exist at this point of the testing cycle. This
initial evaluation can be done manually, i.e. by “looking” at the signals and then
setting them as the new reference, or automatically with the help of assertions.

51

Chapter 2 Methods and Tools

Model V

Model V+x

Test
Outputs

Test
Outputs

Initial
Evaluation

Test Execution
Automatic
Evaluation

Comparator

Code

Comparator Automatic
Evaluation

Test
Outputs

Test
Outputs

Model

Test Execution

Regression Testing

Back‐to‐back Testing

Figure 2.14: Difference between regression and back-to-back testing

The evaluation of the test’s outputs, i.e. the system’s reaction to specific input
stimuli, and the expected values, i.e. the reaction of a different version or representa-
tion to the same stimuli, is based on the comparison of two signals. In doing so, it is
not important that both signals are equal, but their similarity is checked for different
criteria. These criteria can consider phase shifts, different computational accuracies,
and the impossibility of an exact reproduction of a physical signal in reality. Signals
are classified as similar with several methods, which are selected depending on the
context:

Difference Calculations: The difference between the amplitudes of the output and
reference values is calculated for each simulation step. It is possible to generate
either absolute or relative differences. The signals are classified as similar if the
minimum and maximum difference is within a specified tolerance. In addition,
the tolerance can be modified depending on the characteristics of the signal, e.g.
orthogonal to the signal, depending on the gradient, or through circles around
the sample point creating a tolerance tube. Thus a phase shift between two
signals can be compensated for. More complex techniques can also pre-process
the signals, e.g. the difference matrix method first rearranges the output signal
to sufficiently fit the reference signal for identified periods of time and then
applies the difference calculation [170].

52

Chapter 2 Methods and Tools

Statistical Methods: These techniques are based on the computation of statistical
values, for example the cross-correlation coefficient, which is calculated with
the following formula [34]:

c(T) =
1
T

T∫

0

y(t)y′(t− τ)dt (2.2)

y is the reference signal, y′ is the output signal, and c(T) is the cross-correlation
coefficient depending on the time T , which denotes the analysed time span of
the signals. The maximum value of c marks the most probably time lag between
the two signals and gives an indication about the similarity of the signals [171].
Other such values are the signal-to-noise ratio and the total harmonic distortion
[50].

The fundamental characteristic of these statistical methods, namely the filtering
of disturbance values, is simultaneously its biggest disadvantage as, for example,
amplitude peaks are disregarded, although they might be important in the
context of the test’s evaluation.

2.4 Using Tests for Design

In contrast to the process described above, the motivation for testing with test-
driven development is not the verification of the test objective, but its implementation
(explicit) and its design (implicit). The tests are therefore created and executed
before the implementation. Details have already been outlined in the description of
the development cycle of TDD in chapter 1.3.2.

Test-driven development can be used with all testing techniques, but two types are
most commonly applied: acceptance testing and unit testing [172, 173].

In the acceptance test the expected behaviour of the developed system is described
from the customer’s point of view. The requirements or, in general, the use cases
are translated to an executable form. The time horizon of acceptance tests is a mid
to long-term period and covers at least one iteration of the development process. In
fact, the aim of an iteration can be defined as the completion of a set of acceptance
tests. For such tests all three software levels and all four testing environments (cf.
Chapter 2.3.1) are sufficient, but typically the highest level is chosen to test the
system in its real environment. Based on this high-level test, a number of subtests
can be created which consider the characteristics and features of the respective level
and environment (top-down approach).

53

Chapter 2 Methods and Tools

The following rules describe the role of acceptance tests within the development
cycle of TDD:

Rule 1 : All requirements of a system have to be covered by acceptance
tests.

Rule 2 : A new requirement is only allowed to be implemented if the
respective acceptance test fails.

In contrast, the goal of the unit tests is the realisation of the requirements based on
the smallest entity, the software unit. The idea behind this is that every change must
follow a failing test, no matter how small the change is. In other words, the rules for
unit tests are:

Rule 3 : The functionality of a unit has to be covered by unit tests.

Rule 4 : A unit is only allowed to be modified if the respective unit test
fails.

Rule 4 requires implicitly that if a defect occurs which is not detected by an unit
test, e.g. if it is reported by the customer, then this defect has to be first reproduced
by a test before the unit is modified.

The unit tests can be designed using the techniques of black-box testing as well
as white-box testing providing the variety of both approaches. Furthermore a clas-
sification into two types of unit tests is proposed [84]. The first group analyses
and specifies the behaviour of the system (“what it should do”), while the second
group helps to implement the controller in a systematic and traceable way (“how it
is done”). In addition, a third group is necessary for the verification of the unit and
its implementation process [174].

The development of the units is done with a bottom-up approach, i.e. first a
single unit is tested and realised, then a number of units can be integrated for further
development. However, the testing of two or more units together can also start before
the unit is completely implemented, e.g. to develop the interaction between the units.

The interrelationship between acceptance and unit tests is shown in Figure 2.15.
The activities “write an acceptance test” and “run the test(s)” can have several mean-
ings in the context of model-based development depending on the test environment:

54

Chapter 2 Methods and Tools

Write a
unit test.

Run the test(s).

Make a change.

Refactor

[Fail]

[Pass]

Write an
acceptance test.

Run the test(s).

[Pass]

[Fail]

Error

Figure 2.15: Acceptance and unit tests within the development cycle of test-driven development

• With MiL and SiL environments, an acceptance test consists of a plant model,
its initial values and the (time-dependent) definition of additional stimuli, e.g.
disturbance values. The test is executed by simulating this model together with
the test objective.

• The definition of HiL tests is governed by the simulation environment of the test
bench and usually achieved by the specification of test vectors or scripts which
control this environment. Thus the variables for the models of the environment,
e.g. the vehicle’s environment with the road’s course or other vehicles and the
driver, are configured based on events, e.g. the driver will hit the brake pedal
when the distance from the vehicle ahead is less than 20 meters. Then the tests
are run automatically by the test bench.

• A target test is typically described through the manual execution of the system
by its user, e.g. a typical acceptance test for a vehicle system is a (driving) ma-

55

Chapter 2 Methods and Tools

noeuvre [175, 176]. This execution can be partly or fully automated depending
on the kind of the system. Continuing the example, a partial automation can be
achieved by steering or braking robots as well as sled tests (crash tests). Other
methods include so-called endurance or stress tests, during which the system is
either run for a longer period or stimulated with a high workload.

In contrast, the activities of unit testing are always carried out at the model level,
i.e. a test is written by building a model and run by simulating both the model and
the test objective.

The evaluation of the tests is achieved by the methods described above, see Chapter
2.3.3. Here, the use of assertions is not limited to the automated tests with MiL, SiL
and HiL, but can be also used with target testing. The driver compares the system’s
reaction by means of measured data with the expected results after he has performed
a manoeuvre, and marks the test with passed or failed.8

Finally the developer is allowed to “make a change” in terms of model-based de-
velopment if at least one unit test fails. The unit is implemented by creating or
modifying a model exactly in such a way that the test is passed.

Another important activity of test-driven development is refactoring. Refactor-
ing specifies the improvement of the system’s structure while retaining its present
behaviour [177, 178, 179]. Thus, this step relies on the results of the tests as they
provide an executable form of the system’s specification and requirements. The meth-
ods of refactoring include the improvement of readability and comprehensibility as
well as the iterative refinement and optimization of architecture and design. More-
over, the developer draws conclusions from reviews of the implemented models and
from the unit tests, e.g. the duplication of code, to modify the system in terms of
modularity, interfaces, maintainability, and testability.

2.5 Testing Different Layers of an Automotive Safety System

The different environments for the testing of embedded systems have already been
described in chapter 2.3.1. They are the basis for the following layer approach for
test-driven development of an automotive safety system, which is used to illustrate
the concepts introduced in this chapter.

The topmost layer represents the system vehicle within its real environment and
is therefore considered as target testing, see Figure 2.16. The primary parts of this

8Usually some kind of tabular template is used which lists the expected behaviour, offers some space

to describe the measured performance and a column for check marks.

56

Chapter 2 Methods and Tools

environment are the street surface and course, other cars, pedestrians, and surround-
ing objects such as trees or road signs as well as additional effects like weather or
lighting conditions. TDD on this layer means to drive the car without or with a
partial implementation of the system’s requirements. Obviously, such tests with an
automotive safety system such as a collision avoidance system will cause severe dam-
ages whenever the test fails (which is a rule of test-driven development). Usually
mock objects are used to avoid such problems. The aim of the tests is to analyse
the vehicle’s behaviour in measuring data even without the complete implementation
of the test objective. The measurements are then used for parameter estimation, to
stimulate the test objective as an open loop system and for the comparison between
the car’s reaction with and without the test objective.

Figure has been removed due to Copyright restrictions.

The second layer considers the system vehicle as its point of reference. The real
environment is described by the means of sensors and actuators, i.e. its set of at-
tributes is reduced to a set which is specified by the interfaces and signals. This layer
corresponds to hardware-in-the-loop testing. Its purpose is the test-driven develop-
ment of the system under the aspects of the vehicle’s architecture. Especially for the
build-up of early prototypes it is typically more important to establish the vehicle’s
communication network than to fulfil all (functional) requirements of the test objec-
tive. A common use case is the development of the control units’ error handling.
Here, a test inserts different errors, e.g. the timeout of a network signal, into the ve-
hicle’s communication layer. The reaction of the control units can be automatically
evaluated with assertions defining the expected behaviour of their output signals and
the onboard diagnosis [180].

The third layer is defined by a single electronic control unit (ECU), the fourth layer
by a software unit. With both layers the set of information is further reduced to the
set of signals which is available either at the interface of the ECU or at the interface of
the software unit. The testing can be applied at the environments SiL and MiL. The
goal of test-driven development with these layers is the design and implementation
of the system’s entities as described in Chapter 2.4. Using the three levels of testing,
cf. Chapter 2.3.1, the upper three layers can be considered as system, integration
and unit testing in terms of the vehicle. The lower three layers can be considered as
system, integration and unit testing in terms of the control unit with respect to its
software.

The input stimuli for the test-driven development of all these layers are generated

57

Chapter 2 Methods and Tools

Synthetic Signals Real Signals

Real Environment

System Vehicle

Electronic Control Unit

Software Unit

1

2

3

4

Layer Description Test Setup

Target Testing

HiL

SiL, MiL

SiL, MiL

Figure 2.16: Layers for an automotive safety system

with either synthetic values or real physical signals. Signals with synthetic values
can be used seamlessly from the bottom layer up to the second layer, but not exactly
reproduced in the real environment. The so-called ascending continuity therefore ends
at the second layer. In contrast, it is possible to reuse real physical signals in the
form of measured data from the top layer at all other layers (descending continuity),
see Figure 2.16. Moreover, for both continuities it might be necessary to convert the
signals between two layers as for example the system vehicle’s velocity at the first
layer is represented as wheel impulse counters at the second layer and translated into
a speed at the fourth layer. An alternative to the conversion of the signals is the
measurement of the signals on all boundaries between the layers.

58

Chapter 3

Development of a Collision Prevention

System

Every year millions of people get injured or die due to road traffic accidents. One
of the main types of accidents is the rear-end collision, which accounts for about
30 percent of the overall number of accidents. For instance in the USA, more than
2,000 people lost their life and more than 500,000 people needed to be treated in
a hospital due to the consequences of a rear-end collision in 2005 [6]. A rear-end
collision happens if a first car collides with the rear of a second car, while both cars
are driving in the same direction.

This chapter describes the test-driven development of a system to prevent such
rear-end collisions or mitigate their impact. The development process is based on the
methods and tools which have been presented in the previous chapter. First different
approaches for collision avoidance are discussed. Then we describe the requirements
and the architecture of the new system and identify four example components. The
realisation of three of these components illustrates the application of test-driven de-
velopment to different algorithms for embedded control systems. The design and
implementation of the fourth component is presented in Chapter 4, which focuses on
specific aspects of control theory.

59

Chapter 3 Development of a Collision Prevention System

3.1 Collision Prevention Systems

3.1.1 Overview

Active safety systems which focus on preventing rear-end collisions can be divided
into three groups: collision warning (CW), collision mitigation (CM) and collision
avoidance (CA) systems. Common to all systems are components which try to detect
a potential collision between two cars. These components are based on the one hand
on sensors which measure the environment as well as the internal states of the vehicle
equipped with the system (compare Section 1.1.2). On the other hand they use
algorithms for the assessment of the situation, which are usually realised in form of
a kinematic analysis in a n-dimensional space [181, 182, 183, 184].

When a potential collision is detected, collision warning systems can activate a
visual, acoustical or haptical warning. If the driver does not react to this warning, a
collision avoidance system tries to prevent the collision through active methods like
steering or braking. Such approaches are commonly based on conservative vector
fields [185], on methods of control theory [182] or on geometrical trajectory planning
[181].

In contrast to CA systems, the purpose of collision mitigation systems is to reduce
the consequences of a collision, rather than to prevent it. This is usually accomplished
by restricting the system to a subset of the vehicle’s abilities, e.g. a partial braking.
Such systems are used because they are easier to implement in the context of veri-
fication and validation against faulty activations and product liability. Furthermore
the impact of a CA system might be degraded to the impact of a CM system as the
information about environment and driver are limited. For example, if the system
vehicle approaches a stationary obstacle on the outer side of a curve, the last point to
avoid the collision by braking lies earlier in time than the last point by steering. This
means that the driver is still able to avoid the collision by steering into the curve,
although the system has detected a potential collision in a straight direction. As long
as a CA system is not able to detect the driver’s intention, it can not autonomously
start a full braking manoeuvre until the collision is unavoidable by common driving
manoeuvres.

3.1.2 Definition

The aim of the system, which has been developed during this PhD project, is to warn
the driver about a potential rear-end collision as well as to actively support him in
preventing such a collision. Therefore it can be assigned to the group of collision

60

Chapter 3 Development of a Collision Prevention System

warning systems and collision avoidance systems. The system is called Collision
Prevention System (CPS). The further description of the system is based on the
following items:

Road: The road is only specified through its friction coefficient, µ, which depends on
the longitudinal position, s.

xroad = µ(s) (3.1)

System Vehicle: The System Vehicle is the car in which the Collision Prevention
System is installed. It is defined by its acceleration, asys, its speed, vsys, and
the distance travelled in longitudinal direction, ssys, which all depend on the
time, t.

xsys =

ssys(t)
vsys(t)
asys(t)

 (3.2)

The relationship between s, v and a can be described as follows:

s =
∫

v(t)dt =
∫ ∫

a(t)dt (3.3)

The origin of the earth-fixed coordinate system is laid to the frontmost point
of the car, see Figure 3.1.

Driver: The Driver is the person who controls the System Vehicle. In terms of the
CPS, his or her behaviour is described by only two variables: the brake pedal
travel, spedal, and the brake pedal speed, vpedal.

xdriver =

(
spedal(t)
vpedal(t)

)
(3.4)

In addition, we can define a deceleration, adrv, which results from the driver’s
pressure on the brake pedal. This deceleration depends on different variables,
for instance the friction coefficient of the Road or the speed of the System
Vehicle. The physical details are neglected here as they are not relevant for the
realisation of the Collision Prevention System.

Object: The object or vehicle with which the System Vehicle would collide during a
rear-end collision is called the Object. The state vector of the Object is similar
to the one of the System Vehicle, the only difference is the origin of the coordi-
nate system which is defined by the Object’s rearmost point, cf. Figure 3.1.

61

Chapter 3 Development of a Collision Prevention System

xobj =

sobj(t)
vobj(t)
aobj(t)

 (3.5)

Based on these state vectors, we define the relative acceleration, ∆a(t), the relative
speed, ∆v(t), and the relative distance, ∆s(t), between the Object and the System
Vehicle:

∆s(t) = sobj(t)− ssys(t) (3.6)

∆v(t) = vobj(t)− vsys(t) (3.7)

∆a(t) = aobj(t)− asys(t) (3.8)

Furthermore the following condition for the initial value of ∆s is assumed:

∆s(t = 0[s]) > 0[m] (3.9)

A rear-end collision then takes place, if the relative speed is smaller than zero at the
point in time, tc, at which the relative distance is equal to zero.

ccol =

true if (∆v(tc) < 0) ∧ (∆s(tc) = 0)

false otherwise
(3.10)

ccol is a Boolean value that denotes whether a collision takes places or not. Vice versa
the collision is prevented, if at tc the relative speed is greater than or equal to zero,
or in other words, if the mathematical function of the relative distance has a global
minimum at this point.

sobj, vobj, aobj

Object System Vehicle

ssys, vsys, asys

∆s

∆s

Figure 3.1: Definition of a rear-end collision

62

Chapter 3 Development of a Collision Prevention System

3.2 Requirements

The systematic analysis of the system’s requirements is one of the primary tasks
of software development. It determines the needs and conditions which need to be
met by the new system by taking into account a customer’s point of view. For
an automotive safety system, the source of those requirements is typically not a
customer, but the development team itself. The ideas and concepts for such systems
are generated by innovation workshops, analysis of market needs or publicly funded
research projects. This input is then transformed into formal requirements, typically
stored in a database such as DOORS by the company Telelogic [186].

In this section, the main requirements for the new Collision Prevention System are
presented. We divide them into three groups: The top-level requirements consists of
the two basic aims of the system. Then, the functional requirements are described
for each aim. Please note that in reality the list of requirements is much longer and
might also include the hardware configuration, non-functional requirements or the
specification of external interfaces.

Top-Level Requirements

The following requirements describe the top-level requirements of the Collision Pre-
vention System.

Requirement Warning function

The system shall warn the driver of situations which might lead to
a rear-end collision.

Requirement Brake support function

The system shall support the driver in preventing a rear-end colli-
sion by controlling the brakes of the System Vehicle.

Functional Requirements for the Warning Function

The following requirements describe the condition to activate the Warning function.
It is based on the reaction time which is defined as the time left to the driver until
a collision is unavoidable. A more precise definition of the reaction time is given in
Section 3.4.3. The requirement Warning output specifies how a warning should be
indicated to the driver. Figure 3.2 shows a possible realisation of this requirement.

63

Chapter 3 Development of a Collision Prevention System

Requirement Warning activation

The system shall issue a warning if the remaining reaction time is
less then 2.5[s].

Requirement Warning deactivation

The system shall deactivate the warning if the remaining reaction
time is greater then 2.5[s].

Requirement Warning output

If the warning is active, a visual warning shall be shown by a red
light with a triangular shape, and an acoustic signal shall be issued
by an intermittent beep tone.

Figure 3.2: Red light with a triangular shape in the instrument cluster (Photo: Robert Bosch

GmbH).

Functional Requirements for the Brake Support Function

The following requirements describe the conditions at which the system shall be ac-
tivated in terms of controlling the System Vehicle’s brakes. Similar to the warning,
the reaction time is used to detect a critical situation. Furthermore, the character-
istics of the driver’s braking manoeuvre (comfort or emergency braking) are taken
into consideration for the activation. The difference between an emergency braking
manoeuvre and a comfort braking manoeuvre is explained in Section 3.4.2. Finally,
the last requirement specifies how the system shall control the brakes of the System
Vehicle.

64

Chapter 3 Development of a Collision Prevention System

Requirement System activation

The system shall be activated if the driver is performing an emer-
gency braking manoeuvre, and the remaining reaction time is less
then 1.5[s].

Requirement No system activation

The system shall not be activated if the driver is performing a
comfort braking manoeuvre, or if the driver is not braking.

Requirement System deactivation (collision criterion)

The system shall be deactivated if the collision was prevented.

Requirement System deactivation (driver criterion)

The system shall be deactivated if the driver releases the brake
pedal.

Requirement System operation

If the system is active, it shall control the brakes of the car in such
a way that the relative distance between the Object and the System
Vehicle reaches a minimum value without a collision.

3.3 Architecture

In general, the design of the architecture of an embedded control system will take place
at the beginning of the development process. The decisions about the basic design are
made by analysing the system’s requirements and environment. This environment
is not only defined by the physics of the control loop, but also by the integration
container, i.e. the existing hardware or software environment into which the system
should be integrated. Therefore the architecture of the Collision Prevention System
can be specified either by the means of control theory, i.e. as a closed-loop system
using a state-space approach, or with the layer approach, which has been introduced
in Section 2.5.

65

Chapter 3 Development of a Collision Prevention System

3.3.1 State-Space Approach

Process

With the state-space representation, the plant model of the CPS can be described as
a linear system with n inputs and m outputs:

ẋ(t) = Ax(t) + Bu(t) + Dd(t) (3.11)

y(t) = Cx(t) (3.12)

x(0) = x0. (3.13)

x ∈ Rp is the state vector with R representing the set of real numbers and p the order
of the system, ẋ denotes the derivative with respect to time. u ∈ Rn is the input vector
and y ∈ Rm is the output vector. A ∈ Rp×p is called the state matrix, B ∈ Rp×n the
input matrix, C ∈ Rm×p the output matrix and D ∈ Rm×n the disturbance matrix.
Figure 3.3 shows the block diagram of the state-space representation.

B C∫

A

Process

u x
.

x y

D

d

Figure 3.3: Block diagram of the state-space representation

For the control loop of the Collision Prevention System a state vector with three
states – the relative distance, the relative speed and the relative acceleration (Equa-
tions (3.6), (3.7) and (3.6)) – is considered:

x(t) =

∆s(t)
∆v(t)
∆a(t)

 . (3.14)

The control signal is the desired acceleration of the System Vehicle, aset.

u(t) = aset(t) (3.15)

66

Chapter 3 Development of a Collision Prevention System

The brakes of the System Vehicle can be represented as a first order behaviour with
a gain of one.

ȧsys(t) =
1
θ
aset(t)−

1
θ
asys(t) (3.16)

θ is the response time of the brakes. Based on measurements on a test track, we
assume θ = 0.25[s] as a suitable value for the vehicle model for which the CPS should
be installed, i.e. the System Vehicle.

The disadvantage of Equation (3.16) is that it considers only the System Vehicle,
but not the Object. By transposing Equation (3.8) to

asys(t) = aobj(t)−∆a(t), (3.17)

we can replace asys in Equation (3.16):

∆ȧ(t) = −1
θ
∆a(t) +

1
θ
aobj(t) + ȧobj(t)−

1
θ
u(t). (3.18)

We assume that the acceleration of the Object remains constant, i.e.

aobj(t) = const (3.19)

⇔ ȧobj(t) = 0. (3.20)

This results in the following state equation

ẋ(t) =

∆v(t)
∆a(t)

−1
θ∆a(t)− 1

θu(t) + 1
θaobj(t)

 (3.21)

with the initial condition

x(0) =

∆s0

∆v0

∆a0

 . (3.22)

The output value of the system is represented by the relative distance between the
Object and the System Vehicle:

y(t) = ∆s(t). (3.23)

The Object’s acceleration is interpreted as an external disturbance:

d(t) =

0
0

aobj

 (3.24)

d(0) = d0. (3.25)

67

Chapter 3 Development of a Collision Prevention System

The matrices of the state-space approach for the CPS are then:

A =

0 1 0
0 0 1

0 0 −1
θ

 (3.26)

B =

0
0

−1
θ

 (3.27)

C =
[

1 0 0
]

(3.28)

D =

0
0
1
θ

 (3.29)

For steady state, all elements of ẋ(t) have to be zero.

ẋ(t) =

0
0
0

 =

0 1 0
0 0 1

0 0 −1
θ

∆s(t)
∆v(t)
∆a(t)

 +

0
0

−1
θ

u(t) +

0
0
1
θ

 aobj(t) (3.30)

This results in

∆vss = 0 (3.31)

∆ass = 0 (3.32)

uss = aobj , (3.33)

and with Equation 3.17, the steady-state value of the System Vehicle’s acceleration
has to be equal to the Object’s acceleration:

asys,ss = aobj = uss. (3.34)

State Feedback

The controller is now realised by a full-state feedback as shown in Figure 3.4,

ufb(t) = −Kx(t), (3.35)

with the matrix K consisting of one element for each state value:

K =
[

k∆s k∆v k∆a

]
. (3.36)

68

Chapter 3 Development of a Collision Prevention System

As a consequence of equations (3.31) and (3.32), the values of k∆v and k∆a have no
influence to the control variable at steady state, because the values of ∆v and ∆a

are then zero. Instead, the steady-state value of the control signal is equal to the
Object’s acceleration:

ufb,ss = −aobj = −k∆s∆s. (3.37)

In other words, the steady-state value of ∆s is only zero if aobj has also a zero value.
This contradicts the requirement System operation, which describes that the relative
distance between the Object and the System Vehicle should be minimal after the
collision was prevented, i.e. ∆sss = 0. We therefore consider the Object’s acceleration
as a feedforward control input:

uff (t) = aobj(t). (3.38)

Finally, the control variable is defined by the sum of the feedforward control input
and the feedback control input:

u(t) = uff (t) + ufb(t). (3.39)

To summarise, the state-space representation provides a mathematical model for
the process and the controller of the Collision Prevention System. This model not
only describes the relationship between the system’s input and output variables, but
also its internal behaviour.

∫∫ ∫1
θ

asys(t=0[s]) ∆v(t=0[s]) ∆s(t=0[s])

First Order Behaviour

u = aset asys ∆v

K

1
θ

y
++

∆auff ∆s

aobj(t)

‐

Process

ufb

Figure 3.4: State-space approach for the Collision Prevention System

69

Chapter 3 Development of a Collision Prevention System

3.3.2 Layer Approach

In Section 2.5, a layer approach for test-driven development of automotive safety
systems was introduced. Each layer represents a different level of abstraction of the
system’s architecture in a top-down approach. In the following, these layers are used
to describe the architecture of the Collision Prevention System.

For the CPS, layer 1 is defined by the System Vehicle, the Driver, the Object and
the Road as described in the last section, cf. Figure 3.1.

Then layer 2 consists of the following components: RADAR Sensor, Brake Control
Unit, Engine Control Unit, Instrument Cluster, and RADAR Control Unit, which are
connected by a Controller Area Network (CAN), see Figure 3.5. The RADAR Sensor
measures the current relative distance between the Object and the System Vehicle,
∆s(ti), the current relative speed, ∆v(ti), and the current acceleration of the Object,
aobj(ti). ti denotes the current processing or simulation step. The Brake Control
Unit is connected to a sensor for the brake pedal travel, spedal, and an accelerometer
to measure the System Vehicle’s acceleration, asys(t). Furthermore it computes the
speed of the System Vehicle, vsys(t), from four wheel impulse counters. The three
values are transmitted via the CAN. The Brake Control Unit also receives the re-
quested acceleration, aset(ti), from the RADAR Control Unit. As the driver should
be able to override the system, the Brake Control Unit calculates the minimum value
of the control variable and the acceleration that originates from the brake pedal,
which is pressed by the driver. Moreover it communicates with the Engine Control

Brake
Control Unit

Engine
Control Unit

RADAR
Control Unit

RADAR
Sensor

Vehicle

Cluster
Instrument

Controller Area Network

Figure 3.5: Layer 2: Architecture of the control units

70

Chapter 3 Development of a Collision Prevention System

Unit to realise a deceleration with the drag torque of the engine. The Instrument
Cluster outputs a warning request by the CPS as a visual warning – a red light with
a triangular shape, compare Figure 3.2 – and an acoustical signal – an intermittent
beep tone. The CPS itself is realised in the RADAR Control Unit.

Layer 3 is described through the architecture of the RADAR Control Unit as pre-
sented in Figure 3.6. First, the input signals are read by the Input Interface, which
also handles timeouts and data errors like a wrong CRC of the CAN messages. If
such an error occurs, the input interface activates a corresponding error strategy, e.g.
disabling the system. The main functionality of the Collision Prevention System is
implemented in the next component. As shown in the diagram, this is in parallel
with other components of different systems that use the same architecture, e.g. the
Adaptive Cruise Control System. The Output Interface therefore realises an output
arbitration of all components’ outputs, so that only one system can be active at a
time. Finally, the system’s outputs are transmitted to the CAN.

The internal architecture of the component marked with Collision Prevention Sys-
tem in Figure 3.6 also belongs to layer 3. It consists of four subcomponents: Situation
Assessment, Driver Assessment, Controller and Activation, as shown in Figure 3.7.
The subcomponent Situation Assessment calculates the risk of a collision by using
a kinematic analysis of the state vectors of Object and System Vehicle. The sub-
component Driver Assessment classifies a braking manoeuvre, which is executed by
the driver, into two groups: comfort braking and emergency braking. While a visual
and acoustical warning should be activated if the criticality of the situation is higher

Adaptive
Cruise Control

Downhill
Speed

Regulation

Speed Limiter

Collision
Prevention
System

Output
Interface

Input
Interface

Radar Control Unit

Figure 3.6: Layer 3: Architecture of the software components

71

Chapter 3 Development of a Collision Prevention System

Situation
Assessment

Driver
Assessment

Contoller

Activation

Collision Prevention System

Figure 3.7: Layer 3: Architecture of the CPS subcomponents

than a threshold, the brake support must wait for an emergency braking manoeuvre
by the driver before getting activated. This logic should be implemented in the sub-
component Activation. Finally, the control variable, i.e. the required acceleration to
prevent the collision, is calculated with the subcomponent Controller.

Layer 4 is defined through the software unit. As the underlying implementation of
the subcomponents described above is not known at the beginning of the test-driven
development process, we initially consider these four subcomponents as units.

3.3.3 Comparison of the State-Space Approach and the Layer Approach

When we compare the state-space approach and the layer approach, the state-space
representation does not consider neither the calculation of the minimum value of
the driver’s and the system’s acceleration (layer 2) nor the activation of the system
through the driver and situation assessment (layer 3). Therefore we define the input
value of the brake, ubrake(t), as the minimal value of both accelerations:

ubrake(t) =

adrv(t) if adrv < acps

acps(t) otherwise
(3.40)

adrv(t) is the deceleration resulting from the driver’s pressure on the brake pedal,
acps(t) is the deceleration requested by the system to prevent a possible collision.
This latter deceleration furthermore depends on whether the system was activated or
not:

acps(t) =

aset(t) if cactive

0 otherwise
(3.41)

72

Chapter 3 Development of a Collision Prevention System

+

∫∫ ∫1
θ

asys(t=0[s]) ∆v(t=0[s]) ∆s(t=0[s])

ubrake asys ∆v

K

1
θ

y
+

∆a

uff

∆s

aobj(t)

Maximal
Deceleration

Activation

adrv(t)

acps

‐

Controller

Driver
Assessment

Brake Control Unit

Situation
Assessment

vpedal spedal

∫

Radar Control Unit

Radar Sensor

Process

aset

ufb

Figure 3.8: Combination of the layer and the state-space approach for the Collision Prevention

System

aset(t) is the control variable of the state-space approach as defined by Equation 3.39.
The condition cactive is generated by the subcomponent Activation, which logically
combines the results of the subcomponents Driver Assessment and Situation Assess-
ment. The corresponding block diagram is shown in Figure 3.8. It consists of the
block diagram of the state-space representation, in which the subcomponents of the
CPS have been integrated. In addition, dashed lines mark the hardware components
and the plant model.

To summarise, the combination of the layer approach and state space approach
provides a complete description of the system’s architecture. On the one hand, it
specifies the physical relationship between the input and the output signals. On the
other hand, if clarifies the role of each component within the scope of its physical
environment and its integration container. With this, we are now able to realise the
CPS with a test-driven development process.

73

Chapter 3 Development of a Collision Prevention System

3.4 Realisation

This section demonstrates the test-driven development of three software components
of the Collision Prevention System: Activation, Driver Assessment and Situation
Assessment. These components were chosen as examples for the following objectives:

Logical combinations: The component Activation implements a number of logical
combinations of its input signals to create two output signals. These output sig-
nals indicate whether the CPS should warn the driver or activate an additional
brake support.

Experimental problems: The realisation of the component Driver Assessment is
based on an experimental analysis of the driver’s braking behaviour.

Mathematical algorithms: With the component Situation Assessment, the critical-
ity of the driving situation is estimated by mathematical algorithms.

In addition, the Controller is described as a fourth component in Chapter 4 to show
the application of TDD to control system design.

For all components, the development is driven by the definition and execution
of acceptance and unit tests. The acceptance tests specify the requirements of the
system from a customer’s point of view and with this, the goal of the respective
development iteration. After one or more acceptance tests fail, a number of unit
tests define the interface, the functionality (what the system should do) and the
realisation (how the system is realised) of a software unit. Finally, the component
can be implemented as a Simulink model.

3.4.1 Activation

The component Activation should realise one or more logical combinations of its input
values to create two Boolean output signals. The first output signal, cactive, should be
true if the system is active, i.e. the CPS should control the car to prevent a collision.
In contrast, the driver should be only alerted by a visual and audible warning if the
second output signal, cwarn, is true.

Concept

For logical combinations, it is important to ensure that all logical paths are covered
by the implementation. Therefore we propose an additional step which transforms
the system’s requirements into a classification tree. The classification-tree method

74

Chapter 3 Development of a Collision Prevention System

has already been introduced in Section 2.3.2. Using a classification tree editor, we
define two compositions for the classifications of the input and the output interface
of the component. The classifications represent the corresponding Simulink signals.
They are refined by classes for these ranges of the signals, which cause the same
behaviour. Then we create test cases by logically combining the classes.

The classification tree helps us in two ways. Firstly, it supports the translation
of the system’s requirements into the system’s implementation. To create the tree,
we describe the component in terms of input and output signals as well as their
relationship. Secondly, we can directly derive acceptance and unit tests from the test
cases, cf. Figure 3.9. Therefore it can be seen as the starting point for the realisation
of the component.

Requirements
Classification

Tree

Acceptance
Tests

Unit Tests

Figure 3.9: Concept for deriving tests from the classification tree

The resulting tree for the component Activation is shown in Figure 3.10. cdriver

is the result of the component Driver Assessment, true means that the driver is
performing an emergency braking. treact is the result of the component Situation
Assessment. It represents the reaction time which is left to the driver until a collision
is unavoidable. aset is the output signal of the component Controller, i.e. the control
variable. Please note that some classes are marked with a “?” at certain test cases.
If it is set for an input variable, then the variable’s value is not relevant for the result
of the logical combination. If it set for an output variable, this variable should keep
its state, i.e. retain the value of the last computation.

Realisation

The realisation is done by the test-driven development cycle, which has been explained
in Section 2.4. The first step of this cycle is the definition of acceptance tests. For the
CPS, each acceptance test includes a driving manoeuvre. Such a driving manoeuvre
has to be described from the customer’s point of view. This means that especially
the input stimuli have to be influenceable by the driver. In contrast, the verification
of the manoeuvre can be also done by the analysis of internal data, e.g. recorded

75

Chapter 3 Development of a Collision Prevention System

Input Output

c_active c_warnt_react a_setc_driver

true true[0, 1.5) [1.5, 2.5) [2.5, inf) (‐inf, ‐2.0) true falsefalse

Activation

[‐2.0, 0] false

VIII

I
II
III
IV
V
VI
VII

IX

Figure 3.10: Classification tree for the component Activation

by a measurement system. Such an acceptance test for the component Activation is
detailed in the following with the acceptance test Activate CPS.

Acceptance Test Activate CPS

Description: The System Vehicle approaches a foam object with a speed
of 60[kmh−1]∗.1 The reaction time is marked with a gate of pylons,
see the setup of Figure 3.11. At this point the driver starts to brake,
but only so much that the collision is not avoided by him.

∆s(t = 0[s]) = 100[m]∗

∆v(t = 0[s]) = −60[kmh−1]∗

vobj(t = 0[s]) = 0[kmh−1]∗

vsys(t = 0[s]) = 60[kmh−1]∗

∆a(t = 0[s]) = 0[ms−2]∗

aobj(t = 0[s]) = 0[ms−2]∗

asys(t = 0[s]) = 0[ms−2]∗

∆sgate
∼= 39[m]∗

1The meaning of the asterisk (∗) is explained later in the text, see Page 78.

76

Chapter 3 Development of a Collision Prevention System

Assertions: The visual and acoustical warning are activated if the reac-
tion time is smaller than 2.5[s], i.e. cwarn = true for treact < 2.5[s].
The optical warning is activated by a red light with a triangular
shape within the Instrument Cluster, the acoustical warning by an
intermittent tone.

The system is activated in terms of braking if the driver executes
an emergency braking and the reaction time is smaller than 1.5[s],
i.e. cactive = true for (treact < 1.5[s] ∧ cdriver = true). The value of
acps is then smaller than −2[ms−2]. The system stays active until
the collision is prevented, i.e. acps gets greater than −1[ms−2].

Foam Object System VehicleGate

∆sgate

ssys, vsys, asys

Figure 3.11: Test setup with a foam object and a gate of pylons to mark the reaction time

This test introduces three typical concepts for acceptance tests of the Collision
Prevention System:

1. A mock object is used to avoid damage of the System Vehicle. Because of the
test-first paradigm, the test is executed before the system is implemented. For
the CPS, this means that a collision will take place as the aim of the CPS
is the prevention of a collision. For stationary targets we use a simple foam
object or a retractable corner reflector. For moving objects we use a so-called
Target Simulator, which consists of a real car and a dummy object. The dummy
object is mounted on the side of the real car with an electronically controlled
mechanism to flip it up just before a collision might occur.

2. The evaluation of the assertions can not only be done by measuring internal
data of the electronic control unit, but also by the use of external means. This
allows to assess the system’s behaviour from an objective point of view, i.e.
without using knowledge about the structure and components of the system.

77

Chapter 3 Development of a Collision Prevention System

The applicability depends on the asserted value and might require a high effort.
For the CPS, it is suitable to mark a certain reaction time to a stationary object
by a gate of pylons, but this does not work for the reaction time to a moving
object. The reason for this is that the gate is placed at a certain position, which
has a fixed distance to the Object. Thus for a moving Object, this position can
not be marked by pylons. An alternative would be a reference measurement
system, e.g. a differential GPS, to detect the distance between Object and
System Vehicle and display this distance to the driver.

3. The parameters of the test can be either specific or arbitrary. With the example
test, all input stimuli, i.e. the initial values of Object and System Vehicle, are
arbitrarily selected. We indicate this with an asterisk (∗). This means that
these parameters can be modified without changing the intention of the test.
In contrast, all asserted values are specific for the test and its objective. For
instance, the expected threshold value for the reaction time is always 1.5[s],
because this threshold value was specified within the requirements of the system.
Two things have to be noted: Firstly, the threshold values might be hidden by
certain values of the input stimuli, e.g. when changing ∆s(t = 0[s]) to 10[m]∗,
the reaction time is already smaller than 1.5[s] at the beginning of the test.
With this, the assertion would be also fulfilled by a realised threshold value
of 3.0[s], although this contradicts the system’s requirements. Secondly, the
complexity of the test’s execution might be increased by certain values of the
input stimuli. An example is the different effort for marking the reaction time
to stationary and moving object, see above.

The next step is the definition of unit tests. These tests can be either one-to-one
converted from the classification tree or derived from its decomposition. An example
for the direct conversion is the following unit test:

Unit Test Activate

Description: The input signals are set to the following values:

cdriver(t) = true (3.42)

treact(t) = 1.5[s]+ (3.43)

aset(t) = −2[ms−2]+ (3.44)

78

Chapter 3 Development of a Collision Prevention System

Assertions: The following values are asserted for the output signals:

cactive(t) = true (3.45)

cwarn(t) = true (3.46)

The values of treact and aset are only partially arbitrary, thus marked with a +.
This means that other values are possible, but have to be within the specified range
of the corresponding class. For example, a value of treact = 1.0[s] belongs to the same
class, while treact = 2.0[s] does not and therefore results in a different output.

The alternative method to derive a unit test is the decomposition of the classifi-
cation tree. This is based on the separate analysis of the conditions, which set the
different output variables. For instance, cwarn shall be always false if treact is greater
than 2.5[s] and always true if it is smaller than 2.5[s].2. Hence the number of tests
to drive the realisation of cwarn can be reduced from 9 to 2. A similar approach can
be applied to cactive. cactive has to be false if either cdriver is false, or aset is greater
than or equal to −1[ms−2].

With the last group of tests, the output signal cactive should keep its value from the
last cycle (marked with a “?”). The choice of the correct class, i.e. true or false, de-
pends on the previous state of the signal. If the system is already activated, it should
remain active, otherwise it should remain deactivated. In contrast to the previous
tests, the system must first be activated before we can test that the state remains
active for the given input configuration. Therefore we usually would create a test
sequence with the classification tree, which consists of two test steps, cf. Figure 3.12:
First cactive is set true by a corresponding configuration of input stimuli, then this

2In practise, we add a hysteresis to the reaction time, but we neglect this here for simplicity.

Input Output

c_active c_warnt_react a_setc_driver

true true[0, 1.5) [1.5, 2.5) [2.5, inf) (‐inf, ‐2.0) true falsefalse

Activation

[‐2.0, 0] false

Ia
Ib

Transition

Figure 3.12: Test sequence with the classification-tree method

79

Chapter 3 Development of a Collision Prevention System

Figure 3.13: Test sequence with slUnit

value should be held for a different configuration of input stimuli. The disadvantage
of this approach is the duplication of the logical combination for the activation, cf.
line I at Figure 3.10 with line Ia at Figure 3.12. We can prevent this duplication
with slUnit by creating a fixture based on the unit test Activate. Then this unit
test provides the initial configuration for an additional unit test, Keep active, which
modifies the test vector after 1[s] of execution, see Figure 3.13.

Unit Test Keep active

Description: This unit test builds a fixture with the unit test Activate.
In addition, the input signals are set to the following values:

treact(t ≥ 1[s]) = 2.0[s]+ (3.47)

80

Chapter 3 Development of a Collision Prevention System

Assertions: The following values are asserted for the output signals:

cactive(t) = true (3.48)

With these three different kinds of unit tests, we are able to iteratively implement
the component. After one unit test failed, we implement the logic by the correspond-
ing Simulink blocks. For the test Activate, this results in three relational and one
logical operator. Further blocks are added with the next tests. Then the last test,
Keep active, requires a SR flip-flop in-between the Logical Condition blocks for cactive

and the Output Port block. The SR flip-flop is able to remain in a constant state
if both of its inputs, S and R, are false. It is set to true, if S is true for at least
one cycle and R is false. It is set to false, if R is true for at least one cycle and
independently of the value of S. For our component, the logical combination of the
unit test Activate sets the flip-flop, the combinations of all other unit tests reset it.
The final component is shown in Figure 3.14.

Figure 3.14: The realisation of the component Activation

Finally, the acceptance tests of this component do not pass after its realisation. The
reason for this is that the input signals of the component are the output signals of the
other three components. cdriver is generated by the component Driver Assessment,
treact by the component Situation Assessment, and aset by the component Controller.

81

Chapter 3 Development of a Collision Prevention System

Hence the acceptance tests can only be fulfilled if these three components are (at
least partially) implemented.

3.4.2 Driver Assessment

Already in 1992, developers of the former Daimler-Benz AG found out through tests
in the company’s driver simulator that most drivers quickly press the brake pedal in
emergency situations, but do not reach the maximum brake pedal travel. They can
therefore not take advantage of the maximum brake power of their car. This finding
led to the development of the Brake Assist System (BAS), which went into series
production in 1996 and is today a standard feature of most new cars [187, 188]. It is
supposed to help drivers to quickly achieve the maximum brake force in an emergency
situation. The activation of the BAS is based on the gradient of the brake pedal travel,
i.e. the brake pedal speed. If this brake pedal speed is higher than a threshold value,
the system is activated until the driver releases the brake pedal. The BAS does not
have any information about the vehicle’s surrounding, e.g. an obstacle in front of it,
so that it always performs a full emergency braking manoeuvre. As a consequence,
the threshold for the brake pedal speed is rather high to prevent annoyance of the
driver due to frequent (erroneous) activations.

The component Driver Assessment of our Collision Prevention System should anal-
yse the brake pedal travel and the brake pedal speed to classify a driver’s braking
manoeuvre into two groups: comfort braking and emergency braking [89, 189]. Com-
fort braking describes a situation, in which the driver intends to slow down the car in
a safe and comfortable way, e.g. when stopping at a red light (anticipatory driving).
In other words, the driver does not expect brake support from the CPS in such sit-
uations. If, however, the driver presses the brake pedal in a way which indicates an
emergency situation, i.e. in a decisive manner, this should be classified as emergency
braking. Such a braking manoeuvre does not necessarily have to use maximal brake
torque; also a high pedal speed is not required. Instead, emergency braking can be
characterized as a progressive increase of the brake force, i.e. the driver is braking
in such a way that the derivative of the brake actuation with respect to time is not
discontinuous. A common example is a driver who tardily recognises a red light, but
still brakes comfortably enough to prevent a cake on the passengers seat from flying
into the dashboard.3

3In fact, this example has often been used to explain to journalists, how they should brake to

experience the system.

82

Chapter 3 Development of a Collision Prevention System

Concept

With the component Activation, we took the requirements, translated them into a
classification tree and derived acceptance and unit tests from it. This approach is not
applicable for the component Driver Assessment as we do not know the characteristics
of the component’s input domain, i.e. the brake pedal travel and brake pedal speed.
Thus a partitioning of the input domain into classification and classes is not possible.
An alternative would be to build a model, which describes the driver’s behaviour
in terms of a control system. The driver recognises the situation by his/her human
sensors (eyes, ears, etc.), and controls the vehicle by his/her human actuators (feet,
legs, etc.). This model would allow to describe the values of brake pedal travel and
brake pedal speed for certain situations. However, the effort to create such a model
is high, and its results might be not accurate.

Requirements
Acceptance

Tests
Unit Tests

Execution as
Experiments

Figure 3.15: Concept for using tests for experimental problems

Therefore we propose the approach shown in Figure 3.15, which considers the
component’s realisation as an experimental problem. With this, the acceptance tests
not only specify the requirements of the system, but also describe the design of
experiments. These experiments are used to analyse the characteristics of the input
domain for given situations. They serve to identify one or more thresholds for the
classification between different classes of behaviour, here between comfort braking
manoeuvres and emergency braking manoeuvre. Then a number of unit tests define
these thresholds as automated tests, before finally the component is implemented.

Realisation

The starting point of the implementation are the requirements that the system should
be activated if the driver performs an emergency braking, and the system should not
be activated if he performs a comfort braking. From this, we can directly derive an
acceptance tests for the first requirement:

Acceptance Test Emergency braking

Description: The driver drives with the System Vehicle on a test track
with a constant speed of 50[kmh−1]. The driver starts to brake,

83

Chapter 3 Development of a Collision Prevention System

when the System Vehicle passes a gate made of two pylons, see
the setup of Figure 3.11. The aim of the braking manoeuvre is to
stop the car right in front of a stationary obstacle (a foam object).
The distance between the gate and the obstacle should be chosen
in such a way that the average deceleration is greater than 4[ms−2]
and smaller than [8ms−2].

vsys(t) = 50[kmh−1]

asys(t) = 0[ms−2]

∆sgate
∼= 15[m]

Assertions: The result of the component Driver Assessment, cdriver,
should be true.

Please note that the parameters of this test are not arbitrary, because we do not
know whether the driver’s braking behaviour is similar at different speeds or not.
Furthermore, the position of the gate of pylons will influence the deceleration and
thus the brake pedal travel that is necessary to prevent the collision. In fact, if we
increase the distance between the gate and the stationary obstacle, we can create
another acceptance test for the second requirement.

Acceptance Test Comfort braking

Description: The driver drives with the System Vehicle on a test track
with a constant speed of 50[kmh−1]. The driver starts to brake,
when the System Vehicle passes a gate made of two pylons, see the
setup of Figure 3.11. The aim of the braking manoeuvre is to stop
the car right in front of a stationary obstacle (a foam object). The
distance between the gate and the obstacle should be chosen in such
a way that the average deceleration is smaller than 4[ms−2].

vsys(t) = 50[kmh−1]

asys(t) = 0[ms−2]

∆sgate
∼= 25[m]

Assertions: The result of the component Driver Assessment, cdriver,
should be false.

84

Chapter 3 Development of a Collision Prevention System

This means that the parameter, ∆sgate, is specific to each test.
The component should be realised by a threshold which differentiates between com-

fort and emergency braking manoeuvres. The idea is therefore to do an experiment
with a number of drivers. Each driver should execute the tests Comfort braking and
Emergency braking a number of times. Figure 3.16 shows two example braking ma-
noeuvres. The x-axis of these plots is defined by the brake pedal travel, the y-axis is
defined by the brake pedal speed, i.e. the gradient of the pedal’s travel. A braking
manoeuvre is described as a trajectory which starts at the origin of the Cartesian
coordinate system and then runs clockwise through the first and fourth quadrant.
We suppose that a threshold exists which separates both kinds of braking manoeu-
vres. The trajectory of a comfort braking manoeuvres is then located to the left and
below the threshold line, cf. the example in Figure 3.16(a). If it instead exceeds
the threshold at some point, it is classified as an emergency braking manoeuvre. An
example is shown in Figure 3.16(b), at which the first point exceeding the threshold
is marked by the label “detection”.

The resulting trajectories of such an experiment with 30 drivers and 3 executions
of each test by each driver are displayed with black lines (Comfort braking) and grey
lines (Emergency braking) in Figure 3.17. Based on the results, it is possible to
specify the interpolation points of the supposed threshold which separates both types
of braking manoeuvres as shown by the bold line in Figure 3.17.

With this threshold, we can split the problem into two unit tests. The first tests
uses a specific input stimulus, which defines the course of the threshold by a synthetic
trajectory of brake pedal travel and brake pedal speed, see Figure 3.18(a). This

brake pedal speed

threshold

normal braking manoeuvre

0.2m0.1m0m

‐1ms‐1

0ms‐1

1ms‐1

2ms‐1

brake pedal travel

(a) Comfort braking manoeuvre

threshold

detection

brake pedal speed

0.2m0.1m0m

‐1ms‐1

0ms‐1

1ms‐1

2ms‐1

brake pedal travel

emergency braking manoeuvre

(b) Emergency braking manoeuvre

Figure 3.16: Example trajectories for a normal braking manoeuvre and an emergency braking

manoeuvre

85

Chapter 3 Development of a Collision Prevention System

brake pedal speed

brake pedal travel

interpolation points

threshold

0.2m0.1m0m

‐1ms‐1

0ms‐1

1ms‐1

2ms‐1

Figure 3.17: Classification of braking manoeuvres into comfort braking (black) and emergency

braking (grey)

trajectory is synthetic as it can not be realised in practise. It starts at t = 0[s] with a
brake pedal travel of 0.015[m] and a brake pedal speed of 3[ms−1]. Then at t = 1[s]
the speed is decreased to 1.2[ms−1], but the travel remains the same. Although such
a course can not be executed by a driver, it exactly represents the identified threshold
with its interpolation points and allows to assert a constant value for cdriver.

Unit Test Upper boundary

Description: The input values of the component Driver Assessment are
stimulated by a synthetic signal, which is defined by the plot shown
in Figure 3.18(a)

Assertions: The following values are asserted for the output signals:

cdriver(t) = true (3.49)

The second test applies the same approach, but uses a different input stimulus. For
this stimulus, the x-values of the signal are modified by decreasing them by the
smallest possible value of the brake pedal travel (defined through the resolution of
the signal on the vehicle’s data network, e.g. the CAN). Furthermore the output
signal is expected to be false.

In addition, we can break down the unit tests such as the test Upper boundary
into smaller tests, which handle a single segment or point of the threshold. Driven by
these tests, the component is realised as a Simulink subsystem, called “Classification”.

86

Chapter 3 Development of a Collision Prevention System

t = 0s (0.015m; 3ms‐1)

t = 1s (0.015m; 1.2ms‐1)

t = 2s (0.03m; 0.5ms‐1)

t = 3s (0.1m; 0.1ms‐1)

t = 4s (0.1m; ‐2ms‐1)

brake pedal speed

0.2m0.1m0m

‐1ms‐1

0ms‐1

1ms‐1

2ms‐1

brake pedal travel

(a) Threshold

brake pedal speed

0.2m0.1m0m

‐1ms‐1

0ms‐1

1ms‐1

2ms‐1

brake pedal travel

t = 0s (0.12m; 0ms‐1)

t = 1s (0.06m; 0ms‐1)

t = 2s (0m; 0ms‐1)

(b) Deactivation

Figure 3.18: Defining the threshold by a synthetic trajectory of brake pedal travel and brake pedal

speed

The subsystem runs continuously throughout the manoeuvre, and sets cdriver to true

if the trajectory of brake pedal travel and brake pedal speed exceeds the threshold.
The functionality is divided into three steps:

1. Firstly, the value of the brake pedal travel is used to determine which segment
of the threshold should be used, i.e. to select two interpolation points.

2. Secondly, the y-value of the threshold is calculated with a linear function be-
tween these interpolation points. The brake pedal travel is used as the x-value
of this linear function.

3. Finally, it is checked whether the value of the brake pedal travel is smaller than
the first interpolation point (output value is always false) or greater than the
third interpolation point (output value is always true). Otherwise, the output
value is only true if the brake pedal speed is greater than the y-value of the
linear function.

This realisation has two problems: Firstly, a disturbance of the brake pedal travel
or speed might lead to a deactivation of the system, particularly if the trajectory
exceeds the threshold only by a small extent. Secondly, the driver will usually feel
the support of the system and slightly reduce the pressure on the brake pedal (because
of the impression that he has pressed the pedal too much). This might also deactivate
the system. Therefore the output signal should only be switched to false if the brake
pedal travel is reduced by 50 percent of the current trajectory’s maximum value.
Again we can use a synthetic signal for the braking trajectory, see Figure 3.18(b),
to define a unit test. The advantage of such a synthetic signal is that we can easily

87

Chapter 3 Development of a Collision Prevention System

Figure 3.19: Implementation of the component Driver Assessment

define the point in time, at which the output signal should change its value from
true to false. As a result, the component is extended by a SR flip-flop, whose set
input is connected to the output signal of the subsystem described above. Another
Simulink subsystem, called “Check decrease”, then checks the decrease of the brake
pedal travel by subtracting the current value from the trajectory’s maximum value.
If this decrease is larger than a threshold value, the subsystem output signal is set to
true. We connect this output to the reset input of the flip-flop. The final component
is shown in Figure 3.19.

3.4.3 Situation Assessment

The component Situation Assessment should realise the detection of a potential rear-
end collision. It is based on the reaction time that is left to the driver until the
System Vehicle reaches the so-called “point of no return”. After this point, a collision
is considered to be unavoidable by the means of the System Vehicle. For a rear-end
collision, the point of no return can be represented as a relative distance between
Object and System Vehicle.

In general, the driver has two options to avoid a rear-end collision: steering and
braking.4 Because our system has no information about the space which is or is
not available for a steering manoeuvre, the option of steering is disregarded in the
following. The reaction time is therefore defined as the time which is left until the
driver has to start a braking manoeuvre. This means that the point of no return
describes the difference between the braking distance of the System Vehicle and the
distance travelled by the Object at the same time. The maximum reaction time then
results from a full application of the brake, which is directly dependent on the friction

4For other kinds of collisions, especially side-impact collisions, a third option exists in accelerating.

88

Chapter 3 Development of a Collision Prevention System

coefficient between the rubber of the vehicle’s tyres and the surface of the road.

Fbrk = mgµ (3.50)

amin =
Fbrk

m
= gµ (3.51)

Fbrk is the maximal achievable braking force resulting from the friction, g is the
acceleration due to gravity, µ is the friction coefficient, m is the mass of the vehicle
and amin is the minimal acceleration, i.e. the maximal deceleration, of the vehicle.
In the following, we assume a friction coefficient of 1.02 and an acceleration due to
gravity of 9.81ms−2. This corresponds to a minimal acceleration of −10ms−2 and
a stopping distance of 38.6m from a speed of 100kmh−1, i.e. the common stopping
distance of a middle-class car on dry roads.

Concept

The Situation Assessment is realised by solving a mathematical problem. The starting
point of our test-driven development process is again the system’s requirements. They
specify that a certain physical variable should be lower or a higher than a threshold
value. Typically, this physical variable has to be calculated from the system’s input
signals. These input signals might be either measured by sensors or themselves be
computed within other electronic control units. For example, the Brake Control Unit
measures the System Vehicle’s acceleration with an accelerometer, but calculates the
System Vehicle’s speed from four wheel impulse counters.

For such mathematical calculations, we propose the following approach for the
definition of acceptance tests and unit tests, cf. Figure 3.20:

1. Analysis of the problem and derivation of boundary conditions

2. Partitioning into classes which have the same (mathematical) behaviour

3. Definition of acceptance tests for the classes

4. Definition of unit tests in parallel to the derivation of the equations

The process of solving a system of equations by inserting and rearranging mathemat-
ical terms is often error-prone, especially if several variables have to be considered. In
fact, the rearranging of an equation can be compared to the practise of refactoring in
software development processes, see Section 2.4. When refactoring, the functionality
of the refactored software must not change; while rearranging an equation, both sides
always have to be equal. The aim of the unit tests of the proposed approach is to

89

Chapter 3 Development of a Collision Prevention System

Requirements
Analysis &
Partitioning

Acceptance
Tests

Derivation of
Formulae

Unit Tests

Figure 3.20: Concept for deriving tests for mathematical problems

ensure the correctness of the formulae. They verify that the equation’s results are
constant during the rearranging by incorporating this mathematical method into the
development process.

Realisation

The calculation of the reaction time is defined by a problem space that consists of
three translational motions, cf. Figure 3.21.

ti
treact tbrake

Object

System Vehicle

tc

Figure 3.21: Definition of the reaction time

Motion of the System Vehicle during the reaction time treact: We disregard the ac-
celeration of the System Vehicle, i.e. the speed is considered to be constant:

asys([ti, ti + treact]) = 0ms−2 (3.52)

vsys([ti, ti + treact]) = vsys(ti) (3.53)

ti denotes the current time.

Motion of the System Vehicle during the time tbrake: The acceleration of the Sys-
tem Vehicle is set to the minimal acceleration:

asys([ti + treact, ti + treact + tbrake]) = amin (3.54)

90

Chapter 3 Development of a Collision Prevention System

Motion of the Object during the time tbrake + treact: We assume that the accelera-
tion of the Object is constant during the whole time:

aobj([ti, ti + treact + tbrake]) = aobj(ti) (3.55)

The time tc describes the point in time, at which the braking manoeuvre is finished
and the collision is avoided. It can be defined through the following equations:

sobj(tc) = ssys(tc) (3.56)

vobj(tc) = vsys(tc) (3.57)

We do not need to specify the relative acceleration at this point, because the System
Vehicle’s acceleration is always minimal, cf. Equation (3.54).

From a geometrical point of view, these equations describe the point of contact
between two curves: the curve of the System Vehicle’s motion, which is composed
of a linear function and a parabola; and the curve of the Object’s motion, whose
form depends on the Object’s acceleration. For aobj(t) = 0 it is a linear function, for
aobj(t) < 0 and aobj(t) > 0 it is a parable.

In Figure 3.22 and 3.23 the System Vehicle’s motion is shown as a dashed line
(linear function) and a dotted line (parable), while the Object’s motion is shown as
a solid line. There is always a solution for aobj(t) < 0, i.e. either the point of contact
or an intersection point exists, see Figure 3.22(a). In contrast, this is not necessarily
true for aobj(t) = 0 and aobj(t) > 0 as the Object might be faster than the System
Vehicle before a collision would happen. Therefore, two subcases exist for each of
these cases, compare Figures 3.22(b) and 3.22(c) as well as 3.23(a) and 3.23(b).

t

s
Object

System Vehicle

(a) aobj(t) < 0

t

s

Object

System Vehicle

(b) aobj(t) = 0

t

s

Object

System Vehicle

(c) aobj(t) > 0

Figure 3.22: Motions of System Vehicle and Object: The trajectories of System Vehicle and

Object intersect and a reaction time does exist

With the five subcases, the problem space has been analysed and partitioned into
classes with the same behaviour. We continue with the subcases for aobj(t) = 0 to

91

Chapter 3 Development of a Collision Prevention System

t

s

Object

System Vehicle

(a) aobj(t) = 0

t

s

Object

System Vehicle

(b) aobj(t) > 0

Figure 3.23: Motions of System Vehicle and Object: The trajectories of System Vehicle and

Object do not intersect and a reaction time does not exist

explain the further steps of the development approach. The other subcases can be
implemented in a similar way.

During the development of the components Activation and Driver Assessment, we
have already used a test setup with a foam object. This setup has the advantage
that it simplifies our mathematical problem, because the Object is stationary, i.e.
vobj(t) = 0[kmh−1] and sobj(t) = const. Moreover a gate of pylons can mark the
reaction time as a relative distance to the foam object. This allows the driver to
check the value of the reaction time by observing the measurement signal at the
moment when the System Vehicle passes the gate.

Acceptance Test Reaction time (stationary object)

Description: The System Vehicle approaches a foam object with a speed
of 30[kmh−1]∗. The reaction time is marked with a gate of pylons,
see the setup of Figure 3.11.

∆s(t = 0[s]) = 100[m]∗

vsys(t) = 30[kmh−1]∗

∆sgate
∼= 3.47[m]∗

Assertions: The reaction time should be linear and proportional decreas-
ing with the relative distance between the Object and the System
Vehicle. At the gate of pylons, it should have a value of 0[s].

The assertion of the test requires that the reaction time is observed while the System
Vehicle is approaching the Object. For safety reasons, this can also be done after
the execution of the manoeuvre by evaluating the data of a measurement system.

92

Chapter 3 Development of a Collision Prevention System

Moreover, the speed and the initial relative distance can be arbitrarily selected to
check for different gradients of the reaction time. It has to be noted that the position
of the gate and the expected reaction time depend on each other and on the speed
of the System Vehicle. If, for example, the gate is moved to sgate = 7.0[m], the
expected reaction time would be 0.42[s] for vsys(t) = 30[kmh−1], but 0.07[s] for
vsys(t) = 40[kmh−1].

To continue with the development, we can now focus on the two sections of motion
of the System Vehicle, because the Object is not moving in this test. The end of the
first section is dependent on the length of the braking manoeuvre. Therefore we start
with a unit test for the second section:

Unit Test Full braking (stationary object)

Description: The input signals are set to the following values:

∆v(t) = −10[ms−1]∗

vobj(t) = 0[ms−1]

vsys(t) = 10[ms−1]∗

Assertions: The following values are asserted for the output signals:

tbrake(t) = 1[s]

Its expected value is determined in parallel to the derivation of the formulae. Because
the test defines vobj(t) = 0[ms−1], tbrake is defined as follows:

tbrake(ti) = −vsys(ti)
amin

(3.58)

With vsys = 10[ms−1] as a test stimulus, we can easily calculate the result of the
equation to define the assertion of the above unit test. This means that although the
parameters of the test are marked as arbitrary, they are chosen in a way to simplify
the calculation of the expected value.

After the test has failed, we are able to realise Equation (3.58) as a new Simulink
subsystem, named “Braking time”. In addition, more unit tests can be modelled
to verify the implementation, e.g. to check for amin = 0[ms−2] or negative speeds.
We define such values of the input variables as invalid, because the output of the
Simulink subsystem should only be the length of a braking manoeuvre. Therefore we
set tbrake = 0[s] as a lower limit and tbrake = 10[s] as an upper limit. These boundary
values also help to define a fix-point scaling for the automatic code generator as well
as to prevent a numerical overflow on the target platform.

93

Chapter 3 Development of a Collision Prevention System

The next step is the realisation of the reaction time. Using tbrake, the point of
contact of both vehicles is defined through the following equation:

vsys(ti)treact(ti) +
1
2
amint2brake(ti) = ∆s(ti) (3.59)

The left-hand side defines the motion of the System Vehicle, the right-hand side the
motion or, respectively, the relative distance between the Object and the System
Vehicle. Only the value of treact is unknown in this equation as we have already
derived the formula for tbrake. As a consequence, a new unit test can be defined
whose expected value is calculated numerically (by hand) with Equation (3.58) and
Equation (3.59).

Unit Test Reaction time (stationary object)

Description: The input signals are set to the following values:

∆s(t = 0[s]) = 10[m]∗

∆v(t) = −10[ms−1]∗

vobj(t) = 0[ms−1]

vsys(t) = 10[ms−1]∗

Assertions: The following values are asserted for the output signals:

treact(t) = 0.5[s]

We have two options for the test objective of this test: We can either stimulate
only the new Simulink subsystem for the reaction time, called “Reaction time”, and
specify the time tbrake within the test vector. Or we test both Simulink subsystems,
i.e. “Braking time” and “Reaction time” together. The disadvantage of the second
approach is that an error within the subsystem “Braking time” might influence the
results of tests for “Reaction time”. For the current test, taking this risk seems
unnecessary as the calculation of the braking time is fairly simple. But for the
further development of the component, the effort for the creation of the test vector
can be substantially decreased, especially when the Object’s speed and acceleration
are considered.

Finally, the subsystem “Reaction time” is realised by solving Equation (3.59) for
treact. The Simulink model of the component Driver Assessment is shown in Figure
3.24. At further development cycles, the component is then extended for moving
objects and to consider the other subcases, i.e. aobj(t) > 0 and aobj(t) < 0. With
this, the described unit tests provide a continuous feedback to the developer. They

94

Chapter 3 Development of a Collision Prevention System

Figure 3.24: Implementation of the component Situation Assessment

show that the equations are correctly derived, because the values which are expected
by their assertions remain constant even for more complex formulae. For instance, the
expected braking time of the unit test Full braking (stationary object) is always 1[s],
no matter how the component is extended by further subcases. Thus if the unit tests
are carefully selected, i.e. if they cover all identified partitions of the mathematical
algorithm, they efficiently prevent errors during the derivation and rearranging of the
formulae.

3.5 Summary

This chapter demonstrated the implementation of an automotive safety system to
warn and support the driver in situations, which might lead to a rear-end collision.
The system was initially defined by a set of requirements, and then analysed for a
possible architecture in terms of the physical environment and the integration con-
tainer. From this architecture, we identified three components, each representing a
specific aspect of the design of embedded control systems. The realisation of these
components was finally done by different approaches for test-driven development.
The approaches were not only based on the methods and tools, which have been
introduced in Chapter 2, but also considered the specific objective of the component.
With this, we created an efficient system whose specification as well as the way of
implementation, e.g. decisions about the design, the execution of experiments, the
synthesis of formulae or the choice of parameter values, are documented and verified
by automated tests.

95

Chapter 4

Development of a Longitudinal Vehicle

Controller

The components of the Collision Prevention System introduced in Chapter 3, Figure
3.7, can be split into two groups. The first group decides about the activation of
the system. Part of this group are the components Driver Assessment, Situation
Assessment and Activation. The second group defines the behaviour of the system
while it is activated. The only part in this group is the component Controller. It can
therefore be considered as the major component defining the behaviour of the system
once it has been activated. The controller should control the vehicle in a longitudinal
way to support the driver in preventing a rear-end collision. The implementation of
such a longitudinal vehicle controller is described in this chapter.

First, a literature review is presented for different approaches for longitudinal vehi-
cle controllers. The component is then realised by a conventional approach as well as
a test-driven approach. Furthermore two criteria are introduced which are commonly
referred to as the most fundamental design requirements: stability and performance.
Finally, the controllers of both approaches are compared by using these criteria and
results from the simulation with Simulink are presented.

4.1 Controllers for Longitudinal Control

In the past, a number of different approaches for longitudinal control of vehicle dy-
namics have been presented. The starting point of these approaches is often the

96

Chapter 4 Development of a Longitudinal Vehicle Controller

relationship between the conventional cruise control and the adaptive cruise control
(ACC) [190]. This relationship can be described by a diagram, which presents the
relative speed between the Object and the System Vehicle (range rate) on the x-axis
and the relative distance between them (range) on the y-axis, see Figure 4.1. The

Relative Speed

Relative Distance

Headway
Control

Cruise Control

Potential
Collision

Collision

Maximal Relative Distance

Figure 4.1: Range-vs-Range-Rate diagram (the grey areas

indicate the risk for a potential collision)

diagram is therefore called the Range-vs-Range-Rate diagram. The y-axis is limited
by the maximal detection range of the sensor used. A linear function divides the
diagram into two regions. In the right region, conventional cruise control can be used
to keep the vehicle at a constant speed. This region can be considered as a safe area,
because there is no risk of a collision between the two vehicles for the configurations
within it. The intersection point between the linear function and the y-axis describes
the desired relative distance of the ACC system at a steady state. Usually, this dis-
tance can be specified by the driver using a potentiometer or menu entry. In the left
region, the distance has to be controlled in such a way that the trajectory, composed
of range and range rate, leads back to the right region. Otherwise a collision will
happen. Two partial parabolas represent the maximal acceleration of the adaptive
cruise control system (grey parabola) and the maximal physical acceleration of the
System Vehicle (black parabola). To the left of the second parabola, a collision can
only be prevented if the Object is changing its predicted motion, e.g. by accelerating
to a higher speed or by turning left or right.

In contrast, the Virtual Bumper approach defines two physical regions in front of
the System Vehicle [191]. The so-called Region of Interest represents the space which
is covered by the sensors, cf. Figure 4.2. When an Object is entering this region,

97

Chapter 4 Development of a Longitudinal Vehicle Controller

it is constantly tracked and analysed for its criticality. A subspace of the Region
of Interest is the so-called Personal Space, which is positioned close to the System
Vehicle. If an Object is detected within the Personal Space, the system computes a
force to compress the spring and the damper of a virtual mass-spring-damper system.
This force represents a disturbance to the system. It is compensated by a feedback
controller, which controls the brake of the System Vehicle to increase the relative
distance between the Object and the System Vehicle and, consequently, to decrease
the disturbance value.

Virtual Force Virtual Spring‐Damper‐System

Personal Space

Region of Interest

Sensor Range

System VehicleObject

Figure 4.2: Virtual Bumper approach

Another approach is based on fuzzy control, cf. Figure 4.3 [182]. First, empirical
data about avoiding a collision is collected from driving manoeuvres with human
drivers. This data is converted into a three-dimensional map. The contour lines of
this map are reproduced by the creation of so-called fuzzy sets, which transform the
input variable of the controller, i.e. the state vector of the control loop, into a domain
specific representation (fuzzyfication). Then decisions about the control actions are
made by applying a set of rules to the results of the fuzzyfication (inference). Finally,
these control actions are transformed to the output of the controller, i.e. the input
variable of the control loop (defuzzyfication). With this, the criticality of a situation
is determined in relation to the empirical data as a position of a three-dimensional
map. Based on this position, one or more rules define how to prevent the collision and
result in certain control actions. The major disadvantage of such an approach is that
the system’s behaviour depends on the characteristics of the three-dimensional maps
and the rule base. Thus, even a small change of the requirements might result in a
high effort for revising the maps and considering the dependencies between adjacent
contour lines.

Similar to fuzzy control, model-predictive control (MPC) uses rules for the syn-
thesis of the controller. These so-called control laws specify a cost function for an
optimisation problem. Moreover, the state and output variables of the plant model

98

Chapter 4 Development of a Longitudinal Vehicle Controller

Fuzzification Inference Defuzzification

Rule Base

x u

Transform the state
vector x, i.e. the
relative distance,
the relative speed,
and the relative
acceleration, into a
position p on a
contour line

Verify the rule base
for the position p
and apply a
corresponding
control action, e.g.
move the position p
to a lower criticality
at position p‘

Transform the new
position p‘ into the
control variable, i.e.
the desired
acceleration

Figure 4.3: Concept of fuzzy control for a longitudinal vehicle controller

are calculated for a certain time horizon. The control variable is derived from this
predicted values and the cost function. The process is repeated at every time step
with the current state values as the new starting point. This means that the predic-
tion horizon is constantly moved with every time step.1 For the application of MPC
to adaptive cruise control, the problem space is divided into two motions [192]. The
Transitional Manoeuvre establishes the specified inter-vehicle distance of the ACC
system. It starts from a given initial state which is usually defined by a negative rel-
ative speed between the Object and the System Vehicle. For this motion, the control
laws of model-predictive control aim to prevent the collision while considering the
acceleration limits of the system vehicle. Then the Steady-State Operation controls
the System Vehicle in such a way that the relative distance remains constant. This
is typically implemented by a constant time gap spacing policy and the associated
control algorithm [193].

Comparing the different approaches, the disadvantage of the Range-vs-Range-Rate
approach and the Virtual Bumper approach is that they do not consider the Object’s
acceleration. In contrast, the fuzzy control approach can be extended by the Object’s
acceleration, but the realisation of this approach itself requires a high effort as empir-
ical data for a number of driving manoeuvres have to be collected first. Furthermore
common mathematical analyses in the frequency or time domain are not possible due
to the fuzzy characteristics of the rule base used. Such analyses are possible with the
model-predictive control approach, but its disadvantage is that it typically results in

1Therefore model-predictive control can be also called receding horizon control.

99

Chapter 4 Development of a Longitudinal Vehicle Controller

high computing times. Thus MPC might not be feasible for the ECU of the Collision
Prevention System.

4.2 Conventional Approach

As a consequence of the literature review, we regard the presented approaches as
not appropriate for the controller to be implemented. The controller will be realised
by using a conventional approach, which is based on the state-space representation
introduced in Section 3.3.1. In fact, this representation is similar to the state-space
representation of the MPC approach described. Two approaches are considered in
the following subsections: (i) the dynamics of the closed loop are defined by placing
poles with pole placement; (ii) an optimal control approach is realised with LQG.

4.2.1 Synthesis with Pole Placement and LQG Optimisation

The closed-loop system is shown as a block diagram in Figure 3.4 and described by
the following equations:

ẋ(t) = Ax(t) + Bu(t) + Dd(t) (4.1)

y(t) = Cx(t) (4.2)

x(0) = x0. (4.3)

with

x(t) =

∆s(t)
∆v(t)
∆a(t)

 . (4.4)

The poles or the eigenvalues of the closed-loop system are the zeros of the character-
istic polynomial:

det[sI − (A−BK)] = det

s −1 0
0 s −1

−1
θk∆s −1

θk∆v s + 1
θ −

1
θk∆a

 = 0 (4.5)

s denotes the eigenvalues of the matrix A−BK. By choosing values for K, the poles
of the closed-loop system can be arbitrarily placed. This technique is therefore called
pole placement [194, p. 517].

For simplicity, all poles of our closed-loop system will be placed on the same posi-
tion, λ, with no imaginary part:

det[sI − (A−BK)] = (s− λ)3 (4.6)

100

Chapter 4 Development of a Longitudinal Vehicle Controller

Calculating the determinant and comparing the coefficients results in the following
equations for the state feedback:

k∆s = θλ3 (4.7)

k∆v = −3θλ2 (4.8)

k∆a = 3θλ + 1 (4.9)

It has to be noted that it is rather uncommon to put all poles on the same position.
Usually different positions are preferred as they allow more options for adjusting
the controller’s behaviour. This is neglected here because the conventional approach
should only serve as the basis of comparison with the test-driven approach, but not
as a full featured implementation.

As an alternative to pole placement, the feedback matrix can also be derived from
a quadratic performance index, i.e. a cost function:

J =
∫ ∞

0
(xT Qx + uT Ru)dt (4.10)

The matrices Q and R have to be both quadratic and symmetric. They describe the
tradeoff between the regulation performance and the control effort by defining the
weighting of the state variables (Q) and the control variable (R). For our closed-
loop system, Q is a 3 x 3 matrix, while R is reduced to a scalar as the system has
only one control signal. J represents a scalar value which has to be minimised by an
optimisation. The feedback control law for such an optimal linear quadratic Gaussian
(LQG) regulator is then

u = −R−1BT Px (4.11)

with P being the positive-definite solution of the algebraic matrix Riccati equation
[34, p. 600]:

AT P + PA− PBR−1BT P + Q = 0 (4.12)

Typically, this equation is not solved by mathematical analysis, but numerically com-
puted with the help of software, e.g. MATLAB’s Control System Toolbox.

4.2.2 Stability and Robustness

Stability is probably the most important criterion for control system design. In gen-
eral, a system is stable if the output variables exhibit bounded responses to bounded
input signals. This is called bounded-input-bounded-output (BIBO) stability. The
bounded input signals are usually realised by mathematically well-defined input stim-
uli such as a unit step or a unit impulse. The system is called asymptotically stable

101

Chapter 4 Development of a Longitudinal Vehicle Controller

if the output variables settle at their original steady-state level after the application
of an impulse. If they however reach a different, but constant level, or equal a contin-
uous oscillation with a constant, not increasing amplitude, it is said to be marginally
stable. Otherwise the system is unstable.

The nominal stability of a system is typically determined by mathematical analysis.
Here, nominal means that the analysis uses a (simplified) model with nominal param-
eters of the real plant. This model is called the nominal plant. A linear time-invariant
system is then stable if the poles of the closed-loop system have only negative real
parts. With pole placement, this constraint can be directly considered during the de-
sign process. In contrast with the LQG approach stability is reached if Q is positive
semidefinite and R is positive definite.

Another aspect of stability is robust stability or robustness. It describes how the
stability is affected by applying the real plant to the controller. The reason for
this is that the real plant often has underlying non-linearities, unknown disturbances
and/or parameter uncertainties. The robustness against these influences is typically
investigated by methods in the frequency domain, for instance Nyquist or Bode plots.
They result in stability margins such as the gain margin and the phase margin, and
indicate how far from instability the loop is. The gain margin quantifies the additional
gain, by which the open-loop connection of the controller and the nominal plant can be
multiplied until it becomes unstable. The phase margin defines the additional phase
delay, which can be added to the open-loop connection until it reaches instability. For
instance, the LQG approach can result in a gain margin from 0.5 to ∞ and a phase
margin of at least ±60◦ [195]. In other words, the closed-loop system remains stable
even if the values of the feedback matrix are halved or multiplied with arbitrary large
values.

4.2.3 Performance

In terms of stability and robustness, the aim of the controller is to compensate for
disturbances and plant uncertainties. Another motivation for using a feedback con-
troller is to get consistent performance over a wide range of conditions, or to improve
performance compared to the open-loop plant. The performance is usually defined
by a number of performance criteria. This section explains the definitions of such
criteria and evaluates them for their application to the control loop of the Collision
Prevention System.

In the time domain, the way a system responds can be quantified by examining
the output response, y(t), when an input or disturbance variable changes from one

102

Chapter 4 Development of a Longitudinal Vehicle Controller

steady level to another steady level. Such a change is typically produced by a step
function and the corresponding response of y(t) is then called step response. If the
height of the step is one, the step function is called unit step. Based on the step
response, it is possible to define the following commonly used performance criteria:

Steady-state error: The steady-state error defines the difference between the ex-
pected value and the final value of the output response, i.e. the steady-state
output. The aim of the controller’s design is to minimise this difference. The
expected value depends on the variable that is stimulated by the step function.
For the reference input of a single-input-single-output (SISO) system, we expect
the output response to reach the height of the step function, i.e. the output
value follows the desired reference. In contrast, if the unit step is applied to
the disturbance value (output disturbance), the controller should compensate
for this disturbance, so that the disturbance does not influence the output.

The aim of the Collision Prevention System is not to keep a specific steady-state
output value, but only to prevent a potential collision. Thus we use the peak
value of the output variable as an alternative criteria. This value represents
the relative distance at which a braking manoeuvre is finished. It is positive if
the collision was prevented, cf. Figure 4.4(a), and negative if not, cf. Figure
4.4(b). In addition, an arbitrary offset should compensate for inaccuracies of
the sensor or perturbances of the plant, so that the collision is even prevented
if ∆s reaches zero. It is internally added to the value of ∆s at the interface
of the final software system, i.e. the distance which is received from the radar
sensor.

∆s in [m]

0 2 4 6 8 10
t in [s]

10

8

6

4

2

0

no collision

(a) Positive peak value

∆s in [m]
10

8

6

4

2

0

0 2 4 6 8 10
t in [s]

collision

(b) Negative peak value

Figure 4.4: Relationship between the peak value of the output variable and a collision

103

Chapter 4 Development of a Longitudinal Vehicle Controller

Rise time / Settling time: The rise time is the shortest time required for the step
response to achieve some specified percentage of the steady-state value. It
is usually measured between 10 percent and 90 percent of the steady-state
value, because this range is applicable for overshooting and non-overshooting
responses. For the stimulation by a disturbance, the rise time can be interpreted
as a fall time, i.e. it is measured while the output value falls from 90 percent to
10 percent of the disturbance’s amplitude. In contrast, the settling time specifies
the time taken for the response to reach and remain within some specified range
of its final value. This range is called the allowable tolerance and is normally
expressed as a percentage of the step’s height. The general difference between
both times is that the rise time does not consider the progress of the output
signal after it reached the specified percentage, while the settling time is only
defined if the signal stays within constant boundaries.

For the CPS, we define the rise time as the time at which the minimal relative
distance is reached. It describes how fast the system reacts to a certain initial
condition to prevent a collision.

Peak overshoot / Peak time: The peak overshoot specifies the amplitude of the first
peak which overshoots the steady-state value, and is normally expressed as
a percentage of the steady-state value. The peak time is the time from the
initiation of the response to the overshoot.

In terms of the our CPS system, an overshoot of the output value is equal to
a collision. Such situations are regarded as unsafe. The value of the overshoot
might be used to represent the impact energy, but more common for this purpose
is the relative speed at the time of the impact.

Another way to describe the performance in the time domain are so-called per-
formance indices. Typically, such indices express the system’s performance by inte-
grating the area between the time axis and one or more variables of the closed-loop
system. Such a common performance index is the integral of the squared control
signal:

J =
∫ t2

t1

u2(t)dt (4.13)

With t1 specifying the time of application of a step function or a disturbance config-
uration respectively, and t2 specifying the time when the minimal relative distance is
reached, the value of J states how much effort was used by the controller to prevent
the collision. Thus, we use this function to represent the control effort. In addition,
the minimal value of the control signal, i.e. the maximal deceleration applied by the

104

Chapter 4 Development of a Longitudinal Vehicle Controller

controller, can provide further information about the characteristics of the control
process, especially because the variable is bounded to certain limits.

4.2.4 Choice of the Parameters

The last step of the conventional approach for the longitudinal vehicle controller is
the choice of the parameters, i.e. either the value of λ for the pole placement or the
values of Q and R for the LQG optimisation. This design process usually consists of
the following steps, which are executed iteratively:

1. Initial values for the parameters are chosen.

Pole Placement: All poles have to have negative real parts to ensure nominal
stability.

LQG optimisation: Q has to be positive semidefinite and R positive definite.
In addition, Bryson’s rule can be used [196]:

Qii =
1

maximum acceptable value of x2
i

(4.14)

Rii =
1

maximum acceptable value of u2
i

(4.15)

2. The feedback matrix is derived.

Pole Placement: The matrix is directly calculated, e.g. for our controller with
equations (4.7), (4.8), and (4.9).

LQG optimisation: The matrix is obtained by either directly solving the Riccati
equation (4.12) or by executing a numerical computation of this equation.

3. The closed-loop system is simulated, for instance, as a Simulink model. Par-
ticular input stimuli such as a step function are applied to the input, state or
disturbance variables.

4. The state and output variables are reviewed with regard to stability and per-
formance criteria.

5. If the requirements for stability and performance are not met, the process is
repeated by modifying the parameters and proceeding with step 2.

The modification of the parameters with the last step is typically driven by the expe-
rience of the developer accompanied by several evaluation techniques, e.g. frequency
methods such as the Nyquist plot.

105

Chapter 4 Development of a Longitudinal Vehicle Controller

Pole Placement

In addition to stability and performance criteria, also the functional requirements
of the system have to be considered. For our longitudinal vehicle controller, the
elements of the feedback matrix, i.e. k∆s, k∆v and k∆a, do not only influence the
system’s stability and performance, but also its ability to avoid a collision. For
instance, λ = −1 results in the following feedback vector:

Kλ=−1 =
[
−0.25 −0.75 0.25

]
(4.16)

Due to the logic, which has been realised by the components Activation and Situation
Assessment (see Section 3.4.1 and Section 3.4.3), the control signal is only applied to
the System Vehicle if

• the relative distance between Object and System Vehicle is greater than or
equal to zero, and

• the relative speed between Object and System Vehicle is smaller than zero.2

Thus k∆s and k∆v act against each other. The negative sign of ∆v multiplied by
k∆v decreases the desired acceleration while the positive sign of ∆s multiplied by k∆s

increases the same value. In other words, the larger the relative distance between
Object and System Vehicle, the larger is the desired acceleration (and thus, the
smaller the desired deceleration) of the controller. On the one hand, this behaviour is
in accordance to the CPS’ requirements as it avoids that the System Vehicle performs
a full braking manoeuvre although the relative distance is still large enough for a
more comfortable deceleration. On the other hand, it has to be designed carefully
as otherwise the System Vehicle might react too late. For example, if the System
Vehicle is approaching a stationary object with ∆s(t = 0[s]) = 20[m] and ∆v(t =
0[s]) = −20[ms−1], the initial value of the control variable resulting from Equation
(4.16) is aset(ti) = −10[ms−2]. If we move the pole further to the left, the quotient
of k∆s over k∆v changes, see Figure 4.5(a). At λ = −3 both elements have the
same value and as a consequence, the control variable in the same situation would
be aset(ti) = 0[ms−2]. As the ideal minimal braking distance is 20[m] (assuming
amin = −10[ms−2]), the example requires an immediate reaction of the system. In
Figure 4.5(b), this is achieved by a control signal resulting from λ = −1 or from
λ = −2, while the control signal resulting from λ ≤ −3 starts with an initial value
which is too small in terms of the deceleration.

2The CPS might be also activated if the relative speed is initially greater than zero, but decreases

due to an Object’s acceleration which is smaller than zero. This case is neglected here.

106

Chapter 4 Development of a Longitudinal Vehicle Controller

As an alternative, we can define the physically necessary acceleration to avoid the
collision by the following equation:

aphys(ti) = aobj(ti)−
1
2

∆v(ti)2

∆s(ti)
(4.17)

Comparing this acceleration to the control signal, which is derived from the feedback
matrix (Equation (3.36)),

aset(ti) = aobj(ti)− k∆s∆s(ti)− k∆v∆v(ti)− k∆a∆a(ti), (4.18)

shows that the quadratic relationship between the relative speed and the relative
distance (Equation (4.17)) can not be directly reflected by the coefficients k∆s and
k∆v. Using pole placement, a possible solution is the definition of the value of λ

dependent on ∆v and ∆s.

λ = −
√

|∆v|
∆s

(4.19)

Inserting Equation (4.19) into Equation (4.8) and (4.18) leads to the following control
signal, which approximates the quadratic relationship.

aset(ti) = aobj(ti)− k∆s∆s(ti) + 3θ
|∆v|∆v

∆s
− k∆a∆a(ti). (4.20)

The disadvantage of such an approach is the movement of the pole as the relative
speed between the Object and the System Vehicle is decreased during the control
braking manoeuvre. The pole converges to zero, hence the robustness of the closed-
loop system is reduced. We therefore modify the calculation of λ in such a way that

k
0

‐4

‐8

‐16

‐20
‐4 ‐3 ‐2 ‐1

t in [s]

k∆v

k∆s

0

‐12

k∆a

(a)

a in [ms²]

λ = 1

0

‐10

‐20

‐30

‐40
0 0.2 0.4 0.6 0.8 1

t in [s]

λ = 2

λ = 3

λ = 4

(b)

Figure 4.5: Influence of λ on (a) the elements of the feedback matrix K and (b) the control

variable u for x(0) = (20[m];−20[ms−1]; 0[ms−2])T

107

Chapter 4 Development of a Longitudinal Vehicle Controller

it is limited to a maximum value of −1.03. This maximum provides sufficient values
for the gain margin (2.2) and the phase margin (31◦). Furthermore, we calculate
the pole resulting from Equation (4.19) only at the beginning of the manoeuvre, i.e.
when the CPS is activated. In addition, the pole is moved to the left by a value of
0.5, but limited to a minimum value of −2.0. Both of these values were chosen by
simulating the system with various initial conditions, e.g.

xS1(t = 0[s]) =

10 [m]

−10 [ms−1]

0 [ms−2]

 (4.21)

and evaluating the number of situations, at which the system was able to prevent the
collision.

lpole = −

√
|∆v(t = tact)|
∆s(t = tact)

− 0.5 (4.22)

λ =

−1.03 if lpole > −1.03

−2.0 if lpole < −2.0

lpole otherwise

(4.23)

tact denotes the time when the CPS is activated. For example, the initial condition
in Equation (4.21) leads to a pole at λ = −1.5 and with equations (4.7), (4.8), and
(4.9) to the following feedback matrix:

KPP =
[
−0.84 −1.69 −0.13

]
(4.24)

In the following, the feedback controller realised by Equation (4.24) is called SSA-
PP controller. SSA is the abbreviation for state-space Approach, PP for pole place-
ment.

LQG Optimisation

In addition to the SSA-PP method, we consider a LQG optimisation as a second
variant for the conventional approach. The corresponding controller is then referred
to as the SSA-LQG controller. The feedback matrix of this controller is computed as
explained above by iteratively setting the elements of Q and R, while observing the
system’s response to different initial conditions such as Equation (4.21). This process
leads to

Q =

0.3 0 0
0 1 0
0 0 0.3

 (4.25)

108

Chapter 4 Development of a Longitudinal Vehicle Controller

and
R = 0.3, (4.26)

which results in the following feedback matrix:

KLQG =
[
−1.00 −2.64 −0.82

]
(4.27)

Using Bryson’s rule, the choice of Q and R means that we accept larger values for
∆s and ∆a than for ∆v as Q11 and Q33 are smaller than Q22. This allows us to
specify the precedence of the relative speed between Object and System Vehicle in
comparison to the relative distance or the relative acceleration.

4.3 Test-Driven Development Approach

In the last section, we have presented two conventional approaches for the longitu-
dinal vehicle controller. In contrast, this section describes a test-driven development
approach for the realisation of the same component. Similar to the other components,
which have been described in Chapter 3, we first consider the specific aspects of the
component’s objective to derive a concept for TDD. Then the longitudinal vehicle
controller is realised by using this concept.

4.3.1 Concept

The component Controller should show the application of TDD to control system
design. Control system design commonly includes the derivation of a number of
mathematical formulae to describe the physics of the control system, e.g. by a set
of differential equations. Similar to the approach for the mathematical problems,
compare Section 3.4.2, we can use this mathematical formulae for the definition of
acceptance tests, see Figure 4.6.

The design of a controller is usually done in two phases: analysis and synthesis.
Ideally, we want to assign at least one unit test to each of them. The first type of
unit test, named Analysis Tests, is a direct translation of an acceptance test to the
level of the software unit. Analysis Tests specify what the system should do. They
contain a plant model, initial conditions, disturbance values as well as an expected
behaviour in terms of assertions. Typically the assertions are used in conjunction with
one or more performance criteria (cf. Section 4.2.3). The second type of unit tests,
named Design Tests, then detail how the system is realised. Their parameters are
the input stimuli for specific formulae whose results describe the implementation of
the controller. Part of the Design Tests can also be the plant model etc. An example

109

Chapter 4 Development of a Longitudinal Vehicle Controller

Requirements
Analysis of

Control System
Acceptance

Tests

Performance
Criteria

Analysis Tests

Design Tests
Specific
Formulae

Figure 4.6: Concept for deriving tests for control systems

are the formulae of Ziegler and Nichols. These formulae use the outputs of the plant
model, which is stimulated by a step function, to calculate the gain values of a PID
controller. Therefore, the Analysis Tests help us to express the requirements of the
control system, while the Design Tests drive the implementation of the controller in
a systematic and traceable way.

In the following, we will apply this concept in two ways. Firstly, we use the tests to
create a basic implementation and document the tuning of the controller. Secondly,
this implementation is extended in a manner of incremental design until the system’s
requirements are fulfilled.

4.3.2 Basic Implementation

The plant model of the CPS has already been described in Section 3.3.1. For the basic
implementation of the controller, we use the simplest initial concept by considering
the relative acceleration as the only state. This means that the relative speed and
the relative distance between Object and System Vehicle are neglected in the model,
see Figure 4.7.

x(t) = ∆a(t) = aobj(t)− asys(t) (4.28)

y(t) = x(t) (4.29)

A steady state is reached if the following condition is fulfilled:

ẋ(t) = ∆ȧ(t) = 0. (4.30)

In addition, a collision is only prevented if the relative speed between the Object and
the System Vehicle is zero, i.e.

∆v̇ = ∆a(t) = 0. (4.31)

110

Chapter 4 Development of a Longitudinal Vehicle Controller

∫1
θ

asys(t=0[s])

First Order Behaviour

u = aset asys

K

1
θ

y = ∆a

+ ‐+
aobj(t)

aobj(t)

Figure 4.7: Simplified control loop with only one state

In other words, the System Vehicle should brake as much as the Object is braking.
From this, we can derive the first acceptance test which specifies a constant motion of
both vehicles until the Object starts to brake. It is asserted that the System Vehicle
will react with a deceleration of the same value, reaching a steady state two seconds
after the beginning of the manoeuvre and with a tolerance of five percent.

Acceptance Test Object is braking

Description: Both the System Vehicle and the Target Simulator (see
Section 3.4.1) drive with a constant speed of 30[kmh−1]∗ and a
relative distance of 50[m]∗. When the Object passes a gate of py-
lons, it should brake with a constant deceleration of −1[ms−2] until
standstill.

∆s([0, tg]) = 50[m]+

∆v([0, tg]) = 0[kmh−1]+

vobj([0, tg]) = 30[kmh−1]+

vsys([0, tg]) = 30[kmh−1]+

aobj([tg, ts]) = −1[ms−2]

tg denotes the time when the Object passes the gate, ts denotes the
time when it comes to standstill.

Assertions: The System Vehicle automatically starts to brake when the
Object is braking. It should reach the same deceleration after a

111

Chapter 4 Development of a Longitudinal Vehicle Controller

settling time of 2[s] with an allowed tolerance of 5%.

∆a(t ≥ tg + 2[s]) ≤ 0.05ms−2

It has to be said that from a process’ point of view this test does not necessarily have to
be defined after the analysis of the control loop, because the specified behaviour could
also be derived from general thoughts about the system. However, the derivation of
the state-space equations helps to express the definition of the test stimuli and the
assertions in a more formal way. For the input stimuli, we use a mixture of arbitrary
and specific values. The speed of System Vehicle and Object as well as the relative
distance are partially arbitrary, because these variables are not part of the plant model
and do not directly influence the assertion. The constraint for the speed is that Object
and System Vehicle initially have the same speed, i.e. ∆v(t = [0]s) = 0[kmh−1]. The
value of the relative distance should be a safe distance between both vehicles, which
considers that the test is executed before the controller is implemented due to the
test-first approach. In contrast, the Object’s acceleration is not arbitrary, but specific
to the test by representing a negative unit step. The corresponding assertion describes
the performance criterion settling time, see Section 4.2.3. The expected value for this
time is 2[s] with an allowed tolerance of 5%. These values are not part of the system’s
functional requirements, cf. Section 3.2, but the developer typically specifies them as
part of the development process.

Next, we can create a unit test which is similar to this acceptance test, but does
not include values for speed or distance as the corresponding states are not a part of
our simplified plant model. The test belongs to the group of Analysis Tests.

Unit Test Constant deceleration

Description: The test uses the plant model, which is shown in Figure 4.7,
and specifies the initial value of the System Vehicle’s acceleration
as well as the Object’s acceleration.

asys(t = 0[s]) = 0[ms−2]

aobj(t) = −1[ms−2]

Assertions: The following values are asserted for the state variables:

∆a(t > 2[s]) ≤ 0.05[ms−2]

In contrast to the unit tests of the previously implemented components, no assertion
is defined for the output signals of the test objective, but instead for the output signal

112

Chapter 4 Development of a Longitudinal Vehicle Controller

of the plant model. This approach is typical for the testing of closed-loop systems,
because the specification of a control system often describes requirements not only
for the control variable, u(t), but also for the state variables and the output variables
respectively. Therefore, the test uses the initial and the disturbance values of the
plant model as its test vector.

The synthesis of our controller should be done by pole placement. With pole
placement, the equation for the control signal (Equation (3.39)) is inserted into the
first equation of the state-space approach (Equation (3.11)) to derive a formula for
the eigenvalues of the matrix A−BK.

K = 1 + θλ (4.32)

λ is the eigenvalue of the matrix A − BK and equals the pole of the closed-loop
system. A stable closed-loop system is obtained when this pole has a negative real
part.

The controller is implemented by a constant gain with the value of K. Therefore
the exact position of the pole defines not only the behaviour of the system, but also
how the controller is realised as λ directly influences the value of K. In fact, it is
possible to pass the current unit test with different values of λ, so that we need
additional criteria, that is tests, to fully specify the synthesis. One possible way
is the specification of additional performance criteria, e.g. through assertions for
the rise time and the peak overshoot of the output value to a given input stimulus.
Furthermore most signals are subdued by physical restrictions such as the saturation
of the system’s actuator. By describing these restrictions through one or more tests,
we can also isolate a range of valid values for λ.

For the brake system of the CPS, the valid range of the requested acceleration is
between 0[ms−2] and −10[ms−2]. As the minimal value of the Object’s acceleration
is also −10[ms−2], we can derive the following condition from Equation (3.39):

− 10[ms−2] < amin −K(amin − asys(t)) < 0[ms−2] (4.33)

amin is the minimal acceleration as defined by Equation (3.51). The maximal value of
asys(t) is 0[ms−2], because the driver has to apply the brakes to activate the system3.
The range of λ is obtained by inserting Equation (4.32) into (4.33) with θ = 0.25.

λ ∈ [−4, 0]

3The case that the driver is braking, but the acceleration of the System Vehicle is still greater than

zero, e.g. when driving downhill, is neglected here.

113

Chapter 4 Development of a Longitudinal Vehicle Controller

With a second unit test, we can now search for a value within this range that fulfils
Equation (4.33), the unit test Constant deceleration, and results in a minimal value
for K, i.e. a minimal gain. The test belongs to the group of Design Tests.

Unit Test Choose λ

Description: The test calculates the value of K by using Equation (4.32)
and iterating through the range of λ.

λ ∈ [−4, 0]

Assertions: All of the following assertions have to be true.

1. The assertion of the unit test Constant deceleration should be
true.

2. −10[ms−2] < amin −K(amin − 0) < 0[ms−2]

3. The absolute value of K should be minimal.

Its test objective is defined by Equation (4.32) with λ as an input and K as an output
value. For two different test objectives we would usually create two test beds, i.e.
two Simulink systems. This is neglected here, as on the one hand the test creates
a fixture with another test, and on the other hand the testing of these equations is
part of the controller design and therefore documented within the test bed as a part
of the development process.

The test results in the following position of the pole:

λ = −1.5. (4.34)

The controller can now be implemented with the corresponding value of K. To let
also the acceptance tests pass, we set the value of cdriver during the development of
the component constantly to true. With this, the realised controller can be tested
without the influence of a driver’s braking manoeuvre.

Finally, the system is able to compensate for differences between the Object’s and
the System Vehicle’s deceleration. In contrast, it fails in situations when the relative
acceleration is zero, but the System Vehicle is faster than the Object and therefore
collides with it. The reason is that the control loop used does not include state
variables for the relative speed or the relative distance. Therefore the component is
extended in the next section.

114

Chapter 4 Development of a Longitudinal Vehicle Controller

4.3.3 Extended Implementation

At the beginning of every development iteration, the first step is to define acceptance
tests which translate the requirements into an executable form. To solve the problem
described we could use a control loop with two states, the relative acceleration and
the relative speed, and proceed similar to the previous iteration. The disadvantage of
this approach is that the matrices of the state space equations have to be recalculated
and all unit tests must be modified for the additional states. Then this work would
be repeated if the third state, the relative distance, will be introduced with another
development iteration. Although this approach is an iterative process, the design
is not evolved iteratively as the major parts of the design (states, matrices, poles)
are changed significantly with every new iteration. This can be compared with the
construction of a multi-storey house, where the workers have to rebuild the base
whenever a new level is added. As a consequence, either the basic idea of the last
iteration is not appropriate for test-driven development, or there is another approach
to consider the speed and the distance within the control loop.

The first acceptance test of the controller was that it should compensate for a
relative acceleration smaller than zero. With this, a collision is prevented if the
relative speed is greater than or equal to zero and the initial relative distance is greater
than a certain value (considering the system’s reaction time). Thus the corresponding
acceptance test only defines an assertion for the relative acceleration, but not for the
other states. However, this is not a sufficient assertion if the System Vehicle is faster
than an Object which neither accelerates nor decelerates. The new acceptance test
should therefore assert that the relative distance must always be greater than zero
as this generally expresses the condition for a prevented collision. Moreover the
requirement System operation describes a target braking, i.e. to optimally use the
relative distance between the Object and the System Vehicle. The controller should
brake only as much as necessary to prevent a collision. On the one hand, this allows a
maximal reaction time and maximal space for the vehicle which is driving behind the
System vehicle. On the other hand, the system will not distract the driver with too
high decelerations, e.g. a full braking manoeuvre, although a comfortable distance is
still left. In fact, the driver will only feel the support of the system if the requested
acceleration is smaller than the acceleration caused by him (as the driver has to
apply the brake pedal to activate the system, see Section 3.4.2). Thus we use a
second assertion, which defines that the minimum of the relative distance has to be
smaller than 1[m].

Acceptance Test Faster than Object

115

Chapter 4 Development of a Longitudinal Vehicle Controller

Description: The System Vehicle drives with a constant speed of 60[kmh−1]+,
the Target Simulator drives with a constant speed of 30[kmh−1]+.
The initial relative distance is 100[m]+.

∆s(t = 0[s]) = 100[m]+

∆v(t = 0[s]) = −30[kmh−1]+

vobj(t) = 30[kmh−1]+

vsys(t = 0[s]) = 60[kmh−1]+

Assertions: The System Vehicle automatically starts to brake when the
situation is becoming critical. The collision should be prevented,
i.e. the relative distance between both vehicles should always be
greater than 0[m]. Moreover, the minimum of the relative distance
between both vehicles should always be smaller than 1[m].

∆s(t) > 0[m]

∆(s)(t) <

1 if (∆ṡ(t) = 0) ∧ (∆s̈(t) ≥ 0)

∞ otherwise

We continue with the definition of a unit test for the group of Analysis Tests. The
aim of the test is to specify what our system should do (prevent the collision). It
is similar to the scenario of the acceptance test Faster than Object and uses the full
plant model as described in Section 3.3.1. It therefore defines initial values of the
speed of System Vehicle and Object, the relative distance, at which the situation is
critical, and a relative acceleration equal to zero.

Unit Test Faster than Object

Description: The test uses the plant model, which is shown in Figure
3.4, and specifies the initial value of the System Vehicle’s speed
and acceleration, the Object’s speed and acceleration as well as the
initial relative distance.

∆s(t = 0[s]) = 15[m]+

∆v(t = 0[s]) = −10[ms−1]+

vobj(t) = 5[ms−1]+

vsys(t = 0[s]) = 15[ms−1]+

∆a(t = 0[s]) = 0[ms−2]

aobj(t) = 0[ms−2]

asys(t = 0[s]) = 0[ms−2]

116

Chapter 4 Development of a Longitudinal Vehicle Controller

Assertions: The following values are asserted for the output variable:

∆s(t) > 0[m]

The test fails as the output of the controller, u(t), only depends on the input values
of aobj and asys, which are both zero. We know from the unit test Constant deceleration
that the System Vehicle brakes if aobj is stimulated by a negative value. Therefore
our current unit test will pass if we manipulate aobj in a similar way, i.e. setting it
to −6[ms−2].

Unit Test Manipulated aobj

Description: The test uses the same setup as the unit test Faster than object.
In addition, the output signal for aobj is set to −6[ms−2] within the
test’s model, see Figure 4.8.

aobj(t) = −6[ms−2]

Note that the Object’s acceleration is not modified within the plant
model, but only as the test’s output signal.

Assertions: The following values are asserted for the state variables:

∆s(t) > 0[m]

Figure 4.8: Manipulating the Object’s acceleration to prevent the

collision

Although this test seems to be more like a fake test than like a real test, it is very
useful in terms of documenting the implementation idea (“how it is done”). Following

117

Chapter 4 Development of a Longitudinal Vehicle Controller

this idea, we modify the definition of the controller as follows:

u(t) = aobj(t)−K∆aref (t)) (4.35)

∆aref (t) = aobj(t)− (asys(t) + aref (t)) (4.36)

aref represents a reference value, which is added to the System Vehicle’s accel-
eration in-between the plant model and the controller. Similar to the unit test
Manipulated aobj it simulates a negative value of aobj to reach a deceleration of the
System Vehicle.

For this reference value, we use a reference model which calculates the physically
necessary acceleration to avoid the collision. In fact, such a calculation represents
the inversion of the plant model without the first order behaviour. The calculation
is done in three steps:

Prediction: At first, the future values of ∆s, ∆v, vobj and vsys are predicted for a
time-horizon of θ = 0.25s, assuming asys(ti) = const and aobj(ti) = const. It
has to be considered that if the Object is braking, it might happen that the
Object will stand still before the end of the time-horizon, as in most cases the
Object won’t drive backwards after a braking manoeuvre.

cbak(v, a) = (a(ti) < 0) ∧ (v(ti) < −a(ti)θ) (4.37)

The Boolean condition cbak(vobj , aobj) is true if the Object comes to stand-
still. For this case, the speed of the Object is set to zero at the end of the
time-horizon, otherwise the speed of the Object is predicted by the following
equation.

vobj(ti + θ) =

0 if cbak(vobj , aobj) is true

vobj(ti) + aobj(ti)θ otherwise
(4.38)

A similar formula can be applied to the speed of the System Vehicle:

vsys(ti + θ) =

0 if cbak(vsys, asys) is true

vsys(ti) + asys(ti)θ otherwise
. (4.39)

The predicted relative speed is then:

∆v(ti + θ) = vobj(ti + T)− vsys(ti + θ). (4.40)

If cbak is true, we furthermore calculate the distance, which is laid back by the
System Vehicle during the time-horizon, i.e.

ssys(θ) = vsys(ti)θ +
1
2
asys(ti)θ2, (4.41)

118

Chapter 4 Development of a Longitudinal Vehicle Controller

and by the Object until it reaches stand-still, i.e.

sobj(θ) = −1
2

vobj(ti)2

aobj(ti)
. (4.42)

We subtract these values from each other to get

∆s(θ) = sobj(θ)− ssys(θ) (4.43)

and add it to ∆s(ti) to obtain ∆s(ti + θ). If cbak is false, we can directly derive
the predicted relative distance by using the state values ∆s(ti), ∆v(ti) and
∆a(ti) together with Equation (3.3):

∆s(ti + θ) =

∆s(ti)− 1

2
vobj(ti)2

aobj(ti)
− (vsys(ti)θ + 1

2asys(ti)θ2) if cbak is true

∆s(ti) + ∆v(ti)θ + 1
2∆a(ti)θ2 otherwise

(4.44)

Distinction: If the Object is braking, it might happen that the Object will stand
still before the collision takes place4, as in most cases the Object won’t drive
backwards after a braking manoeuvre. This is true if the relative speed, ∆v(ti+
θ), is greater than or equal to the speed that is necessary to traverse the relative
distance, ∆s(ti+θ), during the braking time of the Object, vobj(ti+θ)aobj(ti)−1.

cca1 = (aobj(ti) < 0)∧(∆v(ti+θ) ≥ ∆s(ti+θ)
aobj(ti)

vobj(ti + θ)
+

1
2
vobj(ti+θ)) (4.45)

If the Object is accelerating, there might be no collision at all. A collision
happens if the function of the relative distance has no zero point.

cca2 = ((aobj(ti) ≥ 0) ∧ (∆v(ti + θ) < −
√

2aobj(ti)∆s(ti + θ))) ∨ cca1 = false

(4.46)

The formula to calculate the physically necessary acceleration is the same for
an Object, which is accelerating, and an Object, which is decelerating, but does
not come to stand-still. Therefore we set cca2 also to true if cca1 is false.

Calculation: At last, the acceleration is calculated for both cases:

aref =

vsys(ti+θ)2

−2∆s(ti+θ)+vobj(ti+θ)2aobj(ti)−1 if cca1 is true

aobj(ti)− 1
2

∆v(ti+θ)2

∆s(ti+θ) if cca2 is true

0 otherwise

(4.47)

4Notice the difference between the treatment of the Prediction and of the Distinction.

119

Chapter 4 Development of a Longitudinal Vehicle Controller

For the first case, i.e. the Object comes to stand-still, the formula is derived
from the point of contact of the stand-still position of the Object and a parabola
for the System Vehicle with the predicted speed, vsys(ti + θ), as the parabola’s
gradient at the origin. For the second case, the reference value is built from
the Object’s acceleration minus the positive acceleration that is necessary to
traverse the relative distance, ∆s(ti + θ), with the predicted relative speed,
∆v(ti + θ). If none of the cases are true, the reference value is set to zero.

The derivation and the realisation of these formulae is done similarly to the test-
driven development of the component Situation Assessment, which has been described
in Section 3.4.3. Therefore the details are omitted here. After the implementation
has been completed, the unit test as well as the acceptance test with the name
Faster than Object pass. The Simulink model of the component Controller is shown
in Figure 4.9.

Figure 4.9: Implementation of the component Controller

Finally, the following problem occurred during the verification of the component
by system testing. The System Vehicle was driven on a wet road, so that the friction
coefficient was less than the expected by the system (see Section 3.4.3). The CPS
has no sensors to detect wet roads, therefore all of its components always assume
a maximal friction coefficient. Despite this limitation, it is possible to describe the
occurred behaviour on wet roads by a unit test:

Unit Test Wet roads

Description: The test uses the same setup as the unit test Faster than object.
In addition, the control variable is limited to −5[ms−2] at the in-
put of the plant model and the time constant of the first order

120

Chapter 4 Development of a Longitudinal Vehicle Controller

behaviour is doubled.

uwet(t) =

u(t) if u(t) > −5[ms−2]

−5[ms−2] otherwise

θwet = 0.50[s]

Assertions: The following values are asserted for the output variable:

∆s(t) > 0[m]

The unit test uses the same plant model as the last tests, but limits u(t) to a minimum
value of −5[ms−2] and doubles the time constant of the first order behaviour to
simulate the conditions of a wet road. As a consequence, the values are not arbitrary,
but describe a specific setup for wet roads. The time constant, θ, is only changed in
the implementation of the plant model, but not of the controller. The reason is the
already mentioned lack of knowledge of the CPS about the friction coefficient.

The test fails because of the controller’s progressive strategy, by which the required
acceleration is steadily increased until the collision can be avoided. In contrast,
students learn a defensive driving style at the driving school. The initial deceleration
is chosen higher than actually necessary and then steadily decreased until standstill.
The realisation of such a strategy for the controller can be reached by multiplying
the value of aref , which represents the physically necessary acceleration, with a gain
factor.

∆aref (t) = aobj(t)− (asys(t) + Krefaref (t)) (4.48)

Figure 4.10(a) shows the graph of acps and aref while executing the unit test
Wet roads with Kref = 1. With this, the required acceleration is always greater
than the reference value, i.e. acps(t) > aref (t), which leads to a progressive curve
of the reference value. In contrast, acps is always smaller than aref if Kref is set to
a value greater than one. This means that the System Vehicle is decelerating more
than predicted by the reference model, but it allows to prevent the collision even
in situations with unexpected conditions, e.g. a lesser friction coefficient. As the
architecture of the component Controller consists of two units, the basic controller
and the reference model, we can define an assertion for an additional unit test to
describe this requirement.

121

Chapter 4 Development of a Longitudinal Vehicle Controller

Unit Test Defensive braking manoeuvre

Description: The test uses the same setup as the unit test Wet roads.

Assertions: The required acceleration, acps(t), is smaller than the refer-
ence variable, aref (t), for t > 0.1[s].

acps(t) ≥ aref (t) ∀ t > 0.1[s]

The condition t > 0.1[s] specifies the allowed phase shift of the
controller, which is caused by the first order behaviour of the plant.

With Kref = 1.5 the requirements of the unit tests Wet roads and Defensive braking
are fulfilled, but it impairs the assertion of the unit test Faster than Object as the
controller now brakes that much that the minimum of the relative distance is higher
than 1[m]. The reason is the same sign of asys and aref in Equation (4.48). If the
CPS is activated, the absolute value of asys is increased and therefore amplifies the
control variable. Then the absolute value of the reference value is decreased (because
of the prediction, see above) until the control loop is stabilized. Figure 4.10(b) shows
the corresponding plot. We can handle this behaviour by adding a gain factor for
asys which is smaller than one.

∆aref (t) = aobj(t)− (Ksysasys(t) + Krefaref (t)) (4.49)

These last two tests did not originate from one of the system’s requirements, but
from a finding during the execution of system tests. Although the system has no

a in [ms²]

aref

acps
collision

0

‐2

‐4

‐6

‐8

‐10

t in [s]
0 2 4 6 8 10

(a) Kref = 1.0

a in [ms²]

aref

acps

0

‐2

‐4

‐6

‐8

‐10
0 2 4 6 8 10

t in [s]

(b) Kref = 1.5

Figure 4.10: Plots of the control variable and the reference variable for different values of

Kref

122

Chapter 4 Development of a Longitudinal Vehicle Controller

means to measure the friction coefficient, we are able to describe the expected be-
haviour by an Analysis Test, i.e. the unit test Wet roads, and then drive the devel-
opment by a Design Test, i.e. the unit test Defensive braking. With this, the design
and the realisation of the controller is incrementally extended. Further development
iterations during the PhD project covered the behaviour in additional situations,
especially for different manoeuvres of the System Vehicle and the Object and the
interaction with a driver’s braking manoeuvre. During this process, the structure of
the controller remained similar to that of Figure 4.9.

4.4 Comparison

This section focusses on the comparison of the three controllers: the SSA-PP con-
troller, the SSA-LQG controller and the TDD controller. Firstly, we evaluate the
stability of the closed-loop system with each controller. Secondly, the performance
of these systems is explained by analysing results from the simulation with Simulink.
The intention of this comparison is not to prove that one of the approaches realises a
controller with a better or worse performance. Instead, it should be shown that the
TDD controller leads to comparable results as the SSA-PP and SSA-LQR controller,
i.e. test-driven development is suitable for control system design.

4.4.1 Stability and Robustness

The concepts and methods of stability have already been introduced in Section 4.2.2.
Nominal stability is reached if all poles of the closed-loop system have only negative
real parts. For our system, this position of the poles is accomplished in different ways
dependent on the type of the controller:

SSA-PP controller: The dynamic position of the pole is limited to a range of [−2.0,

−1.03] (Equation (4.23)), thus the closed-loop system is stable.

SSA-LQG controller: Stability is reached if the matrix Q is positive semidefinite and
the matrix R is positive definite. This is fulfilled as the eigenvalues of Q are 0.3,
0.3 and 1.0 (Equation (4.25)) and R is a scalar with a value of 0.3 (Equation
(4.26)).

TDD controller: The closed-loop system with the basic implementation of the TDD
controller is stable as the pole is placed at −1.5 (Equation (4.34)). In contrast,
it is not possible to directly determine the position of the poles for the extended
implementation of the TDD controller.

123

Chapter 4 Development of a Longitudinal Vehicle Controller

The influence of the real plant is determined by analysing the robustness in terms
of the gain margin and the phase margin. Table 4.1 shows the margins’ values of the
different approaches for the longitudinal vehicle controller. Typically, a gain margin
of 2 and a phase margin of 30◦ provide a sufficient robustness of the system. All three
controllers fulfil these requirements. Again, the extended implementation of the TDD
controller is not part of the evaluation as its structure does not allow a conventional
analysis in the frequency domain.

SSA-PP SSA-LQG TDD (Basic Impl.)

Gain Margin 2.2 18.3 ∞

Phase Margin 31◦ 180◦ 112◦

Table 4.1: Gain and phase margins of the different approaches for the

longitudinal vehicle controller

In fact, the closed loop with the extended implementation of the TDD controller
is unstable at certain situations, e.g. if all state variables are initially zero. Then a
bounded input, such as a unit step to the control variable, results in an unbounded
response of the relative distance. The reason for this is that the reference model,
which is used by the extended implementation to calculate the physically necessary
acceleration, considers only accident-critical situations. Furthermore, also the SSA-
PP and SSA-LQG controller lead to an unstable behaviour when the real plant is
applied to them, because the only actuator of the CPS is the brake. The control
variable is limited to negative values, i.e. the real plant has a non-linear behaviour.
Thus the gain margin and the phase margin do not give an adequate characterisation
of the robustness for regions of the input domain which result in positive values of
the control variable.

Evaluating Robustness by Testing

As a consequence, we introduce another approach for checking the robustness of the
closed-loop system by systematically testing the system’s response to all possible
combinations of input values. Testing stands here for the classical techniques of
verification and validation of a software system, see Section 2.3. It is based on the
simulation of the closed-loop system as a Simulink model. In terms of the testing
techniques, which have been described in Section 2.3.1, the simulation implements a
Model-in-the-Loop setup for unit testing.

The total number of tests for the closed-loop system can be represented by an

124

Chapter 4 Development of a Longitudinal Vehicle Controller

n-dimensional field. This field theoretically includes an infinite number of tests as
each test is defined by a set of real numbers. However in practise, this number
is limited by the use of discrete variables in the electronic control unit. Still the
number is so high that never all tests can be executed within an acceptable amount of
time. For example, if the speed is discretised in steps of 1[kmh−1], the combination
of the System Vehicle’s speed and the Object’s speed in a range of 0[kmh−1] and
255[kmh−1] results in a set of 62, 500 tests. Therefore the classification-tree method
was chosen for our approach, because it partitions the input domain of the system
into classes that describe the same expected behaviour, cf. Sections 2.3.2. For the
testing of the robustness, the classes are defined by the initial values of the state, input
and disturbance vectors. The combination of these classes into test cases allows the
decomposition of the n-dimensional field into separate regions. We assume that a
small number of tests for each of the regions allows us to draw conclusions about the
whole region. As explained above, there might be also partitions of the input domain,
i.e. regions of the n-dimensional field, which lead to an unstable behaviour, but are
not relevant in terms of collision avoidance.

In addition, the plant model can be replaced by a more realistic model than the
one used for the state-space representation (Section 3.3.1). The new plant model
considers the motions of Object and System Vehicle independently of each other.
The speed of both vehicles is limited to only positive values, so that they are not
driving backwards after a braking manoeuvre. The output values of all controllers
are restricted to a range of −10[ms−2] to 0[ms−2] as the input value of the Brake
Control Unit is limited to these values. Moreover it is possible to add noise with
different levels to the state variables. With this approach, we are able to verify that
the SSA-PP, the SSA-LQG and the (extended implementation of the) TDD controller
result in a stable and robust behaviour for the relevant regions of the input domain.
Example configurations for those regions are shown in the following section.

4.4.2 Performance

The performance of a control system is commonly evaluated by a set of performance
criteria, see Section 4.2.3. In the following, these criteria are applied to the results
of three examples. Each example describes a different behaviour of the system and
hence represents a member of one of the regions described above.

The first example specifies a linear configuration in the sense that none of the limits

125

Chapter 4 Development of a Longitudinal Vehicle Controller

or saturations are reached. It has to be noted that the following configuration

xR1(t = 0[s]) =

10 [m]

−10 [ms−1]

0 [ms−2]

 (4.50)

can be either linear or non-linear depending on the values of vobj and vsys. For in-
stance, the System Vehicle has to stop to avoid the collision with values of vobj =
0[ms−1] and vsys = 10[ms−1]. This stopping manoeuvre is non-linear as the accel-
eration immediately jumps to zero when the speed reaches zero. In contrast, the
configuration is linear if vobj is greater than 0[ms−1]. For the example, such a lin-
ear configuration is realised with vobj = 10[ms−1] and vsys = 20[ms−1]. Figure 4.11
shows the corresponding performance. All three controllers provide a safe result, i.e.
they prevent the collision.

aset in [ms2]

0

0

‐2

‐4

‐6

‐8

‐10
0 2 4 6 8 10

t in [s]

(a) Control signal

∆s in [m]
10

8

6

4

2

0
0 2 4 6 8 10

t in [s]

(b) Output variable

Figure 4.11: Simulation of the TDD controller (solid line), SSA-PP controller (dashed line)

and SSA-LQG controller (dotted line) for the initial configuration of Equation

(4.50)

The second example describes a non-linear configuration with a negative accelera-
tion of the Object such as the following initial state vector,

xR2(t = 0[s]) =

10 [m]

0 [ms−1]

−10 [ms−2]

 (4.51)

with vobj = 10[ms−1] and a disturbance value of aobj = −10[ms−2]. This configura-
tion is non-linear as the Object decelerates and – similar to the System Vehicle – the
Object’s acceleration jumps to aobj = 0[ms−2] at vobj = 0[ms−1]. Figure 4.12 shows

126

Chapter 4 Development of a Longitudinal Vehicle Controller

the results of the example. Again all controllers prevent the collision. The control
signal of the TDD controller is only slightly influenced by the non-linearity, while
both SSA controllers immediately stop braking and “reconfigure” their reactions to
the relation between ∆v and ∆s, cf. Figure 4.12(a).

aset in [ms2]
0

‐2

‐4

‐6

‐8

‐10
0 2 4 6 8 10

t in [s]

(a) Control signal

∆s in [m]
10

8

6

4

2

0
0 2 4 6 8 10

t in [s]

(b) Output variable

Figure 4.12: Simulation of the TDD controller (solid line), SSA-PP controller (dashed line)

and SSA-LQG controller (dotted line) for the initial configuration of Equation

(4.51)

Furthermore, also the limitation of the control variable, u(t), leads to non-linear
configurations. With the following initial configuration,

xR3(t = 0[s]) =

15 [m]

−15 [ms−1]

0 [ms−2]

 (4.52)

the three controllers reach the lower limit of u(t), cf. Figure 4.13. When we look
at the curves of u(t), all controllers start with the maximal deceleration, but hold it
for different time spans. Only the TDD controller prevents the collision, while the
SSA-PP controller as well SSA-LQG controller result in a negative minimal relative
distance between the Object and the System Vehicle.

4.4.3 Conclusions

For the comparison of the three examples, Table 4.2 shows the values of the per-
formance criteria for the peak value, the rise time, the performance index and the
minimum value of the control signal. Only the TDD controller is able to prevent
the collision in all example configurations, i.e. it has always a positive peak value.

127

Chapter 4 Development of a Longitudinal Vehicle Controller

aset in [ms2]
0

‐2

‐4

‐6

‐8

‐10
0 2 4 6 8 10

t in [s]

(a) Control signal

∆s in [m]
10

8

6

4

2

0

0 2 4 6 8 10
t in [s]

(b) Output variable

Figure 4.13: Simulation of the TDD controller (solid line), SSA-PP controller (dashed line)

and SSA-LQG controller (dotted line) for the initial configuration of Equation

(4.52)

The SSA-PP controller and SSA-LQG controller fail at the last example, because
the saturation of the control signal has not been considered during the design of
these controllers. In general, it is possible to regard this non-linear behaviour also
with a conventional approach, but this increases the complexity of such approaches.
Thus the better performance of the TDD controller does not directly result from the
test-driven development process. Instead, the advantage of test-driven development
is that it allows us to analyse the system’s behaviour with different plant models.
We can specify a linear plant model within a test case, derive a controller from it,
and then create another test case that takes the saturation of the control signal into
account. Moreover, the concrete description of the system’s requirements by trans-
lating them into tests helps us to focus on what the controller should do. The TDD
controller was therefore designed to perform a target braking manoeuvre. As a con-
sequence, it also achieves the smallest performance index and the largest value of the
applied control signal, i.e. the smallest applied deceleration, in all examples.

Finally, the discussion of the example results is supported by the diagrams shown
in Figure 4.14. The first diagram in Figure 4.14(a) represents a range-vs-range-rate
diagram. The three controllers were simulated for values of ∆s from 0[m] to 100[m]
and values of ∆v from −50[ms−1] to 0[ms−1]. For aobj , two distinct values were
chosen: 0[ms−2] and −10[ms−2]. The plotted curves divide the configurations into
two areas for each controller. In the bottom-left area, a collision was not prevented, in
the top-right area, no collision occured. With this, all curves have a shape similar to
the ideal curve, cf. Figure 4.1, but the TDD controller results in the smallest bottom-

128

Chapter 4 Development of a Longitudinal Vehicle Controller

SSA-PP SSA-LQG TDD

Example 1 0.00 0.02 0.08

Example 2 0.10 0.10 0.14

Example 3 −0.70 −1.05 0.02

(a) Peak value

SSA-PP SSA-LQG TDD

3.2 4.1 2.6

14.0 16.9 3.3

2.5 2.8 2.2

(b) Rise time

SSA-PP SSA-LQG TDD

Example 1 59.4 63.5 58.8

Example 2 78.2 87.0 45.7

Example 3 136.1 133.6 139

(c) Performance index

SSA-PP SSA-LQG TDD

−10.0 −8.7 −7.9

−10.0 −10.0 −6.8

−10.0 −10.0 −10.0

(d) Minimum of the control signal

Table 4.2: Comparison of performance criteria for the three examples

left area, i.e. the smallest number of configuration with collisions. aobj influences
the curves in moving them along the y-axis to the top and along the x-axis to the
right without changing their main characteristics. In other words, the number of
configurations at which a collision can be prevented is decreased. This is in accordance
with the expected physical behaviour.

∆ s in [m]

aobj=0[ms2]

aobj=10[ms2]

100

80

60

40

20

0
‐40 ‐30 ‐20 ‐10 0

∆v in [ms1]

(a) Range-vs-Range-Rate

∆ s in [m]

J

∆v =10[ms1], aobj=10[ms2]

∆v =10[ms1],
aobj=0[ms2]

collision

200

160

120

80

40

0
0 20 40 60 80 100

(b) Performance Index

Figure 4.14: Simulation of the TDD controller (solid line), SSA-PP controller (dashed line)

and SSA-LQG controller (dotted line) for different values of ∆v and ∆s

129

Chapter 4 Development of a Longitudinal Vehicle Controller

The second diagram, see Figure 4.14(b), depicts the performance indices of the
three controllers as a function of the relative distance for a given relative speed, i.e.
∆v = −10[ms−1] and aobj = 0[ms−2]. In other words, it represents the performance
index for a vertical line through the range-vs-range-rate diagram. All performance
indices have similar values at low relative distances as only a full braking manoeuvre
results in a prevented collision. With the increase of the initial relative distance,
the performance index of the TDD controller declines faster than the performance of
the other controllers. Moreover the values of both SSA-controllers settle at certain
levels, i.e. the control effort remains the same no matter how far the Object is away.
This confirms the results of the three examples, at which the TDD controller results
in the smallest performance index and the minimal input value. The influence of
a negative value of aobj is again a translation of the curves to the top right corner
without changing its main characteristics.

4.5 Summary

This chapter described two approaches for the realisation of a longitudinal vehicle
controller, which represents the main component of the Collision Prevention System.
The first approach used conventional methods of control system design, while the
second approach showed the application of test-driven development to such a compo-
nent. The results of both approaches were evaluated by comparing the implemented
controllers in terms of stability and performance. From this, we draw the following
conclusions:

• Both the realisation of the controller with conventional approaches and with
test-driven development led to a sufficient performance in order to avoid a col-
lision. The maximal number of collisions prevented is higher with the TDD
controller. Test-driven development allows to precisely describe the system’s
requirements by executable tests. This helps the developer to explore the re-
quirements, the dynamics of the derived plant model, and the difference between
the plant model and the real plant. In addition, the complete set of tests ensure
that no functionality is broken during the iterative development process. Thus
the developer is able to focus on a single requirement, e.g. to avoid the colli-
sion, and then modify the resulting controller for another requirement, e.g. to
perform a target braking manoeuvre, without violating the first requirement.

• It was not possible to analyse the stability and robustness for the TDD controller
by using conventional methods of control theory. In general, it is possible to

130

Chapter 4 Development of a Longitudinal Vehicle Controller

derive a controller with test-driven development in such a way that conventional
methods are applicable. However, the iterative process of TDD and its style of
implementing a feature by making a test pass might circumvent these methods
more often. We therefore presented a testing technique to evaluate the stability
and robustness by stimulating the system’s input and verify the output values.
Moreover, the number of tests was reduced by partitioning the input domain
into classes with the same behaviour.

To summarise, the aim of test-driven development is not to replace the conventional
approaches of control system design. Instead, TDD complements these approaches
by a test-centric process which encourages the solutions of the two main development
issues: what the system should do, and how the system should be implemented.

131

Chapter 5

Evaluation of the Collision Prevention

System

The focus of this chapter is the analysis and evaluation of the automotive safety
system realised in the previous two chapters. The first section describes methods
and results of trials on a driving simulator. The aim of these trials was to prove the
effectiveness of the Collision Prevention System, i.e. to show that it really helps the
driver to prevent a collision. The second section then focusses on experiments with
prototype vehicles. These experiments represent the verification of the CPS in terms
of system testing and acceptance testing. Finally the results are summarised.

5.1 Trials on a Driving Simulator

5.1.1 Methods

The driving simulator consists of a complex architecture which can be divided into
two basic parts: the hydraulic cylinder-powered dome and the simulation system.
The driver sits inside the dome within a real car, whose user interfaces such as the
steering are disconnected from their physical counterparts and instead connected to
the simulation system. While driving, he/she looks to a 180 degree screen which is
mounted at the inner wall of the dome showing a visual representation of real driving
scenarios. These driving scenarios are created by the simulation system with a cluster
of several computers. Like in a computer game, the system is able to render a high

132

Chapter 5 Evaluation of the Collision Prevention System

number of polygons with textures for different types of road surfaces, houses, road
signs, pedestrians and other vehicles. Furthermore the dome is moved and rotated
in lateral and longitudinal directions to simulate the vehicle’s motion. With this, the
driver gets the approximate impression of driving a real car in a real situation.

Figure has been removed due to Copyright restrictions.

For the trials of the CPS, over 100 subjects completed a 40-minute test-drive in
the simulator. The subjects were not involved with the development project or any
associated embedded system. To reflect the typical age distribution of Mercedes’
drivers, also pensioners were invited to participate as test drivers.

Three accident-critical scenarios occurred during each test drive:

1. The System Vehicle is driving in a convoy on a highway at 130[kmh−1]. At a
certain point, the Object in front of the System Vehicle initially brakes moder-
ately, then suddenly starts a full braking manoeuvre until a complete stop.

2. Same as scenario 1, but on a country road at 80[kmh−1].

3. The System Vehicle is driving on a highway at 130[kmh−1] on the left lane and
passes a slower convoy on the right lane. Suddenly, an Object pulls out of the
convoy into the lane of the System Vehicle.

The sequence of the three scenarios has been randomly rotated for the different test
drivers, so that a statistical equipartition of drivers and scenarios could be reached.
Such a rotation was necessary to exclude psychological effects such as an increased
awareness of the driver after the first accident-critical situation of one of the three
scenarios.

The test drivers were split into two groups. The first group was driving a con-
ventional car with the Brake Assist enabled, but the Collision Prevention System
disabled. The other group had both the BA and the CPS activated, thus got a visual
and acoustical warning preliminary to an imminent collision, and if they applied the
brake pedal, brake support by means of the realised TDD controller.

In terms of the testing techniques which are described in Section 2.3.1, the driving
simulator realises a Hardware-in-the-Loop environment. It can be used for either
System Testing or Acceptance Testing, compare Figure 2.11. The trials realise a
special scenario of Acceptance Testing with two roles. The first role is the test driver,
which represents a customer. He/she drives the car and tests the system as its
designated user. The second role is the developer, who organises and evaluates the

133

Chapter 5 Evaluation of the Collision Prevention System

trials after their execution. His/her goal is to prove the effectiveness of the system by
comparing the accident rates of the trials with the new system and without it on a
statistical basis. Thus, this approach does not directly verify the system’s functional
requirements, but analyses the system’s impact on its use cases.

5.1.2 Results

The average accident rate of the first group over all scenarios was 38% of 150 accident-
critical situations. This number could be reduced by the second group to just 10%
of 150 accident-critical situations. This means that the CPS results in 74% fewer
accidents. The biggest reduction could be achieved in the second scenario. Here 45%
of the first group had a rear-end collision in 50 accident-critical situations, in contrast
to only 6% of the second group in 50 accident-critical situations. The accident rates
of each scenario and group are shown in Figure 5.1(a). If still a collision happened,
the collision speed was decreased from an average of 57[kmh−1] to 39[kmh−1]. Again,
the second scenario led to the highest benefit of the CPS as the collision speed was
reduced by 20[kmh−1], cf. Figure 5.1(b).

0%

10%

20%

30%

40%

50%

60%

Situation 1 Situation 2 Situation 3

Brake Assist
Collision Prevention System

Accidents

(a) Accident rate

0 10 20 30 40 50 60

Situation 3

Situation 2

Situation 1

Brake Assist
Coll. Prev. System

Impact Speed in [km/h]

(b) Collision speed

Figure 5.1: Results from the Driving Simulator

5.2 Experiments with Prototype Vehicles

5.2.1 Introduction

Besides the simulation with Simulink and the trials in the driving simulator, tests
with real vehicles have been very important for the development of the Collision
Prevention System. Car makers typically release a new system such as the CPS

134

Chapter 5 Evaluation of the Collision Prevention System

together with a new model of a vehicle. Therefore the system can not be tested with
the final product during most of the time of its development. Instead the tests rely
on prototype vehicles. These vehicles are either based on the model’s predecessor or
a prototype of the new vehicle. The predecessor car is usually equipped only with
some of the new components, which are necessary to execute the system. This kind
of vehicle is called an Aggregate Carrier. In contrast, the real Prototype Vehicle

consists of all new electronical and mechanical components that are designated for
the new model. Thus both kinds of vehicles provide a platform for target testing,
but the Prototype Vehicle provides a higher integration level of the system in terms
of the complete vehicle.

Figure has been removed due to Copyright restrictions.

5.2.2 System Testing on Test Tracks

During the development and prior to every release, system testing was accomplished
on test tracks. For this, a comprehensive catalogue of about 300 driving manoeu-
vres was derived with the help of the Classification-Tree Method. The aim of these
manoeuvres was the verification of the system’s requirements. This also included
situations where the System Vehicle had to collide with the Object. Therefore mock
objects were used similar to the acceptance tests which are described in Chapter
3. During the manoeuvres, all internal data of the ECU and signals on its external
interface were recorded (overall more than 1,500 channels).

The evaluation of the system tests followed a two-step process. The first step was
that the test driver marked each manoeuvre as “passed” or “failed” directly after its
execution. For this assessment, the manoeuvre catalogue included a description of the
expected behaviour, which should be experienced by the driver. A typical example
is:

The optical warning is activated by an illuminated red triangle within the
cluster instrument.

After the accomplishment of all manoeuvres, the measurement data was reviewed
in the second step. This review was done manually by the developer as well as
automatically by the assertions. For this, the data is read into Simulink so that the
channels are available as usual Simulink signals. These signals are connected to a set
of assertions for every manoeuvre. Figure 5.2(a) shows the specific architecture for
this approach.

135

Chapter 5 Evaluation of the Collision Prevention System

Measurement
Data

Assertions

(a) Direct assertions

Measurement
Data

Test
Objective

Assertions

(b) Open-loop simulation

Measurement
Data

Test
Objective

AssertionsPlant Model

(c) Closed-loop simulation

Figure 5.2: Different approaches for the verification and reproduction of measurement data

A similar approach is used when a driving manoeuvre has failed. Again, the data is
read into Simulink, but now as a stimulation for the test objective, cf. Figure 5.2(b).
The test objective can be the whole (model-based) system, or smaller components
down to the smallest entity, i.e. a unit. Ideally, a data acquisition point is set
for each signal of the interface between two units. Hence one measurement channel
can be directly connected to the test objective in Simulink. With this open-loop
simulation, the developer can observe the outputs of either the test objective or
every other Simulink block that is part of the test objective. Moreover assertions
should be defined which reflect the cause of the error. In other words, a failing unit
test is created and then the test objective is modified to make this test pass. The
disadvantage of this approach is that invariant measurement data are used for the
stimulation of the test objective. The inputs do not change even if the test objective
is interacting with the actuators of the system differently than during the performed
manoeuvre. For instance, if the System Vehicle collided with a mock object at the
test track, it will always collide during the open-loop simulation no matter how the
control signal is increased.

136

Chapter 5 Evaluation of the Collision Prevention System

Therefore we propose another setup, see Figure 5.2(c). Here, the measurement data
is used only at a single point in time to define the initial values of a plant model. The
further simulation is implemented as a closed-loop between the test objective and the
plant model. In addition, it might be necessary to modify the plant model in such a
way that it has the same behaviour as the measurement data. Hence, we simulate the
closed loop, compare the output as well as the control variable against the measured
signals, and change the plant model until the simulated variables reproduce the real
data. An example is shown in Figure 5.3, where the simulated input variable as well
as the output variable nearly match the measurement data.

aset in [ms2]
0

‐2

‐4

‐6

‐8

‐10
0 1 2 3 4 5

t in [s]
6

(a) Control signal

∆s in [m]
20

16

12

8

4

0
0 1 2 3 4 5 6

t in [s]

(b) Output variable

Figure 5.3: Example of the comparison between simulation results (solid line) and measure-

ment data from a prototype vehicle (dashed line) for a stationary object with

∆v = 50[kmh−1] and ∆s = 20[m]

5.2.3 Acceptance Testing in Real Life

In parallel to the development of the next software release, the current release was
installed on a fleet of vehicles for acceptance testing in real life. Overall, the fleet
consisted of 28 prototype vehicles on different continents, including a taxi in Stuttgart,
Germany. The vehicles were driven by about 200 drivers for nearly 500.000km. Each
vehicle was equipped with a measurement system, which has been installed in the
trunk and continuously recorded over 50 data acquisition channels. The data channels
included internal data of the RADAR Control Unit, e.g. the calculated reaction time,
but also data of other ECUs such as the distance from the RADAR sensor or the
yaw rate from the Brake Control Unit. Part of the measurement system was also a
video camera, whose picture was automatically saved in a relevant situation. The

137

Chapter 5 Evaluation of the Collision Prevention System

relevance of a situation was determined according to several criteria. For instance,
if the driver pressed the brake pedal for more than 50% of its maximum travel, a
trigger was started to save the last 20 seconds and the following 10 seconds of the
situation to a measurement file. In addition, the driver could manually set a trigger
by pressing a button.

Every time one of the test vehicles returned to its base station, the data of the
measurement system was copied to a dedicated file server. Then a set of MATLAB
scripts automatically processed the data and inserted a summary into a database.
This database was periodically reviewed by the system’s developers to analyse valid
and invalid situations. Whether a situation was valid or invalid could be evaluated
through evaluating the video clip in combination with the recorded data. Further-
more, invalid situations could be divided into two groups: false positives and false
negatives. We speak of a false positive situation when the system was activated al-
though the requirements were not met for an activation. For instance, the system
was braking, but no Object was in front of the System Vehicle. In contrast, a false
negative situation describes a missing activation, i.e. the system was not activated
although the requirements were fulfilled.

Figure 5.4 shows two examples for accident-critical situations, in which the CPS
supports the driver for preventing the collision. In the first situation (Figure 5.4(a)),
the System Vehicle is approaching a parked car, i.e. a stationary object, at about
60kmh−1. The optical and acoustical warning is issued at t = 0.5[s], when the relative
distance between Object and System Vehicle is about 55[m]. This phase is named
Phase 1. Then, the driver reacts to the warning and starts to brake at approximately
t = 1.6[s] (Phase 2). 0.2[s] later, the CPS activates its brake support so that the
resulting deceleration nearly reaches its maximal value (Phase 3). In addition, the
figure also includes the theoretical deceleration without the CPS. This curve is based
on a plant model, which translates the brake pedal travel originating from the driver’s
reaction into a deceleration. It has to be noted that this deceleration does not give
evidence whether a collision would have happened without the CPS, because the
driver’s behaviour might have been influenced by the system. At t = 3.0[s], the
reaction time has increased above the threshold value, so the warning is deactivated
although the system is still supporting the driver to finish the manoeuvre.

In the second situation, cf. Figure 5.4(b), the System Vehicle is driving in a con-
voy on a highway with a speed of 80[kmh−1]. The Object starts a slight braking
manoeuvre at t = 0.5[s]. The driver of the System Vehicle follows the manoeuvre
immediately by applying a similar deceleration. As the situation is not critical at this
point of time, the warning is not activated in Phase 1. Then, the Object suddenly

138

Chapter 5 Evaluation of the Collision Prevention System

increases its deceleration to the maximum value at t = 2.2[s]. Because the brake
lights of the Object were already activated, the driver is not able to recognise the
change of the situation until the relative distance between Object and System Vehicle
has been considerably decreased. In contrast, the CPS is able to measure the change
of the relative speed due to the Doppler effect and identify the change of the Object’s
acceleration. It therefore activates the brake support and controls the deceleration
of the System Vehicles to prevent the collision (Phase 2). At the same time, the

a in [ms2]
0

‐1

‐2

‐3

‐4

‐5

‐6

‐7

‐8

‐9

‐10
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Ph
as
e
1

Ph
as
e
3

Ph
as
e
2

Without CPS

With CPS

t in [s]

(a)

t in [s]

a in [ms2]
0

‐1

‐2

‐3

‐4

‐5

‐6

‐7

‐8

‐9

‐10
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Ph
as
e
2

Ph
as
e
1

Without CPS

With CPS

(b)

Figure 5.4: Two examples for situations, in which the CPS prevented a collision

139

Chapter 5 Evaluation of the Collision Prevention System

warning is activated to alert the driver of the criticality of the situation.
The fleet’s measurement data was also simulated with the approaches described

above, see Figure 5.2. If an invalid situation was fixed by a new release and this fix
could be proven by simulation, the situation was marked accordingly in the database.
With this, we were not only able to create statistics about valid and invalid situations,
but also continuously update these statistics during the development cycles of the
system. In consequence, the real-life testing allowed the constant optimisation of the
system’s performance, and confirmed its correct functioning in real traffic situations.

5.3 Summary

To summarise, this chapter presented different testing scenarios for the Collision
Prevention System. The effectiveness of the CPS was proven by trials in a driving
simulator. The results of these trials showed that system significantly reduces the
accident rates, when compared to a car without the system. For this, three scenarios
were defined which inevitably lead to an accident-critical situation. As each test
driver had to manage all three scenarios during her/his test drive in the simulator,
the density of rear-end collisions per kilometre was much higher than in reality. Thus
the driving simulator allows to evaluate the impact of the system on the rate of
rear-end collisions in a shorter time than in reality, and without the risk of a real
collision.

Prototype vehicles were used to perform experiments on test tracks and in real
life. The test-track experiments served for the verification of the system’s functional
requirements by using contrived situations, for which it is possible to exactly described
the expected behaviour. In addition, the real-life experiments were used to validate
the test-track results in real-life situations. Their focus was laid on creating statistics
about valid and invalid activations of the system, and on decreasing the number of
invalid situations to a minimum value.

After the release of the system in 2005, researchers of Europe’s largest automobile
club – the ADAC (Allgemeiner Deutscher Automobil-Club e.V.) – tested and analysed
the system in different situations. In their report, the researchers identified a number
of scenarios, in which the system might help to prevent a collision. These scenarios
were divided into two groups: (i) attentive drivers, and (ii) inattentive drivers. For
both groups, the report states a major safety benefit of the system when driving
in a convoy. Especially if the Object slightly starts to brake and then increases its
deceleration immediately, the CPS provides a big potential for preventing the collision
(similar to the example shown in Figure 5.4(b)). For the second group, a benefit also

140

Chapter 5 Evaluation of the Collision Prevention System

occurs when approaching the end of a traffic jam at speeds lower than 70[kmh−1],
or when the Object is cutting into the lane of the System Vehicle. With this, the
researchers of the ADAC approved that the realised Collision Prevention System is
working and, in doing so, improving the vehicle’s safety.

141

Chapter 6

Analysis of the Test-Driven Development

Process

The purpose of this chapter is the analysis of the novel test-driven development
process for embedded control systems which has been introduced in Chapter 2 and
applied to four different components in Chapters 3 and 4. First the applicability
of design patterns to control system design and the test-driven development process
is evaluated and similarities as well as differences are identified. This discussion
results in the definition of two new design patterns which identify and summarise
the role of TDD for control system design. Moreover the process is assessed in
terms of advantages and disadvantages when compared to other approaches for the
development of control systems.

6.1 Comparison to Design Patterns

In the following, a selection of design patterns is used to analyse and evaluate the
methods and results of the presented approach for test-driven control system design.
The discussion is divided into two subsections: In the first section, different patterns
for test-driven development are described to define the role of TDD as a tuning
process for controllers. In contrast, the second section explains how the well-known
Model-View-Controller pattern can be used to derive the role of TDD as a design
process for control systems. To distinguish a pattern’s name within the text, the first
letter is a capital and the whole word is underlined.

142

Chapter 6 Analysis of the Test-Driven Development Process

6.1.1 TDD Tuning Process

In the first book about test-driven development Kent Beck also presented a pattern
language for test-driven development [66, pp. 123ff]. This language is divided into
several groups: (i) for problems and solutions when a red bar or a green bar occurs,
(ii) for testing in general, (iii) for testing with xUnit (see Section 2.2.2), (iv) for
refactoring and (v) for the process itself. The book also covers the application of
TDD to a subset of the object-oriented design patterns by Gamma et al. [72].

The fundamental pattern of TDD is Test First, which describes when a test is
written, i.e. before the code is changed. Furthermore, all tests have to be automated
(Test) and independent of each other (Isolated Test). The automation is typically
realised by a member of the xUnit family of testing frameworks. The patterns of
this family and the realisation with the slUnit testing framework have already been
described in Section 2.2. As a consequence, we are able to write tests, automatically
execute them and verify their results in a model-based development environment with
a graphical programming language such as Simulink.

The pattern Assert First requires to write the assertions of a test first. This helps
the developer to think about the problem which is to be solved. For instance, an
assertion specifies that the rise time should be smaller than a specified value. Such an
assertion leads to two questions: What is the input stimulus for which the response
achieves the rise time specified? What is the plant model? The answers to both
questions are part of the new test. The combination of input stimulus, plant model
and expected results makes the test understandable (Test Data) as well as explicitly
describes their relationship (Evident Data). For this reason, TDD does properly
support the tuning process of controllers.

As an example, we can define a pattern for LQG control as it is commonly described
in textbooks on control theory:

Pattern LQG control

Context

The system is described by a state-space representation:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

x(0) = x0

The pair (A,B) is stabilisable.

143

Chapter 6 Analysis of the Test-Driven Development Process

Problem

The input variable should be defined by state feedback:

u = −Kx

K should be chosen to minimize a linear-quadratic performance index.

J =
∫ ∞

0
(xT Qx + uT Ru)dt

Q and R define the tradeoff between the regulation performance and the
control effort.

Solution

K is calculated by
K = −R−1BT P

with P being the positive-definite solution of the algebraic matrix Riccati
equation:

AT P + PA− PBR−1BT P + Q = 0

To realise this pattern, the developer starts with some initial values for Q and
R. Then, the performance index is typically not minimized by solving the Ricatti
equation directly, but by using a numerical calculation to retrieve the values of K.
These values are evaluated, for instance by a simulation of the closed-loop system,
to check whether the system fulfils the requirements. If not, Q and R are modified
and the calculation is started again. TDD can be incorporated into this process as
it is iterative, starts with a requirement, and is finished when the actual behaviour
matches the expected behaviour, as specified in the requirements. Thus a pattern is
defined which describes the role of TDD in driving a tuning process:

Pattern TDD Tuning Process

Context

A control system is given by a plant with a measurable output and a
controllable input. A number of requirements exists, which describe the
desired performance of the control system. The plant input is determined
by a feedback controller.

144

Chapter 6 Analysis of the Test-Driven Development Process

Problem

The parameters of the controller should be chosen so that all requirements
can be fulfilled.

Solution

The controller is realised with the following iterative process which is re-
peated until all requirements are fulfilled:

1. Create a new test with a plant model, input stimuli and asser-
tions for output variables. Typically the assertions are used in
conjunction with one or more performance criteria.

2. Run all tests. The new test has to fail.

3. Tune the controller with a (common) tuning technique, so that all
tests pass. Example: Pole-Placement, LQG optimisation (see the
pattern LQG control), PID tuning with Ziegler-Nichols.

4. Remove duplication.

In the context of Beck’s patterns, this role is supported by the pattern One Step Test.
It describes how to choose the next test from the to-do list of tests. Basically, always
a test should be selected which is suggestive and easy to implement. A constant
and steady progress with only small steps should lead to a growing and evolutionary
design, while preventing solutions which are too complex. Beck describes this as a
known-to-unknown metaphor: The developer usually has some knowledge, which al-
lows him to realise the first steps, but also to gain experience and draw conclusions
about the further course of the development. This approach is directly applicable
to control engineering. We typically start with a known method like pole-placement
to implement a simple controller. This controller allows us to learn more about the
closed-loop system, especially if the characteristics of the real plant are only partially
known.

The to-do list of tests can be generated implicitly or explicitly from the set of
requirements which should be implemented (Test List). Furthermore items might
be added to the list during the development cycle because of a defect, either de-
tected by another test or externally reported, i.e. not detected by automated tests
(Regression Test). If a test already fails, a new test is only necessary if the reason of
the failure is beyond the scope of the failed test. Moreover, the to-do list can be ex-
tended by new tests during the development due to the known-to-unknown metaphor

145

Chapter 6 Analysis of the Test-Driven Development Process

(Learning Test) or other issues which are rather specific to the implemented software
unit, but not included in the requirements. A common example is the check for a
division by zero. To summarise, four origins of a new test exist as shown in Figure
6.1.

Write a
new test.

Known‐to‐
Unknown

DefectImplementation
Detail

Requirement

Figure 6.1: Origins of a new test

6.1.2 TDD Design Process

A frequently used architectural pattern for software engineering is the Model-View-
Controller pattern (MVC) [197]. Please note that the terms “Model” and “Con-
troller” here have a different meaning than in control theory. To distinguish the
different meanings, the first letter is a capital when we speak of the pattern meaning,
and a lower-case letter otherwise.1 The Model contains the core of the application
and represents its domain-specific information. The View is the output interface
to the user and displays the Model’s data. Its counterpart is the Controller, which
implements the input interface. With the Controller, the user is able to access the
model’s functions. In terms of embedded systems, the Controller and the View are
typically realised as one or more different electronic control units and physically con-
nected to the electronic control unit which implements the model, see Figure 6.2(a).
Furthermore the Controller and the View do not only interface to the user, but also
with the system’s environment through sensors and actuators. TDD supports the
development process of this pattern by replacing these components with mock inter-
faces, i.e. test stimuli for the input variables and assertions for the output values.

1Thus model and controller are terms of control theory, Model and Controller terms of the MVC

pattern.

146

Chapter 6 Analysis of the Test-Driven Development Process

An example for such a system is the Collision Prevention System introduced in this
thesis, which uses the Instrument Cluster for the View and the brake pedal as well
as other input devices for the Controller. Both are connected via a CAN bus to the
Radar Control Unit which realises the Model.

The main disadvantage of this description is that the plant is not explicitly included
in one of the three MVC components. Its potential position would be in-between the
Controller and the View, thus connecting sensors and actuators. Therefore the MVC
pattern is modified to characterise an embedded control system in the context of
control theory. Here, the Model represents the plant and the Controller represents
the implemented software including, for example, a feedback controller. The View
comprises the input and output interfaces only to the user, but not to the sensors
and actuators as they are part of internal interface between Controller and Model.
The block diagram of the modified MVC pattern is shown in Figure 6.2(b).

Controller

View Model

Users Sensors

Displays Actuators

(a) Classic structure

Controller

View Model

Users Displays

(b) Modified structure

Figure 6.2: The Model-View-Controller pattern

The advantage of the modified pattern is that it helps us to better understand
the role of TDD as a software process. The TDD approach can be divided into two
simple elements: the Test and the Test Objective. While a test objective realises a
part of the system’s requirements, a test drives its design and verifies its realisation.
Therefore both elements constitute an executable form of the system’s requirements.
Compared to MVC, we identify the Controller as the test objective and the Model as
well as the View as its design guide and its verification. The Model can be described
by the real plant, i.e. by system tests in a real environment, but also by plant models.

147

Chapter 6 Analysis of the Test-Driven Development Process

In fact, a single unit test usually specifies only a part of the Model or even only a
single aspect of it. The same applies to the View. The major difference between the
Model and the View is that the Model is typically tested in a closed loop together with
the Controller due to the use of plant models. Instead, the View is tested as an open
loop, i.e. the user’s input is specified independently of the system’s response. An
example has been given with the development of the component Driver Assessment
in Section 3.4.2.

Furthermore, the iterative cycles of TDD allow to analyse and to react to unknown
or incompletely known characteristics of the plant. When we start with an unknown
plant, a new test case describes an input stimulus of the plant, while the outputs are
observed by the developer. In Figure 6.3, a test case is represented by a circle within
the Model or the View. The geometrical form of a circle was chosen, because the
plant’s characteristics are never fully known. Then a part of the Controller is added
to make the failing test pass. As the Controller can be fully implemented in terms
of its requirements, its rectangle is filled with squares. The process continues with
the next test which explores another, more complex behaviour of the plant. This is
supported by the initial implementation of the Controller as it makes it possible to
stimulate the plant as a closed-loop system. In general, it can be said that

• with each new test a part of the real plant can be explored or known charac-
teristics can be described; this is shown in Figure 6.3 by the increase of circles
within the rectangles of Model and View; and

• with each modification or extension of the Controller, the number and the
complexity of the realised requirements is rising; this is shown in Figure 6.3 by
the increase of squares within the rectangle of the Controller.

As a result of this discussion, a second pattern for the test-driven development process
can be defined:

Pattern TDD Design Process

Context

A control system should be described by the MVC pattern. The Model is
given by a plant with a measurable output and a controllable input, the
View is given by a user interface. The characteristics of the Model and
the View might be only partially known. A number of requirements exists,
which describe the desired behaviour and features of the system from the
user’s point of view.

148

Chapter 6 Analysis of the Test-Driven Development Process

?

? ?

Controller

View Model

?

Controller

View Model

Controller

View Model

Controller

View Model

First test

Second test

A number
of tests

Figure 6.3: Test-Driven Development as a Design Process

Problem

The Controller should be implemented.

Solution

The Controller is realised with the following iterative process which is
repeated until all requirements are fulfilled:

1. Create a new test which either represents a part of the View or
the Model. The test can include a plant model, input stimuli and
assertions for output variables. Typically the combination of in-
put stimuli and assertions describe the desired behaviour of the
test objective. Another aim of the tests is to explore the charac-
teristics of the real plant or the user interface as shown in Figure
6.3

149

Chapter 6 Analysis of the Test-Driven Development Process

2. Run all tests. The new test has to fail.

3. Implement the Controller so that all tests pass.

4. Remove duplication.

To summarise, we have defined two patterns for the test-driven development of
control system: the TDD Tuning Process and the TDD Design Process. Both pat-
terns are complementary to each other. They describe the role of TDD in terms of
control system design, while focussing on different levels of the system.

6.2 Comparison to the Traditional V-Model Approach

When the role of TDD is compared to other (software) development processes, the
key features of TDD are its short and iterative development cycles, and the test-
first paradigm. These features allow the application of TDD to both the tuning of a
controller and the design of the whole control system.

In contrast, traditional software development models can not be applied to a tuning
process, e.g. the tuning of a PID controller, because of their long development cycles
and the strict sequence of process steps. In the following, we consider the V-model
as an example for such a traditional process model. In theory, the shortest cycle of
the V-model consist of three steps: The definition of a requirement, its implementa-
tion by writing code and its verification by testing. An example requirement for a
PID controller could be that the rise time is smaller than a specified value. The re-
quirement is then realised by, for instance, modifying the gain of the controller. This
transition between the requirement and its implementation is not specified within the
V-model. Therefore the gain value is usually chosen using initial constraints such as
the formulae of Ziegler and Nichols [26] and the experience of the developer. Espe-
cially with model-based development, the developer might also create a kind of test
case by stimulating the inputs of the closed-loop system and observing the outputs.
Although this step is not part of the V-model, it can often be observed in the typ-
ical work flow of an embedded system’s developer. Finally, the implementation is
verified by one or more tests (which might or might not be based on the previously
created test case). Following the path of the V-Model, the developer is not allowed to
jump back to the implementation phase if one test fails. Instead he/she has to pass
another iteration, which again starts with the definition of a requirement. For our
example, this requirement would be to pass the test. This leads to a trial-and-error
process, which most developers try to avoid by unofficial testing. The problem of

150

Chapter 6 Analysis of the Test-Driven Development Process

such testing is that it does not follow any patterns or rules, e.g. the specification of
expected values, but depends on the habits of the developer. Moreover it is usually
not included into activities such as configuration management or change management
as the provisional testing is not specified within the process.

Test-driven development avoids these problems by requiring a test for every new
requirement and its implementation. It structures the work of the developer in a
natural way. Compared to the simplified V-model, first a requirement is defined,
then a test is written and the system is implemented in such a way that the test
passes. As a consequence, the test represents the transition between the requirement
and its implementation. The developer is not forced to create a temporary test bed
to evaluate his ideas, but instead provided with systematic feedback from the test
cases which have been written in advance. The test beds are part of any process
management activities, e.g. saved in a revision control system. In fact, it can be
said that the implemented units of a system live within their test beds. By using
referenced models, this biotope is not even destroyed during the integration phase.
Instead, the developer is always able to return to a particular unit and its test bed
for making modifications. During such modifications, the tests provide a safety net
which ensures that none of the previously realised functionality is broken.

As already pointed out, TDD can also be used as a design process for whole control
systems. Here the tests do not only represent the requirements of the controller, but
also help to explore the characteristics of the plant and to describe them in terms
of executable models. In addition, a set of acceptance tests defines the goal for the
end of the development cycle. The resulting product fulfils all requirements, which
where covered by the acceptance tests. When a geometrical representation for this
process similar to the V-model is created, it results in two circles – the outer circle for
acceptance testing, the inner circle for unit testing together with the implementation
of the system, cf. Figure 6.4.

The test-first paradigm of test-driven development causes also the major drawback
of this process: It must be possible to test a unit before it exists. This disadvantage
is especially important for the development of hardware parts. A simple example is
the test for the existence of a resistor. If such a test is executed before the resistor
is installed, a short circuit might occur and with this, other components might get
damaged. Furthermore the change of the hardware’s layout or interface requires much
more effort than with software and is usually limited by certain constraints such the
maximum number of I/O ports of the microprocessor used. The hardware devel-
opment process therefore typically follows much longer cycle times than a software
development process. A solution of the problem is the combination of the V-model

151

Chapter 6 Analysis of the Test-Driven Development Process

Requirements

Unit
Testing

Acceptance Testing

Product

Figure 6.4: The Test-Driven Process

and the test-driven process into a joint process model, as shown in Figure 6.5(a). The
V-model is used for the hardware development, the test-driven process is employed
for the software development. The software development process can have shorter
cycle times, i.e. a new software can be released without a new hardware. The oppo-
site case, i.e. a new hardware without a new software, is also possible, e.g. for cost
optimisation, but more common is a simultaneous release of both parts. In Figure
6.5(a), the software has three releases compared to two release of the hardware. The
hardware is not available at the first milestone, thus the complete system can only
be tested by simulation in a Model-in-the-Loop or Software-in-the-Loop setup. The
second milestone and the final release comprises both software and hardware, hence
all testing setups are possible.

Another disadvantage of TDD is the requirement of testing frameworks for the
different parts of the system. While such frameworks are available for nearly all pro-
gramming languages, they are not applicable to all parts of the embedded software.
Especially software components which directly access the system’s hardware are dif-
ficult to test. The common approach is the use of mock objects, but the realisation
of such objects might require a much higher effort than the component itself. The
same problem applies to certain hardware components. In general, the availability of
a testing framework and with this, the testability of the system and its components,
is not only an issue for test-driven development. Usually all process models include
activities for system verification and therefore need at least some kind of testing fa-
cility. Typically, if a testing facility for a component is not available, the component
is only tested at higher levels, i.e. integrated in a group of components. At least the
whole system is always testable in terms of acceptance testing, because otherwise the

152

Chapter 6 Analysis of the Test-Driven Development Process

Software

Hardware

Milestone 2Milestone 1 Release

(a) Software and Hardware

High Testability Low Testability No Testability

(b) Testability

Figure 6.5: Usage of different process models depending on the component and its testability

customer would not be able to verify their requirements. Therefore the solution for
this problem is again to fall back to a V-model. In Figure 6.5(b), the right arm of this
V-model is drawn with a dashed line to indicate the limited possibilities for testing.
Thus, the joint model considers the specific process requirements and testability of
different kinds of components. It allows the application of TDD even to systems that
are not completely testable.

153

Chapter 7

Conclusions and Outlook

7.1 Conclusions

This thesis described the use of test-driven development as a design method for em-
bedded control systems with the focus on automotive safety systems. The approach
of test-driven development was chosen because it has gained importance as a modern
software development process in recent years. The main idea of test-driven develop-
ment is to use tests not only for the verification of the system, but also as a design
method. The tests are written before any part of the system is realised or modified.
The implementation evolves together with the definition of tests, which not only serve
to specify the expected behaviour, but also to explore unknown characteristics of the
system and its environment. This evolving design can lead to a better quality and
fewer defects of the realised system.

The basic prerequisite for test-driven development is the availability of an auto-
mated testing framework as tests are executed very often. Such testing frameworks
had been developed for nearly all programming languages, but not for the graphi-
cal, signal driven language Simulink. Simulink has become very important for the
design of control systems, mainly in the automotive industry, the aerospace industry
and others industries such as process control. It allows a model-based development
process, which is based on and centred around the model as the central artefact, sup-
ports an iterative development style and supplements the traditionally mathematical
approaches to control system design. In this thesis the process of model-based devel-

154

Chapter 7 Conclusions and Outlook

opment was therefore analysed and the concepts and realisation of a testing framework
for Simulink has been addressed. Furthermore, different testing techniques, testing
setups and test design techniques have been introduced. The description of these
methods is completed by the definition of the test-driven development cycle and its
usage at different layers of an automotive safety system.

During the PhD project, the author worked as an employee of the former Daimler-
Chrysler AG at the Mercedes-Benz Technology Center, Department for Driver Assis-
tance Systems. One main focus of the department was the development of longitu-
dinal vehicle control systems based on RADAR sensors. In addition to systems for
conventional and adaptive cruise control, semi-autonomous parking, and night vision,
a series project started for a new collision warning and avoidance system in 2003. A
similar system, which is named Collision Prevention System in this thesis, was used
as an example for the application of test-driven development to an automotive safety
system. The definition and the requirements of the system were introduced and a
suitable system architecture was derived. As a result, three software components
of the system represented problems of particular areas for the realisation of control
systems, i.e. logical combinations, experimental problems and mathematical algo-
rithms. For each of these problems, a concept to systematically derive test cases
from the requirements was presented. Finally, the realisation of the components has
been described and illustrated by example test cases.

In addition, the longitudinal controller of the Collision Prevention System was con-
sidered as a fourth component which was the focus of a separate chapter to examine
the specific background of control theory. First, two conventional approaches for
the derivation of the controller were introduced, before the controller was developed
in a test-driven way. Again, a concept to derive test cases has been presented and
the realisation was then accompanied by example test cases. Furthermore both, the
conventional and test-driven approaches were compared in terms of their stability
and performance by using results from the simulation in Simulink. This compari-
son showed that test-driven development led to a stable and robust controller, which
fulfils the system’s requirements and is therefore capable of preventing a collision in
most of the cases. It was furthermore easier to incorporate the effects of external
logic and non-linearities in the TDD approach.

The Collision Prevention System was implemented and evaluated in trials on a
driving simulator which showed that the system leads to a significant reduction of
the accident rate for rear-end collisions. In addition, experiments with prototype
vehicles on test tracks were presented to verify the system’s functional requirements
within a system testing approach. The results of these test-track experiments have

155

Chapter 7 Conclusions and Outlook

also been validated by a field test with a fleet of prototype vehicles.

Figure and Text have been removed due to Copyright and Access restrictions.

7.2 Outlook and Further Work

Amongst other things, the future development of automotive safety systems will focus
on the data fusion of multiple environmental sensors, especially of RADAR sensors
and vision-based sensors. The use of different sensor technologies not only allows to
build systems with an extended functionality, e.g. to detect pedestrians or crossing
vehicles, but also to increase the reliability of the object detection. This is necessary
to realise systems which will execute more severe actions without being activated
by the driver, for example an autonomous full braking manoeuvre. Moreover, the
reliability of such autonomous systems will not only be improved by better or more
sensors, but also by improvements in the development process. One of the most
important trends in the development of automotive systems is the application of the
international standard IEC 61508, which covers the functional safety of electrical
and electronic safety-related systems. This standard, which has its origin in the
process control industry sector, covers the complete safety life cycle of a product,
i.e. analysis, design, implementation, modification, operation and maintenance. It
is currently adopted for automotive systems by a working group of the International
Organization for Standardization (ISO). The working draft is called ISO-WD 26262.

In the future, the test-driven development of embedded control systems could be an
important factor for the functional safety of such systems. The method of specifying
tests as the transition between requirements and their corresponding implementation
not only allows the design and exploration of unknown characteristics, but also the
seamless documentation and verification of the implemented system. Thus it is pos-
sible to trace back each requirement or design decision made by a developer, as these
decisions are represented as executable tests and the corresponding set of assertions.
As a consequence, also the testability of the system and its components is inevitably
increased. The further development of test-driven development for embedded control
systems will therefore focus on three main objectives:

Linking: Nowadays, part of the common workflow of model-based development is
the creation of links between the description of the requirements and their
implementation as Simulink models or subsystems. The links allow a m−to−n

relationship between the requirements and the models or subsystems, which
state that m requirements are implemented by n models or subsystems. With

156

Chapter 7 Conclusions and Outlook

TDD, these links directly refer to the executable tests. Hence the semantics
are changed so that m requirements are represented by n test cases, and n test
cases stimulate and verify the results of o models or subsystems.

With slUnit the test objective and the tests are both part of the test bed.
Thus, it should be possible to create links also between a single test and the
corresponding parts of the test objective. Such a linkage might be even auto-
matically determined by the analysis of the statement or branch coverage that
results from the execution of the test.

In addition, both kinds of links can be added to the automatically generated
source code to support the process step of code reviews. During code reviews
the participants, usually divided into the author and the reviewers, attend a
number of meetings and review code line by line. Such inspections are very
thorough and have been proven effective at finding defects. With embedded
links, the reviewer would be able to jump between the generated source code,
the model, the requirement and the test cases, and compare them to each
other. Moreover, it could be possible to interactively walk through the code by
executing a particular test and observing the results of statements or the values
of variables.

Fault Injection: A typical issue of testing is the question whether the tests cover
all logical paths through the unit which is being tested. Several test design
techniques to resolve this issue have already been presented in Section 2.3.1.
An alternative to these techniques is the manual or automatic injection of faults
into the realised system. One aim of this approach is to activate the functional
paths which cover the system’s error handling. For automotive systems, a
common example is the injection of failures to the vehicle’s communication
network by creating a timeout, modifying a message’s checksum or setting the
data to invalid values. In contrast, fault injection can also be used to verify the
coverage of the specified tests. Initially, all tests must be successfully passed.
Then the model or code is modified at a specific position, e.g. by changing a
mathematical operation from “plus” to “minus” or a relational operator from
“equals” to “not equals”. After each of these code mutations, all tests are
executed. The assertion is now that at least one test fails. Otherwise, the
mutation is not covered by the current set of tests.

A basic integration of fault injection into Simulink can be easily realised for two
reasons: (i) Simulink already provides a set of methods to obtain the handles

157

Chapter 7 Conclusions and Outlook

of a specific set of blocks, e.g. all relational operators, and (ii) the blocks can
be modified by directly accessing their parameters. Thus (and in contrast to
common programming languages) no separate parser is needed for the source
code. Moreover, the blocks and logical paths that are covered by a particular
test can be automatically marked, for instance, by modifying their background
colour. Using the colour spectrum, it is even possible to indicate the statistical
coverage, i.e. by how many tests a specific block is covered.

Continuous Integration: Continuous integration is a software engineering technique,
which emerged in the extreme programming community, and consists of one
basic rule: every modification of the implemented system is immediately com-
mitted to a revision control system. The integration of all changes is done by
an automated server process, which monitors the revision control system for
changes, then automatically runs the build process and executes all tests. This
might also include additional steps such as generating documentation and code
statistics. The advantage of this process is that integration problems, broken
code and conflicting changes are detected early and fixed continuously.

Although continuous integration seems to be unusual for embedded systems, it
is suitable due to the widely existing simulation environments. With Simulink
a model can be automatically committed to a revision control system by using a
callback function after it has been saved. Then a process on a dedicated server
machine can load these files to a MATLAB background process and execute all
unit tests with slUnit. If all tests passed, code is generated and compiled by
the build process. The process can also download the generated binary file to
the target platform and run additional tests, for instance, on a Hardware-in-
the-Loop facility. The results of each phase, i.e. unit testing, code generation,
build process, and system testing, are included into a report, which can be
published on a web server or wiki, sent via email, or itself committed to a
revision control system. With this, the progress of the development process is
successively documented and allows a rollback to nearly each step of the design
or implementation.

With the implementation of these objectives and the continuous improvement of the
development processes, the automotive industry will be able to realise even more
complex safety systems on their way to the vision of accident-free driving.

158

Bibliography

[1] C. Benz, “Vehicle powered by a gas-engine (Fahrzeug mit Gasmotorbetrieb, in
German),” Patent 37 435. German Patent Office (Reichspatentamt), 1886.

[2] N. Georgano, The Complete Encyclopaedia of Motorcars : 1885 – 1968.
Ebury, 1969.

[3] N. Georgano, Ed., The Beaulieu Encyclopedia of the Automobile. Routledge,
2000.

[4] The International Organization of Motor Vehicle Manufacturers, “The
World’s Automotive Industry,” 2006. Online:
http://www.oica.net/htdocs/statistics/OICA depliant-final.pdf

[5] UPI Umwelt und Prognose-Institut Heidelberg e.V., “Consequences of a
global mass motorisation (Folgen einer globalen Massenmotorisierung, in
German),” 1995. Online: http://www.upi-institut.de/upi35.htm

[6] National Highway Traffic Safety Administration, USA, “Traffic Safety Facts
2005,” 2005.

[7] Statistisches Bundesamt Deutschland, “Traffic Accidents – Time Series 2005
(Verkehrsunfälle – Zeitreihen 2005, in German),” 2005.

[8] DaimlerChrysler, “Precise and Safe,” Hightech Report, no. 1, pp. 60–61, 2005.

[9] DaimlerChrysler, “Safety Pioneer,” 2006. Online:
http://www.daimlerchrysler.com/Projects/c2c/channel/documents/
898181 daimlerchrysler safety pioneer.pdf

[10] Robert Bosch GmbH, “From Innovation to Standard. 25 Years ABS.” 2003.
Online: http://www.bosch.de/start/media/BOSCH ABS Infowand eng.pdf

[11] T. Costlow, “Shifting into the active mode,” Automotive Engineering, 2007.

[12] F. Dudenhöffer, “Driver Assistance Systems – Market with a Fivefold
Potential (Fahrerassistenzsysteme – Markt mit fünffachem Potenzial, in
German),” Automobil Industrie, vol. 49, no. 3, pp. 74–75, 2004.

159

Bibliography

[13] G. Hanser, “Future market for driver assistance systems (Zukunftsmarkt
Assistenzsysteme, in German),” Automotive, no. 11-12, pp. 22–24, 2004.

[14] Verband Deutscher Wirtschaftsingenieure, “Intelligent cars of tomorrow (Die
intelligenten Autos von morgen, in German),” technologie & management, no.
7-8, pp. 20–22, 2005.

[15] B. Hedenetz, “Design of distributed fault-tolerant electronic architectures for
automobiles (Entwurf von verteilten fehlertoleranten Elektronikarchitekturen
in Kraftfahrzeugen, in German),” Ph.D. dissertation, University of Tübingen,
Germany, 2001.

[16] DaimlerChrysler, “Fatigue at the wheel: Mercedes-Benz developing warning
system for motorists,” 2006. Online:
http://www.daimlerchrysler.com.au/dc australia/
0-172-65707-1-659238-1-0-0-0-0-0-11386-65707-0-0-0-0-0-0-0.html

[17] R. Schöneburg, K.-H. Baumann, and R. Justen, “PRE-SAFE – The next step
in the enhancement of Vehicle Safety,” in Proceedings of the 18th International
Technical Conference on the Enhanced Safety of Vehicles. Nagoya, Japan,
National Highway Traffic Safety Administration, USA, May 2003.

[18] T. Dohmke, “Automotive networks – CAN, FlexRay and MOST (Bussysteme
im Automobil – CAN, FlexRay und MOST, in German),” Technical
University of Berlin, Technical Report, 2002. Online:
http://thomas.dohmke.de/dokumente/bussysteme.pdf

[19] G. Airy, “On the Regulator of the Clock-Work for Effecting Uniform
Movement of Equatorials,” Memoirs of the Royal Astronomical Society,
vol. 11, 1840.

[20] J. Maxwell, “On Governors,” in Proceedings of the Royal Society London,
vol. 16, London, Great Britain, 1868, pp. 270–283.

[21] M. Lyapunov, “Problème général de la stabilité du mouvement,” Annales de
la Faculté des Sciences de Toulouse, vol. 9, 1907.

[22] H. Black, “Stabilized Feedback Amplifiers,” Bell System Technical Journal,
vol. 13, 1934.

[23] H. Nyquist, “Regeneration Theory,” Bell System Technical Journal, vol. 11,
1932.

160

Bibliography

[24] H. Bode, “Feedback Amplifier Design,” Bell System Technical Journal,
vol. 19, 1940.

[25] N. Minorsky, “Directional Stability and Automatically Steered Bodies,”
Journal of the American Society of Naval Engineers, vol. 34, 1922.

[26] J. Ziegler and N. Nichols, “Optimum settings for automatic controllers,”
Transactions of the ASME, vol. 62, pp. 759–768, 1942.

[27] W. Evans, “Graphical Analysis of Control Systems,” Transactions of the
AIEE, vol. 67, 1948.

[28] R. Kalman and J. Bertram, “Control System Analysis and Design via the
Second Method of Lyapunov,” ASME Journal of Basic Engineering, vol. 82,
1960.

[29] J. Ragazzini and L. Zadeh, “The Analysis of Sampled-Data Systems,”
Transactions of the AIEE, vol. 71, no. 2, 1952.

[30] K. Aström, Introduction to Stochastic Control Theory. Academic Press, 1970.

[31] H. Rosenbrock, Computer-Aided Control System Design. Academic Press,
1974.

[32] A. MacFarlane and I. Postlethwaite, “The Generalized Nyquist Stability
Criterion and Multivariable Root Loci,” International Journal of Control,
vol. 25, 1977.

[33] J. Doyle and G. Stein, “Multivariable Feedback Design: Concepts for a
Classical/Modern Synthesis,” IEEE Transactions on Automatic Control,
vol. 26, no. 2, 1981.

[34] K. Dutton, S. Thompson, and B. Barraclough, The Art of Control
Engineering. Addison-Wesley, 1997.

[35] O. Föllinger, Control engineerung (Regelungstechnik, in German). Hüthig,
1994.

[36] J. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory.
Macmillan Publishing, 1997.

[37] K. Aström, “Control System Design,” 2002. Online: http:
//www.cds.caltech.edu/∼murray/courses/cds101/fa02/caltech/astrom.html

161

Bibliography

[38] L. Ljung, System Identification. Prentice Hall, 1999.

[39] F. Lewis, Applied Optimal Control and Estimation. Prentice-Hall, 1992.

[40] T. Klein, B. Rumpe, and B. Schätz, Eds., Model-Based Development of
Embedded Systems (Modellbasierte Entwicklung eingebetteter Systeme, in
German). Wadern, Germany, Technical University of Braunschweig, 2005.

[41] H. Giese, B. Rumpe, and B. Schätz, Eds., Model-Based Development of
Embedded Systems II (Modellbasierte Entwicklung eingebetteter Systeme II, in
German). Wadern, Germany, Technical University of Braunschweig, 2006.

[42] M. Conrad, H. Giese, B. Rumpe, and B. Schätz, Eds., Model-Based
Development of Embedded Systems III (Modellbasierte Entwicklung
eingebetteter Systeme III, in German). Wadern, Germany, Technical
University of Braunschweig, 2007.

[43] B. Schätz, A. Pretschner, F. Huber, and J. Philipps, “Model-Based
Development of Embedded Systems,” Technical University of Munich,
Technical Report, 2002.

[44] A. Rau, “Model-based Development of Embedded Automotive Control
Systems,” Ph.D. dissertation, University of Tübingen, Germany, 2002.

[45] The Mathworks, “Simulink,” 2007. Online:
http://www.mathworks.com/products/simulink/

[46] W. W. Royce, “Managing the development of large software systems:
Concepts and techniques,” in Proceedings of the IEEE WESCON. Los
Angeles, CA, USA, IEEE, August 1970, pp. 1–9.

[47] B. W. Boehm, “A spiral model of software development and enhancement,”
Computer, pp. 62–72, 1988.

[48] A. Bröhl and W. Dröschel, The V-model: The Standard for Software
Development (Das V-Modell: Der Standard für die Software-Entwicklung, in
German). Oldenbourg, 1993.

[49] A. Spillner, “From V-Model to W-Model – Establishing the Whole Test
Process,” in Proceedings of the 4th Conference on Quality Engineering in
Software Technology, Nuremberg, Germany, September 2000, pp. 222–231.

162

Bibliography

[50] B. Broekman and E. Notenboom, Testing Embedded Software.
Addison-Wesley, 2003.

[51] K. Beck, “Embracing Change with Extreme Programming,” Computer,
vol. 32, no. 10, pp. 70–77, 1999.

[52] K. Beck, Extreme Programming Explained: Embrace Change. Addison-Wesley,
2000.

[53] G. Keefer, “Extreme Programming Considered Harmful for Reliable Software
Development,” 2002. Online: http://www.stickyminds.com/getfile.asp?ot=
XML&id=3248&fn=XDD3248filelistfilename1%2Epdf

[54] K. Beck, “Aim, fire [test-first coding],” IEEE Software, vol. 18, pp. 87–89,
2001.

[55] D. North, “Test-Driven Development is not about Testing,” 2003. Online:
http://www.sys-con.com/story/?storyid=37795

[56] B. George and L. Williams, “An Initial Investigation of Test-Driven
Development in Industry,” in ACM Symposium on Applied Computing,
Madrid, Spain, March 2002.

[57] B. George, “Analysis and Quantification of Test Driven Development
Approach,” Master’s thesis, North Carolina State University, North Carolina,
USA, 2002.

[58] E. Maximilien and L. Williams, “Assessing test-driven development at IBM,”
in Proceedings of the 25th International Conference on Software Engineering
(ICSE ’03). Portland, OR, USA, IEEE, May 2003, pp. 564–569.

[59] D. Janzen and H. Saiedian, “A leveled examination of test-driven development
acceptance,” Proceedings of the 29th International Conference on Software
Engineering (ICSE’07), pp. 719–722, May 2007.

[60] D. Janzen and H. Saiedian, “Does test-driven development really improve
software design quality?” IEEE Software, vol. 25, no. 2, pp. 77–84, 2008.

[61] L. Williams, E. Maximilien, and M. Vouk, “Test-driven development as a
defect-reduction practice,” in Proceedings of the 14th International
Symposium on Software Reliability Engineering. Denver, CO, USA, IEEE,
November 2003, pp. 34–45.

163

Bibliography

[62] D. Janzen and H. Saiedian, “Test-Driven Development: Concepts, Taxonomy,
and Future Direction,” IEEE Computer, vol. 38, no. 9, pp. 43–50, 2005.

[63] H. Erdogmus, M. Morisio, and M. Torchiano, “On the effectiveness of the
test-first approach to programming,” IEEE Transactions on Software
Engineering, vol. 31, no. 3, pp. 226–237, 2005.

[64] A. Geras, M. Smith, and J. Miller, “A Prototype Empirical Evaluation of Test
Driven Development,” in Proceedings of the 10th IEEE International
Symposium on Software Metrics. Chicago, IL, USA, IEEE Computer Society,
September 2004, pp. 405–416.

[65] B. George and L. Williams, “A structured experiment of test-driven
development,” Information and Software Technology, vol. 46, no. 5, pp.
337–342, 2004.

[66] K. Beck, Test-Driven Development: By Example. Addison-Wesley, 2002.

[67] P. Hamill, Unit Test Frameworks. O’Reilly, 2004.

[68] G. Meszaros, XUnit Test Patterns. Addison-Wesley, 2007.

[69] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, and I. Fiksdahl-King,
A Pattern Language – Towns Buildings Construction. Oxford University
Press, 1977.

[70] C. Alexander, The Timeless Way of Building. Oxford University Press, 1979.

[71] K. Beck and W. Cunningham, “Using Pattern Languages for Object-Oriented
Programs,” in Proceedings of OOPSLA ’87, Orlando, FL, USA, October 1987.

[72] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns –
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[73] M. Kircher and M. Völter, “Software Patterns,” IEEE Software, vol. 24, no. 4,
pp. 28–30, 2007.

[74] R. Sanz and J. Zalewski, “Pattern-based control systems engineering,” IEEE
Control Systems Magazine, vol. 23, no. 3, pp. 43–60, 2003.

[75] M. J. Pont, Patterns for time-triggered embedded systems: Building reliable
applications with the 8051 family of microcontrollers. Addison-Wesley, 2001.

164

Bibliography

[76] M. J. Pont and M. P. Banner, “Designing embedded systems using patterns: a
case study,” Journal of Systems and Software, vol. 71, no. 3, pp. 201–213,
2004.

[77] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture Volume 2: Patterns for Concurrent and Networked
Objects. Wiley, 2000.

[78] M. Kirchner, P. Jain, D. Schmidt, and A. Corsaro, “Patterns and pattern
languages for oo distributed real-time and embedded systems,” in Proceedings
of OOPSLA ’01, Tampa Bay, FL, USA, October 2001.

[79] M. Nelson, “A design pattern for autonomous vehicle software control
architectures,” in Proceedings of the 23rd International Computer Software
and Applications Conference (COMPSAC ’99), Phoenix, AZ, USA, October
1999, pp. 172–177.

[80] B. Selic, “An architectural pattern for real-time control software,” in
Proceedings of the 3rd Annual Pattern Languages of Programming Conference,
Urbana-Champaign, IL, USA, September 1996.

[81] J. Zalewski, “Real-Time Software Design Patterns,” in Proceedings of the 9th
Polish Conference on Real-Time Systems, Ustron, Poland, September 2002,
pp. 23–42.

[82] R. McKegney and D. T. Shepard, “Design patterns and real-time
object-oriented modeling (poster session),” in Proceedings of OOPSLA ’00.
Minneapolis, MN, USA, ACM Press, October 2000, pp. 55–56.

[83] D. Lea, “Design Patterns for Avionics Control Systems,” State University of
New York, Technical Report, 1994.

[84] T. Dohmke and H. Gollee, “Test-Driven Development of a PID Controller,”
IEEE Software, vol. 24, no. 3, pp. 44–50, 2007.

[85] B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, and A. Spieker, “Method
for Identifying Critical Collision Situations from the Rear,” Patent
WO/2006/040 032. German Patent Office (Deutsches Patent- und
Markenamt), 2006.

[86] B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, and A. Spieker, “Method
for Identifying Rear End Collision-Critical Situations in Lines of Traffic,”

165

Bibliography

Patent WO/2006/048 148. German Patent Office (Deutsches Patent- und
Markenamt), 2006.

[87] B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, and A. Spieker, “Method
and Vehicle Assistance System for Preventing Collisions or Reducing the
Severity of a Vehicle Collision,” Patent WO/2006/053 652. German Patent
Office (Deutsches Patent- und Markenamt), 2006.

[88] B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, and A. Spieker, “Method
for Operating a Collision Avoidance System of a Vehicle and Associated
Collision Avoidance System,” Patent WO/2006/053 654. German Patent
Office (Deutsches Patent- und Markenamt), 2006.

[89] B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, and A. Spieker, “Method
for Operating a Braking Assistance System in a Vehicle,” Patent
WO/2006/053 667. German Patent Office (Deutsches Patent- und
Markenamt), 2006.

[90] B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, and A. Spieker, “Method
for Avoiding a Collision or for Reducing the Consequences of a Collision and
Device for Carrying Out Said Method,” Patent WO/2006/053 655. German
Patent Office (Deutsches Patent- und Markenamt), 2006.

[91] B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, and A. Spieker, “Method
for Adapting Intervention Parameters of an Assistance System of a Vehicle,”
Patent WO/2006/061 106. German Patent Office (Deutsches Patent- und
Markenamt), 2006.

[92] B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, and A. Spieker, “Method
for Operating a Collision Avoidance System or Collision Sequence Reducing
System of a Vehicle, and Collision Avoidance System or Collision Sequence
Reducing System,” Patent WO/2006/072 342. German Patent Office
(Deutsches Patent- und Markenamt), 2006.

[93] B. Danner, T. Dohmke, J. Hillenbrand, V. Schmid, and A. Spieker, “Method
for Operating a System for Avoiding Collisions or for Reducing the
Consequences of a Collision for a Vehicle and a Corresponding System for
Avoiding Collisions or for Reducing the Consequences of a Collision,” Patent
WO/2006/097 467. German Patent Office (Deutsches Patent- und
Markenamt), 2006.

166

Bibliography

[94] T. Dohmke and V. Schmid, “Method for Operating an Assist System for a
Vehicle and Park Assist System,” Patent WO/2006/117 064. German Patent
Office (Deutsches Patent- und Markenamt), 2006.

[95] A. Fuggetta, “A Classification of CASE Technology,” Computer, vol. 26,
no. 12, pp. 25–38, 1993.

[96] D. C. Schmidt, “Model-Driven Engineering,” Computer, vol. 39, no. 2, pp.
25–31, 2006.

[97] T. Bruckhaus, N. H. Madhavji, I. Janssen, and J. Henshaw, “The Impact of
Tools on Software Productivity,” IEEE Software, vol. 13, no. 5, pp. 29–38,
1996.

[98] C. Jones, Applied Software Measurement. MacGraw Hill, 1997.

[99] International Electrotechnical Commission (IEC), IEC 61131: Programmable
controllers – Part 3: Programming languages, Standard, 2003.

[100] Manufacturer Supplier Relationship (MSR), Standardization of library blocks
for graphical model exchange, Standard, 2001.

[101] I. Nassi and B. Shneiderman, “Flowchart techniques for structured
programming,” SIGPLAN Notices, vol. 8, no. 8, pp. 12–26, 1973.

[102] IBM, “Flowcharting Techniques,” Technical Report, 1969.

[103] International Organization for Standardization (ISO), ISO 5807: Information
processing – Documentation symbols and conventions for data, program and
system flowcharts, program network charts and system resources charts,
Standard, 1985.

[104] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of
Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[105] B. Meyer, “Reusability: The Case for Object-Oriented Design,” IEEE
Software, vol. 4, no. 2, pp. 50–64, 1987.

[106] D. C. Rine and B. Bhargava, “Object-Oriented Computing,” Computer,
vol. 25, no. 10, pp. 6–10, 1992.

[107] International Organization for Standardization (ISO), ISO/IEC 19501:
Unified Modeling Language (UML) Version 1.4.2, Standard, 2005.

167

Bibliography

[108] Object Management Group (OMG), Unified Modelling Language (UML)
Version 2.0, Standard, 2005.

[109] Luqi and W. Royce, “Status Report: Computer-Aided Prototyping,” IEEE
Software, vol. 9, no. 6, pp. 77–81, 1992.

[110] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema,
“Developing Applications Using Model-Driven Design Environments,”
Computer, vol. 39, no. 2, pp. 33–40, 2006.

[111] A. Pretschner, “Model-based testing,” in Proceedings of the 27th International
Conference on Software Engineering (ICSE ’05). St. Louis, MO, USA, IEEE
Computer Society, May 2005, pp. 722–723.

[112] W. Grieskamp, “Multi-paradigmatic Model-Based Testing,” in First
Combined International Workshops on Formal Approaches to Software
Testing and Runtime Verification, Seattle, WA, USA, August 2006, pp. 1–19.

[113] D. Gluch and J. Brockway, “An Introduction to Software Engineering
Practices Using Model-Based Verification,” Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Technical Report, 1999.

[114] B. Schätz, T. Hain, F. Houdek, W. Prenninger, M. Rappl, J. Romberg,
O. Slotosch, M. Stecker, and A. Wisspeintner, “CASE Tools for Embedded
Systems,” Technical University of Munich, Technical Report, 2003.

[115] S. Toeppe, D. Bostic, S. Ranville, and K. Rzemien, “Automatic Code
Generation Requirements for Production Automotive Powertrain
Applications,” in Proceedings of the IEEE International Symposium on
Computer Aided Control System Design. Kohala Coast, HI, USA, IEEE,
August 1999, pp. 200–206.

[116] P. Hansen, “Model-Based Tools Update,” The Hansen Report on Automotive
Electronic, vol. 14, no. 5, 2001.

[117] C. Moler, “The Growth of MATLAB and The MathWorks over Two
Decades,” 2006. Online: http://www.mathworks.com/company/newsletters/
news notes/clevescorner/jan06.pdf

[118] The Mathworks, “MATLAB,” 2007. Online:
http://www.mathworks.com/products/matlab/

168

Bibliography

[119] T. Riemer, G. Baumann, P. Kappelmann, D. Hötzer, and A. Kröhnert,
“Evaluation of Code-generators based on Simulink models,” in Proceedings of
6th Stuttgart International Symposium on Automotive and Engine Technology,
Stuttgart, Germany, February 2004.

[120] R. Hammarström and J. Nilsson, “A Comparison of Three Code Generators
for Models Created in Simulink,” Master’s thesis, Chalmers Univerity of
Technology, Göteborg, 2006.

[121] K. Beck, “Simple Smalltalk testing,” The Smalltalk Report, vol. 4, no. 2, pp.
16–18, 1994.

[122] K. Beck and E. Gamma, “Test Infected: Programmers Love Writing Tests,”
The Java Report, vol. 3, no. 7, pp. 37–50, 1998.

[123] T. Dohmke, “mlUnit: MATLAB Unit Testing,” 2005. Online:
http://mlunit.dohmke.de/

[124] M. Beine, M. Conrad, M. Eschmann, I. Fey, K. Lamberg, and R. Ottenbach,
“Model-Based Testing of Embedded Automotive Software using Mtest,” in
Proceedings of the SAE World Congress, Detroit, MI, USA, March 2004.

[125] dSPACE, “MTest,” 2007. Online:
http://www.dspace.ltd.uk/ww/en/ltd/home/products/sw/expsoft/mtest.cfm

[126] The Mathworks, “SystemTest,” 2007. Online:
http://www.mathworks.com/products/systemtest/

[127] R. Systems, “Model-based Testing and Validation of Control Software with
Reactis,” Technical Report, 2003.

[128] Reactive Systems, “Reactive Tester,” 2007. Online:
http://www.reactive-systems.com/tester.msp

[129] M. Blackburn and R. Busser, “T-VEC: a tool for developing critical systems,”
in Proceedings of 11th Annual Conference on Computer Assurance
(COMPASS ’96), Gaithersburg, MD, USA, June 1996, pp. 237–249.

[130] T-VEC, “Tester for Simulink,” 2007. Online:
http://www.t-vec.com/solutions/simulink.php

[131] Y. Zhang, “Test-Driven Modeling for Model-Driven Development,” IEEE
Software, vol. 21, no. 5, pp. 80–86, 2004.

169

Bibliography

[132] T. Dohmke, “The slUnit Testing Framework,” 2006. Online:
http://slunit.dohmke.de

[133] K. Meffert, “JUnit 4 – New version supporting Java 5 features,” Java
Magazin, no. 5, 2006.

[134] The Mathworks, “Simulink V6.0,” 2004. Online: http://www.mathworks.
com/access/helpdesk/help/toolbox/simulink/rn/bqmg7gf-1.html

[135] MathWorks Automotive Advisory Board, “Controller Style Guidelines for
Production Intent Development Using MATLAB, Simulink, and Stateflow,”
Technical Report, 2001.

[136] IEEE, Standard Computer Dictionary, Standard 610, 1990.

[137] G. Myers, The Art of Software Testing. John Wiley and Sons, 1979.

[138] W. C. Hetzel, The Complete Guide to Software Testing. John Wiley and Sons,
1984.

[139] M. Hutcheson, Software Testing Fundamentals. Wiley, 2003.

[140] M. Grochtmann and K. Grimm, “Classification Trees for Partition Testing,”
Software Testing, Verification & Reliability, vol. 3, no. 2, pp. 63–82, 1993.

[141] M. Grochtmann, K. Grimm, and J. Wegener, “Tool-Supported Test Case
Design for Black-Box Testing by Means of the Classification-Tree Editor,” in
Proceedings of the 1st European International Conference on Software Testing,
Analysis and Review (EuroSTAR ’93), London, Great Britain, October 1993,
pp. 169–176.

[142] J. Wegener and M. Grochtmann, “Computer-aided test case design for
functional testing with the classification-tree editor (Werkzeugunterstützte
Testfallermittlung für den funktionalen Test mit dem
Klassifikationsbaum-Editor CTE, in German),” in Proceedings of the
GI-Symposium Softwaretechnik 93, Dortmund, Germany, November 1993.

[143] M. Grochtmann, “Test Case Design using Classification Trees,” in Proceedings
of the 3rd International Conference on Software Testing, Analysis and Review
(STAR ’94), Washington, DC, USA, May 1994.

[144] M. Grochtmann, J. Wegener, and K. Grimm, “Test Case Design Using
Classification Trees and the Classification-Tree Editor CTE,” in Proceedings

170

Bibliography

of the 8th International Software Quality Week, San Francisco, CA, USA, May
1995, pp. 1–11.

[145] E. Lehmann and J. Wegener, “Test Case Design by Means of the CTE XL,”
in Proceedings of the 8th European International Conference on Software
Testing, Analysis and Review (EuroSTAR ’00), Kopenhagen, Denmark,
December 2000.

[146] H. Sthamer, A. Baresel, and J. Wegener, “Evolutionary Testing of Embedded
Systems,” in Proceedings of the 14th International Internet and Software
Quality Week, San Francisco, USA, May 2001.

[147] J. Wegener and O. Bühler, “Evaluation of Different Fitness Functions for the
Evolutionary Testing of an Autonomous Parking System,” in Proceedings of
the Genetic and Evolutionary Computation Conference. Seattle, WA, USA,
Springer, June 2004.

[148] O. Bühler and J. Wegener, “Evolutionary Functional Testing of a Vehicle
Brake Assistant System,” in Proceedings of the 6th Metaheuristics
International Conference, Vienna, Austria, August 2005.

[149] H. Zhu, P. Hall, and H. May, “Software unit test coverage and adequacy,”
ACM Computing Surveys, vol. 29, no. 4, pp. 336–427, 1997.

[150] S. Vilkomir, K. Kapoor, and J. Bowen, “Tolerance of control-flow testing
criteria,” in Proceedings of the 27th Annual International Computer Software
and Applications Conference (COMPSAC ’03), Dallas, TX, USA, November
2003.

[151] R. H. Cobb and H. D. Mills, “Engineering Software Under Statistical Quality
Control,” IEEE Software, vol. 7, no. 6, pp. 44–54, 1990.

[152] H. L. Guen and T. Thelin, “Practical Experiences with Statistical Usage
Testing,” in Proceedings of the 11th Annual International Workshop on
Software Technology and Engineering Practice. Amsterdam, The Netherlands,
IEEE Computer Society, September 2003, pp. 87–93.

[153] J. C. Huang, “An Approach to Program Testing,” ACM Computing Surveys,
vol. 7, no. 3, pp. 113–128, 1975.

[154] W. E. Howden, “Methodology for the Generation of Program Test Data,”
IEEE Transactions on Computers, vol. 24, no. 5, pp. 554–560, 1975.

171

Bibliography

[155] M. Pol, R. Teunissen, and E. V. Veenendaal, Software Testing, a Guide to the
TMap Approach. Addison-Wesley, 2002.

[156] P. Herman, “A data flow analysis approach to program testing,” The
Austrahlian Computer Journal, vol. 8, no. 3, pp. 92–96, 1976.

[157] S. Ntafos, “On required element testing,” IEEE Transactions on Software
Engineering, vol. 10, no. 6, pp. 795–803, 1984.

[158] J. Laski, “On data flow guided program testing,” ACM SIGPLAN Notices,
vol. 17, no. 9, pp. 62–71, 1982.

[159] J. W. Laski and B. Korel, “A Data Flow Oriented Program Testing Strategy,”
IEEE Transactions on Software Engineering, vol. 9, no. 3, pp. 347–354, 1983.

[160] R. Floyd, “Assigning meanings to programs,” in Proceedings of Symposia in
Applied Mathematics, vol. 19. Providence, RI, USA, American Mathematical
Society, Providence, R.I., 1967, pp. 19–32.

[161] C. Hoare, “An axiomatic basis for computer programming,” Communications
of the ACM, vol. 12, no. 10, pp. 576–580, 1968.

[162] B. Meyer, “Applying ‘Design by Contract’.” IEEE Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[163] D. S. Rosenblum, “Towards a method of programming with assertions,” in
Proceedings of the 14th International Conference on Software Engineering
(ICSE ’92). Melbourne, Australia, ACM Press, May 1992, pp. 92–104.

[164] D. S. Rosenblum, “A practical approach to programming with assertions,”
IEEE Transactions on Software Engineering, vol. 21, no. 1, pp. 19–31, 1995.

[165] J. M. Voas, “How Assertions Can Increase Test Effectivenes,” IEEE Software,
vol. 14, no. 2, pp. 118–119,122, 1997.

[166] M. Conrad and E. Sax, “Mixed Signals,” in Testing Embedded Software,
B. Broekman and E. Notenboom, Eds. Addison-Wesley, 2003, pp. 229–249.

[167] J. Boensch, “Implementation of Functions for Test and Diagnostics of Chassis
Control Systems (Implementierung von Test- und Diagnosefunktionen für
Fahrwerksteuergeräte, in German),” Master’s thesis, University of Tübingen,
Germany, 1999.

172

Bibliography

[168] A. Rau, “Using Assertions and Watchdogs in a Model-Based Development
Process (Verwendung von Zusicherungen in einem modellbasierten
Entwicklungsprozess, in German),” it+ti – Informationstechnik und
Technische Informatik, 2002.

[169] H. Wiesbrock, M. Conrad, I. Fey, and H. Pohlheim, “A New Automated
Evaluation Method for Regression and Back-to-back Tests (Ein neues
automatisiertes Auswerteverfahren für Regressions- und Back-to-Back-Tests
eingebetteter Regelsysteme, in German),” Softwaretechnik-Trends, vol. 22,
no. 3, 2002.

[170] M. Conrad, I. Fey, and H. Pohlheim, “Automated Test Evaluation for ECU
Software (Automatisierung der Testauswertung für Steuergerätesoftware, in
German),” in Proceedings of the Electronic Vehicle Systems Conference,
Baden-Baden, Germany, September 2003, pp. 299–315.

[171] C. Ritter, J. Willibald, E. Sax, and K. Müller-Glaser, “Accompanying the
Design Process by Tests for the Model-based Development of Embedded
Systems (Entwurfsbegleitender Test für die modellbasierte Entwicklung
eingebetteter systeme, in German),” in Proceedings of the 13th Workshop Test
Methods and Reliability of Circuit and Systems, Miesbach, Germany, February
2001.

[172] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme programming installed.
Addison-Wesley, 2001.

[173] L. Crispin and T. House, Testing Extreme Programming. Addison-Wesley,
2002.

[174] F. Fraikin, M. Hamburg, S. Jungmayr, T. Leonhardt, A. Schönknecht,
A. Spillner, and M. Winter, “The Illusion of Reliability with the Green Bar
(Die Trügerische Sicherheit des Grünen Balkens, in German),”
OBJEKTspektrum, no. 1, 2004.

[175] International Organization for Standardization (ISO), ISO 3888-1: Passenger
cars – Test track for a severe lane-change manoeuvre – Part 1: Double
lane-change, Standard, 1999.

[176] International Organization for Standardization (ISO), ISO 3888-2: Passenger
cars – Test track for a severe lane-change manoeuvre – Part 2: Obstacle
avoidance, Standard, 2002.

173

Bibliography

[177] R. Johnson and W. Opdyke, “Refactoring: An aid in designing application
frameworks and evolving object-oriented systems,” in Proceedings of the
Symposion on Object-Oriented Programming Emphasizing Practical
Applications, Poughkeepsie, NY, USA, September 1990.

[178] W. Opdyke, “Refactoring Object-Oriented Frameworks,” Ph.D. dissertation,
University of Illinois, USA, 1992.

[179] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[180] H.-E. Schurk and H. Fournell, “Onboard diagnosis of electronics, a
contribution to vehicle reliability,” in Proceedings of the 37th IEEE Vehicular
Technology Conference, vol. 37, Tampa, FL, USA, June 1987, pp. 343–350.

[181] B. Lammen, “Automatic Collision Avoidance for Automobiles (Automatische
Kollisionsvermeidung für Kfz, in German),” Ph.D. dissertation, University of
Dortmund, Germany, 1993.

[182] U. Lages, Research of Active Accident Avoidance (Untersuchungen zur aktiven
Unfallvermeidung, in German). VDI Verlag, 2000.

[183] F. Mildner, “Research into the Detection and Prevention of Automotive
Collisions (Untersuchungen zur Erkennung und Vermeidung von Unfällen für
Kraftfahrzeuge, in German),” Ph.D. dissertation, University of the German
Federal Armed Forces, Hamburg, 2004.

[184] O. Ararat, E. Kural, and B. Güvenc, “Development of a Collision Warning
System for Adaptive Cruise Control Vehicles Using a Comparison Analysis of
Recent Algorithms,” in Proceedings of the Intelligent Vehicles Symposium,
Instanbul, Turkey, June 2006, pp. 194–199.

[185] B. Krogh, “A Generalized Potential Field Approach to Obstacle Avoidance,”
Society of Manufacturing Engineers, Michigan, USA, Technical Report, 1984.

[186] Telelogic, “DOORS,” 2007. Online:
http://www.telelogic.com/products/doors/doors/index.cfm

[187] W. Kiesewetter, W. Klinkner, W. Reichelt, and M. Steiner, “The New Brake
Assistance of Mercedez Benz: Active Driver Aid in Emergency
Circumstances,” Automobiltechnische Zeitschrift ATZ, vol. 99, no. 6, pp.
330–339, 1997.

174

Bibliography

[188] V. Schmid, W. Bernzen, J. Schmitt, and D. Reutter, “A new dimension of
Active and Passive Safety with PRE-SAFE and Brake Assist BAS PLUS in
the new Mercedes-Benz S-Class,” in Proceeding of the Electronic Vehicle
Systems Conference. Baden-Baden, Germany, VDI, October 2005, pp.
215–224.

[189] J. Hillenbrand, K. Kroschel, and V. Schmid, “Situation assessment algorithm
for a collision prevention assistant,” in Proceedings of the Intelligent Vehicles
Symposium, Las Vegas, NV, USA, June 2005, pp. 459–465.

[190] P. Fancher and Z. Bareket, “Evaluating Headway Control Using Range Versus
Range-Rate Relationships,” Vehicle System Dynamics, vol. 23, pp. 575–596,
1994.

[191] B. Schiller, V. Morellas, and M. Donath, “Collision Avoidance for Highway
Vehicles Using the Virtual Bumper Controller,” in Proceedings of the IEEE
International Conference on Intelligent Vehicles, Stuttgart, Germany, October
1998, pp. 149–155.

[192] V. L. Bageshwar, W. L. Garrad, and R. Rajamani, “Model Predictive Control
of Transitional Maneuvers for Adaptive Cruise Control Vehicles,” IEEE
Transactions on Vehicular Technology, vol. 53, no. 5, pp. 1573–1585, 2004.

[193] R. Caudill and W. Garrard, “Vehicle-follower longitudinal control for
automated transit vehicles,” Journal of Dynamic Systems, Measurement, and
Control, vol. 99, pp. 241–248, 1977.

[194] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of
Dynamic Systems. Addison-Wesley, 2002.

[195] W. L. Brogan, Modern control theory. Prentice Hall, 1991.

[196] A. E. Bryson and Y.-C. Ho, Applied optimal control. Ginn, 1969.

[197] G. Krasner and S. Pope, “A cookbook for using the model-view controller
user interface paradigm in Smalltalk-80,” Journal of Object-Oriented
Programming, vol. 1, no. 3, pp. 26–49, 1988.

175

