251,287 research outputs found

    Coopetition of software firms in Open source software ecosystems

    Get PDF
    Software firms participate in an ecosystem as a part of their innovation strategy to extend value creation beyond the firms boundary. Participation in an open and independent environment also implies the competition among firms with similar business models and targeted markets. Hence, firms need to consider potential opportunities and challenges upfront. This study explores how software firms interact with others in OSS ecosystems from a coopetition perspective. We performed a quantitative and qualitative analysis of three OSS projects. Finding shows that software firms emphasize the co-creation of common value and partly react to the potential competitiveness on OSS ecosystems. Six themes about coopetition were identified, including spanning gatekeepers, securing communication, open-core sourcing and filtering shared code. Our work contributes to software engineering research with a rich description of coopetition in OSS ecosystems. Moreover, we also come up with several implications for software firms in pursing a harmony participation in OSS ecosystems.Comment: This is the author's version of the work. Copyright owner's version can be accessed at https://link.springer.com/chapter/10.1007/978-3-319-69191-6_10, Coopetition of software firms in Open source software ecosystems, 8th ICSOB 2017, Essen, Germany (2017

    Sustainable Software Ecosystems for Open Science

    Full text link
    Sustainable software ecosystems are difficult to build, and require concerted effort, community norms and collaborations. In science it is especially important to establish communities in which faculty, staff, students and open-source professionals work together and treat software as a first-class product of scientific investigation-just as mathematics is treated in the physical sciences. Kitware has a rich history of establishing collaborative projects in the science, engineering and medical research fields, and continues to work on improving that model as new technologies and approaches become available. This approach closely follows and is enhanced by the movement towards practicing open, reproducible research in the sciences where data, source code, methodology and approach are all available so that complex experiments can be independently reproduced and verified.Comment: Workshop on Sustainable Software: Practices and Experiences, 4 pages, 3 figure

    Identification-method research for open-source software ecosystems

    Get PDF
    In recent years, open-source software (OSS) development has grown, with many developers around the world working on different OSS projects. A variety of open-source software ecosystems have emerged, for instance, GitHub, StackOverflow, and SourceForge. One of the most typical social-programming and code-hosting sites, GitHub, has amassed numerous open-source-software projects and developers in the same virtual collaboration platform. Since GitHub itself is a large open-source community, it hosts a collection of software projects that are developed together and coevolve. The great challenge here is how to identify the relationship between these projects, i.e., project relevance. Software-ecosystem identification is the basis of other studies in the ecosystem. Therefore, how to extract useful information in GitHub and identify software ecosystems is particularly important, and it is also a research area in symmetry. In this paper, a Topic-based Project Knowledge Metrics Framework (TPKMF) is proposed. By collecting the multisource dataset of an open-source ecosystem, project-relevance analysis of the open-source software is carried out on the basis of software-ecosystem identification. Then, we used our Spectral Clustering algorithm based on Core Project (CP-SC) to identify software-ecosystem projects and further identify software ecosystems. We verified that most software ecosystems usually contain a core software project, and most other projects are associated with it. Furthermore, we analyzed the characteristics of the ecosystem, and we also found that interactive information has greater impact on project relevance. Finally, we summarize the Topic-based Project Knowledge Metrics Framework

    Sustainable Software Ecosystems: Software Engineers, Domain Scientists, and Engineers Collaborating for Science

    Full text link
    The development of scientific software is often a partnership between domain scientists and scientific software engineers. It is especially important to embrace these collaborations when developing advanced scientific software, where sustainability, reproducibility, and extensibility are important. In the ideal case, as discussed in this manuscript, this brings together teams composed of the world's foremost scientific experts in a given field with seasoned software developers experienced in forming highly collaborative teams working on software to further scientific research.Comment: 4 pages, submission for WSSSPE

    Towards Ecology Inspired Software Engineering

    Get PDF
    Ecosystems are complex and dynamic systems. Over billions of years, they have developed advanced capabilities to provide stable functions, despite changes in their environment. In this paper, we argue that the laws of organization and development of ecosystems provide a solid and rich source of inspiration to lay the foundations for novel software construction paradigms that provide stability as much as openness.Comment: No. RR-7952 (2012
    • …
    corecore