3,025 research outputs found

    Compression-Responsive Photonic Crystals Based on Fluorine-Containing Polymers

    Get PDF
    Fluoropolymers represent a unique class of functional polymers due to their various interesting and important properties such as thermal stability, resistance toward chemicals, repellent behaviors, and their low refractive indices in comparison to other polymeric materials. Based on the latter optical property, fluoropolymers are particularly of interest for the preparation of photonic crystals for optical sensing application. Within the present study, photonic crystals were prepared based on core-interlayer-shell particles focusing on fluoropolymers. For particle assembly, the melt-shear organization technique was applied. The high order and refractive index contrast of the individual components of the colloidal crystal structure lead to remarkable reflection colors according to Bragg’s law of diffraction. Due to the special architecture of the particles, consisting of a soft core, a comparably hard interlayer, and again a soft shell, the resulting opal films were capable of changing their shape and domain sizes upon applied pressure, which was accompanied with a (reversible) change of the observed reflection colors as well. By the incorporation of adjustable amounts of UV cross-linking agents into the opal film and subsequent treatment with different UV irradiation times, stable and pressure-sensitive opal films were obtained. It is shown that the present strategy led to (i) pressure-sensitive opal films featuring reversibly switchable reflection colors and (ii) that opal films can be prepared, for which the written pattern—resulting from the compressed particles—could be fixed upon subsequent irradiation with UV light. The herein described novel fluoropolymer-containing photonic crystals, with their pressure-tunable reflection color, are promising candidates in the field of sensing devices and as potential candidates for anti-counterfeiting materials

    Evaluating the exit pressure method for measurements of normal stress difference at high shear rates

    Get PDF
    A challenge for polymer rheology is the reliable determination of shear dependent first normal stress difference (N-1 values) at high shear rates (>10 s(-1)). Here, we evaluate the correctness of the commonly applied exit pressure method focusing on polypropylene and high and low density polyethylene melts at 200 degrees C. It is demonstrated that the linear extrapolation of pressure values toward the die exit, which is a key step in the application of the exit pressure method, is affordable to determine N-1 values despite that these extrapolated exit pressure values are characterized by a relative deviation of 25%-40%. The validity of the exit pressure method is further supported by an excellent match with rheological data from the Laun rule (exponent close to 0.7) and a representative simulation of extrudate swelling data in the width and height direction, considering tuned parameters for the Phan-Thien-Tanner constitutive model. Also, the absence of a significant viscous heating effect near the die exit is highlighted based on numerical analysis. (c) 2020 The Society of Rheology

    On-line quality control in polymer processing using hyperspectral imaging

    Get PDF
    L’industrie du plastique se tourne de plus en plus vers les matériaux composites afin d’économiser de la matière et/ou d’utiliser des matières premières à moindres coûts, tout en conservant de bonnes propriétés. L’impressionnante adaptabilité des matériaux composites provient du fait que le manufacturier peut modifier le choix des matériaux utilisés, la proportion selon laquelle ils sont mélangés, ainsi que la méthode de mise en œuvre utilisée. La principale difficulté associée au développement de ces matériaux est l’hétérogénéité de composition ou de structure, qui entraîne généralement des défaillances mécaniques. La qualité des prototypes est normalement mesurée en laboratoire, à partir de tests destructifs et de méthodes nécessitant la préparation des échantillons. La mesure en-ligne de la qualité permettrait une rétroaction quasi-immédiate sur les conditions d’opération des équipements, en plus d’être directement utilisable pour le contrôle de la qualité dans une situation de production industrielle. L’objectif de la recherche proposée consiste à développer un outil de contrôle de qualité pour la qualité des matériaux plastiques de tout genre. Quelques sondes de type proche infrarouge ou ultrasons existent présentement pour la mesure de la composition en-ligne, mais celles-ci ne fournissent qu’une valeur ponctuelle à chaque acquisition. Ce type de méthode est donc mal adapté pour identifier la distribution des caractéristiques de surface de la pièce (i.e. homogénéité, orientation, dispersion). Afin d’atteindre cet objectif, un système d’imagerie hyperspectrale est proposé. À l’aide de cet appareil, il est possible de balayer la surface de la pièce et d’obtenir une image hyperspectrale, c’est-à-dire une image formée de l’intensité lumineuse à des centaines de longueurs d’onde et ce, pour chaque pixel de l’image. L’application de méthodes chimiométriques permettent ensuite d’extraire les caractéristiques spatiales et spectrales de l’échantillon présentes dans ces images. Finalement, les méthodes de régression multivariée permettent d’établir un modèle liant les caractéristiques identifiées aux propriétés de la pièce. La construction d’un modèle mathématique forme donc l’outil d’analyse en-ligne de la qualité des pièces qui peut également prédire et optimiser les conditions de fabrication.The use of plastic composite materials has been increasing in recent years in order to reduce the amount of material used and/or use more economic materials, all of which without compromising the properties. The impressive adaptability of these composite materials comes from the fact that the manufacturer can choose the raw materials, the proportion in which they are blended as well as the processing conditions. However, these materials tend to suffer from heterogeneous compositions and structures, which lead to mechanical weaknesses. Product quality is generally measured in the laboratory, using destructive tests often requiring extensive sample preparation. On-line quality control would allow near-immediate feedback on the operating conditions and may be transferrable to an industrial production context. The proposed research consists of developing an on-line quality control tool adaptable to plastic materials of all types. A number of infrared and ultrasound probes presently exist for on-line composition estimation, but only provide single-point values at each acquisition. These methods are therefore less adapted for identifying the spatial distribution of a sample’s surface characteristics (e.g. homogeneity, orientation, dispersion). In order to achieve this objective, a hyperspectral imaging system is proposed. Using this tool, it is possible to scan the surface of a sample and obtain a hyperspectral image, that is to say an image in which each pixel captures the light intensity at hundreds of wavelengths. Chemometrics methods can then be applied to this image in order to extract the relevant spatial and spectral features. Finally, multivariate regression methods are used to build a model between these features and the properties of the sample. This mathematical model forms the backbone of an on-line quality assessment tool used to predict and optimize the operating conditions under which the samples are processed

    Electrical capability of 3D printed unpoled polyvinylidene fluoride (PVDF)/thermoplastic polyurethane (TPU) sensors combined with carbon black and barium titanate

    Get PDF
    The development of three-dimensional (3D) printed sensors attracts high interest from the smart electronic industry owing to the significant geometric freedom allowed by the printing process and the potential for bespoke composite feedstocks being imbued with specific material properties. In particular, feedstock for material extrusion (MEX) additive manufacturing by fused filament fabrication can be provided with piezoelectricity and electrical conductivity. However, piezoelectricity often requires electrical poling for activation. In this study, a candidate material containing thermoplastic polyurethane (TPU) and carbon black (CB) with conductive and flexible properties is incorporated with piezoelectric elements like polyvinylidene fluoride (PVDF) and barium titanate (BaTiO3) to assess its suitability for sensor applications without electrical poling. Texturing the surface of BaTiO3 particles and adding tetraphenylphosphonium chloride (TPPC) to the composite are evaluated as non-poling treatments to improve the sensor response. It was found that TPU and PVDF produced segregated domain structures within the printed sensors that aligned along the printing direction. Due to the effect of this preferential orientation combined with the presence of raster-raster interfaces, printed sensors exhibited significant electrical anisotropy registering greater electrical waveforms when the electrodes aligned parallel to the raster direction. An improvement of current baseline from 0.4 ÎĽA to 12 ÎĽA in the parallel direction was observed in sensors functionalised with both treatments. Similarly, when the waveform responses were measured under a standardised impact force, current amplitudes in both orientations registered a twofold increase for any impact force when both treatments were applied to the feedstock material. The results achieved within this study elucidate how composite formulations can enhance the sensor response prior to conducting electrical poling
    • …
    corecore