89,558 research outputs found

    E-logistics of agribusiness organisations

    Get PDF
    Logistics is one of the most important agribusiness functions due to the idiosyncrasy of food products and the structure of food supply chain. Companies in the food sector typically operate with poor production forecasting, inefficient inventory management, lack of coordination with supply partners. Further, markets are characterised by stern competition, increasing consumer demands and stringent regulation for food quality and safety. Large agribusiness corporations have already turned to e-logistics solutions as a means to sustain competitive advantage and meet consumer demands. There are four types of e-logistics applications: (a) Vertical alliances where supply partners forge long-term strategic alliances based on electronic sharing of critical logistics information such as sales forecasts and inventory volume. Vertical alliances often apply supply chain management (SCM) which is concerned with the relationship between a company and its suppliers and customers. The prime characteristic of SCM is interorganizational coordination: agribusiness companies working jointly with their customers and suppliers to integrate activities along the supply chain to effectively supply food products to customers. E-logistics solutions engender the systematic integration among supply partners by allowing more efficient and automatic information flow. (b) e-tailing, in which retailers give consumers the ability to order food such as groceries from home electronically i.e. using the Internet and the subsequent delivery of those ordered goods at home. (c) Efficient Foodservice Response (EFR), which is a strategy designed to enable foodservice industry to achieve profitable growth by looking at ways to save money for each level of the supply chain by eliminating inefficient practices. EFR provides solutions to common logistics problems, such as transactional inefficiency, inefficient plant scheduling, out-of-stocks, and expedited transportation. (d) Contracting, a means of coordinating procurement of food, beverages and their associated supplies. Many markets and supply chains in agriculture are buyer-driven where the buyers in the market tend to set prices and terms of trade. Those terms can include the use of electronic means of communication to support automatic replenishment of goods, management of supply and inventory. The results of the current applications of e-logistics in food sector are encouraging for Greek agribusiness. Companies need to become aware of and evaluate the value-added by those applications which are a sustainable competitive advantage, optimisation of supply chain flows, and meeting consumer demands and food safety regulations. E-business diffusion has shown that typically first-movers gain a significant competitive advantage and the rest companies either eventually adopt the new systems or see a significant decline in their trading partners and perish. E-logistics solutions typically require huge investments in hardware and software and skilled personnel, which is an overt barrier for most Greek companies. Large companies typically are first-movers but small and medium enterprises (SMEs) need institutional support in order to become aware that e-logistics systems can be fruitful for them as well

    Size Matters: Microservices Research and Applications

    Full text link
    In this chapter we offer an overview of microservices providing the introductory information that a reader should know before continuing reading this book. We introduce the idea of microservices and we discuss some of the current research challenges and real-life software applications where the microservice paradigm play a key role. We have identified a set of areas where both researcher and developer can propose new ideas and technical solutions.Comment: arXiv admin note: text overlap with arXiv:1706.0735

    Numerical validation of the incremental launching method of a steel bridge through a small-scale experimental study

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s40799-016-0037-5This article presents an experimental and a numerical study of an incremental launching process of a steel bridge. The former is deployed in a scale-reduced laboratory,whereas the latter is performed using the finite elementmethod. The numerical simulation is based upon realistic transient boundary conditions and accurately reproduces the elastic response of the steel bridge during launching. This numerical approach is validated experimentally with the scale-reduced test performed at the laboratory. The properly validated numerical model is subsequently systematically employed as a simulation tool of the process. The proposed simulation protocol might be useful for design and monitoring purposes of steel bridges to be launched. Results concerning strains, stresses, and displacements might be inferred from the model and thus compared to field measurements obtained in situ. The conditions presented at the end of the article are potentially useful for researchers and practice engineers alike.Peer ReviewedPostprint (author's final draft

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Development of TNB distribution network risk based asset replacement policy and guideline for medium voltage primary equipment

    Get PDF
    Asset Management (AM) is the systematic and coordinated activity of an organization to realize value from assets, through which an organization optimally and sustainably manages its assets and asset systems, their associated performance, risk and expenditures over their life cycle for the purpose of achieving its organizational strategic plan. An effective AM System enables TNB Distribution to establish and verify a holistic view of asset management throughout an asset’s whole life. It facilitates an optimal mixture of capital, operations, maintenance, resourcing, risks, performance and sustainability within a framework of good governance

    Automated Transit Networks (ATN): A Review of the State of the Industry and Prospects for the Future, MTI Report 12-31

    Get PDF
    The concept of Automated Transit Networks (ATN) - in which fully automated vehicles on exclusive, grade-separated guideways provide on-demand, primarily non-stop, origin-to-destination service over an area network – has been around since the 1950s. However, only a few systems are in current operation around the world. ATN does not appear “on the radar” of urban planners, transit professionals, or policy makers when it comes to designing solutions for current transit problems in urban areas. This study explains ATN technology, setting it in the larger context of Automated Guideway Transit (AGT); looks at the current status of ATN suppliers, the status of the ATN industry, and the prospects of a U.S.-based ATN industry; summarizes and organizes proceedings from the seven Podcar City conferences that have been held since 2006; documents the U.S./Sweden Memorandum of Understanding on Sustainable Transport; discusses how ATN could expand the coverage of existing transit systems; explains the opportunities and challenges in planning and funding ATN systems and approaches for procuring ATN systems; and concludes with a summary of the existing challenges and opportunities for ATN technology. The study is intended to be an informative tool for planners, urban designers, and those involved in public policy, especially for urban transit, to provide a reference for history and background on ATN, and to use for policy development and research

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service
    • …
    corecore