
 
 
 

RYAN GOSSELIN 
 
 
 
 
 
 
 
 

ON-LINE QUALITY CONTROL IN POLYMER 
PROCESSING USING HYPERSPECTRAL IMAGING  

 
 
 
 
 
 
 
 

Thèse présentée  
à la Faculté des études supérieures de l’Université Laval 

dans le cadre du programme de doctorat en Génie Chimique 
pour l’obtention du grade de Philosophiae Doctor (PhD) 

 
 
 
 
 
 

DÉPARTEMENT DE GÉNIE CHIMIQUE 
FACULTÉ DES SCIENCES ET DE GÉNIE 

UNIVERSITÉ LAVAL 
QUÉBEC 

 
 
 
 

2010 
 
 
 
© Ryan Gosselin, 2010 



 
 

2

Résumé 
L’industrie du plastique se tourne de plus en plus vers les matériaux composites afin 
d’économiser de la matière et/ou d’utiliser des matières premières à moindres coûts, tout en 
conservant de bonnes propriétés. L’impressionnante adaptabilité des matériaux composites 
provient du fait que le manufacturier peut modifier le choix des matériaux utilisés, la 
proportion selon laquelle ils sont mélangés, ainsi que la méthode de mise en œuvre utilisée. 
 
La principale difficulté associée au développement de ces matériaux est l’hétérogénéité de 
composition ou de structure, qui entraîne généralement des défaillances mécaniques. La 
qualité des prototypes est normalement mesurée en laboratoire, à partir de tests destructifs 
et de méthodes nécessitant la préparation des échantillons. La mesure en-ligne de la qualité 
permettrait une rétroaction quasi-immédiate sur les conditions d’opération des 
équipements, en plus d’être directement utilisable pour le contrôle de la qualité dans une 
situation de production industrielle. 
 
L’objectif de la recherche proposée consiste à développer un outil de contrôle de qualité 
pour la qualité des matériaux plastiques de tout genre. Quelques sondes de type proche 
infrarouge ou ultrasons existent présentement pour la mesure de la composition en-ligne, 
mais celles-ci ne fournissent qu’une valeur ponctuelle à chaque acquisition. Ce type de 
méthode est donc mal adapté pour identifier la distribution des caractéristiques de surface 
de la pièce (i.e. homogénéité, orientation, dispersion). 
 
Afin d’atteindre cet objectif, un système d’imagerie hyperspectrale est proposé. À l’aide de 
cet appareil, il est possible de balayer la surface de la pièce et d’obtenir une image 
hyperspectrale, c’est-à-dire une image formée de l’intensité lumineuse à des centaines de 
longueurs d’onde et ce, pour chaque pixel de l’image. L’application de méthodes 
chimiométriques permettent ensuite d’extraire les caractéristiques spatiales et spectrales de 
l’échantillon présentes dans ces images. Finalement, les méthodes de régression multivariée 
permettent d’établir un modèle liant les caractéristiques identifiées aux propriétés de la 
pièce. La construction d’un modèle mathématique forme donc l’outil d’analyse en-ligne de 
la qualité des pièces qui peut également prédire et optimiser les conditions de fabrication. 
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Abstract 
The use of plastic composite materials has been increasing in recent years in order to 
reduce the amount of material used and/or use more economic materials, all of which 
without compromising the properties. The impressive adaptability of these composite 
materials comes from the fact that the manufacturer can choose the raw materials, the 
proportion in which they are blended as well as the processing conditions. 
 
However, these materials tend to suffer from heterogeneous compositions and structures, 
which lead to mechanical weaknesses. Product quality is generally measured in the 
laboratory, using destructive tests often requiring extensive sample preparation. On-line 
quality control would allow near-immediate feedback on the operating conditions and may 
be transferrable to an industrial production context. 
 
The proposed research consists of developing an on-line quality control tool adaptable to 
plastic materials of all types. A number of infrared and ultrasound probes presently exist for 
on-line composition estimation, but only provide single-point values at each acquisition. 
These methods are therefore less adapted for identifying the spatial distribution of a 
sample’s surface characteristics (e.g. homogeneity, orientation, dispersion). 
 
In order to achieve this objective, a hyperspectral imaging system is proposed. Using this 
tool, it is possible to scan the surface of a sample and obtain a hyperspectral image, that is 
to say an image in which each pixel captures the light intensity at hundreds of wavelengths. 
Chemometrics methods can then be applied to this image in order to extract the relevant 
spatial and spectral features. Finally, multivariate regression methods are used to build a 
model between these features and the properties of the sample. This mathematical model 
forms the backbone of an on-line quality assessment tool used to predict and optimize the 
operating conditions under which the samples are processed. 
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Chapter 1  

Introduction 
 

1.1 Polymers, blends and composites 
 

A recent New York Times editorial crowned the common plastic window frame as the most 

common architectural feature of the early 21st century (New York Times, 2009). In fact, 

few would question the ubiquity of this modern “wonder material” (CBS News, 2007). 

The world production of plastics now surpasses that of steel, aluminum and copper 

combined (Throne, 1996). According to a report published by The Society of the Plastics 

Industry Inc., the US polymer industry employed more than 1.4 million workers and 

generated nearly $310 billion US in shipments (All Business, 2004). The report goes on to 

indicate that with another 770 000 workers indirectly employed by upstream suppliers of 

the plastics industry, the polymer industry employs about 2% of the US workforce. 

 

The commercialization of novel polymer species, using new monomers and/or new 

polymerization routes, is restricted to a few specialty applications. The number of new 

polymer blends, however, has been increased continuously during the past few decades (He 

et al., 2004). Polymer blending is being viewed as a fast and convenient route for the 

development of new polymeric materials. It is now commonly used to achieve improved 

mechanical properties (Salamone, 1996; Chang et al., 2002; Nygard et al., 2005). In fact, 

polymer blend now constitute over 30% of the total film consumption (Utracki, 1998). In 

short, polymer blends are revolutionizing the industry due to their great versatility and 

capability to be tailored for specific end uses (Salamone, 1996). 

 
According to a report by the Composites Fabricators Association, more than 13 000 

composites processing facilities presently operate in the United States, employing 236 000 

people and contributing $24 billion US to the economy (Stewart, 2002). Furthermore, this 

report also states that the American composites industry has grown from 113 million kg in 

1960 to 1.9 billion kg in 2002, and is expected to continue to grow 4 to 5% annually in 
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coming years. Closer to home, the Canadian composites industry is estimated at $2.89 

billion, 82% of which located in Quebec and Ontario (RICQ, 2001).  

 

According to Rapra (2003) the primary reason for choosing to manufacture an article using 

polymer composites, rather than simply using neat polymers, is weight saving for a 

relatively high stiffness and strength. To illustrate this fact, a carbon fiber composite can be 

five times stronger than 1020 grade steel while having only one fifth the weight. Aluminum 

(6061 grade) has approximately the same density as the carbon fiber composite, but the 

composite can have twice the modulus and up to seven times the strength (Rapra, 2003). 

 

Turning specifically to the case of wood/plastic composites (WPC) discussed in much 

detail in Chapter 7, there is a growing consumer acceptance of wood/plastic composite 

(WPC) products as replacements for more traditional materials, such as natural wood 

(Market Research, 2009). This is attributed to their long life span, minimal maintenance 

requirements, resistance to degradation caused by insect attack and exposure to the 

elements, and ability to be manipulated like natural wood. Moreover, the perception of 

these materials as environmentally friendly, due to their incorporation of recycled materials 

is likely to promote future gains in demand. For these reasons, the production of WPCs 

quadrupled between 1997 and 2000 (Li and Wolcott, 2004) and is expected to reach $2.4 

billion US by 2011 (WRAP, 2003).  

 

1.2 Quality control challenges 
 

Polymer processing plants typically have tightly controlled operating conditions in which 

automatic feedback control loops on machine variables provide suitable results as long as 

there are no strict constraints on product quality (Tadmor et al., 1974). Nevertheless, 

variations in raw material properties may cause production to suffer from quality 

fluctuations that cannot be tempered by the machine variable controllers alone. To make 

matters worse, such fluctuations may lead to serious quality control issues if they are not be 

detected in a timely fashion (Ohshima and Tanigaki, 2000).  
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In practice, quality control of polymer products is often performed by off-line testing in the 

laboratory. Such tests involve large investments, long analysis times, sample destruction 

and handling by qualified personnel. Analytical testing can be thought of as a three-step 

process: pre-analytic activities (ordering the tests, collecting the samples, transportation, 

handling, storage, etc.), analytic activities (maintaining the laboratory instruments, 

managing supplies, ensuring adequate and competent personnel, actual sample testing, 

etc.), and finally post-analytic activities (timely reporting of the data, sending the report to 

the appropriate party, taking appropriate action when results exceed critical limits) (Lab 

Testing, 2009). 

 

By providing unique and relevant information, these off-line tests are necessary and 

irreplaceable. However, since these analyses are time consuming and destructive, quality 

control is typically performed on a very low fraction of the production. It is therefore 

possible that significant amounts of low-grade, or defective, material may be produced 

before quality issues are detected. This problem may be addressed by estimating the quality 

on-line (through the use of remote sensing methods and inferential models) and including 

this information in quality control and monitoring schemes.  

 

1.3 Remote sensing  
 

Various spectroscopic techniques have been proposed for estimating on-line polymer 

quality since they are rapid and non-intrusive, they require little or no sample preparation, 

and provide a wealth of information (Lachenal, 1995). However, many of these methods 

are based on single point or averaged measurements. Estimating sample quality distribution 

over a larger area using these approaches is difficult to perform on a high-speed production 

line. At best, a coarse spatial coverage of the surface can be achieved using probe arrays. 

Nevertheless, fine spatial measurements greatly enhance the probability of identifying local 

weaknesses that may compromise the quality of the whole. The mechanical, optical and 

barrier properties of an entire sample may fall below specifications because of local 

discrepancies that may be overlooked by a coarse spatial analysis. Furthermore, rich spatial 
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data would also be useful for precise diagnostic of operational problems in the production 

line, such as non-uniform cooling. 

 

In light of these facts, a quality control methodology based on a visible/near-infrared (VIS-

NIR) hyperspectral imaging system is proposed. In essence, a spectral image captures a full 

spectrum for each pixel of the imaged surface. Such a device opens up a number of 

possibilities: 

 

 A high-resolution camera with a large charge-coupled device (CCD) can identify 

local discrepancies, as well as large-scale variations, in the surface properties of the 

sample. 

 The spectral information present in the image (i.e. color) can be extracted through 

chemometrics methods such as multivariate image analysis (discussed in Section 

3.2.6), providing information relating to composition and crystallinity. These in turn 

can be used to determine the mechanical and barrier properties of the sample.  

 The spatial information present in the image (i.e. patterns) can be extracted through 

chemometrics methods such as wavelet texture analysis (discussed in Section 3.2.7), 

providing information relating to surface roughness and composition distribution. 

 The visible spectral camera can also be used to monitor the esthetic aspect of the 

sample. Whereas a common RGB camera quantifies the visual intensity of each 

pixel according to 3 wavelengths (red, green and blue), a spectral camera such as 

the one used in this study does so using many hundred wavelengths (discussed in 

Section 3.1), making it much more sensitive to subtle color variations. 

 

1.4 Contributions and outline of the thesis  
 

Contributions 

 

This work contains essentially two main contributions. The first of these is the development 

of an on-line high-resolution spectral imaging sensor capable of simultaneously mapping 

sample composition, inferring material properties and monitoring surface quality in a rapid 
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and non-destructive manner. This tool has been developed specifically for the field of 

polymer science but can potentially be used in a wide variety of applications in which 

surface properties can be linked to characteristics of interest. In a context where industrial 

quality control is often performed using off-line analyses, such an imaging sensor makes it 

possible to monitor most, if not all, of the production, thus reducing costs, unnecessary 

delays and variations in quality. This imaging sensor was used to monitor three situations: 

 

 Chapter 4 discusses the possibility of extracting the spectral information contained 

within a spectral image in order to identify variability patterns in the surface 

crystallinity of neat polymer films.  

 Chapter 5 illustrates the use of both the spatial and spectral information contained in 

the images to infer the mechanical properties, composition and degree of 

segregation of polymer film blends. 

 Chapter 7 uses both the spatial and spectral information found in the images to infer 

the crystallinity and mechanical properties of extruded wood/plastic composites as 

well as to determine the extrusion dynamics.  

 

The second main contribution of this thesis is in the field of chemometrics. The high-

resolution spectral imaging sensor used in this thesis has been invaluable in acquiring rich 

spatial and spectral material information. Nevertheless, the large quantities of data thus 

generated may be daunting. Moreover, spectral imaging system may be seen as too costly 

and complex for many industrial settings. In this context, it was realized that a simple 

wavelength selection methodology could mediate both these issues. In essence, by 

identifying the spectral intervals that are most highly correlated to the property to be 

estimated, one increases the interpretability of the model by linking these intervals to the 

presence, concentration and dispersion of known molecules or to physical states while 

reducing the complexity of the model by discarding less informative spectral intervals.  

 

Existing methods for relevant variable/wavelength selection essentially fall into two 

categories: 1) methods based on individual wavelengths, and 2) approaches aiming at 

finding the most informative spectral intervals. The individual wavelength methods rank 
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the importance of the wavelengths, evaluating the correlation between each individual 

wavelength and a quality variable, and then using a cutoff criterion to segment 

relevant/irrelevant variables. These methods are often more difficult to interpret since the 

selected wavelengths are often distributed throughout the spectra instead of within a few 

well-defined intervals. Interval methods, on the other hand, search for informative groups 

of wavelengths within the spectra. Such groups, or spectral bands, can then be linked to 

known functional groups and should lead to more stable predictions. These methods are 

often very computationally intensive. The method proposed here combines some of the 

advantages of both individual wavelength and interval selection methods. While remaining 

simple and computationally efficient, it consistently identifies relevant and contiguous 

spectral intervals. This methodology is presented in Chapter 6 and is applied to 4 datasets 

in the polymer, oil and pulp and paper industries. It is also used in Chapter 7 to monitor the 

production of extrusion of wood/plastic composites.  

 

Outline of the thesis 

 

The experimental results obtained during this thesis are presented in four chapters, each 

based on articles published, accepted or submitted, to international scientific journals. In 

addition to these, other aspects of the project were published in scientific journals, 

proceedings and conference papers. The overarching theme of this Ph.D., including its 

different facets, is briefly discussed here.  

 

This project concerns the quality control of plastic products using statistical imaging 

methods and essentially consists of five themes: 

 

1. Raw material mixing. This aspect considers the first step of a blending process: the 

dry mixing of polymer powders prior to the actual processing step using a textural 

method. This portion of the work, however, is not presented in the thesis. 

2. Crystallinity predictions. Considered here an initial step in the quality control of 

polymer composites, the determination of spatial crystallinity patterns across the 

surface of neat polymer films using spectral methods. 
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3. Polymer blend films. The case study of polymer-polymer blends: extrusion film-

blowing of PE/PS blends using a combined spatial/spectral methodology. 

4. Wood/plastic composites. The case study of polymer-filler blends: extrusion of 

wood/plastic composites using independent spatial and spectral methodologies. 

5. Wavelength selection. A common problem encountered in spectral analysis is the 

overabundance of regressor data. In many cases, a significant portion of the spectral 

information is of little or no relevance to the sample quality. This led to the 

development of a wavelength selection methodology applicable to a broad range of 

datasets. 

 

Raw material mixing 

 

In the first part of this project, we investigated the transverse mixing of free flowing 

particles in a horizontal rotating drum. Such drums are widely implemented industrially as 

mixers, kilns, granulators, dryers and reactors; but it is principally for their mixing 

capabilities that they are used in the polymer industry. While the characteristics of any 

particulate process depend strongly on the dispersion of the raw substances, relatively little 

is known about the actual mixing dynamics. In fact, the time allotted to reach the required 

degree of dispersion is often based solely on empiricism and rules of thumb (Berthiaux et 

al., 2004; Ehrhardt et al., 2005). Better knowledge of this phenomenon would ensure that 

the chosen mixing time truly corresponds to the required mixing time, therefore saving time 

and energy.  

 

According to the methodology proposed in this work, the degree of mixing is estimated by 

analyzing the dispersion of the free flowing particles as captured by an RGB camera 

located outside the rotating drum. In doing so, this method avoids possible flow disruptions 

caused by tracers (Woodle and Munro, 1993) or thief probes (Espinosa, 2003) without the 

added complexity of other non-invasive methods such as positron emission particle 

tracking (PEPT) and nuclear magnetic resonance imaging (NMR) (Ding et al., 2002; 

Ingram et al., 2005). In order to avoid this however, the proposed methodology requires the 



 
 

20

camera to be in full view of the powder (i.e. the drum must be fitted with an observation 

window). 

 

While material mixing is a necessary step in the creation of many plastic products, these 

results are not presented in the thesis. Nevertheless, three publications have been published 

on this work, the first of which being:  

 
 Gosselin R., Duchesne C. and Rodrigue D., On the characterization of polymer 

powders mixing dynamics by texture analysis, Powder Technol., 183, 177-188 
(2008). 

 
Determining the mixing dynamics of the drum essentially comes down to estimating the 

powder dispersion at constant sampling intervals throughout the mixing process. This was 

achieved by first imaging the powder through a glass mixing drum, and then quantifying 

the textural features of the powder blend at each sampling interval.  

 

After the initial paper cited above, the project was taken over by Amara Aït Aissa, another 

Ph.D. student. While he was the main experimenter in the subsequent work, I contributed to 

the computational aspects of his work. This work was also presented in: 

 
 Aït Aissa A., Gosselin R., Duchesne C. and Rodrigue D., Modeling the mixing of 

two polymer powders of different particle sizes, ANTEC, Milwaukee, 0819 (2008).  
 

 Aït Aissa A., Cousineau-Pelletier M., Gosselin R., Duchesne C. and Rodrigue D., 
Mixing of polymer powders of different particle sizes in a rotating mold, ANTEC, 
Chicago, 0283 (2009).  

 
In the initial paper, I developed the methodology (i.e. experimental setup), performed the 

experiments, wrote the necessary Matlab codes, developed the powder mixing model and 

reported the results under the guidance of my supervisors. Subsequent work by the 

aforementioned student was based on the framework I set up. 

 

Crystallinity predictions 

 

In the second part of this project, we investigated the spatial crystallinity variation across 

the surface of semi-crystalline polymer films. Widely used industrially, the total 
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consumption of semi-crystalline polymers such as polyethylene and polypropylene now 

reaches 90 millions tons annually (Murphy, 2003). Nevertheless, these polymers are 

sensitive to the conditions in which they are produced; processing pressures, cooling rates 

and sample geometry are all known to influence their degree of crystallinity, which in turn 

affects the mechanical, optical and barrier properties of the sample (Albano et al., 2003; 

Pantani et al., 2005; Shepherd et al., 2006). 

 

The objective of this work is to develop a non-intrusive on-line sensor for monitoring 

spatio-temporal crystallinity variations across the surface of thin polymer materials. While 

some NIR probes have already been proposed for monitoring polymer crystallinity, they 

typically only provide single-point measurements and are therefore poorly suited to identify 

crystallinity gradients. This work focuses on combining NIR imaging spectroscopy, 

multivariate image analysis and regression methods to obtain the crystallinity spatial 

distribution of a sample. This methodology is illustrated using thin semi-crystalline samples 

(HDPE, LDPE, PP) produced via compression molding under different cooling conditions. 

Non-isothermal cooling rates throughout the cooling circuit ensure local crystallinity 

variations within a single sample. Four different methods are compared in this study. 

 

 Regression between the NIR spectra and the crystallinity measurements. 

 Regression between the 2nd order derivatives of the NIR spectra and the crystallinity 

measurements. 

 MIA applied to the NIR spectra followed by a regression with the crystallinity 

measurements. 

 MIA applied to the 2nd order derivatives of the NIR spectra followed by a regression 

with the crystallinity measurements. 

 

This work was presented in: 

 Gosselin R., Duchesne C. and Rodrigue D., On-line prediction of crystallinity 
spatial distribution across polymer films using NIR spectral imaging and 
chemometrics methods, Can. J. Chem. Eng., 86, 869-878 (2008). 
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Some of these results were also discussed in:  

 Gosselin R., Rodrigue D., González-Nuñez R., Duchesne C., Quality control of 
polymer products through spectral imaging and chemometrics methods, ANTEC, 
Chicago, 0281 (2009). 

 

No other student participated in this project; I performed all the experimental, 

computational, modeling and reporting work under the guidance of my supervisors.  

 

Polymer blend films 

 

In the third part of this project, we proposed a real-time non-destructive sensor for 

monitoring polymer blend films. A number of techniques have recently been developed for 

on-line measurement of specific film properties (e.g. Raman spectroscopy, birefringence, 

Fourier transform infrared spectroscopy and X-ray scattering) but these probes either 

provide a rapid estimation of the properties of a single localized point on the sample or the 

average properties of a larger area.  

 

Again based on a VIS-NIR spectral imaging sensor, the methodology is based on a 

multiresolutional multivariate image analysis (MR-MIA) technique was used for extracting 

both spectral and textural image features that are the most highly correlated with the film 

properties (i.e., composition distribution and mechanical properties), as well as for mapping 

them on the surface of the films. The proposed methodology is illustrated using low-density 

polyethylene/polystyrene (LDPE/PS) films produced by extrusion blowing under different 

operating conditions.  

 

This work was presented in: 

 Gosselin R., Rodrigue D., González-Nuñez R. and Duchesne C., Potential of 
hyperspectral imaging for quality control of polymer blend films, Ind. Eng. Chem. 
Res., 48, 3033-3042 (2009). 
 

Results were also discussed in:  

 Gosselin R., Rodrigue D., González-Nuñez R., Duchesne C., Quality control of 
polymer products through spectral imaging and chemometrics methods, ANTEC, 
Chicago, 0281 (2009).  
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 Gosselin R., Duchesne C., Rodrigue D. and González-Nuñez R., Using Image 

Texture to Predict the Mechanical Properties of Polymer Films, CEIMEXCAN, 
Québec, 0013 (2007). 

 

No other student participated in this project; I performed all the experimental, 

computational, modeling and reporting work under the guidance of my supervisors.  

 

Wavelength selection 

 

Finally, in the fifth part of this project, we proposed a wavelength selection methodology. 

Recent developments in spectral imaging for on-line inspection and quality control in a 

variety of fields lead to the acquisition of massive amounts of spectral data that must be 

processed quickly and efficiently. More parsimonious models obtained by relevant 

wavelength selection may result in enhanced interpretability, increased robustness, and 

significant reduction in computation time, which is crucial for on-line spectral imaging 

applications. 

 

The main obstacle in achieving this lies in the high level of collinearity present between 

adjacent wavelengths throughout the spectra, which render standard statistical methods, 

such as multilinear regression, virtually useless. Methods for relevant variable selection 

essentially fall into two categories: approaches based on individual wavelengths vs. 

approaches aiming at finding the most informative spectral intervals. Whereas the former 

tends to identify significant wavelengths scattered throughout the spectrum, making 

interpretations difficult, the latter typically requires the user to arbitrarily split the spectrum 

into intervals. While effective, these methods also require some form of iterative searching 

for improving and reducing the number of intervals after the initial spectral splitting. This 

step can therefore be computationally intensive and time consuming.  

 

In light of this, we proposed a Bootstrap-PLS regression methodology, using the VIPs as a 

selection criterion for selecting the significant wavelengths that were the most highly 

correlated with quality response variables. The advantage of this method lies in its 
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capability of identifying contiguous spectral intervals without the complexities mentioned 

above. This work was presented in: 

 

 Gosselin R., Duchesne C. and Rodrigue D., A bootstrap-VIP approach for selecting 
wavelength intervals in spectral imaging applications, Chemometr. Intell. Lab., 100, 
12-21 (2010). 
 

Results were also discussed in:  

 Gosselin R., Rodrigue D., González-Nuñez R., Duchesne C., Quality control of 
polymer products through spectral imaging and chemometrics methods, ANTEC, 
Chicago, 0281 (2009). 

 

No other student participated in this project; I performed all the experimental, 

computational, modeling and reporting work under the guidance of my supervisors.  

 

Wood/plastic composites 

 

In the fourth part of this project, we proposed an on-line imaging sensor for quality control 

of extruded WPCs. In line with the work on crystallinity patterns and polymer blend films, 

the methodology proposed in this project uses chemometrics methods to extract the spatial 

and spectral features that are most highly correlated with the material properties, and use 

this information to predict the properties of samples unknown to the model. For example, 

McAfee and McNally (2006) estimated the melt viscosity whereas Barnes et al. (2003) 

estimated the composition). While several sample properties have now been investigated 

on-line, we propose to simultaneously follow 7 material properties. These are: enthalpy of 

fusion (i.e. crystallinity), modulus, stress and strain at yield, stress and strain at break, as 

well as the energy at break. Furthermore, in this portion of the project, the extrudate was 

studied in both steady-state and transient state flow regimes, thus making it possible to 

determine process dynamics. 

 

The results show that the proposed methodology can distinguish product quality in known 

samples, can predict the quality of unknown samples, can be used to estimate the extrusion 
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dynamics and can even provide an early detection scheme for undesired changes in 

feedstock or operating conditions. This work was presented in: 

 
 Gosselin R., Duchesne C. and Rodrigue D., A hyperspectral imaging sensor for on-

line quality control of extruded polymer composite products, Comput. Chem. Eng., 
submitted: August 2009, CACE-S-09-00415 (2009). 
 

 Gosselin R., Rodrigue D. and Duchesne C., Property prediction of wood/plastic 
composites through spectral imaging and chemometrics methods, WCCE 8, 
Montréal, 1465 (2009). 

 

Results were also discussed in:  

 Gosselin R., Rodrigue D., González-Nuñez R., Duchesne C., Quality control of 
polymer products through spectral imaging and chemometrics methods, ANTEC, 
Chicago, 0281 (2009). 

 

No other student participated in this project; I performed all the experimental, 

computational, modeling and reporting work under the guidance of my supervisors. 
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Chapter 2  

Background on polymer processing 
 

2.1 Raw materials and processing 

2.1.1 Raw materials used in this study 

2.1.1.1 Consumer plastics 

 

The term “plastic” is used here to refer to a wide range of polymers of high molecular 

weight. These can be truly natural molecules (e.g. shellac), chemically modified natural 

molecules (e.g. collagen) or fully synthetic molecules (e.g. polyethylene). Within this last 

category, we define thermoplastics (e.g. polypropylene, polyvinyl chloride) and thermosets 

(e.g. epoxy, polyurethane). If exposed to enough heat, thermoplastics will melt whereas 

thermosets remain solid until they burn. This difference is in large part due to their 

respective molecular weights. For thermoplastics, it typically ranges between 20 000 and 

500 000, while thermosets can effectively be of “infinite” molecular weight due to 

irreversible chemical interconnections occurring on a macroscopic scale (Goodman, 2001). 

Finally, a polyolefin is a thermoplastic produced from a repetition of a single alkene (or 

olefin), whose general formula is CnH2n (e.g. polyethylene, polypropylene). This work will 

focus exclusively on three common consumer polyolefin thermoplastics: low-density 

polyethylene (LDPE), high-density polyethylene (HDPE) and polypropylene (PP). 

Nevertheless, the authors believe that the methodology could be extended to other polymer 

species.  

 

Polyethylene is produced through the polymerization of the monomer ethene (also known 

as ethylene). As the ethene molecule (C2H4) lacks any substituent groups that may 

influence the stability of the propagation head of the polymer, it can be polymerized into 

several different geometries. Among these, HDPE essentially consists of long linear 

molecules with low degrees of short branching whereas LDPE has a high degree of short 

and long chain branching. This difference strongly influences the spatial organization of the 
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molecules. High degrees of branching reduce density, crystallinity and molecular 

interactions, all of which strongly influence the properties of the plastic. 

 

On the one hand, HDPE is defined by a density greater than 0.941 g/cm3. It is harder and 

has a greater tensile strength than LDPE, but less ductility. It has a wax-like, lusterless 

appearance and it is usually opaque. According to Harper (2002), the most common method 

for processing HDPE is blow molding where it is used to produce hollow sturdy packaging 

(e.g. detergent bottles, margarine tubs). On the other hand, LDPE is defined by a density 

range between 0.910-0.940 g/cm3. It combines high impact strength, toughness and 

ductility to make it the material of choice of packaging films, one of its largest applications 

(Harper, 2002). While LDPE is opaque, it can be made transparent in thin films. 

 

 

Figure 2.1. Schematic representation of PE branching in HDPE (A) and in LDPE (B). 
 

Polypropylene is produced through the polymerization of the monomer propylene. It has a 

similar structure to that of polyethylene, except for the substitution of a hydrogen atom by a 

methyl group on every other carbon. PP is harder and has a higher softening point than PE, 

but is more prone to high-temperature oxidation (Harper, 2002). Polypropylene is used in a 

wide variety of applications, including packaging, textiles and a wide range of injection 

molded automotive components. 

 

The global molded plastics market was estimated to exceed 156 million tons in 2005 

(Murphy, 2003). Of this, the overall polyolefin consumption reached 117 million tons in 

2007 (Townsend, 2008). Breaking it down further, all polyethylene (PE) resins account for 

70 million tons (Townsend, 2008; Global Markets Direct, 2009), of which LDPE and 

HDPE respectively make up 18 and 29 million tons (Murphy, 2003). Most of the remaining 
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consumption of polyolefins is taken up by PP with an estimated 46 million tons in 2007 

(Ceresana 2008; Townsend, 2008). 

 

2.1.1.2 Polymer blends 

 

Three types of blends are distinguished: miscible blends, partially miscible blends and 

immiscible blends. According to He et al. (2004), the high molecular weight of polymers 

makes the entropy of mixing negligible, ensuring the immiscibility of most polymer blends. 

Nevertheless, the weak adhesion present at polymer interfaces can effectively be improved 

using common compatibilization agents. Literature can now be found on a wide variety of 

polymer film blends: PE/PP (Minkova and Nikolova, 1989; Minkova et al., 1992; Rohe et 

al., 1999), PE/nylon (López-Barrón et al., 2007; Liu et al., 2009), PE/PET (Avila and 

Duarte, 2003), PS/PMMA (Leukel et al., 1998), PS/PVME (El-Mabrouk et al., 2007) as 

well as PP/EVA (Minkova and Nikolova, 1989). A number of more complex ternary blends 

have also been reported (Landry et al., 1991). 

 

Chapter 5 will focus on the use of spectral imaging methods to predict the mechanical 

properties of PE/PS film blends produced via extrusion film-blowing. Such blends have 

also been extensively discusses in the literature: Dobreski and Nattinger, 1989; Zhu et al., 

1989; Hermes et al., 1998; Nicole et al., 1999; Luzinov et al., 2000; Lorenzo et al., 2006; 

Díaz et al., 2007. 

 

2.1.1.3 Wood/plastic composites 

 

Natural fibers are biological structures mainly composed of cellulose, hemicellulose and 

lignin (Jodin, 1994). In much smaller proportions, there are also some extractibles, proteins 

and a certain number of inorganic products (Rowell et al., 1997). A number of these natural 

fibers are currently used as reinforcements, or simply as fillers, in polymer matrices; such 

materials are named natural fiber composites (NFC). These composite materials can be 

molded using many of the methods used to process common commercial plastics. Such a 
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symbiotic use of two distinct materials makes it possible to adjust the physical and 

economic properties according to requirements. Furthermore, NFCs are ecologically 

friendly and can play an important role in revalorizing household and farming waste 

products (e.g. plastic bottles and produce stalks). Often degraded and contaminated, these 

products have little commercial value taken individually but can acquire a certain value 

when combined. According to Chand and Fahim (2008), the most common natural fibers 

used industrially in NFCs are: bamboo, cotton, flax, hemp, jute, kenaf, sisal (leaf fiber) and 

wood. However, within the scope of this project, only wood fiber composites (WPC) are 

considered here but the authors believe that the methods could be extended to other 

products if a spectral contrast exists between the filler and the matrix. 

 

Incorporating wood fibers into a polymer matrix greatly influences its mechanical 

properties. On the one hand, increasing fiber content will increase rigidity, while on the 

other hand strongly decrease ductility. Nevertheless, WPCs containing very high wood 

fractions often suffer from poor fiber-matrix cohesion, leading to decreased properties. 

According to Klason et al. (1984), this transition begins to occurs around 50% loadings, a 

level at which many polymer processing methods begin to encounter difficulties associated 

with high melt viscosity and fiber thermo-mechanical degradation. More about polymer 

processing methods is found in Section 2.1.2. 

 

Wood fibers are common, affordable and light. The density of North American woods 

varies between 0.28 (corkbark fir) and 1.04 (black ironwood) (Albert Forest Products, 

2009) and cost on average 0.22 $ US/kg (Wilkes et al., 2005). In comparison, calcium 

carbonate, agricultural fibers and fiberglass (all common fillers) cost respectively 0.15, 

0.33-0.88 and 1.98 $US/kg (Wilkes et al. 2005). This may help explain increasing global 

demand for WPCs, which is estimated to reach 2.4 billion $US by 2011 (WRAP, 2003). 

This demand is mainly generated by 4 markets: gardening (patio, fences), construction 

(housing), infrastructure (maritime and railway) and finishes (auto industry). 
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Much research is currently being done on NFCs of all types. In 2009, there have been at 

least 28 published papers reporting on new development on WPCs alone, with many more 

reporting on other natural fiber composites. These include: 

 

 6 papers on HDPE/wood composites (Bouafif et al., 2009; Huang and Zhang, 2009; 

Sewda and Maiti, 2009; Xiong et al., 2009a,b; Zhang et al., 2009) 

 8 papers on PP/wood composites (Azizi and Ghasemi., 2009; Bouza et al., 2009; 

Chauhan et al., 2009; El-Sabbagh et al., 2009; Ghasemi et al., 2009; Haque et al., 

2009; Nourbakhsh and Kouhpayehzadeh, 2009 ; Soury et al., 2009) 

 2 papers on LDPE/PP/wood composites (Tademr et al., 2009; Younesi and 

Bahrololoom, 2009) 

 3 papers on PVC/wood composites (Marathe and Joshi, 2009; Rocha et al., 2009; 

Sadler et al., 2009) 

 5 papers on polyurethane/wood composites (Casado et al., 2009; Gao et al., 

2009a,b; Mosiewicki et al., 2009; Yuan and Shi, 2009) 

 3 papers on polylactic acid/wood composites (Gregorova et al., 2009; Noël et al., 

2009; Pilla et al., 2009) 

 1 paper on polyamide/wood composites (Alvarez de Arcaya et al., 2009) 

 

In spite of this interest, several problems must be overcome during the molding process. 

The most important of which is the thermo-mechanical degradation of the fibers. Many 

natural fibers loose their rigidity around 160°C and suffer from lignin degradation around 

200°C (Michaud, 2003). This problem can be avoided by selecting a plastic with a low 

melting point, reducing processing time and avoiding processing steps involving very high 

shear rates. The relation between the amount of thermo-mechanical energy delivered to the 

system and the subsequent fiber degradation is discussed in Chapter 7. Other problems 

include water retention by the fibers, hydrophilic/hydrophobic incompatibility at the 

wood/plastic interface as well as heterogeneous composition throughout the structure. 

While the wood fibers can be dried prior to blending, and coupling agents can be used to 

strengthen the interface, adequate fiber dispersion is both difficult to quantify and ensure. 

Poor dispersion ultimately leads to local weaknesses that may compromise the quality of 
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the whole. Attempts to determine such characteristics are discussed in Section 2.2.3 using 

soft-sensing measurements.  

 

2.1.2 Common polymer processing methods 

2.1.2.1 Overview of polymer processing  

 

According to the Handbook of Industrial Engineering and Operation Management by 

Salvendy (2001), there are only a limited number of basic processes commonly used in the 

production of thermoplastic and thermosetting plastics parts: 

 

 Compression molding. An appropriate amount of plastic (often in powder form) is 

introduced into a mold, which is subsequently closed, heated and put under 

pressure. The plastic is softened by the heat and formed into a continuous mass of 

the size and shape of the mold cavity. 

 Transfer molding. In this two-step process, the plastic is first melted in an auxiliary 

chamber before being forced into a closed mold cavity through high pressure. The 

polymer is allowed to cool under pressure, before being ejected from the mold. 

 Extrusion. This process involves the continuous forming of a shape (infinitely long 

profile) by forcing softened plastic through an orifice. Essentially, an extruder 

consists of a heated barrel in which a single- or twin-screw system continuously 

conveys the plastic toward the forming die. 

 Injection molding. This semi-batch process is essentially a hybrid between transfer 

molding and extrusion. To achieve this, the barrel is fitted with a reciprocating 

screw system, making it possible to store molten polymer near the die of the barrel. 

When sufficient material has been accumulated, it is forced into a closed mold 

under pressure. 

 Casting. Much like the casting of metals, it involves introducing molten plastic into 

a mold that has been shaped to contour the piece to be formed. 
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 Cold molding. In this process, a thermosetting polymer is introduced into a room-

temperature mold under pressure. The mold is subsequently opened and the sample 

is transferred to an oven where it is baked until hardening. 

 Calendering. A continuous production of a thin sheet by passing thermoplastics 

between a series of heated rollers. 

 Thermoforming. Restricted to thermoplastic polymers, this is a process in which a 

plastic sheet is heated to a pliable temperature, formed to a specific shaped using a 

mold contour, and trimmed to create the finished product. 

 Blow molding. In this process, a tube of molted plastic is extruded vertically and 

incased in a split mold. Air is then injected into this hot section of plastic, forcing it 

to follow the contour of the mold. 

 Rotational molding. In this high-temperature, low-pressure process, biaxial rotation 

is used to produce hollow single piece parts. 

 

Of these methods, compression molding is used in Chapter 4 to produce thin plastic 

samples while extrusion is used in Chapters 5 and 7 to produce blown films and 

wood/plastic composites, respectively. Both methods will be discussed here in greater 

detail. Nevertheless, the proposed on-line quality control scheme could be applied to any of 

these approaches since it is based on the product itself, as it comes out of the process. 

 

2.1.2.2 Compression molding 

 

Compression molding is a common industrial process in which a plastic is placed into a 

heated metal mold, softened by the heat, and forced to conform to the shape of the mold 

cavity as the mold closes. Pressure is applied to force the material into contact with the 

entire cavity surface. Both heat and pressure are maintained long enough to remove prior 

melt history. The mold is cooled under pressure, often through water quenching, before 

being opened to remove the complete sample (Figure 2.2). Compression molding is known 

for its ability to mold large complex parts at a relatively low cost. Furthermore, it produces 

little waste and is capable of molding small quantities, giving it an advantage when 
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working with expensive compounds. Lastly, it does not create weld lines and causes little 

or no shear stresses during the molding process. 

 

 

Figure 2.2. Illustration of a compression molding process in which (A) a measured charge 
is placed between two matching metal molds, (B) the molds close and the sample is 
subjected to heat and pressure, and (C) the cured part is ejected and trimmed. Adapted 
from Tecrep Engineering (2009). 
 

2.1.2.3 Extrusion 

 

Plastic extrusion is a high-volume manufacturing process used to produce indefinitely long 

objects of a fixed cross-section profile such as pipes and window frames. An extruder is 

basically an Archimedes’ screw rotating continuously inside a heated barrel (Figure 2.3). 

The material enters through the hopper and comes in contact with the screw system, where 

it is heated and forced forward into the barrel. The screw system itself can vary widely, 

going from single- to double-screw, co- to counter-rotating, as well as intermeshed or not. 

Regardless of its geometry, the system is usually divided into three zones: feeding, 

compression and metering (Figure 2.3). The feeding zone has a wide melt channel (thread 

gap) in order to receive the plastic pellets, and is used to melt the plastic. As its name 

indicates, the compression zone constricts the melted plastic, either by reducing the barrel 

section or the melt channel. This step releases any gases and volatiles that may be present. 

Finally, the plastic is homogenized in the metering zone. According to Kasliwal and Jones 

(2004), a proper mixing process must be both dispersive and distributive. In dispersive 
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mixing, cohesive resistances have to be overcome to achieve finer levels of dispersion; 

while distributive mixing aims at improving the spatial distribution of the components 

without cohesive resistance playing a role (Gramann and Rauwendaal, 1998). In order to 

achieve this, a breaker plate or kneading blocks are often added to increase shear stresses. 

The plastic is then shaped as it exits the extruder die. A wide range of post-processing steps 

(e.g. cooling, cutting, thermoforming) is then performed on the extrudate. 

 

 

Figure 2.3. Illustration of an extrusion process. Polymer is fed in the hopper, conveyed 
through the barrel by the screw and shaped by the die. Adapted from Wikipedia Plastics 
Extrusion (2009). 
 

Extrusion film-blowing 

 

Extrusion film-blowing is widely used to make plastic films for the packaging industry. It is 

a process of forming thermoplastic film in which a plastic tube is continuously extruded 

and inflated to several times its initial diameter by internal air pressure, cooled and 

collapsed by rollers (Figure 2.4). The film is usually extruded vertically upward and air is 

blown in the center of the extruded tube as it emerges from the die (Figure 2.4, inset). Film 

thickness is controlled by varying the internal air pressure, as well as the rate of extrusion. 
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Figure 2.4. Illustration of an extrusion film-blowing process in which the polymer is first 
extruded, blown into a film (inset) and rolled into the final product. Adapted from 
Antistaticbar (2009) and Berg (2009). 
 

2.1.3 Problems 
 

According to Gillespie (1988), the compression molding cycle is simple enough that 

problem solutions are generally obvious. Measuring load and thermal parameters can 

resolve many difficult problems. Nevertheless, unforeseen problems arise due to processing 

or material variability, operator related defects, or machine wear. Specifically, variability is 

typically related to material inconsistencies from the supplier, storage history, or extreme 

factors such as weather (Davis et al., 2003). These situations lead to poor product 

consistency and difficulties in controlling waste through mold flashing. 

 

Extrusion is basically a steady state process and most extruders are controlled to maintain 

relatively constant operating conditions. According to Tadmor et al. (1974), common 

feedback control loops on the machine variables (i.e. temperature, screw speed) perform 

well under most circumstances, providing that there are no stringent quality constraints. 

Nevertheless, the performance of an extruder is mainly determined by the characteristics of 

the feedstock and less by those of the machine. Material properties are seldom uniform. 

According to Rauwendaal (2001), the extrusion process may be affected by the feedstock’s 
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bulk properties (e.g. particle size), melt flow properties (e.g. viscosity), as well as thermal 

properties (e.g. thermal diffusivity). Furthermore, the material samples used for testing may 

not be representative of the sample as most tests are performed on 0.01 kg or less, while 

most industrial extruders run at a throughput of several hundred kilograms per hour. This 

problem may be exacerbated when processing naturally locally heterogeneous materials 

such as polymer blends or composites.  

 

Beyond the problems commonly associated to the extrusion process, extrusion film-

blowing suffers from a host of specific problems. The first of these is a distinct sensitivity 

to un-melted plastic polymers in the extrudate appearing as “gels” in the final product 

(Perdikoulias and Vlcek, 2004). Also, fluctuations in the film thickness can be caused by 

inconsistently shaped pellets in the feedstock (Cantor, 2006), as well as ineffective film 

cooling (Giles et al., 2005). Lastly, Reifenhauser and Rahlfs (1975) observed that there may 

be a mismatch in (1) the rate at which the rollers are run, (2) the volumetric extrudate flow 

and (3) the pressure drop within the film. They suggest that this mismatch may cause 

unwanted uniaxial or biaxial orientation in the films. 

 

These examples show that feedback and/or feed-forward control loops on the machine 

variables are not suited to identify all the problems affecting the polymer industry. 

Unwanted sample variability is still very much present even under the best operating 

conditions. The next section discusses the notion of quality, as well as means of measuring 

it, both off- and on-line. 

 

2.2 Quality 

2.2.1 Defining quality 
 

Broadly speaking, the term “quality” designates the degree of excellence of an item when 

measured against other of a similar kind. This definition however can be interpreted in a 

number of ways; 5 general definitions are discussed here. Customer-based quality (1), often 

coined the “fitness to use” compares the item to customer expectations (Edwards, 1968; 
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Gilmore, 1974; Juran and Godfrey, 1999). Manufacturing-based quality (2) compares the 

item to its design, or specifications, and ensures “conformance to specifications” (Gilmore, 

1974; Crosby, 1980). Value-based quality (3) compares an item’s usefulness to its price 

(Broh, 1982; Feigenbaum, 1991). Applying this definition, items qualified as “low-quality” 

by the two previous definitions may nevertheless be deemed satisfactory if their price is set 

sufficiently low. Product-based quality (4) refers to an attribute of the item that makes it 

superior in any way to otherwise comparable items (Abbott, 1956; Leffler, 1982). Finally, a 

transcendence-based quality (5) is a much harder characteristic to define but is generally 

linked to a consumer’s immediate and irrational interest for a product (Tuchman, 1980). 

Keeping with the scope of the project, a manufacturing-based definition of quality must 

necessarily be used here. 

 

Quality control is defined by the American Society for Testing and Materials (ASTM) as a 

method of implementing the quality specifications for raw materials, intermediate and 

finished products as established by management, and carries out the operational techniques 

and the activities that sustain quality of a product or service (ASTM, 1992). Applying this 

to the polymer industry, sample quality typically refers to thermal properties, mechanical 

properties and component distribution. According to the Handbook of Industrial 

Engineering and Operation Management (Salvendy, 2001), the functional designer in the 

polymer industry is primarily concerned with the specific gravity, hardness, water 

absorption, outdoor weathering, coefficient of linear thermal expansion, elongation, 

flexural modulus, IZOD impact, deflect temperature under load and flexural yield, tensile, 

shear, and compressive strengths.  

 

In the following section, a number of off-line and on-line methods of measuring sample 

quality are discussed. 

 

2.2.2 Laboratory quality measurements  
 

According to Dumitrescu et al. (2005), quality control in the polymer industry is often 

limited to visual inspection of the sample, weighing, and, in a relatively small subset of the 
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production, mechanical and analytical testing may also be carried out. The term 

“analytical” is used here to refer to any analysis seeking to determine the composition of a 

sample. While this description is accurate, it may give an over-simplified view of the 

present state of off-line quality control in the polymer industry. In fact, a wide range of 

laboratory analyses has been developed. Generally speaking, these tests fall into 7 

categories: mechanical, electrical, rheological, analytical, thermal, optical and aging 

(Intertek Plastics Technology Laboratories, 2009). 

 

 Mechanical tests. The mechanical properties usually represent the response of a 

standardized section of the sample to a known mechanical constraint. This category 

includes, for example, the tensile modulus ASTM D638, Izod impact resistance 

ASTM D256 and Rockwell hardness ASTM D785. 

 Electrical tests. These tests usually seek to quantify the resistance or capacitance of 

the heart and surface of the sample. Among these we find the evaluation of the 

dielectric constant ASTM D150, as well as the electrical resistance of the heart 

and/or the surface ASTM D257. 

 Rheological tests. The study of the rheological properties enables the user to 

determine behavior, as well as thermal stability, of the polymers during the molding 

process. Whereas mechanical tests are performed on solid samples, this category 

only concerns their melt flow properties. Viscosity measurements can be obtained 

using single-point measurements such as the Melt Flow Index (MFI) ASTM D1238 

or through variable shear rates tests like capillary rheometry shear sweeps ASTM 

D3835. 

 Analytical tests. The analytical properties represent the nature and composition of 

the material. This type of analysis includes differential scanning calorimetry (DSC) 

ASTM D3417, Fourier Transform Infrared (FTIR) ASTM E125 and Thermo-

Gravimetric Analysis (TGA) ASTM E1131. These tests commonly involve very 

small amounts of material but require highly delicate handling. 

 Thermal tests. These methods quantify the behavior of polymers using a wide range 

of temperatures. Common tests include the thermal expansion coefficient ASTM 

E831, heat deflection temperature ASTM D648, as well as the determination of 
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different transition points (i.e. temperature of fusion) by DSC ASTM D3417. These 

tests are often carried out under a neutral atmosphere to minimize polymer 

oxidation at high temperatures. 

 Optical tests. The most common optical tests concern the gloss ASTM D2457, haze 

ASTM D751, yellowness index ASTM D313 and RGB color values ASTM D6290. 

Nevertheless, this category remains relatively unused in the field. 

 Aging tests. There exist a number of methods able of accelerating the aging process 

of polymers by exposing them to harsh conditions (i.e. high temperature, water or 

electromagnetic radiation). Among these we find the use of a xenon arc ASTM 

D2565 or fluorescent lighting ASTM D4329. Both require between 500 to 2000 

hours to yield complete results. 

 

While these seven categories of tests are well documented for neat polymers, few 

regulations apply to polymer blends and composites. Nevertheless, the Plastic Lumber 

Trade Association is working to instate an ASTM norm on HDPE based WPCs. Moreover, 

the Canadian Construction Materials Centre, a branch of the National Research Council, is 

also working to allow composite materials, such as WPCs, to be used in construction 

(Environment and Plastics Industry Council, 2003). 

 

2.2.3 Soft-sensing quality measurements  
 

As seen in Section 2.2.2, the numerous steps involved in off-line laboratory measurements 

often limit the number of samples tested to a level where one can legitimately ask whether 

the test set truly represents the whole of the production. This problem may be addressed by 

taking on-line quality measurements (or estimates) of the samples and including this data in 

the control mechanism. According to Ohshima and Tanigaki (2000), the lack of on-line 

sensors for key polymer properties leads to quality control issues in polymer plants. This 

situation leads to a conundrum: the characterization of a sample must be sufficiently 

complete to yield relevant information but fast enough to be of any use in automatic 

feedback control loops. In order to achieve this goal, several rapid and non-destructive so-

called soft-sensing methods have been proposed. 
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According to Zhong and Yu (2000), the basic idea behind remote-sensing, also known as 

inference estimation, is to predict the output of the variables of interest (i.e. sample purity) 

by measuring a set of secondary easily measured variables (i.e. spectra), which are 

nevertheless correlated to the variables of interest. In essence, the core of a soft sensor is 

the soft sensing model of a plant, which generates a virtual measurement to replace a real 

sensor measurement (Yan et al., 2004). In recent years, considerable attention has been paid 

to the development of on-line soft-sensors in order to estimate hard-to-measure quantities 

or simply avoid laboratory measurement delays (Dai et al., 2006). The following sections 

discuss a number of soft-sensing methods and their uses in the polymer industry. Two cases 

of soft-sensing are discussed. Analysis of the melt properties is broadly referred to as 

“internal probes”, whereas analysis of the solid polymer is referred to as “remote sensing”. 

 

2.2.3.1 Internal probes 

 

Internal probes have the potential of characterizing the state of a production line without 

influencing the process or requiring any direct human interaction. A number of authors 

have studied the viability of electromagnetic and ultrasonic probes on plastic extrusion. 

 

NIR spectroscopic probes have been used successfully to estimate extrusion dynamics 

(Ohshima and Tanigaki, 2000; Alig et al., 2005), to control the production of complex 

polymer blends (Xanthos and Patel, 1995; Rohe et al., 1999; Coates et al., 2003; 

Dumitrescu et al., 2005) as well as natural fiber composites (Fischer et al., 2006). Raman 

and FTIR spectroscopic probes have also been used on extruded blends (Coates et al., 

2003; Alig et al., 2005; Dumitrescu et al., 2005). In general, spectroscopic probes were 

used to predict the composition, color and humidity levels. For their part, ultrasonic probes, 

based on the attenuation of ultrasounds inside the polymer, have often been used to 

estimate blend composition (Gilmore and Tjahjidi, 2002; Coates et al., 2003; Alig et al., 

2005; Fischer et al., 2006), melt density (Abu-Zahra and Seth, 2002), as well as the 

residence time distributions inside the extruder (Sun et al., 2004; Lee et al., 2005). In 

contrast with ultrasonic probes, which measure the average velocity of the melt (Agemura 
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et al., 1995), laser Doppler velocimetry (LDV) measure single point velocities inside the 

extruder (Furness, 1989). Finally, more exotic probe types such as nuclear magnetic probes 

(NMR) have been proposed to study the molecular mobility via the relaxation times 

(Gottwald and Scheler, 2005). 

 

These examples show that internal probes can effectively quantify the polymer melt as a 

whole. Nevertheless, certain limitation must be noted. While electromagnetic probes 

provide a wealth of information, they require translucent melts, therefore limiting their 

usefulness when intense coloring and/or particulate fillers are present. On the other hand, 

ultrasonic probes are not limited to translucent melts but do not provide the same level of 

detail that electromagnetic probes do. 

 

One must also note that all single-point probes, by their very nature, only provide local or 

global information on the molten flow (only true for homogeneous flows). This implies that 

such a probe-based system may not detect local discrepancies or gradients, while the blend 

is still molten and is not designed to provide information on the final molded sample. 

 

2.2.3.2 Remote sensing 

 

Microscopy 

 

Microscopic methods will broadly be considered as “remote sensing” in spite of the fact 

that many of these require intensive sample preparation. In fact, microscopy methods vary 

widely in their capabilities and applications. Of these, atomic force microscopy (AFM), 

scanning electron microscopy (SEM) and optical microscopy have all been used in micro-

structural characterization of polymers (Kantz et al., 1972; Butler et al., 1995; Pantani et al., 

2005; Wang and Hahn, 2007). These methods have slow acquisition times and may require 

surfacing, microtoming or vacuum conditions. However, on-line monitoring of multiphase 

polymer melts using optical microscopy has nevertheless been published (Xanthos and 

Patel, 1995; Leukel et al., 1998). 
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Spectroscopy 

 

Various spectroscopic techniques have also been proposed for estimating polymer 

properties since they are rapid and non-intrusive. They also require little or no sample 

preparation and provide a wealth of information (Lachenal, 1995). However, many of these 

methods are based on single point measurements. 

 

First, among the spectroscopic methods, NIR spectroscopy has been very widely used to 

analyze polymeric materials. Applications include: the extent of crystallization (Lachenal, 

1995; Stuart, 1996; Sato et al., 2003; Pantani et al., 2005; Pelsoci, 2007), orientation 

(Buffeteau et al., 1995), density (Saeki et al., 2003; Watanabe et al., 2006), film thickness 

(Heymann et al., 2009), as well as waste identification (Huth-Fehre et al., 1995; van den 

Broek et al., 1995,1996,1997; Feldhoff et al., 1997; Leitner et al., 2003). 

 

Among these applications, waste identification is of particular interest because it relies on 

chemometrics methods (i.e. PLS models) to identify plastic waste products using 

spectroscopic NIR images. These projects essentially tried to identify the nature, shape and 

size of the plastic objects. For example, van den Broek et al. (1996) were able to isolate a 

number of waste plastic products (17 polymer types) from other waste products (ceramics, 

metal, glass, paper and wood). However, the weak spectral resolution used in this study 

made it impossible to distinguish between the different polymer types. A certain level of 

success was achieved the very next year by Feldhoff et al. (1997) using uncolored polymer 

samples. However, an efficient polymer classification scheme would have to wait the work 

of Leitner et al. (2003), in which they used blob analysis to identify the composition of a 

number of waste plastic bottles. They effectively distinguished between PET, HDPE, PS 

and two types of PP with 93% accuracy (Figure 2.5). This method effectively seeks to 

match the experimental spectrum of each pixel in a spectral image to that of known 

reference samples. While it can effectively identify the nature of the elements present in the 

image, it is not suited to take into account intra-class variability. 
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Figure 2.5. The different NIR signatures of common polymer species (A) make it possible to 
class household plastic waste (B) according to composition (C). Adapted from Leitner et al. 
(2003). 
 

Second, Raman spectroscopy is another spectroscopic method commonly used in polymer 

analysis. It uses the inelastic scattering of light to analyze rotational and vibrational modes 

of molecules. Among recent applications, Alig et al. (2005) used single-point laser Raman 

spectroscopy for on-line monitoring of an extrusion process. Work has also been reported 

on real-time crystallinity estimation by single-point laser Raman spectroscopy (Stuart, 

1996; Batur et al., 1999; Cherukupalli and Ogale, 2004). 

 

The third spectroscopic method mentioned here is laser-induced breakdown spectroscopy 

(LIBS). This technique uses laser-induced plasma as to vaporize, atomize and excite the 

sampled material to determine its composition based on elemental and molecular emission 

intensities. It has notably been used to identify a number of polymer types (Wang et al., 

2008), as well as to perform real-time composition estimation of wood/plastic composites 

(Rials et al., 2009). 

 

The fourth and last spectroscopic method discussed here is dielectric spectroscopy. 

Sometimes called impedance spectroscopy, it measures the dielectric properties of a 

medium as a function of frequency (Kremer et al., 2002). While it is still hardly used for 

polymer characterization, it has been used successfully by Boersma and van Turnhout 

(1999) as well as Alig et al. (2005) for on-line monitoring of an extrusion process. 
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X-ray scattering 

 

X-ray scattering techniques are non-destructive methods based on the scattered intensity of 

a beam hitting a sample and have been extensive used in polymer analysis (Kantz et al., 

1972; Brown et al., 1973; Polizzi et al., 1991; Albano et al., 2003; Alig et al., 2005; Pantani 

et al., 2005; Pelsoci, 2007; Briskman, 2007). X-ray scattering reveals information about the 

crystallographic structure, chemical composition, as well as the physical properties of the 

material. However, as these methods depend on the incident and scattering angles, as well 

as the polarization and wavelengths of the beams, they are not easily adapted to 2-D surface 

scans. 

 

Other methods 

 

Non-invasive nuclear magnetic resonance imaging (NMR) and positron emission particle 

tracking (PEPT) have been used to follow the trajectory of specific particles as they move 

inside the bulk (Agemura et al., 1995; Nakagawa et al., 1997; Ding et al., 2002; Ingram et 

al., 2005; Fischer et al., 2006). While these methods provide much physical, chemical and 

structural information about the polymer melts (Bergmann, 1981; Pelsoci, 2007), their use 

is typically expensive and time consuming (Vailaya et al., 2001; Saeki et al., 2003). 

 

Ultrasonic probes are usually associated to the monitoring of extruded polymer melts. 

Nevertheless, Alig et al. (2007) proposed a remote sensing ultrasonic application in which a 

plastic film’s formation was studied. Finally, white light interferometry has also been 

suggested by Coates (2005) to measure surface roughness across extruded PVC strips. 

 

Closing thoughts on quality measurements 

 

A number of remote sensing techniques used in polymer analysis were discussed in this 

section. The stated objective of this work was to develop an on-line quality control tool 

adaptable to plastic materials of all types. First, a discussion was made on laboratory 

measurements. It can be concluded that they are usually too slow, and require too much 
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handling, to be used for on-line quality assessment in an industrial setting. Nevertheless, 

laboratory measurements are essential since they are uniquely capable of quantifying the 

material properties. 

 

Remote sensing tools are better adapted to the fast response times required by the industry. 

The real-time methods discussed in this section are both fast and accurate, but typically 

only provide a single local, or averaged, value at every sampling interval. Internal probes 

have the added inconvenience of analyzing the polymer melt rather that the final solidified 

sample, making them oblivious to any post-processing problems (e.g. shrinking). It will be 

shown that a number of chemometrics methods can effectively be used to extract relevant 

spectral and spectral features from hyperspectral images of the polymer composites. 

However, before doing so, both the images and the methods must be discussed in greater 

detail (Section 3.1 on spectral imaging and Section 3.2 on chemometrics). 
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Chapter 3  

Background on multivariate imaging and chemometrics 
 

3.1 Spectral imaging 

3.1.1 Defining spectral imaging 
 

Webster’s New World College Dictionary (2005) defines the electromagnetic spectrum as: 

“the complete range of frequencies of electromagnetic waves from the lowest to the 

highest, including, in order, radio, radar, infrared, visible light, ultraviolet, X-ray, and 

gamma ray waves”. This definition of the spectrum is illustrated in Figure 3.1. While the 

full electromagnetic spectrum conceptually spans from the Planck length (1.61610-35 m) to 

the size of the universe, in practice it usually ranges from 10-14 to 103 m. The spectral 

signature of an object is the characteristic distribution of electromagnetic radiation either 

emitted, absorbed, reflected or transmitted by that object. In this section, we will define 

three types of imaging sensors (grayscale, RGB and spectral imaging) and relate them to a 

sample’s spectral signature. 

 

 

Figure 3.1. Electromagnetic spectrum ranging from gamma rays to radio ways. Adapted 
from Color Information Resource (2007). 
 

A grayscale, or black-and-white, image is a 2-D matrix in which each pixel only represents 

intensity information. Such images are composed exclusively of shades of gray, varying 

from black at the weakest intensity to white at the strongest (Johnson, 2006). These images 

are in fact monochromatic as they do not contain any chromatic, or color, information. The 

information provided by the monochrome cameras is in fact the convolution of the 

spectrum of the incident light and the spectral sensitivity of the CCD. Since no specific 

wavelength filters are used in front of the CCD photosensitive detectors (as is the case with 
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RGB/Bayer patters), then the light is not decomposed into different colors, although the 

CCD itself is sensitive to color. Depending on the sensor, the perceived intensity may either 

be at a distinct narrow wavelength, or averaged over a wide spectral interval (Figure 3.2A). 

 

Any image containing chromatic information does so by recording each color, or 

wavelength, separately. According to Bharati et al. (2003), a multivariate image consists of 

a stack of congruent images, with each image in the stack representing a unique 

wavelength. Such an image can be represented as a 3-D dataset, where two dimensions (x 

and y) represent spatial information in the image plane and the third dimension () 

represents the spectral information. In the case of common color photography, the visible 

color spectrum is typically represented by multivariate images containing red, green and 

blue color intensities, forming a (xy3) 3-D image array (Figure 3.2B). In practice, the 

blue sensor is especially sensitive to the light between 375 and 500 nm, the green between 

500 and 575 nm, and the red between 575 and 850 nm (Nikon, 2009). 

 

 

Figure 3.2. A single image as seen using (A) a monochrome (grayscale) camera, (B) a 
red/green/blue (RGB) color camera, and (C) a spectral imaging system. 
 

Finally, a spectral image can be seen as an extension of an RGB image in that it captures a 

much greater number of individual wavelengths, usually with an increased spectral range 

and/or an increased spectral resolution (Figure 3.2C). As early as in the 1960s, 

multispectral imaging systems with up to 20 wavelength bands were used in remote sensing 
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applications (Liu and MacGregor, 2007). Later, the term hyperspectral imaging was coined 

in the fields of satellite and airborne imaging, referring to multispectral images containing 

more than 100 wavelengths (Grahn and Geladi, 2007). Shippert (2009), however, provides 

a more specific definition of the term. As the word implies, a hyperspectral image literally 

contains an excessive spectral resolution. These images are over-determined, meaning that 

they provide ample spectral information to identify and distinguish spectrally unique 

materials. It is not only the number of measured wavelengths that defines a sensor as 

hyperspectral but also the narrowness and contiguous nature (i.e. spectral resolution) of the 

measurements. According to this definition, a sensor capable of capturing over 100 

wavelengths may not be hyperspectral if it is sensitive to a very wide spectral range. 

 

3.1.2 Experimental setup 
 

Data acquisition in this study was performed using a line-scan imaging system. There are, 

however, a number of spectral imaging systems available on the market, falling generally 

into one of three categories: point-scans, line-scans and area-scans. 

 

Point-scans are conceptually the simplest systems since they acquire a single spectral 

signature per acquisition period. This system is essentially analogous to a single surface 

probe. This spectral signature can either represent a very localized area of the sample as 

was done by Coates et al. (2003) or an average value of a larger surface as in Feldhoff et al. 

(1997). 

 

Line-scan systems acquire a single line of the sample per acquisition period. For each 

scanned line of the sample, the transmitted/reflected light enters the spectroscope through a 

slit, is then dispersed through a grating system, and finally captured by the charge-coupled 

device (CCD) array of the camera as a spatial/spectral image as illustrated in Figure 3.3. 

Thus, each image from the spectral camera includes the line pixels in one direction (spatial 

axis) and spectral distribution (light intensities in spectral elements) in another dimension 

(spectral axis). The entire sample can be imaged by slightly displacing the sample 

perpendicularly to the spectroscope’s slit between each acquisition; a large image may 
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require the sample to be imaged hundreds of times. Line-scan systems have widely been 

used for their unique combination of fast acquisition speed and high spatial resolution 

(Leitner et al., 2003; Liu et al., 2007; Qiao et al., 2007; ElMasry et al., 2008). 

 

The third category of spectral imaging sensors consists of area-scan systems. In this case, a 

2-D area of the sample is captured at every acquisition time, much as the common camera 

would do. In order to achieve this, the imaging system captures the scene as a succession of 

grayscale images taken at different wavelengths. Tunable filters are typically used to select 

the various wavelengths. Doing so greatly increases the capture time. While such a system 

is suitable for off-line applications, it cannot be used in on-line industrial applications such 

as scanning samples fed to a process using a rapidly moving conveyor belt. The area 

scanners require the sample to be static during the complete capture time, which mostly 

depends on the number of wavelengths captured. Nevertheless, these systems were used 

successfully by van den Broek et al. (1996) to identify plastic waste products. 

 

 

Figure 3.3. Illustration of a line-scan imaging system projecting a single line of the sample 
onto a 2-D sensor. Adapted from Specim (2009). 
 

A line-scan imaging system (Figure 3.4) was used in this work. It consists of three spectral 

cameras coregistered on the same area on the sample, effectively covering the ultraviolet 

(UV), visible (VIS) and near-infrared (NIR) range of the spectrum (200-1700 nm). First, 

the UV range is captured using a Hamamatsu C8800 camera (10001000 pixels) coupled 

with an ImSpector UV4 grating spectroscope (Specim Spectral Imaging Ltd) effectively 

sensing the 200-400 nm wavelength range. Second, the visible range is captured using a 
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Hamamatsu C8484-05G camera (9601024 pixels) coupled with an ImSpector V10E 

grating spectroscope (Specim Spectral Imaging Ltd) effectively sensing the 400-1000 nm 

wavelength range. The infrared range is captured using a XenICs XEVA-USB-FPA camera 

(256320 pixels) coupled to a Specim ImSpector N17E grating spectroscope effectively 

sensing between 900-1700 nm. 

 

The system is equipped with both halogen or xenon lighting, the former for VIS-NIR 

applications and the latter for UV. These light sources were selected to provide relatively 

smooth lighting conditions over the entire spectral interval. Basically, light is reflected off 

the sample (tests were performed in reflection and transflection), through a system of 

mirrors, divided by 2 dichroic lens into UV, visible and NIR light and directed toward their 

respective cameras. 

 

 

Figure 3.4. Hyperspectral scanning system seen in perspective (A) and from above (B). 
 

Each scanned line of the sample is captured on the CCD array as a spatial/spectral (x) 

image containing hundreds of spectral channels (i.e. wavelengths), rather than the three 

more commonly obtained in RGB images. A hyperspectral image, or data cube, of the 

entire sample is achieved by repeatedly displacing the sample perpendicularly to the 

spectroscope slit. Each hyperspectral image consists of a number of juxtaposed line-scans 

forming a 3-D array (xy). 
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A simple calibration scheme is commonly applied to the raw line-scans in order to remove 

any linear discrepancies (Leitner et al., 2003; ElMasry et al., 2008). The raw signals of each 

spectral-spatial image (R) were transformed into reflectance units using a flat black (B) 

image and a true white image (W): 

 

ix 
rx  bx

wx  bx

 (3.1) 

 

where, rx is an element of the raw image (R), bx and wx are elements of the black (B) and 

white (W) calibration images, and ix is an element the standardized reflectance image (I). 

The flat black and true white images were obtained by collecting a spatial-spectral image 

leaving the lens cap in place (i.e. dark current), and by imaging a 99% reflectance standard 

sheet (Gigahertz-Optik), respectively. This calibration is performed on each image of a set. 

The resulting calibration of a narrow sample on a true white background is shown in Figure 

3.5. 

 

 

Figure 3.5. Black/white calibration in which a raw image is converted into standardized 
reflectance units by comparing it to true white and true black images. Figure shows a WPC 
sample placed on a 99% reflectance standard. 
 

3.2 Chemometrics 

3.2.1 Defining chemometrics 
 

According to Zhong and Yu (2000), soft-sensors can be used to obtain a regression model 

between easily obtained measurements (secondary variables) and quality variables (primary 
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variables) using statistical (Santen et al., 1997), neural networks (Wang and Shao, 1997) or 

chemometrics approaches (Wise and Gallagher, 1996). The latter approach was favored in 

this work for its ability to consider highly correlated data in a straightforward and 

parsimonious manner. On the one hand, statistical methods may often lead to good results 

but lack the ability to deal with highly correlated data. On the other hand, neural network 

are known for the ability to accurately predict the outcomes of complex problems (Berson 

et al., 1999) but are criticized for lacking interpretability and being susceptible to over-

training and over-parameterization (Groth, 2000). 

 

The term “chemometrics” was coined by Svante Wold in 1974 (Wold, 1995) and the 

International Chemometrics Society (2009) was formed shortly thereafter by Svante Wold 

and Bruce Kowalski, two pioneers in the field. The International Chemometrics Society 

(ICS) offers the following definition of chemometrics: “It is the science of relating 

measurements made on a chemical system or process to the state of the system via 

application of mathematical or statistical methods.” Essentially, it is the application of 

mathematical or statistical methods to chemical data. The ICS states that chemometrics 

research spans a wide area of different methods that can be applied in chemistry 

biochemistry and chemical engineering. There are techniques for collecting good data 

(optimization of experimental parameters, design of experiments, multivariate analysis or 

multivariate statistics, calibration, signal processing) and for getting information from the 

data (statistics, pattern recognition, modeling, structure-property-relationship estimations). 

Some of these techniques were used in this project for image analysis and data regression. 

 

3.2.2 Pre-processing 
 

Pre-processing is an important first step of the data analysis in order to remove non-

relevant information (Kohler et al., 2009). Furthermore, it was used extensively throughout 

this work since both latent variable methods used in this thesis, namely principal 

component analysis (Section 3.2.3) and projection to latent structures (Section 3.2.4), are 

scale dependent. It is therefore no surprise that many pre-processing methods are available 

to the user: mean-centering, autoscaling, direct orthogonal signal correction, standard 
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normal variate and multiplicative signal correction just to name a few (Bakeev, 2005; 

Kohler et al., 2009). Nevertheless, Geladi and Grahn (1996) warn that the scaling of 

spectroscopic data is not always desirable and that trial and error is the only way of finding 

out which method, if any, works best. Among the pre-processing methods mentioned 

above, only mean-centering and autoscaling were used in this work and will be discussed in 

greater detail. 

 

Mean-centering 

 

This method involves the subtraction of the mean of each variable computed using all the 

samples in the dataset (Bakeev, 2005). Applying this to a data matrix X (NK), the mean-

centering is achieved by the following equation: 

 

XMC  X 1N
T x  (3.2) 

 

where XMC (NK) is the mean-centered data, x  (1K) contains the mean response values of 

each of the variables and 1N (1N) is a unit vector. Mean-centering essentially removes the 

absolute intensity information (i.e. base-line value) of each variable, focusing on the 

response variation (Figure 3.6). 

 

Autoscaling 

 

Scaling to unit variance is typically applied after mean-centering by dividing the resulting 

intensities by the variable-wise standard deviations (Bakeev, 2005): 

 

   1 MMCAS diag SXX  (3.3) 

 

where XAS (NK) is the autoscaled data and SM is a square diagonal matrix containing the 

standard deviations for each of the variables. This method reduces each variable to a mean 

of zero and a standard deviation of one, effectively removing all scale effects (Figure 3.6). 
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Figure 3.6. Illustration of data pre-processing in which the raw data (A) is either mean-
centered (B) or autoscaled (C). 
 

3.2.3 Principal component analysis 
 

Introduction and interpretation 

 

Consider a dataset X (NK) consisting N observations on K variables. The observations (i.e. 

rows) of X may represent samples, trials or compounds whereas the variables, or columns 

of X, represent characteristics such as laboratory assays or sensor inputs (e.g. temperature, 

pressure, spectra). With many such datasets encompassing hundreds of variables 

quantifying thousands of observations, one may feel the need to extract the important 

information from X in order to display it simply. 

 

Principal component analysis (PCA), the simplest of the eigenvector-based multivariate 

latent variable method, was first proposed by Karl Pearson (Pearson, 1901). This 

multivariate statistical method decomposes the variance-covariance structure of a data 

matrix by finding linear combinations of the original variables in such a way that these 

combinations explain the greatest amount of variation within the data (Eriksson et al., 

2001). PCA is the decomposition of a matrix X (NK) into simpler matrices Ma (NK) of 

rank = 1: 

 

X  Ma

a1

A

  (3.4) 
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In terms of the eigenvector/eigenvalue decomposition, rank is the number of eigenvalues of 

XTX that are greater than zero (Geladi and Grahn, 1996). The rank can also be expressed as 

the smallest number of outer products of vectors (A) that may be used to represent X 

exactly. Since each of these Ma matrices has a rank = 1, they can be represented as the 

outer product of a single pair of vectors, ta and pa: 

 

Ma  tapa
T  (3.5) 

 

The decomposition of the X-matrix can therefore be written as: 

 

X  tapa
T E TPT E

a1

A

  (3.6) 

 

where A is the number of orthogonal principal components, ta are the score vectors, and pa 

are the loading vectors. The first score vector t1 is the linear combination of the K variables 

(defined by the loadings vectors p1) capturing the largest possible variance within matrix X, 

while the second score vector t2 represents the second largest source of variance 

(orthogonal to t1) and so on. The score vectors can therefore be viewed as a multivariate 

summary of each X observation. If the number of components is lower than the maximum 

number of components (AK), then E (NK) contains the residuals. 

 

The PCA decomposition is illustrated graphically in Figure 3.7. First, Figure 3.7A 

represents the relation between the original matrix X and the T and P matrices. This 

method of representing the matrices is used to illustrate the relation between the data matrix 

(X) and the outer product of the scores and loadings (TPT). Figure 3.7B illustrates a PCA 

projection of a 3-D data space (as in the case of an RGB image) down to a 2-D plane. Let 

us discuss this projection of the data matrix in terms of loadings, scores and residuals 

(Equation 3.6). The loadings matrix P represents the orientation of the latent variable 

subspace within the original variable space. In essence, this subspace is built by linking 

each loading vector (pi) into a single hyperplane. Using this new subspace, the score matrix 
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T represents the new coordinates of the data points defined by the loadings (Figure 3.7C). 

In projecting the data onto a 2-D plane as in the case of Figure 3.7, each data point will 

have a t1 and t2 value corresponding to its location on the p1 and p2 vectors. In the case 

where the number of latent variables (A) equals the rank of X, the data points are exactly 

represented by the new system of coordinates. However, if A is chosen inferior to the rank 

of X, the PCA effectively projects data point located in a high-dimensional generic 

coordinate system onto a low-dimensional latent variable subspace. While doing so 

captures most of the information in the dataset, a certain amount of information will 

necessarily be lost. This loss is the orthogonal projection error of the data point and is 

presented in Equation 3.6 as the residual (E). Graphically, it represents the distance of a 

data point off the plane created by the loadings. Further details on PCA can be found in 

Wold et al. (1987). 

 

 

Figure 3.7. Principal component analysis. In (A) the observations of X are represented 
using a small number of latent variables called scores (T) projected onto loadings (P). In 
(B) a 3-variable dataset (x1, x2, x3) projected onto 2 loading (p1, p2). In (C) t1-t2 score 
histogram created by p1 and p2 onto which each data point is projected. 
 

According to Geladi and Kowalski (1986), this decomposition is usually achieved by non-

linear iterative partial least squares (NIPALS) or by singular value decomposition (SVD). 

While the NIPALS algorithm is an iterative process that calculates each or the principal 

component sequentially, the SVD decomposition extracts all the principal components of X 

(NK) simultaneously: 

 

X UDVT  TPT  (3.7) 

 



 
 

69

where the U, D and V matrices have certain specific properties:  

 The columns of U (NA) are eigenvectors of XXT and are orthonormal. 

 The diagonal elements of D (AA) are singular values and the square roots of the 

eigenvalues of XTX. 

 The columns of V (KA) are eigenvectors of XTX and are also orthonormal. U and 

V are identical in the case where X is a correlation matrix. 

 

In the case where the number of components used in the decomposition (A) is inferior to 

the rank of X, then the score and loading matrices (T and P) no longer represent the X 

exactly, leading to the presence of an error term in Equation 3.6.  

 

Identifying outliers 

 

The Merriam-Webster Online Dictionary (2009) defines the term outlier as: “a statistical 

observation that is markedly different in value from the others of the sample”. While 

outstanding data points are sometimes relevant and can represent key aspects of the system 

under study, they may also be signs of flawed data possibly caused by poor acquisition 

tools or human error. In either case, the presence of such outlying data points can seriously 

affect the performance of the PCA algorithm (Gabrys et al., 2006) and should be studied 

with the utmost care. Keeping in mind the projections illustrated in Figure 3.7, two criteria 

are typically used to identify outliers.  

 

First, the distance to the model in the X-space (DmodX) represents the orthogonal distance 

of an observation from the model plane (Figure 3.8A). As each of the PCA loadings (pi) 

seeks to capture the largest possible sources of variation found within X, any point falling 

far from the model plane differs from the bulk of the dataset. DmodX is computed by:  

 

DmodX 
SPEn

DF
 (3.8) 
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where the squared predicted errors (SPE) are adjusted for the number of degrees of freedom 

(DF). In doing so, DmodX represents the number of standard deviations off the plane. In 

turn, SPE and DF are given as: 

 

SPEn  enk
2

k1

K

  en1
2  en 2

2  ... enK
2  (3.9) 

DF  N  A 1  K  A  (3.10) 

 

where SPEn sums the residual errors over all K variables for each observation n in the PCA 

decomposition (Equation 3.6) whereas the degrees of freedom are computed using the 

number of latent variables (A) as well as the dimensions of X (NK). In essence, the 

DmodX sums each row of the squared residual E matrix. 

 

 
Figure 3.8. Identifying outlying data points in a PCA decomposition according to: (A) 
perpendicular distance from the plane (DmodX), and (B) distance from the center on the 
plane (Hotelling’s T2). 
 

The second metric used to identify outliers is the Hotelling’s T2, which is orthogonal to an 

observation’s distance from the model plane. It quantifies how far its projection falls from 

the center of the t1-t2 score plot. While an observation may appear to follow the general 

pattern of the PCA model (low DmodX value), it may nevertheless differ significantly from 

the bulk of the data by falling very far from the center of mass of the dataset (Figure 3.8B). 

It can be computed according to:  
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Tn
2 

tna
2

sa
2


a1

A

 tn1
2

s1
2


tn 2
2

s2
2
 ...

tnA
2

sA
2

 (3.11) 

 

where A is the number of latent variables used in the model, tna
2 is the score value of any 

given observation n for the ath latent variable and sa
2 is the variance of ta in the model. The 

weighting by sa
2 allows all scores to contribute equally to T2 (MacGregor et al., 2008). As 

the T2 values are approximately distributed according to an F-distribution, a 95% 

confidence interval is often drawn in the score space (Figure 3.8B) forming an ellipse in 2-

D space and, in general terms, a hyperellipse in A-dimensional space.  

 

It is important to note that only observations found far outside the confidence intervals of 

either DmodX of Hotelling’s T2 are expected to be outliers. 

 

Quantifying prediction errors 

 

As mentioned, the SPE sums each row of the squared residual matrix E (NK). By 

summing E column-wise, it is possible to compute the prediction errors for each of the K 

variables ( RX ,k
2 ). According to MacGregor et al. (2008), it is computed for a single variable 

using: 

 

RX ,k
2 

SS x k  SS ek 
SS x k 

 (3.12) 

 

where SS(xk) represents the sum of squared values of X for a single column k whereas 

SS(ek) is its counterpart using the E matrix. For a single variable k, this ratio is the sum of 

squares explained by the model divided by the total sum of squares. This notion can also be 

generalized into a global value in which the prediction errors of all K variables are 

combined ( RX
2 ): 

 

RX
2 

SS X  SS E 
SS X 

 (3.13) 



 
 

72

 

where SS(X) represents the sum of squared values of the entire X matrix whereas SS(E) is 

its counterpart using the E matrix. 

 

The E matrix varies with the complexity of the model. When building the model, the 

prediction error generally decreases in the training set as more components are used. 

However, when validating the model with new data, the prediction error may increase if too 

many components are used (Figure 3.9). This is explained by the fact that a very complex 

model will not only capture the underlying phenomena, but also the small-scale variations 

present in the training set data (e.g. experimental errors). 

 

 

Figure 3.9. Prediction error varying with model complexity. 
 

In order to avoid overfitting, a “goodness of fit” criterion is used to estimate the ability of 

the model to make predictions, using either internal existing data (i.e. through cross-

validation), or an external validation set. It will be referred to as the predicted residual sum 

of squares (PRESS) and is computed using: 

 

PRESS  enk
2

k1

K

  (3.14) 

 

The resemblance between Equations 3.9 and 3.14 is not coincidental. The expressions for 

SPE and PRESS are exactly the same; however the errors used in each come from different 
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datasets. The former is obtained on the training set whereas the latter is calculated using the 

internal (i.e. cross-validation) or external validation sets. In practice, PRESS(A) is 

computed with each added latent variable in the model. Overfitting is avoided simply by 

determining whether PRESS(A) is significantly inferior to PRESS(A-1). Finally, the ability 

of the model to predicted new, or omitted, data is given by: 

 

QX ,cum
2 

SS X  PRESS A 
SS X 

 (3.15) 

 

3.2.4 Regression methods 
 

Phenomenological models, or first principal models, are often not available due to the 

complexity of industrial processes (Yan et al., 2004). As a result, empirical models are 

usually preferred when developing soft sensors. The problem of empirical modeling is to 

find a model with the best generalization and prediction performance, given the empirical 

data. 

 

Multi-linear regression vs. principal component regression 

 

In multiple linear regression (MLR), the X and Y matrices are linked directly using a linear 

relation: 

 

Y  XBE (3.16) 

 

where B represents the matrix regression coefficients (a vector when a single y is used) and 

E consists of the regression residuals, often assumed to be identically and independently 

normally distributed. Furthermore, this model assumes that X is of full rank and is 

deterministic, that is to say that it is known perfectly without any uncertainties. In this way, 

all errors are assigned to Y. A number of procedures have been developed for parameter 

estimation in linear regression. The simplest and most commonly used is ordinary least 
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squares (OLS). The regression parameters can be estimated ( ˆ B ) by minimizing the sum of 

squared residuals (E): 

 

E  YXB  (3.17) 

ˆ B  (XT X)1XT Y  (3.18) 

 

However, when X is ill-conditioned, the inversion of the XTX becomes very sensitive and 

eventually does not exist when X is singular (i.e. when X is not full rank). Unfortunately, 

this situation is very typical in industrial process datasets, as well as in spectral data 

analysis (high spectral resolution implies that many wavelengths are correlated). The 

properties of PCA can be applied to MLR in order to avoid such collinearity problems. In 

principal component regression (PCR), the X matrix is substituted by the T matrix 

computed by the PCA (only the dimensions corresponding to the largest eigenvalues are 

kept). By doing so, the multi-linear regression can be expressed as: 

 

Y TBE  (3.19) 

ˆ B  (TTT)1TT Y (3.20) 

 

As in MLR, B and E represent the regression parameters and residuals, respectively. The 

matrix TTT is diagonal since the columns of T are orthogonal, so the elements of the 

inverse are merely the reciprocals of the diagonal elements (Jackson, 1991). In doing so, 

PCR avoids the problems linked to collinearity while reducing the noise present in the 

independent variable matrix. 

 

However, in the PCR approach, the decomposition of X (i.e. projection onto a lower latent 

variables subspace) is performed without using information from Y, and therefore, this 

lower dimensional space is not necessarily the most predictive of Y. It is also important to 

note that only selecting the components with the highest variance (large eigenvalues) may 

also be problematic; Jolliffe (1982) states that low-variance principal components may be 

more important to the regression than higher variance ones. That is, the dominant variance 

directions in X are not necessarily the most important for predicting Y. 
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Projection to latent structures 

 

The third and last regression method discussed here is the Projection to Latent Structures 

(PLS), also known as the Partial Least Squares. This method was used throughout this work 

to build the empirical latent variable models linking the regressor data (e.g. image data) to 

the quality data (e.g. mechanical properties). PLS was selected in this work since the 

columns of X were highly collinear. 

 

According to Geladi and Kowalski (1986), the PLS analysis consists of simultaneous 

“internal” and “external” relations in which the X and Y data blocks are first taken 

individually (external relation) and then linked (internal relation). The “external” relation is 

essentially similar to a classic PCA on each of the X (NK) and Y (NM) matrices taken 

separately. 

 

X TPT E (3.21) 

Y  UQT  F'  (3.22) 

 

where the P (KA) and Q (MA) matrices contain the loading vectors that best represent 

the X and Y spaces, whereas T (NA) and U (MA) each represent the latent variable space 

containing a number A of PLS components (i.e. latent variables). The number of PLS 

components or latent variables A (Amin(K,N-1)) is often selected using a cross-validation 

procedure. The E (NK) and F’ (NM) matrices contain the residuals. Using these 

relations, the “internal” relation essentially links Equations 3.21 and 3.22 by ensuring that 

T and U are maximally correlated, thus minimizing the error H (NA) (MacGregor et al., 

2008). 

 

U TH (3.23) 

Y TQT  F  (3.24) 

T  XW * (3.25)  
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W*  W PT W 1
 (3.26) 

 

where W* (KA) contains the X-weights defining the common latent variable space T 

(NA) relating X and Y. Using this structure, the Y-block residuals are now represented by 

F (NM). The W matrix is the regression coefficients for each latent variable in terms of 

the “deflated”, or dimensionless, X-matrix in the same way W* expresses T in terms of the 

original X-matrix (Equation 3.25). Hence, PLS attempts to extract the relationship between 

regressor variables (X) and response variables (Y) by assuming that they are generated by a 

common set of underlying factors T (MacGregor et al., 2008). The model structure is 

graphically illustrated in Figure 3.10.  

 

 

Figure 3.10. Schematic representation of the PLS model. 

 

In PLS as in PCA, the X-data is represented by the outer product TPT in which the loadings 

matrix P represents the orientation of the latent variable subspace within the original X-

variable space. Using this new subspace, the score matrix T represents the new coordinates 

of the X-data defined by the loadings (P). The novelty here comes from the Y-data, 

modelled as the outer product TQT (Equation 3.24). In fact, the loadings matrix Q can be 

seen as the P counterpart, representing the orientation of the latent variable subspace within 

the original Y-variable space. 

 

An important distinction must be made at this point between P and W*. According to 

MacGregor et al. (2008), the X-loadings P are the coefficients of least squares regression of 
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T onto X but are seldom used in the interpretation of the results. Rather, W* is used to 

interpret how X is related to T in the same way the loadings are used in the PCA analysis. 

 

By combining Equations 3.24 and 3.25, the PLS latent variable model can be re-organized 

as a simple prediction equation involving a set of pseudo-regression coefficients BPLS 

(KM), similarly as for multiple linear regression (Wold et al., 2004). 

 

ˆ Y  TQT  XW * QT  X W * QT  XBPLS  (3.27) 

 

The term W*QT appears in the previous equation as a mean of linking the X and Y 

matrices. In fact, relationships between the variables in these matrices are visualized by 

overlaying the wi* and qi plots for each latent variable, forming the wi*qi plot, also known 

as loadings biplot (MacGregor et al., 2008). Use of the biplot will be illustrated in Chapters 

5 and 7. 

 

Another commonly used metric for judging the importance of the X-variables on Y is the 

variable importance on the projection (i.e. VIP). The VIP score for the kth variable for a 

single response y is computed according to Eriksson et al., (2001): 

 

VIPk  K qa
2ta

Tta wak wk

2  
a1

A

 qa
2ta

Tta 
a1

A

  (3.28) 

 

where a = 1,2…,A, K is the number of columns of X (i.e. variables), wak is the loading 

weight of the kth variable in the ath component, and ta, wa, and qa are the ath column vectors 

of T, W, and Q, respectively.  

 

It is generally accepted in practice that variables having a VIP > 1.0 are highly influential, 

values between 0.8 < VIP < 1.0 indicate moderately influential variables, and VIP < 0.8 

represent less important variables (Eriksson et al., 2001). The unity threshold comes from 

the fact that the average of the squared values of the VIPs is equal to 1.0. The greater-than-

one rule is often used as a selection criterion (Eriksson et al., 2001; Olah et al., 2004; 
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ElMasry et al., 2008; MacGregor et al., 2008), and has a particular meaning when the data 

is autoscaled to unit variance. 

 

3.2.5 Deterministic vs. stochastic image analysis 
 

Machine vision can be defined as “interpretation of an image of an object or scene through 

the use of optical noncontact sensing mechanisms for the purpose of obtaining information 

and/or controlling machines or processes” (Marshall and Martin, 1992). According to Liu 

and MacGregor (2005), the most successful techniques and their applications in machine 

vision research have been confined to a specific type of environment where certain 

assumptions can be made about the scene. In typical manufacturing industries, an image 

provides a scene of objects with predetermined shape, structure and orientation; the primary 

goal of the inspection is to check whether there are missing objects in the image or whether 

objects in the image are in desired state (size, location, orientation). Image analysis from 

such industries will be referred to here as “deterministic”. The American Heritage 

Dictionary (2009) defines the term deterministic as: “every state of affairs is the inevitable 

consequence of antecedent states of affairs”. This definition underlines the predictable 

nature of the sample under scrutiny. 

 

Images collected in the process industries belong to a different class of problems where the 

major concern is some ill-defined visual appearance of products or processes (Liu, 2004). 

Examples of this include the state of mineral flotation froth (Bartolacci et al., 2005), the 

aesthetics of manufactured countertops (Liu and MacGregor, 2006) or injection-molded 

plastic panels (Liu and MacGregor, 2005) and the grading of softwood lumber (Bharati et 

al., 2003). Simple assumptions about the scene, such as the size, location or orientation of 

the features, can no longer be made due to the seemingly random nature of these samples. 

Machine vision has seldom been applied to those processes and has had little success (Liu, 

2004). Image analysis from such industries will be referred to here as “stochastic”. The 

New Oxford American Dictionary (2007) defines the term stochastic as: “a random 

probability distribution that may be analyzed statistically but may not be predicted 

precisely”. Taking the case of softwood lumber grading, this statement may be interpreted 
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as: it may be possible to determine that pine and spruce have statistically different wood 

grains, but it is not possible to predict the shape of a bark inclusion in the next sample. 

 

3.2.6 Multivariate image analysis 
 

In general terms, multivariate image analysis (MIA) is the application of PCA to 

multispectral images. Early work by Ready and Wintz (1973) used PCA for data 

compression and information extraction in 6-channel multispectral imagery. Later, Donker 

and Mulder (1977) introduced the score and loading plots in order to classify pixels in 

Landsat images. However, MIA as it is now known was not developed until Esbensen and 

Geladi (1989). MIA relies on the assumption that local intensity variations can be extracted 

by classifying each pixel according to their spectral characteristics without considering 

their spatial location within the image. Coupled with regression techniques, MIA can be 

used to extract the relevant features from digital images in order to build models between 

the sample quality and the visual features of an image. It has been widely used in fields 

ranging from combustion flame analysis (Yu and MacGregor, 2004; Szatvanyi et al., 2006) 

to flotation froth (Liu et al., 2005), snack food (Yu and MacGregor, 2003; Yu et al., 2003) 

as well as softwood lumber grading (Bharati et al., 2003). A complete overview of MIA 

can be found in Geladi and Grahn (1996) while applications to hyperspectral imaging are 

discussed in Grahn and Geladi (2007). 

 

The channels of a multivariate image are highly correlated with each other, as they 

represent congruent images capturing the same spatial information (Bharati et al., 2003). In 

this way, a multivariate image X (xy) consists of two spatial dimensions (x and y) and a 

spectral dimension (). In order to analyze such large amounts of highly correlated data, 

MIA relies on multi-way PCA (MPCA) methods (Esbensen and Geladi, 1989). In the same 

way PCA decomposes a 2-D matrix X (NK) into a lower dimensional subspace defined by 

the loadings and score vectors (pa and ta), MPCA decomposes a 3-D matrix X (xy) into 

a set of score matrices Ta and loading vectors pa: 
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X  Ta  pa 
a1

A

 E   (3.29) 

 

where  is the Kronecker product, E (xy) is the array of residuals, and each score 

matrix Ta is a representation of the image in terms of the spectral features explained by 

each component and defined by the loading vectors. 

 

Nevertheless, the above MPCA decomposition is rarely used for practical purposes. Rather, 

the 3-D array X is first unfolded into a 2-D matrix, which is in turn decomposed using a 

standard PCA. The term “unfolding” was first coined by Wold et al., (1987) and consists of 

reorganizing the pixels into a matrix X of dimensions (xy) as shown in Figure 3.11 (i.e. 

the spectrum of each pixel are collected row-wise in matrix X). In doing so, the spatial 

organization of the pixels (e.g. texture) is destroyed. Using this unfolding operation, the 

multi-way PCA method treats each pixel as a separate object independent of its neighbors 

(Bharati et al., 2003). Such a decomposition of the variance-covariance structure of the 

spectral matrix allows extracting and classifying the spectral signature of each pixel 

regardless of their spatial location. 

 

 

Figure 3.11. Reorganizing a 3-D image array (X) into a long and narrow 2-D matrix (X) 
prior to PCA decomposition. 
 

While it is possible to directly perform a standard PCA decomposition on the unfolded 

spectral image, an additional step is often preferred. In image analysis X usually has a 

much larger number of rows than columns (i.e. xy>>). Therefore, it is much less 

computationally intensive to perform PCA on the kernel matrix Z, shown below, which has 

much smaller dimensions ( vs. xy) (Geladi and Grahn, 1996; Liu and MacGregor, 

2007): 



 
 

81

 

Z  XT X  (3.30) 

 

If a PCA model is to be developed on a set of N images, rather than on a single one, the 

kernel matrix is adapted to take into account the entire image set: 

 

Z  Xn
T Xn

n1

N

  (3.31) 

 

When PCA is applied to a data matrix, the clustering pattern of the extracted features is 

observed using ti-tj score scatter plots (ij). However, when applied to a multivariate 

image, these score plots are typically shown as color-coded 2-D density histograms in order 

to ease visual interpretation, since the large number of observations in the score plot is 

equal to the number of pixels in the image (i.e. xy observations for each image). Pixels 

having similar spectral features in the original image yield similar (t1, t2) score 

combinations, which results in many overlapping points in this scatter plot (Figure 3.12). 

The number of overlapping pixels represented by a single point in a score plot is called the 

pixel density. This color-coding scheme uses black to represent bins containing no pixels, 

and various shades of red, orange, and yellow to represent increasing pixel densities, and 

ultimately uses white to represent bins having the highest pixel density.  

 

The tendency of similarly colored pixels to project to similar t1-t2 locations can be used to 

analyze the spectral information contained within the image. Thus, segmentation may be 

performed in the lower dimensional space (i.e. score space) instead of in the original image 

space. To take a simple example, a region of interest (ROI) drawn in the score histogram in 

Figure 3.12 as been hand-selected and masked in blue and all the pixels with color 

characteristics corresponding to those t1-t2 coordinates were traced back into the original 

image. In this case the ROI was selecting the green leaf coloring. By dismissing the spatial 

organization of the pixels in the image, the MIA analysis could effectively locate any green 

pixels anywhere in the image. While simple, this methodology has been used successfully 
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in such applications as softwood lumber grading (Bharati et al., 2003) and flame analysis 

(Szatvanyi et al., 2006).  

 

Illustrated here using RGB images, this method has the added advantage of strongly 

simplifying the analysis of spectral images. By identifying the main sources of variance 

within the spectra, the MIA can help identify important features within the image that may 

not easily be detected otherwise.  

 

 

Figure 3.12. Illustration of a MIA t1-t2 score histogram of a maple leaf (A) in which all the 
pixels having a similar color combination, in this case green, are projected to similar t1-t2 
coordinates (B). 
 

An alternative way to visualize the image features extracted by each principal component is 

obtained by refolding the score vectors ta (xy into score matrices Ta (xy) according to 

the original spatial location of each pixel in the image X. This step is akin to computing Ta 

directly using Equation 3.29. The score matrices Ta are then displayed as univariate gray-

level images after appropriate scaling is applied (Figure 3.13). As mentioned previously, 

the first component captures the largest possible source of variance within the image while 

each subsequent score vector captures smaller sources of covariance. In RGB images, T1 

and T2 typically represent the vast majority of the information (99%), and T3 is often 

associated with irrelevant information and/or noise. 

 

MIA extracts spectral features independent of their spatial location. It is this characteristic 

that makes it useful for relating images to product quality properties (Bharati, 2002; Yu, 

2003). However, this disregard for the spatial information makes it unsuitable for the 

analysis of spatial features (i.e. image texture), therefore limiting its application to a variety 
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of image analysis tasks (Liu, 2004). The next sections discuss a number of methods that 

take spatial features into account. 

 

 

Figure 3.13. A color image alternately represented as a set of gray-scale images (red, 
green, and blue) or as a set of gray-scale score images (T1, T2 and T3). 
 

3.2.7 Texture Analysis 
 

The unevenness patterns of the pixels in a region give rise to the visual perception of image 

texture (Xu and Chen, 2006). Texture reflects the variations of the optical properties of 

object surfaces and different materials usually produce distinctive surface textures. This 

makes image texture an important source for discriminating information and has been a 

subject of intense study by many researchers. Liu (2004) defines 4 classes of methods for 

texture analysis: 

 

 

 

 



 
 

84

Statistical methods 

 

They describe texture of regions in an image through higher-order moments of their 

grayscale histograms (Tuceryan and Jain, 1998). First order moments (e.g. mean) do not 

consider pixel neighbor relationships, second order moments consider the relationship 

between groups of two pixels and third and higher order moments consider relationships 

among three or more pixels (Hall-Beyer, 2008). While higher-class methods exist, they are 

not commonly implemented due to long calculation times and difficulties in interpretation 

(Akono et al., 2003). The most frequently cited statistical method is the gray-level co-

occurrence matrix (GLCM) proposed by Haralick et al. (1973). This method is based on the 

use of second order statistics of the gray-scale image histograms. 

 

Structural methods 

 

These methods describe the texture as a combination of well-defined texture elements. This 

may be achieved, for example, through regularly space parallel lines (Tuceryan and Jain, 

1998). These methods however appear to be limited to describe very regular textures and 

are rarely used in practice (Gonzalez and Woods, 1993). 

 

Model-based methods 

 

According to Liu (2004), these methods generate an empirical model of each pixel in the 

image based on a weighted average of the pixel intensities in its neighborhood. For 

example, fractal models presented by Keller et al. (1989) create unique fractal patterns that 

describe the image texture by following a set of well-defined rules. According to 

Mandelbrot (1983), fractals provide a proper mathematical framework to study the 

irregular, complex shapes found in nature. 
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Transform based 

 

These methods convert the image into a new form using the spatial frequency properties of 

the pixel intensity variations (Liu, 2004). These methods include the Fourier and Wavelet 

transforms. Unlike the infinite wave functions used in the Fourier transform, a wavelet is a 

finite-length fast-decaying oscillating wave. This characteristic provides the wavelet 

transform a distinct advantage over the Fourier transform when representing non-periodic 

functions containing discontinuities and/or sharp peaks. The finite duration of the wavelet 

also allows space/time-frequency decomposition of the image signals. 

 

3.2.7.1 Gray-level co-occurrence matrix 

 

Gray-level co-occurrence matrices (GLCM) have shown their worth for quantifying image 

texture in a number of application such as for classifying images of steel sheets (Bharati et 

al., 2002, 2004), flotation froths (Bartolacci et al., 2005) and even evergreens (Samal et al., 

2006). GLCM is based on second-order statistics (Akono et al., 2003) that compares two 

neighboring pixels at a time and compiles the frequency for which differing gray-levels can 

be found within a restricted area. A rough image will have numerous and significant 

black/white transitions whereas a smoother image will not. The GLCM texture analysis is 

used in Chapter 7 to identify fiber-to-fiber as well as sample-wide variations in extruded 

wood/plastic composites. 

 

A gray-scale image represents the entire range of light intensities as a finite number of 

levels of gray. In practice this number is often 256 (encoding an image in 8 bits = 28 gray-

levels), but can be much greater in high-end equipment. Using this scheme, each pixel of a 

gray-scale image is represented by a value between 0-255; allowing the image to be treated 

as a simple matrix. 

 

The GLCM is a tabulation of how often different combinations of pixel brightness values 

(gray levels) occur in an image (Hall-Beyer, 2008). According to Haralick et al. (1973), 

three parameters must be taken into account when computing the GLCM of an image: (1) 
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the number of gray-levels, which can be lower than the number of gray levels of the image 

(e.g. 256 for 8 bits), (2) the length of transition and (3) the angle of displacement. As 

illustrated in Figure 3.14A, the algorithm essentially compares the gray-level of a reference 

pixel to that of neighboring pixel (in this figure the neighbor is located directly to the right 

of the reference, noted a [0,1] transitions in a Cartesian-style reference). However, to 

analyze coarser textures, this second pixel can be taken at a certain distance, which is the 

length of transition. In Chapter 7, we use horizontal transitions of [0,2], [0,5], [0,10] and 

vertical transitions of [2,0], [5,0], [10,0]. Combining these results allows the analysis of 

textures at different resolutions. The result can be considered a roughly diagonal matrix in 

which increasing distance from the main diagonal indicates increasing roughness (Figure 

3.14B). 

 

 

Figure 3.14. Illustration of texture analysis using the GLCM algorithm: (A) converting a 
gray-scale image into numerical values, and (B) compiling the differences in intensity 
between two neighboring pixels in the [0,1] direction. 
 

A number of scalar textural descriptors (or textural features) have been proposed for 

quantifying the texture of an image from the GLCM matrices. The most common of these 

descriptors, often referred to as Haralick features, are shown in Table 3.1. Indices i and j are 

the row and column numbers in the GLCM matrix, pi,j is the normalized value of an 

element (i,j) of the matrix and μ and σ are average and standard deviation of pi,j over i and j. 

This normalization ensures that the sum of the elements of the matrix is equal to 1.  
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Table 3.1. Common Haralick features computed from the co-occurrence probabilities 
(Haralick, 1979). 

Energy (uniformity) pi, j 2
i, j

  (3.32) 

Entropy pi, j log pi, j 
i, j

  (3.33) 

Maximum probability maxi, j pi, j  (3.34) 

Contrast i  j
k

pi, j 2
i, j

  (3.35) 

Inverse difference moment 
pi, j 2

i  j
k

i, j

  where ij (3.36) 

Correlation 
i i  j  j pi, j

 i ji, j

  (3.37) 

 

Optimization of this method requires the fine-tuning of various parameters; the distance of 

transition depends on the size of the textural features while the angle of displacement 

depends more on surface isotropy. Raising the number of gray-levels simultaneously 

increases the sensitivity to low-contrast textural features, as well as the size of the GLCM 

matrix, occupying more memory and requiring calculation time. 

 

3.2.7.2 Wavelet texture analysis 

 

Wavelet Texture Analysis (WTA) has been used successfully in numerous process 

applications ranging from analysis of flotation froth, to countertops (Bartolacci et al., 2005; 

Liu and MacGregor, 2006). WTA is typically suited in applications where data contains 

both large and small scales of variations, in which case it is capable of isolating the former 

from the latter. To take a simple example, this is akin to distinguishing between daily, 

weekly and seasonal variations in temperature. In this thesis, WTA is used in Chapter 5 to 

determine the degree and direction of stretching of plastic films blends. 

 

In wavelet analysis, a continuous signal f(x) is decomposed in terms of a family of 

orthonormal bases m,n x  obtained through dilation and translation of a mother wavelet 

 x : 
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m,n x  2
m

2 2m x  n  (3.38) 

 

where m and n are the continuous scale and shift parameters, respectively (m  Z+ and n  

Z). For this task, numerous mother wavelets have been proposed in the literature (Burke 

Hubbard, 1998). According to their orthonormal property, the continuous wavelet 

transform (CWT) coefficients (cm,n) can then be defined as the convolution of the signal 

with these wavelet bases. 

 

cm,n  f x m,n x dx  m,n x , f x   (3.39) 

 

The coefficients are maximized when the frequency of the signal is equivalent to that of the 

dilated wavelet. The discrete wavelet transform (DWT) approximates the continuous 

wavelet transform by recursively decomposing the original signal at a dyadic scale: each 

level of decomposition differing by a factor of two from the preceding resolution (Teppola 

and Minkkinen, 2000). 

 

m  2 j  (3.40) 

n  k2 j  (3.41) 

 

where j  Z+ and k  Z. In practice, it was shown by Mallat (1989) that orthogonal wavelet 

analysis could be implemented using the filters traditionally used in the signal processing 

field. The filter-based implementation makes use of a scaling function (x) used to dilate 

the mother wavelet ψ(x) in order to have it correspond to the desired level of scrutiny. The 

sequences h0[k] and h1[k] are low- and high-pass discrete filters used in the implementation 

of the wavelets (Vetterli and Kovacevic, 1995; Liu, 2004): 

 

 x  2 h1 k  2x  k 
k

  (3.42) 

 

 



 
 

89

where 

 x  2 h0 k  2x  k 
k

  (3.43) 

h1 k  1 k
h0 1 k  (3.44) 

 

Using these equations, it can be shown that the DWT can be computed for any level j and 

position l without explicitly using (x) and ψ(x) (Liu, 2004). 

 

 j,l k  2 j 2 h0
j  k  2 j l  (3.45) 

 j ,l k  2 j 2 h1
j  k  2 j l  (3.46) 

where 

h0
j1  k  h0 2 j

 h0
j  k  and h0

0  k  h0 k   (3.47) 

h1
j1  k  h1 2 j

 h1
j  k   and h1

0  k  h1 k   (3.48) 

 

where [·]↑2 j denotes up-sampling by a factor of 2j (dyadic scale), j is the scale index and 

and l is the translation index (Mallat, 1989; Daubechies, 1992; Rioul and Duhamel, 1992). 

Two types of DWT coefficients characterize the signal: the detail coefficients (dj,l) 

characterizes the match between the mother wavelet and the original signal at a scale (j) 

and a position (l) while the approximation coefficients (aj,l) corresponds to the remaining 

information after extraction of the features by the detail coefficients. This rougher 

representation of the signal is then used as the basis for the dj+1,l coefficients. Recalling the 

continuous coefficients (cm,n), the discrete coefficients of a signal f(k) can be computed as 

the convolution of the signal expressed in terms of k (a positive integer) and the wavelet or 

scaling functions (Mallat, 1989; Daubechies, 1992; Liu and MacGregor, 2005, 2006): 

 

a j,l  f k , j,l k   (3.49) 

d j ,l  f k , j,l k   (3.50) 
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The values of these coefficients are maximized when the frequency of the dilated wavelet 

matches that of the signal. Multiresolution analysis is achieved by associating the dilated 

wavelet and the wavelet coefficients (aj,l and dj,l) to low-pass and high-pass filters, 

respectively. As shown in Figure 3.15, the first-level of decomposition extracts the highest 

frequency features d1f(x) from the original signal, leaving behind a slightly smoother 

approximation a1f(x) (not shown here). Level 2 then extracts the highest frequency 

information d2f(x) among the remaining details 2j times larger than the previous, from 

a1f(x), leaving an even smoother approximation of the original image. Each successive level 

then isolates a new level of coarser details from an increasingly simplified low-pass 

approximation. 

 

 
Figure 3.15. A discrete wavelet transform applied to a signal illustrating 5 successive 
decomposition level coefficients and the remaining 5th level approximation of the original 
signal. Based on Burke Hubbard (1998). 
 

Analysis of a 2-D image, rather than a 1-D signal, can be achieved through the proper 

combination of horizontal and vertical 1-D wavelets and their corresponding scaling 

functions (Vetterli and Kovacevic, 1995; Burke Hubbard, 1998). One way to perform this 

is through a separable solution, which uses separable filters (i.e. h0 and h1) within a 

multidimensional filter bank as shown in Figure 3.16. A filter bank is an array of band-pass 

filters that separates an input signal into multiple output components, each one carrying a 

subband frequency of the original signal. 
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The algorithm illustrated in Figure 3.16 is basically an extension of the 1-D algorithm 

discussed earlier in that it converts a low-level input signal (here a gray-scale image Aj-1) 

into higher-level detail signals (horizontal, vertical and diagonal detail images Dj
H, Dj

V and 

Dj
D) plus a residual approximation signal (approximation image Aj). This is achieved 

through a two-step process.  

 

 
Figure 3.16. A 2-D separable solution for applying a discrete wavelet transform to an 
image. Adapted from Liu et al. (2005). 
 

First, each row is filtered using the low- and high pass filters (h0 and h1), followed by a 

dyadic column decimation. Then, the resulting low- and high-frequency information along 

the horizontal direction is filtered vertically (i.e. along each column) using both filters a 

second time. This second filtering step is followed by a dyadic row decimation. As 

mentioned, the output of this algorithm consists of 4 images containing the wavelet 

coefficients: 

 

 Approximation image Aj captures the low-pass information in both directions and is 

used as an input approximation image for the (j+1)th level WTA decomposition. 

 Horizontal detail image Dj
H captures the low-pass horizontal and high-pass vertical 

features of the image, effectively capturing the high frequency horizontal details 

(i.e. the vertical edges).  
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 Vertical detail image Dj
V captures the high-pass horizontal and low-pass vertical 

features of the image, capturing the high frequency vertical details (i.e. the 

horizontal edges).  

 Diagonal detail image Dj
D captures the high-pass information in both directions. 

This sensitivity to high frequency horizontal and vertical details essentially conveys 

information on the high frequency diagonal details.  

 

It is important to note that the jth level images are 4 times smaller than the (j-1)th level 

images due to the dyadic column and row decimations. This reduction in resolution 

between each level allows the algorithm to extract larger and larger textural features.  

 

An example of a 2-level 2-D wavelet decomposition is presented in Figure 3.17 in which 

progressively larger features are removed from the original image with each level. Further 

information on image analysis using multidimensional wavelets can be found in Burke 

Hubbard (1998) and Takei et al. (2004). 

 

 

Figure 3.17. Illustration of a 2-D wavelet decomposition. The 1st level approximation 
image is obtained by removing the 1st level detail coefficients from the original image. This 
methodology is applied recursively to produce each successive higher-level approximation 
image. Only the horizontal detail coefficients are shown here. Based on Walker (1999). 
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3.2.8 Multiresolutional multivariate image analysis 
 

Since MIA is intended to extract the spectral features of a multivariate image independently 

of their spatial location, it is unsuitable for the analysis of spatial (i.e. textural) features 

(Liu, 2004). While textural methods such as GLCM and WTA are intended to analyze such 

spatial features in gray level images, they cannot readily be used in multivariate images. 

Multiresolutional MIA (MR-MIA) is intended to combine the characteristics of both these 

classes of methods. According to Liu and MacGregor (2007), as well as Teppola and 

Minkkinen (2000), this can be achieved in one of two ways: 

 

MR-MIA I 

 

1. Apply multiresolution decomposition on each image gray-scale forming the 

multivariate image (i.e. images at each wavelength) down to an appropriate level J. 

In practice, this often implies decomposition levels ranging from 3 to 6. If there are 

 variables in the original multivariate image (i.e. an RGB image would have =3), 

multiresolution decomposition yields a new multivariate image with  variables at 

each resolution.  

2. Apply a PCA to each of the J multivariate images. This gives score images and 

loading vectors at each resolution. 

 

 

Figure 3.18. Illustration of the MR-MIA I algorithm for an RGB image (=3) using J=4 
decomposition levels in the wavelet texture analysis (WTA) and 2 principal components in 
the principal component analysis (PCA). 
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MR-MIA I makes it possible to determine the important factors present at each 

decomposition level and at each wavelength. In doing so, it characterizes the surface with a 

very high level of precision. This algorithm is best used when there are important 

interactions between the spectral and spectral features, for example when some textural 

features are only observed at specific wavelengths.  

 

However, MR-MIA I implies a full multiresolutional decomposition for each observed 

wavelength in the image. While this may be feasible for RGB imaging, it quickly becomes 

overwhelming in hyperspectral imaging. It would imply hundreds of parallel texture 

analyses, each of which followed by a PCA decomposition. Doing so leads to very lengthy 

calculations and large amounts of data to interpret. In such a case, the user would be well 

advised to perform an initial wavelenght selection on the spectral image. Chapter 6 deals 

exclusively with the subject of wavelenght selection.  

 

MR-MIA II 

 

1. Apply a PCA to the original multivariate image in order to obtain a single set of 

score images and loading vectors. 

2. Apply a multiresolution decomposition on each score image. If there are A principal 

components in the PCA, there will be A multiresolution decompositions, each 

performed down to J levels. 

 

By minimizing the required computations, MR-MIA II also simplifies the interpretation of 

the results. In practice, the PCA reduces the information down to a very low number of 

significant components before performing the texture analyses. Nevertheless, MR-MIA II 

relies on the hypothesis that there is little or no interaction between the spectral and spatial 

features. Doing so effectively smoothes over local variations when they are strongly 

correlated. In practice however, weak interaction between spectral and spatial features is 

not uncommon: spatial features captured by an RGB camera, for example, often appear 

simultaneously in the red, green of blue channels.  
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In spite of these shortcomings, MR-MIA has been used successfully. Gao and Ren (2005) 

used MR-MIA I to differentiate between nickel, cadmium, copper and zing surfaces 

whereas Teppola and Minkkinen (2000) and Liu et al. (2005) both used MR-MIA II to 

study a water purification plant and a zinc flotation column, respectively. In this study, 

MR-MIA II will be used to analyze an extrusion film-blowing process in Chapter 5. 

 

 

Figure 3.19. Illustration of the MR-MIA II algorithm for an RGB image using 4 
decomposition levels in the wavelet texture analysis (WTA) and 2 principal components in 
the principal component analysis (PCA). 
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Chapter 4 

On-line prediction of crystallinity spatial distribution 
across polymer films using NIR spectral imaging and 
chemometrics methods* 
 

Résumé 
Un capteur basé sur l’imagerie en proche infrarouge (NIR) rapide et non intrusif a été mis 
au point dans cet article afin de faire le suivi des variations spatio-temporelles de 
cristallinité à la surface des films de polymères. Une approche par régression et analyse 
d’images multivariées (MIA/MIR) a été proposée et comparée aux techniques de 
calibration NIR utilisant des spectres moyens ou des dérivées du second ordre. Chacune des 
approches a permis d’obtenir des prédictions des variations de cristallinité locales et 
globales d’échantillons de polymères HDPE, LDPE et PP. Nos résultats montrent que de 
faibles variations dans la cristallinité introduites par des changements dans les vitesses de 
refroidissement peuvent être prédites à l’intérieur des erreurs expérimentales. Les 
distributions spatiales de cristallinité ont également été validées et s’avèrent cohérentes 
avec les conditions de traitement. 
 

Abstract 
A rapid non-intrusive on-line NIR imaging sensor is developed for monitoring spatio-
temporal crystallinity variations across the surface of polymer films, which strongly affects 
the mechanical, optical and barrier properties. A multivariate image analysis and regression 
approach (MIA/MIR) is proposed in this work, and compared with three other techniques, 
for predicting both the local and global crystallinity variations of HDPE, LDPE, and PP 
polymer samples. Subtle variations in crystallinity introduced by changes in cooling rates 
were predicted within experimental errors. Predictions of crystallinity spatial distribution 
were also validated and found consistent with polymer processing knowledge. 
 
 
 
 
 
 
 
 
 
 
* Gosselin R., Rodrigue D. and Duchesne C., On-line prediction of crystallinity spatial 
distribution across polymer films using NIR spectral imaging and chemometrics methods, 
Can. J. Chem. Eng., 86, 869-878 (2008). 
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4.1 Introduction 
 

The global molded plastics market was estimated to exceed 156 million tons in 2005, a 

large portion of which was taken up by common semi-crystalline polymers; the 

consumption of low-density polyethylene (LDPE), high-density polyethylene (HDPE) and 

polypropylene (PP) reaching 18, 29 and 40 million tons respectively (Murphy, 2003). 

These materials are very sensitive to the conditions in which they were produced, especially 

the geometry, pressure and cooling rates are known to influence their crystallinity, which in 

turn strongly affects their mechanical, optical and barrier properties (Rastogi et al., 1991; 

Apichartpattanasiri et al., 2001; Albano et al., 2003; Pantani et al., 2005; Shepherd et al., 

2006; Dusunceli and Colak, 2008). Controlling the amount of crystallinity is thus essential 

when working with semi-crystalline polymers (Albano et al., 2003). However, theoretically 

establishing a relationship between the processing conditions and the final microstructure 

of a polymer is complex and time consuming (Pantani et al., 2005). On-line quality control 

of plastic film, either cast or blown, is typically limited to shape and clarity monitoring as 

well as detecting other irregularities like impurities, holes and scratches. While efficiently 

detecting macroscopic defects, these methods are somewhat ineffective at identifying 

smaller characteristics such as crystallinity variations, leading to film yields between 90-

95% typically (Osborn and Jenkins, 1992). Rapid and non-intrusive tools for on-line 

crystallinity measurement would help improve quality control of thin polymer products. 

 

Several methods are currently being used to determine polymer crystallinity, but most of 

these provide off-line measurements, are destructive, and provide single point 

measurements. They often rely on small samples sizes and require significant handling 

times. The most common off-line method is differential scanning calorimetry (DSC), which 

relies on the heat associated with melting of small samples, typically less than 20 mg. DSC 

has been widely used in polymer analysis (Batur et al., 1999; Saeki et al., 2003; Sato et al., 

2003; Albano et al., 2003; Watanabe et al., 2006; Pelsoci, 2007). Numerous microscopy 

methods also exist. Of these, atomic force microscopy (AFM), scanning electron 

microscopy (SEM) and optical microscopy have all been used in micro-structural 

characterization of polymers (Kantz et al., 1972; Butler et al., 1995; Pantani et al., 2005). 
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These methods have a slow acquisition time and may require surfacing and/or vacuum 

conditions. Nuclear magnetic resonance (NMR) spectroscopy has also been used to obtain 

physical, chemical and structural information about polymer phases (Bergmann, 1981; 

Pelsoci, 2007). Application of this method is typically expensive, time consuming and 

destructive (Vailaya et al., 2001; Saeki et al., 2003). X-ray scattering methods are a family 

of non-destructive methods based on the scattered intensity of a beam hitting a sample and 

providing information about the average structure and composition (Brown et al., 1973; 

Polizzi et al., 1991; Albano et al., 2003; Pantani et al., 2005; Pelsoci, 2007; Briskman, 

2007). As these methods depend on the incident and scattering angles, the polarization and 

wavelengths of the beams, they are not easily adapted to 2-D surface scans. 

 

Various vibrational spectroscopic techniques, such as near-infrared (NIR), have also been 

proposed for estimating polymer crystallinity since they are rapid and non-intrusive, they 

require little or no sample preparation, and provide a wealth of information (Lachenal, 

1995). However, most of the methods published in the past are based on single point 

measurements (i.e. using probes) and result in a separate calibration model for each type of 

polymer to be monitored. Estimating crystallinity over a larger area using these approaches 

require either moving the sample or the probe, which is difficult to perform on a high-speed 

production line, or using probe arrays, which generally result in coarse spatial coverage of 

the surface. However, fine spatial measurements are key in identifying local crystallinity 

gradients that may compromise the whole. The mechanical, optical and barrier properties of 

an entire sample may fall below specifications because of local discrepancies that may be 

overlooked by a coarse spatial analysis. Furthermore, rich spatial data would also be useful 

for precisely diagnosing operational problems in the production line, such as non-uniform 

cooling of the polymer products. 

 

Nevertheless, NIR spectroscopy has been used to analyze the extent of crystallization 

(Lachenal, 1994; Stuart, 1996; Sato et al., 2003; Pantani et al., 2005; Pelsoci, 2007), the 

orientation (Buffeteau et al., 1995) and the density (Saeki et al., 2003; Watanabe et al., 

2006) of semi-crystalline polymers. Since these spectroscopic techniques are based on 

absorbance, they are usually applied to films or thin samples (< 2 mm) in which case the 
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average degree of crystallinity is known to remain constant along the thickness (Pantani et 

al., 2005). While different methods have been reported, FTIR transmission spectroscopy 

remains the standard technique when studying polymer crystallinity when applied to 

microtomed slices (Pantani et al., 2005), blown films (Buffeteau et al., 1995) or thicker 

samples (0.5 - 2 mm) (Lachenal, 1995). Infrared reflection spectroscopy has also been used 

to study polymer crystallinity; Sato et al. (2003) notably collected diffusely reflected 

radiation, or average spectra, of plastic pellets by placing them on rotating cells. Work has 

also been reported on real-time crystallinity estimation by single-point laser Raman 

spectroscopy (Batur et al., 1999; Cherukupalli and Ogale, 2004). 

 

The objective of this work is to develop a non-intrusive on-line sensor for monitoring 

spatio-temporal crystallinity variations across the surface of thin polymer materials. While 

single point NIR vibrational spectroscopy has proven useful in the study of polymer 

crystallinity, this work focuses on combining NIR imaging spectroscopy and multivariate 

image analysis and regression methods (MIA and MIR) to efficiently obtain the 

crystallinity spatial distribution of a sample. The proposed methodology is illustrated using 

thin polyolefin samples produced via compression molding under different cooling 

conditions. Non-isothermal cooling rates throughout the cooling circuit ensure local 

crystallinity variations within a single sample. A total of four different methods are 

compared in this study: PLS regression between the full averaged NIR spectra or 2nd order 

spectra derivatives and crystallinity measurements (method 1 and 2), and MIA applied to 

the NIR spectra or 2nd order spectra derivatives followed by regression (method 3 and 4). 

The results obtained for 3 polymers (HDPE, LDPE and PP) are incorporated into a single 

model, rather than producing a model for each, in order to highlight their capability to cope 

with complex datasets as may be encountered with polymer blends or composites. Local 

crystallinity estimates may be used in process monitoring, fault detection and diagnosis (i.e. 

identification of non-uniform cooling rates) or for predicting both the local or overall 

polymer properties (i.e. mechanical, optical, orientation, etc.) of thin samples (< 2 mm) for 

automatic process and quality control applications. As with any surface analysis, it may 

also be used with caution on thicker samples, monitoring operating conditions rather than 

inferring the properties of the product. 
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4.2 Experimental 

4.2.1 Materials and processes 
 

Polymers used in this study were commercial PP (Pro-fax PF-814,  = 0.902 g/cm3; MFI = 

3.0 g/10 min) supplied by Basell, HDPE (HDPE 3000,  = 0.965 g/cm3; MFI = 8.8 g/10 

min) by Pretromont and LDPE (Novapol LA-0219-A,  = 0.919 g/cm3; MFI = 2.3 g/10 

min) by Nova Chemicals. 

 

Sample molding 

 

A compression press was used to mould the polymers into thin films (100  40  1.5 mm). 

The batch process consists in molding 6 g of resin at 180C under 3 tons of pressure for 10 

minutes, long enough to remove any previous thermal history (Chew et al., 1989; Albano et 

al., 2003). The mould was then water cooled to release the sample. A total of 18 samples 

were produced, 6 for each polymer, using average cooling rates of 1, 2, 4, 5, 8 and 

16C/min. These changes in cooling rates will produce samples of different overall 

crystallinity. Moreover, the water-cooling circuit produced in-sample variability within the 

films. In other words, while each sample is characterized by its own average crystallinity, it 

also presents crystallinity patterns, or mosaics, across is surface. 

 

Differential scanning calorimetry 

 

DSC is a thermoanalytical technique measuring heat flow into a material as a function of 

temperature. The degree of crystallinity () of a semi-crystalline polymer can be 

determined from the endothermic heat flow due to melting (Hm), the exothermic heat flow 

due to crystallisation (Hc) and the heat of fusion of the 100% crystalline phase (H): 

 

  Hm Hc

H

  (4.1) 
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Here, DSC thermograms were obtained using temperature ramps between 30-200C at 

10C/min under a nitrogen atmosphere. The samples were approximately 7.5 mg and the 

tests were performed on a Perkin Elmer DSC 6. The fusion peak were found to be located 

at 110C (LDPE), 138C (HDPE) and 160C (PP) and range respectively between 60-

125C, 90-155C and 100-180C. The heat of fusion of the crystalline phases (H) used 

was 290 J/g (LDPE), 293 J/g (HDPE) or 207 J/g (PP). 

 

4.2.2 Image acquisition  
 

The line-scan NIR imaging system used in this work is composed of a XenICs XEVA-

USB-FPA camera (256  320 pixels) coupled to a Specim ImSpector N17E grating 

spectroscope (slit: 30 m  14.3 mm) sensing between 900-1700 nm. Each scanned line of 

the sample is captured on the CCD array as a spatial/spectral image (Figure 4.1) consisting 

of 256  320 pixels, providing a 0.5 mm/pixel spatial resolution and 2 nm/pixel spectral 

resolution. A hyperspectral image (R) of the entire sample is achieved by repeatedly 

displacing the sample perpendicularly to the spectroscope slit (along the y-axis). Each 

hyperspectral image consists of 500 juxtaposed line-scans, at 0.25 mm intervals. 

 

 

Figure 4.1. Line-scan NIR imaging system used to collect spatial/spectral reflectance 
images. 
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Diffused light from a tungsten-halogen lamp was used as the light source. The raw signals 

of each spectral-spatial image (R) were transformed into reflectance units using a flat black 

image (B) and a true white image (W): 

 

ixy 
rxy  bx

wx  bx

 (4.2)  

 

where rxy is an element of the raw signal image, bx and wx are elements of the black and 

white calibration images, and ixy is the standardized reflectance image (I). The flat black 

and true white images were obtained by collecting a spatial-spectral image leaving the lens 

cap in place (i.e. dark current), and by imaging a 99% reflectance standard sheet 

(Gigahertz-Optik), respectively. This simple calibration scheme was used since it 

successfully removed most the linear discrepancies encountered in the NIR images 

collected in this work. All images were captured using a single imaging system, under 

controlled lighting conditions, and over a short period of time. More advanced calibration 

techniques should be considered for long-term, industrial applications (Geladi et al., 2004; 

Burger and Geladi, 2005; Liu et al., 2007). Data acquisition was performed using a 

LabView 8.0 interface (National Instruments) and data analysis was performed using 

custom scripts developed in the Matlab R14 (MathWorks) environment. 

 

4.3 Methodology 
 

Predicting the polymer crystallinity spatial distribution requires building a regression model 

(i.e. correlations) between the information contained within NIR spectral images of the 

samples (X) and analytical crystallinity measurements (y) obtained using DSC. A total of 

four different methods were tested and compared in this work, differing mainly in the way 

NIR spectra are processed before applying appropriate regression techniques. Conventional 

NIR calibration methods involving averaged spectra (method 1) or 2nd order derivatives 

(method 2) and PLS regression are first tested, followed by a multivariate image regression 

(MIR) approach involving either the raw spectra (method 3) or its 2nd order derivatives 
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(method 4). All spectra were initially submitted to an initial smoothing step using a 

symmetric 5-point smoothing window in order to stabilize the 2nd derivative computations. 

 

4.3.1 Collection of training dataset 
 

Initially, each of the 18 samples was fully scanned and calibrated into reflectance images 

Ik  according to Equation 4.2, where k is the sample number (k = 1, 2, …18). A training 

data set was obtained by selecting a smaller region of interest (2.5  5 mm or 10  10 

pixels) for each polymer sample as shown in Figure 4.2. These regions correspond to a 

multivariate sub-image ˜ I k  of size (10  10  , where  is the number of spectral channels 

(= 256 in this work). These arrays were then unfolded into matrices ˜ I k  of size (100   

by simply storing each spectrum row-wise. The ˜ I k  matrices are the common input of all 

four methods described in this section. Finally, each region of interest corresponding to the 

˜ I k  sub-images were cut out of the samples and sent for DSC analysis. The resulting 

crystallinity measurements (yk) were stored in a response matrix y (18  1). 

 

 

Figure 4.2. Schematic representation of the 4 methods: averaged spectra (method 1), 2nd 
order derivatives (method 2), MIR of the spectra (method 3) or MIR of 2nd order derivatives 
(method 4). 
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4.3.2 PLS models based on average spectra or 2nd order derivatives 
 

Method 1: averaged NIR spectra 

 

The first method simply consists of averaging all available reflectance spectrum obtained 

from the region of interest of a sample (i.e. column-wise averaging of each ˜ I k  matrix) and 

storing the averaged spectra of each sample in a regressor matrix X (18  ), as shown in 

Figure 4.2. A latent variable PLS regression model is then built between the averaged 

spectra matrix X and the corresponding crystallinity measurements Y as: 

 

X  tapa
T

a1

A

 E TPT E  (4.3) 

Y  taqa
T

a1

A

  F TQT  F  (4.4) 

*XWT   (4.5) 

 

where the P and Q matrices contain the loading vectors that best represent the X and Y 

spaces respectively, whereas W* contain the loading vectors defining the common latent 

variable space T relating X and Y. The E and F matrices contain the residuals. The number 

of PLS components or latent variables (A) was selected using a standard leave-one-out 

cross-validation procedure. PLS was selected in this case since the columns of X are highly 

collinear. 

 

Method 2: 2nd order derivative of the NIR spectra 

 

Method 2 uses the 2nd order derivative of the spectra ˜ I k  rather than the spectra themselves. 

The spectra derivatives were also averaged over the region of interest and then collected in 

regressor matrix X (18  () for each sample before building a PLS regression model 

with y (Figure 4.2). Taking second order derivatives is a commonly used pretreatment 

applied to NIR spectra (Chau et al., 1990). This offers a distinct advantage when sharp 
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absorption bands are present in the spectrum (Whitbeck, 1981). It is preferred over the 1st 

derivative because it does not shift the peaks, allowing better interpretability. While the 2nd 

order derivative emphasizes spectral transitions, it remains insensitive to systematic shifts 

in spectra intensity. This can be seen with the 3 spectral bands emphasized in the original 

spectrum (centered around 1100nm, 1300nm and 1600nm) (Figure 4.3). Numerical 

approximation of the 2nd order derivative were used (Gerald and Wheatley, 1994) after 

smoothing of the line-scan in the spectral direction using a window of 5 pixels in order to 

reduce the effect of bad pixels (Savitzky and Golay, 1964). Numerical differentiation leads 

to the loss of two columns (i.e. spectral channels) in matrix X compared to using the 

spectra directly. 

 

 

Figure 4.3. Spectrum vs. 2nd derivative: 2-D line-scan of a HDPE sample (left) and 1-D 
spectra of a single spatial position (right). Dimensionless scale used.  
 

4.3.3 Multivariate image regression applied to spectra or 2nd order 
derivatives 
 

Multivariate image regression (MIR) consists of a family of latent variable techniques used 

for regressing quality or response variables onto features extracted from a set of digital 

images. Image regression problems can be formulated in several ways, depending on the 

nature of the features extracted from the images, ranging from simple statistics computed 

for each spectral channel (i.e. mean, variance, etc.) to distribution features. The reader is 

referred to Esbensen et al. (1992) and Yu and MacGregor (2003) for more details on MIR 
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problem formulation and methods. In this work, distribution features were extracted from 

NIR spectral images. These were obtained through a decomposition of spectral image data 

cubes (i.e. reflectance spectra - method 3, or 2nd order derivatives - method 4, see Figure 

4.2) using multi-way principal component analysis (MPCA), which is the first step of a 

method known as multivariate image analysis (MIA) (Geladi and Grahn, 1996). 

 

Multivariate image analysis 

 

Originally introduced by Esbensen and Geladi (1989), it has been widely used in fields 

ranging from flame analysis (Yu and MacGregor, 2004; Szatvanyi et al., 2006) to flotation 

froth (Liu et al., 2005), snack food (Yu and MacGregor, 2003; Yu et al., 2003) as well as 

softwood lumber grading (Bharati et al., 2003). A complete overview of MIA can be found 

in Geladi and Grahn (1996). MIA relies on the basis that local intensity variations can be 

extracted by classifying each image pixel according to its spectral characteristics regardless 

of its spatial location within the image. Coupled to regression techniques, MIA can be used 

to extract the relevant features from digital images in order to build models between the 

sample quality and the visual features of an image. 

 

The unfolded spectra matrices ˜ I k  corresponding to the regions of interest selected for each 

polymer sample are first collected together in a single matrix ˜ I  of size (1800   (18 

samples  100 spectrum/sample). Principal component analysis is then used to decompose 

the image information into a set of A orthogonal loadings vectors pa (1   and score 

vectors ta (1800  1) as shown below and schematically in Figure 4.4: 

 

˜ I  tapa
T

a1

A

  E  (4.6) 

 

where E (1800  ) contains the projection residuals (non zero when A < ). The loadings 

vectors (pa) are usually obtained using singular value decomposition (SVD) of a kernel 

matrix ( ˜ I T ˜ I ) (Geladi and Grahn, 1996) of much smaller dimensions (i.e. 256  256). The 
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score vectors are computed using ta = ˜ I pa . The first score vector t1 is the linear 

combination of the 256 spectral channels (defined by the loadings vectors p1) capturing the 

largest possible variance within the spectral matrix ˜ I , while the second score vector t2 

represents the second largest source of variance, and so on. The score vectors can therefore 

be viewed as a multivariate summary of each spectrum. 

 

A small number of components (A) are often found sufficient in practice to extract most of 

the relevant information within multivariate image data. The few score vectors can 

therefore be used as representative distribution features of the multivariate image. These are 

typically displayed using scatter plots of score vectors as shown in Figure 4.4 (t1-t2 score 

plot is illustrated) or as 2-D density histograms (Geladi and Grahn, 1996; Yu and 

MacGregor, 2003; Szatvanyi et al., 2006). 

 

 

Figure 4.4. MPCA decomposition of a hyperspectral image. 
 

Multivariate image regression 

 

Formulating a regression problem between such score scatter plot (or 2-D density 

histograms) and response variables was investigated by Yu and MacGregor (2003). It 

involves extracting a certain number of features (n) from the score plots (or histograms) 

obtained from each of the K images, collecting them in a regressor matrix X (K  n), and 

building a regression model with the response variable of interest (i.e. crystallinity) y (K  

1), as shown in Figure 4.2. 
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The formulation used specifically for relating NIR spectral images to polymer crystallinity 

measurements is based on observing the clustering pattern of the NIR spectra of the three 

polymer types shown in Figure 4.5A.  

 

 

Figure 4.5. Score histogram allows both polymer and cooling rate identification (A). 
Projection of the dataset onto a single vector (t12) according to an angle (r) allows 
dimensional reduction (B). 
 

This t1-t2 scatter plot was obtained by PCA decomposition of the spectral matrix ˜ I  (1800  

256he two first score vectors explained 95.8% and 3.2% of the variance of ˜ I  for 

method 3, and 77.7% and 11.1% for method 4, respectively. The spectra corresponding to 

each of the three polymer species appear as very distinct cluster as expected; NIR 

spectroscopy is often used for polymer identification. Furthermore, the spectral data 

corresponding to each polymer type also cluster according to cooling rates with a clear 

spatial orientation (Figure 4.5A, HDPE cluster zoom-in). Furthermore, this zoom-in 

illustrates that samples cooled at 4C/min appear equidistant from samples cooled at either 

1 or 16C/min, indicating that these samples followed asymptotical crystallization rates. 

While the experimental equipment used in this study could not allow for faster or slower 

cooling rates than 1 to 16C/min, it is expected that similar results could be obtained for a 

broader range of cooling rates, as long as the relationship between the spectral information 

and crystallinity remain unchanged. Thus, a crystallinity related vector t12 could therefore 

be obtained by projecting the spectral data shown in Figure 4.5A onto a linear combination 
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of the first two score vectors (Figure 4.5B), and then building a simple linear regression 

model between t12 and y using ordinary least squares: 

 

t12  rt1  1 r t2 (4.7) 

y  0  1t12   (4.8) 

 

The linear combination or, alternatively, the angle (r) of the t12 vector should be selected in 

such a way to maximize the correlation between t12 and y. A similar approach was 

discussed in Yu and MacGregor (2003) for score density histogram segmentation as one 

possible formulation of multivariate image regression problems. 

 

4.4 Results and discussion 

4.4.1 Prediction model building using the training dataset 
 

Summary statistics for the PLS models built on the training set are shown in Table 4.1 for 

methods 1 and 2. The number of PLS components (A) of each model were selected by a 

standard leave-one-out cross-validation procedure using the SIMCA-P+ V10 software 

(Umetrics, Inc.). Three cumulative multiple correlation coefficients were computed for 

quantifying the model predictive ability: R2
X,cum is the cumulative percentage of the total 

variance in X used to explain y, R2
y,cum gives the cumulative percentage of the total 

variance of y explained by the model, and Q2
cum is the cumulative percentage of the total 

variance of y that can be predicted by the models using the cross-validation procedure. A 

total of 2 components for each model were selected through cross-validation. Model 2 

based on 2nd order derivatives seems to provide a better fit of the data compared to using 

the averaged spectra (i.e. method 1). 

 

The results obtained for methods 3 and 4 are presented in Table 4.2 and Figure 4.6. The 

linear combination of the first two score vectors obtained using MIA (t12) was selected to 

maximize the predictive ability (i.e. Q2
cum) of the models as shown in Figure 4.6. A r-ratio 

of 0.8 provides the best results for method 3 (R2
y,cum = 0.991 and Q2

cum = 0.923). For 
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method 4, a r-ratio of 0.1 was found to provide the best MIR model using 2nd order 

derivatives (R2
y,cum = 0.861 and Q2

cum = 0.252). The lower predictive power (Q2
cum) of this 

model may be explained by the fact that a low r-ratio implies that crystallinity is hardly 

related to the first score (t1) and much more to the second (t2). Since t1 represents the 

largest source of variation in the data (77.7%), it appears that the bulk of the information 

contained in the 2nd order derivatives hardly correlate to crystallinity. Additional MIA score 

vectors (i.e. t3, t4 and t5) were investigated for model 4, but these were found to be 

uncorrelated to crystallinity. 

 

Table 4.1 Summary statistics of the predictive ability of methods 1 and 2. 
Method A R2

X,cum (%) R2
y,cum (%) Q2

cum (%) 
1 0.907 0.640 0.605 1 
2 0.967 0.756 0.681 
1 0.631 0.512 0.472 2 
2 0.764 0.957 0.932 

 

Table 4.2 Model parameters and predictive ability for method 3 and 4. 
Method r (-) ˆ 0 ˆ 1 R2

y,cum (%) Q2
cum (%) 

3 0.8 -64.41 0.90 0.991 0.923 
4 0.1 -8.13 0.40 0.861 0.252 

 

 

Figure 4.6. Selection of the projection angle r yielding the crystallinity related vector t12 for 
methods 3 and 4.  
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The performance of the four methods in fit are compared in Figure 4.7. This figure shows 

the experimentally measured crystallinity by DSC compared to model predictions obtained 

by cross-validation. The original reflectance spectrum (method 1) provides the largest 

errors (root mean square error of estimation RMSEE = 9.31) while the 2nd derivative 

(method 2) provides much better results (RMSEE = 3.88). The MIR methods applied to the 

reflectance spectra (method 3) and to the 2nd order derivatives (method 4) provided RMSEE 

values of 1.78 and 6.83, respectively. It is therefore clear that performing MIA on the 

image data in order to extract the relevant features does improve predictive ability when 

applied to the spectra directly, but is detrimental when using 2nd order derivatives.  

 

 

Figure 4.7. Measured crystallinity vs. cross-validated predictions obtained for the training 
dataset using the 4 methods. 
 

Generally speaking, this may be explained by the degree of correlation between the image 

data (spectrum or 2nd derivative) and the quality parameter to be predicted (crystallinity). In 

method 3, the crystallinity is predominantly correlated to t1, which represents 95.8% of the 

variance of ˜ I  whereas method 4 essentially correlates crystallinity to t2 and only 11.1% of 

the variance in ˜ I . In other words, method 3 relies on nearly all the spectral data while 
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method 4 only relies on a small fraction since most of the spectral data contained in the 2nd 

derivatives is irrelevant to the prediction of polymer crystallinity. This characteristic of the 

2nd derivative may explain the relative inability of methods 2 and 4 to explain fine surface 

variations.  

 

4.4.2 Model validation over the entire samples 
 

The preceding discussion (Section 4.4.1) was centered on the predictive capabilities of the 

4 methods within the training sets themselves. In the present section they will be used to 

predict the remaining areas of the samples that were not used to construct the models. As 

previously mentioned, the cooling system design is known to produce localized gradients in 

the cooling rates that should produce crystallinity patterns throughout the surface of the 

samples. If successful, it is expected that these methods should distinguish such patterns. 

 

Using the four models developed on the training set, one can predict crystallinity for any 

point on the surface of any sample (i.e. for every pixel or groups of pixels of spectral 

images ˜ I k ). One sample of each polymer type was retained for this purpose. Figure 4.8 

shows the predicted crystallinity distribution for one such sample (HDPE: 4C/min). To 

validate these predictions four regions of interest dispersed throughout the samples were 

removed, analyzed using DSC in triplicate, and compared to the predicted values. The 

location of these regions is also shown in Figure 4.8. 

 

As illustrated in Figure 4.8, the predicted crystallinity differs greatly according to the 

method used. The prediction made by method 1 seems to show an area of slightly lower 

crystallinity in the lower right section of the sample. Method 2 predicts a vertical gradient 

while method 4 predicts a homogeneous surface. Last, method 3 predicts a complex pattern 

in which the right hand side is significantly less crystalline. Comparing these predictions to 

measured crystallinity values (see DSC measurements on top of Figure 4.8), it can be seen 

that method 1 slightly overestimates crystallinity, and that both models based on 2nd order 

derivative (methods 2 and 4) predict an average value throughout the sample. Only method 
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3 based on MIR of the reflectance spectra provides a reasonable map of crystallinity 

distribution. 

 

 

Figure 4.8. Predicted crystallinity distribution for the HDPE sample cooled at 4C/min. 
Values are given in % crystallinity. Sample size: 100  40 mm. 
 

Together, Table 4.3 and Figure 4.9 illustrate the complete results for the 3 tested samples (1 

for each polymer type) including the predicted crystallinity and the absolute mean 

prediction error. DSC standard deviations are based on triplicate tests. Model predictions 

were averaged over the region sent for DSC analyses (equivalent surface area of 2020 

pixels since more material was necessary for triplicates). These results show that the 

averaged experimental error associated with DSC measurements is 0.7%, independently of 

the polymer tested. Method 3 provided the lowest mean prediction errors (0.8%), falling 

practically within the DSC experimental error (i.e. method 3 yields a statistically adequate 

model). Finally, method 3 and 4 (MIR models) provide more consistent prediction errors 

for all polymer species since the angle (r) of vector t12 was selected to maximize correlation 

with crystallinity, irrespectively of polymer type. This may help cope with more complex 

materials such as polymer blends or composites. 
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Table 4.3. Experimental (DSC) and model prediction errors for all three polymer species. 
Experimental errors are reported as one standard deviation. Prediction errors are reported 
in absolute values (i.e. % crystallinity). 

 HDPE PP LDPE Mean 
DSC 0.6 0.7 0.7 0.7 

Method 1 2.6 1.8 1.2 1.8 
Method 2 1.7 1.0 0.9 1.1 
Method 3 0.8 0.9 0.7 0.8 
Method 4 1.5 1.3 1.6 1.5 

 

Since prediction results for both method 2 and 3 on the training set (i.e. see Figure 4.7) 

containing all three polymer species are quite similar, although method 3 has a slightly 

better fit (i.e. less scattering around 45 line), it may seem surprising that both methods 

predict such a different crystallinity distribution across the surface a particular polymer type 

as shown in Figure 4.8. This may be explained by recognizing that the variance of the 

cystallinity vector (y) has two main sources: (1) each polymer type has a different mean 

crystallinity, and (2) changes introduced by the cooling rate (i.e. scattering around each the 

mean crystallinity of each polymer type). Method 2 and 3 differ mainly in the source of 

variance each of them explains. Indeed, by enhancing spectral transitions (i.e. peaks in the 

spectra), the method based on 2nd order derivatives (method 2) seems better at predicting 

the mean crystallinity of each polymer specie or, alternatively, at identifying polymer type, 

than predicting more subtle variations in crystallinity due to changes in cooling rates, what 

we are interested in from a process operation perspective. 

 

To confirm this, the crystallinity measurements within the training set (y) were recalculated 

in deviation from the mean crystallinity values of each polymer type: 63.8% (HDPE), 

35.9% (PP) and 24.7% (LDPE). Removing the mean crystallinity of each polymer type 

should enhance crystallinity variations caused by changes in the cooling rates. Prediction 

results shown in Figure 4.10 were obtained after building new regression models for 

method 2 and 3 using the new centered crystallinity vector (yC). In accordance with 

previous results, method 3 explains a greater amount of the local crystallinity variations 

(R2
y,cum = 0.757) compared to method 2 (R2

y,cum = 0.542). This confirms the higher 

predictive power of the MIR model based on the original reflectance spectrum. Note that 
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this method could also be used for polymer type identification by segmenting vector t12 

according to the mean crystallinity of each polymer type. 

 

 

Figure 4.9. Crystallinity predictions obtained by the 4 methods for the three polymer 
species (cooling rate = 4C/min) compared to DSC values (including standard deviation). 
Values are given in % crystallinity. 
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Figure 4.10. Measured crystallinity vs. predicted centered crystallinity (yC) values for 
methods 2 and 3 using the data from the training set. 
 

Finally, Figure 4.11 illustrates the predictions obtained for the LDPE and PP samples (both 

cooled at a rate of 4C/min) using method 2 and 3. The general patterns and conclusions 

concur with those previously discussed with the HDPE sample. The 2nd derivative 

efficiently predicts the average crystallinity of the sample but remains insensitive to local 

variations. On the other hand, method 3 adequately predicts both local and global variations 

in crystallinity. 

 

 

Figure 4.11. Predicted crystallinity distribution for LDPE and a PP sample (4C/min) 
using both method 2 and 3. Values are given in % crystallinity. Samples: 100  40 mm. 
 

4.5 Conclusion 
 

The objective of this work was to develop a rapid and non-intrusive on-line NIR imaging 

sensor for monitoring spatio-temporal variations in crystallinity across the surface of thin 

polymer materials. Although NIR spectroscopy has already been investigated in the past for 
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estimating polymer crystallinity, most methods were based on probes, hence providing 

measurements for a single point (or line) on a sample. Since most of the overall end-user 

properties of thin polymer materials, such as mechanical, optical and barrier properties, 

depend upon the local microstructure (i.e. weakest point on the sample), fine spatial 

measurements are key in identifying local crystallinity gradients that may compromise the 

quality of whole. Furthermore, rich spatial data would also be useful for precisely 

diagnosing operational problems in the production line, such as non-uniform cooling of the 

polymer products. 

 

Thin samples of LDPE, HDPE and PP were produced via compression molding and cooled 

at six different rates in order to induce a wide range of crystallinity. Each sample was then 

imaged using an NIR imaging spectroscope, and a certain number of regions of interest 

were selected for each sample, cut-off, and sent for analytical measurement of crystallinity 

using Differential Scanning Calorimetry (DSC). Four methods were tested and compared 

for extracting features from the NIR images that are correlated to polymer crystallinity 

obtained by DSC: 1) a conventional NIR calibration methods involving averaged spectra 

and PLS regression with crystallinity; this approach was used by Sato et al. (2003) for 

estimating crystallinity of polymer pellets, 2) a similar approach but using 2nd order spectra 

derivatives for calibration against crystallinity (i.e. a standard pre-treatment used in 

spectroscopy for enhancing the peaks), 3) a multivariate image analysis and regression 

approach (MIA/MIR) using either the raw reflectance spectra, or 4) its 2nd order 

derivatives. 

 

The results show that the models obtained using method 2 and 3 provide the best fit of 

crystallinity measurements when predicting over a wide range of crystallinity, such as the 

one obtained using the three polymer species (LDPE, HDPE, and PP). However, only 

method 3 based on MIA/MIR analysis of the original NIR spectra was successful at 

predicting the more subtle variations in crystallinity introduced by changes in cooling rates, 

with prediction errors falling practically within DSC experimental errors. It was also shown 

that this method provides predictions of crystallinity spatial distribution that are consistent 

with polymer processing knowledge, and partially validated using additional DSC 
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measurements. Finally, such predictive power was also consistently high for all three 

polymer species using a single model. This feature of the proposed approach shows an 

interesting potential for application to more complex materials such as polymer blends or 

composites. 
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Chapter 5 

Potential of hyperspectral imaging for quality control of 
polymer blend films* 
 

Résumé 
Un capteur basé sur l’imagerie visible et proche infrarouge (VIS-NIR) rapide et non intrusif 
est proposé dans cet article afin de faire le suivi de films composites produits par extrusion 
soufflage. Un tel capteur a une résolution spatiale nettement supérieure à un système basé 
sur les sondes. Cette caractéristique lui permet d’identifier de petits défauts localisés 
pouvant compromettre la qualité (mécanique, optique, propriétés de barrière) de 
l’échantillon entier. L’analyse d’image multirésolution et multivariée (MR-MIA) a été 
utilisée pour extraire les caractéristiques spectrales et spatiales des images qui sont le plus 
fortement corrélées à la distribution de composition des composantes ainsi qu’aux 
propriétés mécaniques des films. Appliqué aux mélanges de LDPE/PS produits sous 
différentes conditions d’opération, le capteur a été en mesure de faire le suivi des effets 
dominants influençant les propriétés mécaniques: (1) l’effet de la composition (matières 
premières) et (2) l’étirement causé par les conditions post-extrusion (procédé). 
 

Abstract 
A VIS-NIR hyperspectral imaging sensor is proposed for on-line non-destructive 
monitoring of polymer film blends produced by extrusion blowing. Such sensor provides a 
much higher spatial resolution of analysis compared to probes or probe arrays, which 
should help detecting smaller localized defects inducing poor film quality (mechanical, 
optical, barrier properties) at a macroscopic scale. Multiresolutional multivariate image 
analysis (MR-MIA) was used to extract those spectral and textural features from images 
that are the most highly correlated to film composition distribution and mechanical 
properties. When applied to a LDPE/PS blend produced under various operating conditions, 
the imaging sensor was able to monitor the two dominant effects on mechanical properties: 
(1) the effect of film composition (raw materials) and (2) the stretching effect caused by 
post-extrusion conditions (process). 
 
 
 
 
 
 
 
* Gosselin R., Rodrigue D., González-Núñez R. and Duchesne C., Potential of 
hyperspectral imaging for quality control of polymer blend films, Ind. Eng. Chem. Res., 48, 
3033-3048 (2009). 
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5.1 Introduction 
 

Extrusion film blowing is a continuous industrial process widely used to manufacture thin 

biaxially stretched polymeric materials like plastic bags and other packaging materials. 

Although virgin polyethylene (PE) and polypropylene (PP) resins are the most extensively 

used polymers in this process, films made of polymer blends now constitute over 30% of 

the total polymer consumption (Utracki, 1998). Film blends have revolutionized the 

polymer industry due to their great versatility and capability to be tailored for specific end 

uses (Salamone, 1996). While polymer blending is commonly used to achieve improved 

mechanical properties (Salamone, 1996; Chang et al., 2002; Nygard et al., 2005), it is 

currently used in plastic bags to improve biodegradability and recycling (Getlichermann 

and David, 1994; Goldstein and Olivares, 2007). Literature can now be found on a wide 

variety of polymer film blends: LLDPE/PS (Dobreski and Nattinger, 1989), PS/PVME (El-

Mabrouk et al., 2007), LDPE/PP (Minkova and Nikolova, 1989; Minkova et al., 1992), 

EVA/PP (Minkova and Nikolova, 1989) as well as PE/Nylon (López-Barrón et al., 2007). 

 

In industrial practice, film quality control is often performed off-line in spite of the high 

production rates used to ensure film stability (typically 0.75 - 1.25 m/s) and the sensitivity 

of the film’s mechanical properties to physical defects and distribution of the various 

polymer species within the blend. According to Martyn et al. (2005), operators typically 

focus on problems such as production instability (i.e. helical, draw resonance, oscillating 

frost line, bubble sagging, tearing, fluttering, and breathing) as well as others caused by 

poor dispersion, lack of cohesion and inadequate viscosity paring when dealing with 

polymer blends. Laboratory quality assessment such as tensile tests (ASTM D882), 

Elmendorf tear strength (ASTM D1922), density (Lahrouni and Armani, 1995) and 

crystalline morphology (lamellar, spherulitic, etc.) using microscopy (Ajji et al., 2005) are 

performed at a low frequency on small samples cut-off from the rolls. Since these analyses 

are time consuming and destructive, film quality control is performed on a very low 

fraction of the production. In order to improve film’s assessment, correlations have been 

proposed to link tensile properties to processing conditions (Simpson and Harrison, 1994; 

Babel and Campbell, 1995; Ghaneh-Fard, 1999). Unfortunately, structure development in 
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film blowing is very complex (Ghaneh-Fard, 1999). Therefore, on-line quality analysis and 

control is required to quickly identify any defect and to ensure consistent high quality 

without loss of production (Ali et al, 1994; Michie et al., 2004; Martyn et al., 2005).  

 

A number of techniques were recently developed for on-line measurement of specific film 

properties, but those are mostly based on single-point probes (or probe arrays). Therefore, 

they have a limited spatial coverage of the film surface. Raman spectroscopy is based on 

the inelastic scattering of a monochromatic (often laser) light source and has been used to 

acquire real-time crystallinity measurements in blown film (Giriprasath et al., 2004). 

Birefringence, or the decomposition of a light ray as it passes through anisotropic materials, 

may be used in the determination of the average total (both crystalline and amorphous) 

orientation of the film (Mackley et al., 1998; Zhang et al., 2001; Ajji et al., 2005). Fourier 

transform infrared spectroscopy (FTIR) was used for determining the specific orientation 

factors of the crystalline and amorphous phases (Ajji et al., 2005; Patel et al., 2006). X-ray 

scattering through a thin sample reveals information about the structure, composition and 

properties. In polymer film analysis, X-ray pole figures yield details of crystalline phase 

orientation (Lahrouni and Armani, 1995; Ajji et al., 2005) while a variation of this method, 

the wide-angle X-ray diffraction (WAXD), refers specifically to sub-nanometer sized 

crystalline structures (Patel et al., 2006). These probes either provide a rapid estimation of 

the properties of a single localized point on the sample, or the average properties of a larger 

area. They are not intended to analyze a production line presenting both spatial and 

temporal variations. However, fine spatial measurements are the key in identifying local 

composition gradients and flow patterns that may compromise global quality of the films. 

The mechanical, optical and barrier properties of an entire sample may fall below 

specifications because of local discrepancies easily overlooked by a coarser spatial analysis. 

Recent developments in spectral imaging cameras may help developing rapid and non-

destructive on-line film quality sensors, capturing spatial (both cross and machine 

directions) and temporal variations in film properties with much higher spatial resolution 

than using probe arrays. 
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The objective of this work is therefore to investigate the potential of VIS-NIR spectral 

imaging for on-line, non-destructive monitoring of spatial as well as temporal variations in 

film blend properties. The proposed methodology is illustrated using low-density 

polyethylene/polystyrene (LDPE/PS) films produced by extrusion blowing under different 

operating conditions. The multiresolutional multivariate image analysis (MR-MIA) 

technique was used for extracting both spectral and textural image features that are the most 

highly correlated with the film properties (i.e. composition distribution and mechanical 

properties), as well as for mapping them on the surface of the films. 

 

5.2 Experimental 

5.2.1 Materials and processes 
 

Low-density polyethylene (PEMEX PX-20020X) having a melt-flow index of 2.0 g/10 min 

was used throughout this work as the continuous phase for the films. For the dispersed 

phase, three polystyrenes, all provided by Resistol, differing mainly in melt-flow index 

(MFI) were used: HH-103 (1.7 g/10 min), HF-777 (8.0 g/10 min) and HF-555 (16 g/10 

min). 

 

Film production was performed on the same experimental setup as reported in previous 

studies (Robledo-Ortiz et al., 2006; López-Barrón et al., 2007). A single-screw Haake 

extruder (Rheomix 254, L/D = 27) coupled with a film-blowing device was used to prepare 

tubular films as described in Figure 5.1. Process specifications are typically given in terms 

of film thickness (T), radius (R), and velocity (V) at two positions: the initial properties (I) 

are taken at the die; while the final properties (F) are measured after solidification of the 

polymer (freeze line). The pressure drop within the bubble (P) was measured using a 

water manometer fixed to the air feed. A bypass line was used to compensate for pressure 

variations within the bubble. 
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Figure 5.1. Schematic representation of the film blowing process indicating the locations 
where the thickness (T), radius (R) and velocity (V) of the film are measured. 
 

From the operating conditions, three dimensionless parameters are commonly reported to 

characterize the films: the blow-up ratio is the ratio of bubble radius to die radius 

(BUR=RF/RI), the thickness ratio is the ratio of die slit to bubble thickness (TR=TI /TF), and 

the draw ratio is the ratio of the take-off roller velocity to initial film velocity (DR=VF /VI). 

 

Experimental conditions were chosen in order to span a wide range of variations in end-

user film properties introduced by both the processing conditions and the raw material 

characteristics. The experiments were carried out by varying a single condition at a time 

around nominal processing conditions (die temperature: 200C, pressure drop: 30 mm H2O, 

screw speed: 50 rpm, polymer throughput: 17.7 g/min, PS melt-flow index: 1.5 g/min, PS 

content: 1%, premixing: no). Investigated process conditions were: die temperature (190, 

200 and 210C), pressure drop within the bubble (20, 30 and 40 mm H2O), film drawing 

speed (1.50, 1.65 and 1.80 m/min) and screw speed (40, 50 and 60 rpm). The latter allowed 

changing the polymer throughput in flood-feed conditions (16.2, 17.7 and 19 g/min). Raw 

material characteristics include polystyrene (dispersed phase) melt-flow index (1.5, 8 and 

17 g/10 min) and its content within the blend (0, 1, 2, 3, 4, 5, 6, 8 and 10 wt%). Blend 

premixing (yes or no) was also considered. Each of these conditions were varied one at a 
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time from a nominal set of operating conditions defined as follows: screw speed of 50 rpm, 

temperature of 200C, pressure drop of 30 mm H2O, drawing speed of 1.65 m/s, no initial 

premixing and 1% polystyrene (MFI: 1.5 g/10 min). A total of 26 experimental conditions 

were therefore tested including a few replicates of the nominal conditions. About 15-20 m 

of film was produced at each condition after reaching steady-state. 

 

To calibrate a regression model between the spectral images and the film properties, each 

film sample was characterized using standard methods. Tensile properties are by far the 

most commonly available mechanical tests for films (Hong et al., 2000; Bobovitch et al., 

2006). These were measured in triplicate with a United SFM Universal Testing Machine 

according to ASTM D882 (gauge length 5.08 cm). Measured properties include Young’s 

modulus, toughness, tensile strength, stress at break, as well as the strain at which the latter 

two occurred (Figure 5.2). All properties were tested solely in the machine direction. 

 

 

Figure 5.2. Typical stress-strain curve for LDPE/PS film with the parameters studied: 
Young’s modulus (1), the strength and associated strain (2 and 3), the stress and strain at 
rupture (4 and 5) as well as the sample toughness (6). 
 

5.2.2 Hyperspectral imaging system 
 

The system consists of two line-scan imaging spectroscopes covering the VIS-NIR 

wavelength ranges, which fields of view are centered on the same area of a sample. 

However, since the visible range was sufficient to extract the desired information from the 

LDPE/PS blend, only the VIS spectral scanner is described in this section. Indeed, as 
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shown later in this paper, both polymers have a different level of clarity; PS is more 

amorphous due to its aromatic ring whereas LDPE is more crystalline. Other polymer 

blends may require the use of the NIR or a combination of the VIS-NIR spectral scanners, 

depending on which wavelength range allow discriminating the polymer species. The 

proposed method for correlating spectral images to film properties is general and could be 

used with any spectral scanner. 

 

The line-scan visible imaging system consists of a Hamamatsu C8484-05G camera 

(9601024 pixels) coupled with an ImSpector V10E grating spectroscope (Specim Spectral 

Imaging Ltd) having a slit size of 30 m  14.3 mm and sensing the 400-1000 nm 

wavelength range. For each scanned line of the sample, the transmitted light is dispersed 

through the spectroscope and captured by the CCD array of the camera as a spatial/spectral 

image as shown in Figure 5.3. That is, for each pixel along the cross-direction of the sample 

(i.e. spatial axis x) corresponds a spectrum of light intensities at various wavelengths (i.e. 

spectral axis ). The spatial and spectral resolutions (i.e. number of pixels along the x axis 

and number of intensity values along the  axis) are determined by the resolution of the 

CCD camera. In this work, each line-scan has an effective resolution of 300 pixels along x 

and 600 pixels along  since it was necessary to crop the images; the film samples did not 

cover the entire field of view and the sensitivity of the scanner at both ends of the spectral 

range was low. On the sample, the effective resolution of a line-scan translates into a 0.14 

mm/pixel spatial resolution and 0.75 nm/pixel spectral resolution. 

 

After capturing and collecting several line-scans on a moving sample, such as a polymer 

film drawn in the machine direction (the y axis in Figure 5.3), one obtains a three-way array 

of data R (or data cube) – a digital hyperspectral image. To investigate the potential of 

spectral imagery, the films were not scanned directly on the extrusion line but rather off-

line in the lab. Representative film samples were therefore cut from the rolls and 200 line-

scans were collected using a Velmex motorized translation stage to move the film samples 

along the y axis. The scans were collected every 375 micron intervals to provide a 

composite image of true (x,y) spatial proportions. The (xy) dimensions of each R 
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spectral image were therefore (300200600). A total of 26 spectral images of films Ri 

(i=1,2,…26) were obtained, one for each experimental condition. 

 

 

Figure 5.3. Schematic representation of the line-scan system used in transmission and 
spatial/spectral image as captured by the CCD. 
 

All transmission images were obtained by placing the film on a glass plate above a diffuse 

light source. A tungsten-halogen lamp was chosen for its smooth flat emission spectrum 

over the required range. The raw spectral images Ri were first submitted to a linear pixel-

by-pixel calibration between a flat black image (B), obtained by collecting an image with 

the lens cap in place; and a true white image (W), collected using 99% reflectance standard 

(Gigahertz-Optik): 

 

xxy 
rxy  bx

wx  bx

 (5.1)  

 

where rxy is an element of the raw signal image R, bx and wx are elements of the black 

and white calibration images (B and W), and xxy is an element of the calibrated 

transmittance image X. Such calibration was performed periodically in order to minimize 

the impact of variations in lighting conditions over time. Note that more advanced 

calibration techniques should be considered for long-term industrial applications (Geladi et 

al., 2004; Burger  and Geladi, 2005; Liu et al., 2007). Image acquisition was controlled 
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through a Labview 8.0 software interface (National Instruments). Data analysis was 

performed using custom scripts developed in the Matlab R14 (MathWorks) environment 

unless otherwise stated. 

 

5.3 Multivariate methods for extracting image features 

5.3.1 Multivariate image analysis 
 

The MIA imaging technique was originally introduced by Esbensen and Geladi (1989), a 

detailed description of the method is provided by Geladi and Grahn (1996), and 

applications to hyperspectral imaging are discussed in Grahn and Geladi (2007). It basically 

consists of first unfolding a single spectral image X (xy) into a matrix X of dimensions 

(xy as shown in Figure 5.4 (i.e. the spectrum of each pixel are collected row-wise in 

matrix X), and then performing a variance-covariance decomposition of the spectral matrix 

X using principal component analysis (PCA): 

 

X  tapa
T E

a1

A

  (5.2) 

 

This decomposition yields a set of A score vectors ta (xy and loading vectors pa (1 

where A is the number of principal components kept in the model. A non-zero matrix E 

(xy containing the projection residuals, is obtained when A is smaller than the number 

of columns of X. The first score vector t1 is the linear combination of wavelengths 

capturing the greatest amount of variations within the spectral image, whereas the second 

score vector t2 explains the second greatest source of variations, and so on. The linear 

combinations are defined by the corresponding loading vectors (i.e. p1, p2, etc.). Such a 

decomposition of the variance-covariance structure of the spectral matrix allows extracting 

and classifying the spectral signature of each pixel regardless of their spatial location. 
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Figure 5.4. Applying standard PCA on a hyperspectral image requires initial unfolding of 
the data into a 2-D matrix as well as subsequent folding to regain the spatial disposition. 
 

In image analysis X usually has a much larger number of rows than columns (i.e. xy >>). 

Therefore, it is much less computationally intensive to perform PCA (or alternatively 

singular value decomposition SVD) on the kernel matrix Z  XT X which is of much 

smaller dimensions (rather than xy). When a global PCA model is to be developed 

on a set of N images, the kernel matrix is given by: Z  Xa
T Xa

a1

N

 . 

 

As for PCA applied to a database, the clustering pattern of the extracted features is 

observed using ti-tj score scatter plots (ij). However, when applied to a multivariate 

image, these score plots are typically shown as 2-D density histograms using a pre-defined 

color map to enhance visual interpretation, since the number of observations in the score 

plot is equal to the number of pixels of the image (i.e. xy or 300200=60000 observations 

for each image). An alternative way to visualize the image features extracted by each 

principal component is obtained by refolding the score vectors ta (xy into score matrices 

Ta (xy) according to the original spatial location of each pixel in the image X as shown in 

Figure 5.4 (i.e. X  Ta  pa 
a1

A

 E  where  is the Kronecker product). The score matrices 

Ta are then displayed as univariate gray-level images after appropriate scaling is applied. 

Figure 5.5 shows the T1 and T2 images of a film sample produced under the nominal 

process conditions described in the previous section. These images not only show intensity 

variations (i.e. spectral variations), but also show some textural variations across the 

images. As shown later in Section 5.4, both spectral and spatial (i.e. textural) information 

are necessary for predicting the mechanical properties of the polymer films. 
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Figure 5.5. Textural features of a film sample produced under the nominal conditions as 
seen from the T1 (left) and T2 (right) score image. 
 

5.3.2. Multiresolutional multivariate image analysis 
 

Spectral information of an image is efficiently extracted using MIA. However, unfolding 

the spectral array X as shown in Figure 5.4 leads to spatial information loss. The spatial 

organization of pixel intensities or textural information of the T1 and T2 images shown in 

Figure 5.5 cannot be extracted using MIA, but requires the use of texture analysis methods. 

Several textural methods were overviewed and compared in Bharati et al. (2004) using 

images of steel sheets. One conclusion drawn in this work was that the Wavelet Texture 

Analysis (WTA) method appeared to be the most powerful for image texture analysis 

owing to its space-frequency decomposition of the image information. Later, Liu and 

MacGregor (2007) proposed the multiresolutional multivariate image analysis (MR-MIA) 

framework, combining the strengths of both MIA and WTA for spatial-spectral analysis of 

multispectral digital images. Two algorithms were proposed depending upon the degree of 

interaction between the spatial and spectral information. First, MR-MIA (I) consists of 

extracting textural information from each spectral channel first using WTA resulting in a 

set of congruent texture images, one at each resolution (i.e. frequency), and direction of 

analysis (horizontal, vertical and diagonal), and then using MIA on these texture images for 

extracting the spatial-spectral information. This approach is general, widely applicable and 

particularly well suited for interacting spatial-spectral information. Second, MR-MIA (II) 

performs spectral analysis first using MIA, and then extracts textural information using 
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WTA applied to score images Ta. This algorithm should be used when little interaction 

exist between spatial-spectral information. The latter algorithm is used in this work since 

the textural features seen on films (Figure 5.5) are observable in most of the wavelengths 

across the VIS range, hence in the T1 and T2 images (i.e. there is little interaction between 

spectral and spatial information). The MR-MIA (II) algorithm is briefly described below, 

but the reader is referred to Liu and Macgregor (2005, 2006, 2007) for more details on this 

algorithm, and to Chau et al. (2004) and Burke Hubbard (1998) for a more general 

overview of spatial-spectral information extraction. 

 

Multiresolution analysis (MRA) is basically a succession of approximations of a signal at 

different resolutions (scales or frequencies), which can be obtained using methods such as 

orthogonal wavelet decomposition. Wavelet texture analysis (WTA) is typically suited in 

applications where the data contains both large and small scales variation in which case it is 

capable of isolating the former from the latter. WTA is akin to the windowed Fourier 

transform (WFT) using a non-periodic function, or wavelet. When applied to textural 

analysis of univariate digital images such as a gray-scale image of a scene of a score image 

Ta (i.e. 2-dimensional discrete signals), the separable 2-D discrete wavelet transform 

(DWT) algorithm is used. It approximates the image by repeatedly dilating and shifting a 

single mother wavelet, each level of dilation representing larger or smaller scale textural 

features. Two types of coefficients characterize the signal: the detail coefficients (dj,l) 

characterizes the match between the mother wavelet and the original image signal at a level 

(j) and a position (l), while the approximation coefficients (aj,l) corresponds to the 

remaining information after extraction of the features by the detail coefficients. This 

rougher representation of the signal is then used as the basis for the dj+1,l coefficients. The 

signal x (time series of a row or a column of pixel intensities) is decomposed through 

simultaneous filtering using a high-pass filter ψ(x), called the wavelet function, and a low 

pass filter φ(x) called the scaling function: 

 

a j,l  f k , j,l k   (5.3)  

d j ,l  f k , j,l k   (5.4) 
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First level decomposition is achieved by applying the DWT algorithm to the input image 

(in this case T1). This produces three detail coefficients matrices (DHj, DVj, DDj) 

corresponding to the horizontal, vertical and diagonal matches between the original image 

and the mother wavelet (Figure 5.6). The remaining information unexplained by the detail 

coefficients matrices is stored in the first level approximation coefficient matrix (Aj). As 

each successive level isolates a new level of detail from an increasingly rough low-pass 

approximation, it halves the frequency interval according to Nyquist's law. In 2-D DWT, it 

also halves the spatial resolution in each direction, making the approximation coefficient 

matrix a quarter the size of the original image. Higher-order decompositions (level j+1) are 

achieved by applying the aforementioned algorithm on the preceding approximation 

coefficient matrix (Aj), reducing the size of the image at each level. 

 

 

Figure 5.6. Illustration of a 2-D wavelet decomposition of a manufactured stone walkway 
in which the horizontal, vertical and diagonal detail coefficient matrices (DHj, DVj and DDj) 
as well as the approximation coefficient matrix (Aj) are shown for each level j.  
 

5.4 Results and discussion 

5.4.1 Causal relationships between materials, process conditions and 
mechanical properties 
 

The experimental design discussed in Section 5.2 generated a dataset of input variables 

Xdata (2610) containing the raw material properties and process conditions for each 

experiment as well as a corresponding response matrix Y (266) containing the mechanical 

properties of the films (Figure 5.7). These operating parameters can be divided into three 

sets: dispersed phase effect (PS MFI and content), processing parameters (screw speed, die 
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temperature, take-off speed, bubble pressure drop and premixing) and dimensionless 

parameters (BUR, TR and DR). This rich database was used to build causal relationships 

between the raw material properties, the processing conditions and the resulting film 

mechanical properties, which were found to provide important insights for developing the 

imaging sensor. 

 

 

Figure 5.7. The PLS-data model is based on the operation conditions (2 PS characteristics, 
5 processing parameters and 3 dimensionless ratios) to predict the mechanical properties. 
 

A latent variable PLS regression model was built between Xdata and Y. The PLS model 

structure is given below: 

 

Xdata  tapa
T

a1

A

 E TAPA
T E  (5.5) 

Y  taqa
T

a1

A

  F TAQA
T  F  (5.6) 

*XWT   (5.7) 

 

The P and Q matrices contain the loading vectors that best represent the X and Y spaces 

respectively, whereas W* contain the loading vectors defining the common latent variable 

space T relating X and Y. The E and F matrices contain the PLS model residuals (i.e. 

projection distance from the latent variable space of the model), and A is the total number 

of PLS components. Even if the design matrix Xdata is very well conditioned, PLS was 

selected here since the property matrix Y is highly collinear (i.e. effective rank=2 using 
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PCA and cross-validation). The first three principal components (PC) were found 

significant by leave-one-out cross-validation. The cumulative Y variance explained and 

predicted (cross-validation) by the model were R2
Y,cum=69% and Q2

cum=38%. These 

statistics are relatively low since they combine all 6 mechanical properties, and some of 

them have a higher degree of uncertainty. 

 

 

Figure 5.8. Loading biplot for the first two components (left) and the VIP plot (right) of the 
PLS-data model. 
 

Relationships between raw materials properties, processing conditions and film mechanical 

properties are interpreted using the two plots shown in Figure 5.8. The first (left) is the 

PLS-data loading biplot for the first two PCs. It is used to interpret the inter-correlations of 

the variables both within the Xdata and Y blocks as well as between them. Variables having 

similar coordinates in this plot are positively correlated, those falling in opposite quadrants 

are negatively correlated, and those falling close to the origin (0,0) have small or no 

correlation with other variables. The second plot in Figure 5.8 (right) is the variable 

importance (VIP) plot. It indicates the relative importance of the 10 regressor variables for 

explaining variations in Y based on the PLS-data model. 

 

The PLS-data model strongly relies on polystyrene characteristics (1st and 2nd VIPs), 

followed by the throughput rate (3rd VIP) and the bubble geometry (4th - 7th VIP). However, 

blend premixing, draw ratio and extrusion temperature were much less important in 
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modeling the tensile properties. The PS content is the single most important factor in 

determining the mechanical properties of the films and as such is expressed along the first 

component of the biplot (w1*q1). In accordance with previous studies (Barentsen and 

Heikens, 1973; Wang et al., 1998; Guo et al., 1998), Figure 5.8 shows that high PS content 

increases the modulus while decreasing all other properties, especially affecting the 

elongational properties (i.e. strain at break, strain at maximum stress and the toughness). In 

order to increase these three properties in the machine direction it is necessary to promote 

molecular orientation along that same axis (Simpson and Harrison, 1994; Fatahi et al., 

2007). In practice, this can be achieved by reducing the bubble diameter and increasing the 

stretching in the machine direction. Graphically, bubble geometry is represented along the 

w2*q2 axis of the PLS-data biplot in which case the elongational properties are negatively 

correlated to BUR, TR and ∆P, and positively correlated to DR and the draw speed. 

 

It is important to note that the PLS-data model was developed using some variables that are 

generally not available on-line in practice, such as film composition (i.e. PS content), 

thickness and draw ratios (TR and DR) as well as the mechanical properties. Nevertheless, 

this model was developed and used 1) for verifying that the observed relationships between 

raw materials properties, processing conditions and film mechanical properties were 

consistent with polymer processing knowledge, and 2) as a benchmark for the spectral 

imaging sensor. Indeed, this model showed that two dominant sources of variations affect 

mechanical properties: film composition and stretching. The spectral imaging sensor should 

be capable of detecting both of these parameters and of predicting the mechanical 

properties of the films solely based on image information. 

 

5.4.2 Spectral analysis of the films for estimating blend composition 
 

The goal of the image analysis was to build a model based on the optical aspect of the films 

with no prior knowledge of the experimental conditions or raw material composition. Both 

composition and orientation must therefore be inferred from the images. Figure 5.9 shows 

the average transmission spectra of thin films made of pure LDPE and PS scaled according 

to Equation 5.1.  
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Figure 5.9. Average visible spectra of thin films made of LDPE and PS. 
 

A mostly flat response was obtained for PS over the entire range whereas LDPE had a 

steadily increasing response implying a greater transparence at longer wavelengths. 

Considering that both polymers can clearly be distinguished based on their transmission 

spectra it should therefore be possible to estimate blend composition using image spectral 

analysis (e.g. MIA). Furthermore, score images (later used in the texture analysis) should 

draw more information from shorter wavelengths (near 500 nm) than from longer ones 

(above 700 nm) due to the greater spectral contrast in the lower range. The localized 

glitches in the curves around 546 and 612 nm correspond to the typical peaks of room 

fluorescent lighting. 

 

Film composition was estimated using the first two score vectors (t1 and t2) obtained using 

MIA as shown in Figure 5.10. The clustering pattern of the spectra obtained for all 26 film 

samples is shown in Figure 5.10A using a 2-D density histogram. It shows the classification 

of the pixels of each film image according to their spectral characteristics. Figure 5.10B 

provides a closer look at this clustering pattern using the films produced with the lowest 

and the highest PS content. Finally, Figure 5.10C shows the regression line within the t1-t2 
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scatter plot that is the most highly correlated with PS content. As expected, it is strongly 

oriented towards t1. 

 

 

Figure 5.10. Score histogram of the film illustrating the global dataset (A), individual 
samples within this dataset (B) and the average location of all the samples (C). 
Dimensionless intensity scale given.  
 

The data illustrated in Figure 5.10A fall into two basic areas: samples containing 1% PS 

(10 < t1 < 15) and the samples containing 2-10% PS (15 < t1 < 25). Within this latter group 

there is also a strong correlation between PS content and the first score vector, indicating 

that it accounts for a large faction of the variation. On average, pixels taken from samples 

containing higher levels of polystyrene have higher t1 values than pixels taken from 

samples containing less polystyrene. To illustrate this, samples containing 1 and 10% PS 

are shown in Figure 5.10B. However, this figure also shows that the pixels for 1% PS are 

tightly clustered, indicating a uniform composition, while those for 10% PS are scattered 

over a wider range of t1 values, indicating a more heterogeneous composition. This local 

variability at higher PS contents may be increased by the natural incompatibility between 

the PE and PS phases. 

 

The t1-t2 scatter plot can be used to predict the local composition of the films. This can be 

achieved by regressing the average PS content (known by design) of the samples against 

their corresponding average t1-t2 values using least squares regression (Figure 5.10C). This 

model was then used to predict PS concentration distribution within a single film sample 

based on the t1 and t2 values of each image pixel. This local information can be used to 

identify non-uniformities in the polymer distribution (Figure 5.11). Furthermore, this local 
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composition estimation can be extended to a global value simply by summing this 

information for each pixel of an image. 

 

 

Figure 5.11. Determination of local PS content within a sample through spectral analysis. 
Right: score image of a sample containing defects. Left: illustration of estimated 
composition showing PS in red, PE in white and intermediates in shades of yellow – color 
scale is arbitrary. Sample produced at nominal conditions and 3% PS. 
 

It is important to note that Figure 5.11 illustrates such a classification in which the 

resolution was lowered to make small PS inclusions clearly visible. This analysis shows 

that apparently similar defects present in the score image are found to contain different 

concentrations of PS. In a more subtle way, it also becomes apparent that the upper section 

of this figure contains intermediate levels of PS dispersed throughout the matrix while the 

bottom of the figure does not. It is therefore expected that this method could also be used to 

distinguish the local concentrations of miscible polymers that do not lead to visible defects. 

 

Local composition gradients can cause weaknesses in the film and influence its mechanical 

properties. Composition mapping can therefore be used to quantify the PS dispersion 

throughout the PE matrix and link it to the properties of the films. The degree of 

composition homogeneity can be quantified using Danckwerts’ segregation intensity (IPS) 

for binary systems (Danckwerts et al., 1952): 

 

IPS 
 PS

2

x PS 1 x PS 
 (5.8) 
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where x PS  and PS
2  are the average and variance of the estimated PS content within the 

image. IPS does not reflect the size of the PS domains, but the extent to which the 

concentration in the clumps departs from the mean. The predicted composition, as well as 

its segregation intensity, can be used to predict the tensile properties. 

 

5.4.3 Textural analysis for modeling the stretching effect 
 

Application of the MR-MIA II algorithm went as follows. A global MIA was first 

performed on the image set in order to extract two components (T1 and T2), explaining 

96% and 3% of the variance, respectively. While each loading is independent, the first two 

score images are essentially mirror images of one another (Figure 5.5). Quantitatively, the 

relative textural features extracted from T1 and T2 by WTA do not differ significantly from 

each other. Therefore, only the first score images were used in the following analysis. A 3-

level WTA was performed on the images using bior3.7, a bi-orthogonal wavelet available 

in the Matlab Wavelet Toolbox. The textural features being relatively small, higher-level 

decompositions were not found to contain meaningful information. In order to quantify 

image texture, the mean energies of the horizontal and vertical detail coefficients matrices 

(DHj, DVj) were calculated horizontally and vertically for each score image according to:  

 

H j  diag DHj
TDHj   (5.9) 

V j  diag DVj
TDVj   (5.10) 

 

The horizontal and vertical energy details (Hj or Vj) are scalars based on the Frobenius 

norm of the coefficient matrices (DHj or DVj) at decomposition level j. Ratios of horizontal 

(H: machine direction) and vertical (V: cross direction) values were also used to emphasize 

certain features: Hi/Vi ratios provide information on relative horizontal/vertical orientation 

of the films at each WTA level i while Hi/Hj and Vi/Vj ratios describe the level at which the 

features occur. That is to say; a large H1/H3 ratio would either imply that the sample is 

globally uniform (low H3) or locally rough (high H1). To summarize, 15 textural features 
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(Hi, Vi, Hi/Vi, Hi/Hj and Vi/Vj for i,j = [1, 2, 3] where ij and ij) describe each image 

according to orientation and level as quantified by energy of the wavelet coefficients. 

 

5.4.4 Relationships between visual features and mechanical properties 
 

A second model, referred to as PLS-image, was built in which visual dataset of input 

variables Ximage (2617) was used as a predictor for the mechanical properties Y (266) as 

shown in Figure 5.12. Of the 17 visual features, 15 were drawn from the textural analysis 

(Section 5.3) while the other two estimated the polystyrene content and polystyrene 

segregation intensity (Section 5.2).  

 

 

Figure 5.12. The PLS-image model is based on the visual aspects of the films (15 textural 
features, estimated composition and segregation intensity) to predict the mechanical 
properties. 
 

A VIP plot for the PLS-image model, based on the 17 visual features, reveals that this 

model also strongly relies on the presence of polystyrene (composition: 1st VIP) as well as 

its distribution throughout the film (segregation: 8th VIP) to predict the tensile properties 

(Figure 5.13). Furthermore, PLS-image model is based on the large-scale 

horizontal/vertical orientation of the films (H3/V3: 2nd VIP), followed by the horizontal 

components at each decomposition level (H3, H2 and H1), confirming that the image 

analysis uses both local and global information to model the properties. 
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Figure 5.13. Loading biplot for the first two components (left) and the VIP plot (right) of 
the PLS-image model.  
 

Similar conclusions can be drawn from the PLS-image biplot. As LDPE and PS are 

incompatible, higher PS contents will increase the intensity of the textural features in both 

the machine (H) and transverse (V) directions along the w1*q1 axis. Here again, the 

secondary w2*q2 axis represents the bubble geometry (stretching) as shown by the strong 

negative correlation between opposing textural features (i.e. V3 vs. H3/V3). 

 

5.4.5 Prediction of tensile properties  
 

In order to judge the adequacy of this second PLS-image model, it must be compared to the 

previous PLS-data model (Section 5.1). To do so, two cumulative multiple correlation 

coefficients were computed for quantifying the model predictive ability: R2
Y,cum gives the 

cumulative percentage of the total variance of Y explained by the model, and Q2
cum is the 

cumulative percentage of the total variance of Y that can be predicted by the models using 

the cross-validation procedure. Both PLS models were constructed keeping only the first 

three components. The PLS-data model had an R2
Y,cum of 0.69 and Q2

cum of 0.38 while the 

PLS-image model had an R2
Y,cum of 0.64 and Q2

cum of 0.41. Once constructed, these models 

were then used to predict the six mechanical properties. Relative errors, expressed as the 

ratio of the prediction error to the measured value, are compiled for the 26 experimental 

conditions. Mean values are presented in Table 5.1. 
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Table 5.1. Relative error in prediction by 3-component PLS models; comparing image 
analysis (PLS-image) to operation parameters (PLS-data). Values are in percentage. 
Mechanical property PLS-image PLS-data 
Young’s modulus  5 (3) 5 (4) 
Tensile strength  6 (4) 5 (4) 
Stress at break  8 (10) 7 (9) 
Strain at max stress  17 (14) 16 (13) 
Strain at break  14 (13) 14 (10) 
Toughness  14 (13) 12 (11) 
Average error 11 (11) 10 (10) 

 

Table 5.1 shows that both PLS models have similar prediction capability. The properties 

that do not depend on the breaking point (Young’s modulus and tensile strength) are well 

represented by the models, with relative errors less than 5-6%; while the properties at break 

(i.e. the strain at break, strain at maximum stress and toughness) are not as well 

represented. This was expected since ultimate properties (at break) usually have high data 

scatter (Ghaneh-Fard, 1999). In our case, scatter was especially high for samples containing 

higher PS contents (6-10%). Despite being included in the models, these samples differ 

significantly from the remaining samples. The strain at which the maximum stress and 

break occur is much less that would predict the models. Since toughness is strongly 

dependent on ultimate properties, it is also difficult to predict with high precision. 

 

The performance of the models in both situations (i.e. properties depending on the breaking 

point and those that do not) is illustrated in Figure 5.14. This figure shows the 

experimentally measured toughness and tensile strength compared with the predictions 

obtained by cross-validation. Accordingly, the predicted tensile strength is closer to the 

experimental values (R2
Y,cum: PLS-image = 0.785 and PLS-data = 0.826) than for toughness 

(R2
Y,cum: PLS-image = 0.562 and PLS-data = 0.639). 
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Figure 5.14. Prediction capabilities for toughness and tensile strength.  
 

Despite the fact that the PLS-data model provides marginally better predictions than PLS-

image, it is important to note that it relies on more information; namely the film 

composition, geometry and process conditions. However, the exact polystyrene content 

throughout the blend at all times, the present state of the operating conditions, as well as 

less accessible data such as bubble thickness, diameter and draw ratio are not usually 

available in real time and can only be obtained through and an array of sensors or estimated 

by mass balance calculations (Ito et al., 2004); i.e. the PLS-data model should be seen as a 

best-case scenario for which the entire process is well instrumented. 

 

The proposed methodology, through the PLS-image model, only relies on the visual aspect 

of the films through a spectral estimation of the composition and a textural estimation of 

the film geometry. Moreover, it serves also as a final quality control by identifying defects 

(such as PS inclusions) as well as composition gradients throughout the sample. 

 

5.5 Conclusion 
 

The objective of this work was to develop a rapid and non-intrusive on-line imaging sensor 

for monitoring spatio-temporal variations across the surface of polymer film blends. 

Although NIR spectroscopy has previously been investigated for estimating some film 

properties, most methods were based on probes, hence providing measurements for a single 

point (or line) on a sample. Since most of the overall end-user properties of polymer films, 

such as mechanical, optical and barrier properties, depend upon the local microstructure, 
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fine spatial measurements are key in identifying local composition gradients that may 

compromise the quality as a whole. Rich spatial data would also be useful for precise 

diagnostics of operational problems in the production line such as non-uniform cooling or 

poor distribution of the dispersed phase. 

 

As a proof of concept, LDPE/PS film blends were produced via extrusion film blowing in a 

wide range of processing conditions including the rotational speed of the extruder screw 

(flow rate), the die temperature, the pressure drop within the film bubble, the drawing speed 

of the film as well as blend premixing. Polymer characteristics include the melt-flow index 

of the polystyrene dispersed phase as well as its content within the blend. Each sample was 

then imaged using a visible imaging spectroscope (400-1000 nm), and sent for mechanical 

testing. Samples were characterized according to 6 mechanical properties: Young’s 

modulus, the strength and associated strain, the stress and strain at rupture as well as 

toughness. 

 

A first PLS model was constructed using all the process data typically available (true 

composition, the operating conditions and the bubble geometry) to predict the properties of 

the film. In doing so, two major sources of variation were observed: the composition and 

stretching of the film. In light of this, a second PLS model, based on multiresolutional 

multivariate image analysis (MR-MIA), was constructed. This method relies on 

multivariate image analysis (MIA) coupled with wavelet texture analysis (WTA) to 

estimate the texture, composition and phase dispersion. 

 

Results show that both PLS models have similar predictive capabilities. However, the first 

model, based on process data, does so by relying on estimated process information that 

cannot always be easily obtained in real time (i.e. film thickness and true PS content). 

Knowledge of these parameters requires multiple sensors throughout the extrusion line. On 

the other hand, the second model avoids this limitation altogether by relying solely on 

image data obtained with a single sensor. Beyond predicting the mechanical properties, 

image analysis can provide real-time 2-D composition estimates, therefore identifying all 

potential local defects and composition gradients. The ability of the proposed approach to 
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combine both local and global characteristics shows an interesting potential for application 

to complex materials requiring fine spatial measurements. 
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Chapter 6 

A Bootstrap-VIP Approach for Selecting Wavelength 
Intervals in Spectral Imaging Applications* 
 

Résumé 
Une méthode de ré-échantillonnage basée sur la régression par variables latentes, nommée 
ici PLS Bootstrap-VIP, est proposée comme outil de sélection de longueurs d’ondes. Cette 
méthode a l’avantage de combiner simplicité et rapidité de calcul, ce qui la rend 
particulièrement utile pour l’identification d’intervalles spectraux pertinentes au sein des 
images hyperspectrales. Elle a été testée sur quatre jeux de données (captés par des caméras 
visible et proche infrarouge) provenant des industries du plastique, de l’huile, ainsi que des 
pâtes et papier. Les résultats obtenus en utilisant les VIP ont été comparés à ceux obtenus 
en utilisant les coefficients de régression PLS, ainsi qu’à ceux obtenus par deux méthodes 
plus sophistiquées tirées de la littérature. Nos travaux montrent que la méthode PLS 
Bootstrap-VIP concorde avec ces méthodes plus complexes en identifiant un faible nombre 
d’intervalles spectrales congruentes, ce qui facilite l’interprétation des données tout en 
réduisant la forte corrélation présente entre les longueurs d’onde. Cette méthodologie 
parcimonieuse requiert parfois des ajustements mineurs améliorant légèrement les capacités 
prédictives du modèle. 
 

Abstract 
A PLS Bootstrap-VIP approach is proposed as a simple wavelength selection method, yet 
having the ability to identify relevant spectral intervals. This approach is particularly 
attractive for wavelength selection within hyperspectral images due to its simplicity and 
relatively low computational cost compared to more sophisticated interval search methods. 
The method was tested on four visible-NIR spectral imaging datasets taken from the 
polymer, oil and pulp and paper industries. The results were compared with those obtained 
using PLS regression coefficients as well as two more sophisticated methods involving 
several metrics or the search for wavelengths intervals. It is shown that a small number of 
well-defined relevant spectral intervals are identified with the proposed approach, 
providing easy spectral interpretation in agreement with more complex interval search 
methods. Before final use, fine adjustments to the VIP threshold may be tested to verify 
whether predictive power can be improved.  
 
 
 
 
* Gosselin R., Duchesne C. and Rodrigue D., A bootstrap-VIP approach for selecting 
wavelength intervals in spectral imaging applications, Chemometr. Intell. Lab., 100, 12-21 
(2010). 
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6.1 Introduction 
 

Methods for relevant variable selection in PLS regression models have drawn considerable 

attention in the Chemometrics literature. These can be traced back to the work of Frank 

(1987) and Martens and Naes (1989) based on truncating the PLS weight vectors (w) or 

setting the smallest weights to zero and re-estimating the models in an iterative fashion. 

Since then, multivariate calibration problems had a significant contribution to new 

developments in variable, or more specifically, in wavelength selection algorithms. In the 

last two years, at least 10 new papers appeared on the subject (Ye et al., 2008; Cai et al., 

2008; Krier et al., 2008; Cramer et al., 2008; ElMasry et al., 2008; Brás et al., 2008; Liu et 

al., 2008; Teófilo et al., 2009; Fang et al., 2009; Xu et al., 2009). The growing fields of 

applications of vibrational spectroscopy in chemistry and chemical engineering certainly 

stimulate interest in this area. In particular, recent developments in spectral imaging for on-

line inspection and quality control in a variety of fields ranging from food, to agricultural, 

pharmaceutical and polymer processing (Kramer and Ebel, 2000; Kleynen et al., 2003; Yan 

et al., 2005; Cai et al., 2008; Ye et al., 2008), to name a few, led to massive amounts of 

spatial-spectral data (i.e. a complete spectrum for each pixel of the image) in a fraction of a 

second. More parsimonious models obtained by relevant wavelength selection may result in 

enhanced interpretability, increased robustness, and significant reduction in computation 

time, which is crucial for on-line spectral imaging applications. 

 

The wavelength selection problem arises mainly from the fact that vibrational spectroscopic 

methods (i.e. NIR, IR, and Raman) and other techniques sharing similar features yields 

complex spectra made of overlapping absorption bands, interference from diffuse light 

scatter, and instrumental noise (Martens and Naes, 1989; Osborne et al., 1997; Cai et al., 

2008). Hence, the response of functional groups or molecules is often dispersed over 

several adjacent wavelengths, leading to strong collinearity in some regions of the spectra, 

while other regions may be corrupted by noise, or more generally, may contain irrelevant 

information. A theoretical justification for wavelength selection in PLS regression models 

was provided by Spiegelman et al. (1998), who showed that removing irrelevant 

information is desirable regardless of the spectral noise distribution. Experienced 
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spectroscopists often have a good idea of the most important wavelength ranges that should 

be kept in calibration models. However, in the development of new products, when less 

theoretical work was carried out, or when a large number of chemical species are present in 

a sample, including some a priori unknown components, a systematic method for 

identifying relevant wavelengths or spectral regions may be of great help to the 

spectroscopist. 

 

Methods for relevant variable/wavelength selection essentially fall into two categories: 1) 

methods based on individual wavelengths, and 2) approaches aiming at finding the most 

informative spectral intervals. The individual wavelength methods rank the importance of 

the individual wavelengths according to one or several metrics, directly or indirectly 

evaluating the correlation between each individual wavelength and one or many responses 

Y, and then using a cutoff criterion to segment relevant/irrelevant variables. The metrics 

used for ranking wavelengths include the magnitude of the PLS regression coefficients 

(Frenich et al., 1995; Centner et al., 1996, Osborne et al., 1997; Spiegelman et al., 1998; 

Lazraq et al., 2003; Ferreira et al., 2005; Preisner et al., 2007; Cai et al., 2008; Liu et al., 

2008; Xu et al., 2009), the PLS weight vectors W (Frank, 1987; Lindgren et al. 1994; 

Jouan-Rimbaud et al., 1995; Liu et al., 2008), the correlation coefficients or the covariance 

(Jouan-Rimbaud et al., 1995), and more recently, the variable importance on the projection 

VIP (Lazraq et al., 2003; Chong and Jun, 2005; ElMasry et al., 2008). Several of these 

metrics were also jointly used by Teófilo et al. (2009). The cutoff criteria used are either 

determined arbitrarily, based on past experience, or through statistical assessment of 

uncertainties in the parameters using the Bootstrap, the Jackknife or the Monte-Carlo re-

sampling methods (Centner et al., 1996; Lazraq et al., 2003; Ferreira et al., 2005; Preisner 

et al., 2007; Cai et al., 2008). Prediction ability criteria were proposed and assessed using 

variants of stepwise regression (Osborne et al., 1997; Spiegelman et al., 1998). Global 

search methods, such as the generalized simulated annealing (GSA) (Kalivas et al., 1989) 

and genetic algorithms (GA) (Ferreira et al., 2005; Preisner et al., 2007) were also used to 

identify the most informative wavelengths using some PLS model predictive ability 

criteria. 
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Interval methods, on the other hand, aim at finding the most informative group of 

wavelengths (i.e. spectral bands). This is motivated by the fact that functional groups 

absorb within a relatively short wavelength bands, which are easier to interpret (Nørgaard 

et al., 2000; Rossi et al., 2007), and should lead to more stable predictions (Höskuldsson, 

2001). Intervals are essentially obtained by splitting the spectra into a certain number of 

intervals or through iterative construction of these intervals using, for example, moving 

windows. The most informative intervals are also assessed using various metrics and some 

cutoff criterion. One of the first interval approaches was proposed by Nørgaard et al. 

(2000). It consists of dividing the spectra into a certain number of equal width intervals 

(typically 20-30), and building a local PLS model on each (i.e. iPLS). The most important 

intervals to maintain good prediction performance are kept in the final PLS model. Finding 

the best combinations of these spectral intervals was investigated by Xu et al. (2007) using 

Monte Carlo cross-validation (MCCV) stacked regression. Brás et al. (2008) modified the 

iPLS approach by first selecting the most important regression coefficients using bootstrap 

intervals, followed by the construction of intervals based on a cutoff distance between 

selected coefficients. Orthogonal signal correction (OSC) approaches to wavelength 

selection, as well as more efficient approaches for defining the iPLS intervals using the 

most highly correlated wavelengths with Y, were also investigated by Höskuldsson (2001). 

Moving windows of tunable size were proposed as a method for searching the most 

informative combinations of wavelength intervals (Du et al., 2004; Cramer et al., 2008; 

Fang et al., 2009). The use of B-splines was also investigated for defining spectral intervals 

(Rossi et al., 2007; Krier et al., 2008), which involves careful selection of the number of 

nodes or width of the B-splines. A curve-resolution approach not relying on iterative 

variable search was proposed by Bogomolov and Hachey (2007). Intervals were defined as 

a fixed width around the known peaks of pure components spectra. Finally, a simple 

method based on the correlation between a given wavelength and its neighbors was also 

proposed for delimiting spectral regions (Ye et al., 2008). A representative wavelength (i.e. 

showing the highest correlation coefficient) was selected for each interval. 

 

Both families of approaches have advantages and drawbacks. The individual wavelength 

ranking methods make use of simple metrics (regression coefficients, W, VIP, etc.), most 
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of which are parameters of the PLS model structure and are readily available in commercial 

software. Since most of these approaches are not formulated as direct search methods, they 

are generally less computationally intensive. However, it is argued that the results are more 

difficult to interpret since selected wavelengths are often distributed across the complete 

spectra instead of within a few confined intervals (Ferreira et al., 2005; Rossi et al., 2007). 

This issue will also be demonstrated in this paper using ranking of regression coefficients. 

Interval methods, on the other hand, directly identify the most informative wavelength 

bands and should lead to easier interpretation and more consistent results. However, 

intensive iterative search is often required. 

 

In this paper, a Bootstrap-VIP (variable importance on the projection) approach is 

investigated for variable/wavelength selection. It consists of computing the VIP scores of 

each wavelength, obtained from a PLS model minimizing the root mean squared error in 

cross-validation (RMSECV). Bootstrap re-sampling is then applied to generate consistency 

intervals around VIP estimates. Those wavelengths significantly greater than a threshold 

(e.g. 1.0) are identified as relevant. This approach combines some of the advantages of both 

individual wavelength and interval selection methods and could, when more precise results 

are required, provide a very good starting point for interval search methods. Indeed, the 

VIP metric and the Bootstrap or Jackknife re-sampling methods are simple and already 

available in Chemometrics software, and as will be shown in this paper, the approach 

naturally leads to the identification of relevant spectral intervals. The choice of the VIP 

metric was partly motivated by the simulation study performed by Chong and Jun (2005), 

showing that using VIP scores for selecting the most informative wavelengths was more 

sensitive and specific than using regression coefficients across a wide range of data 

structures. 

 

There is certainly no unique “best” approach to variable/wavelength selection for any data 

structure, and the authors fully recognize the difficulty to generalize conclusions obtained 

with a single method tested on a few datasets. However, the proposed approach is found to 

work well on four datasets collected in the polymer, oil and pulp and paper industries. A 

comparison is made with selection by ranking of PLS regression coefficients, one of the 
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most commonly used selection technique. It is clearly shown that for comparable 

RMSECV, Bootstrap-VIP identifies relevant intervals whereas regression coefficients tend 

to spread relevant individual wavelengths across the entire spectral range. Moreover, the 

proposed approach is found to provide very similar results to more complex interval 

selection methods on one of the datasets, the diesel shootout example, which was used in a 

few other papers (Rossi et al., 2007; Teófilo et al., 2009). 

 

6.2 Methods 

6.2.1 Projection to latent structures 
 

Consider two data matrices, X (NK) and Y (NM), containing K spectral signatures from 

some spectroscopic method and M response variables (e.g. chemical concentration, 

mechanical properties, quality characteristics, etc.) for a set of N samples. The structure of 

the PLS calibration model defining a common latent variable space relating both data 

blocks is given by: 

 

X TPT E (6.1) 

Y TQT  F   (6.2) 

T XW * (6.3) 

W*  W PT W 1
 (6.4) 

 

where W* (KA) contains the X-weights defining the common latent variable space T 

(NA) relating X and Y, and A is the number of PLS components (i.e. latent variables). 

Cross-validation using 10 random subsets was used in this work for selecting the number of 

PLS components (A). The P (KA) and Q (MA) matrices contain the loading vectors that 

best represent the X and Y spaces, respectively. The E (NK) and F (NM) matrices 

contain the projection residuals. The PLS latent variable model can be re-organized as a 

simple prediction equation involving a set of regression coefficients BPLS (KM), similarly 

as for multiple linear regression (Wold et al., 2004). 
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ˆ Y  XBPLS  (6.5) 

BPLS  W * QT  (6.6) 

 

The PLS regression coefficient BPLS has been one of the most frequently used metric for 

selecting individual wavelengths in a similar way as if the model between X and Y was a 

multi-linear regression model. Another commonly used metric for judging the importance 

of the X-variables on Y is the variable importance on the projection (i.e. VIP). The VIP 

score for the kth variable (wavelength) for a single response y is computed according to 

Eriksson et al., (2001): 
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2 ttwtt T2T  (6.7) 

 

where a = 1,2…,A, K is the number of columns of X (i.e. variables or wavelengths), wak is 

the loading weight of the kth variable in the ath component, and ta, wa, and qa are the ath 

column vectors of T, W, and Q, respectively. 

 

The main difference between the BPLS and the VIP metrics, in terms of assessing the 

importance of each variable or wavelength in predicting y, lies in the way the VIP metric 

weights the contribution of each variable according to the variance explained by each PLS 

component. Indeed, the qa
2ta

Tta  term in the numerator of Equation 6.7 is the variance of y 

explained by the ath PLS component, whereas the summation of these terms over all A 

components (i.e. denominator in Equation 6.7) is the total variance explained by the model. 

The 
2

waakw  expression represents the importance of the kth variable in the ath 

component. As the number of PLS components increases, the variance explained by each 

component generally decreases, and the importance of the variables is progressively down-

weighted. This limits the noise propagation (associated with smaller eigenvalue 

components) into the VIP metric. The latter should therefore be a more stable and 

consistent indicator of variable importance. 
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It is generally accepted in practice that variables having a VIP > 1.0 are highly influential, 

values between 0.8 < VIP < 1.0 indicate moderately influential variables, and VIP < 0.8 

represent less important variables (Eriksson et al., 2001). The unity threshold comes from 

the fact that the average of the squared values of the VIPs is equal to 1.0. The greater-than-

one rule is often used as a selection criterion (Eriksson et al., 2001; Olah et al., 2004; 

ElMasry et al., 2008). A systematic simulation study conducted by Chong and Jun (2005) 

indicates that this cutoff criterion should be a function of the data structure, and that proper 

cutoff values, maximizing sensitivity and specificity in finding the truly important 

variables, range between 0.83-1.21. 

 

6.2.2 Bootstrap and wavelength selection 
 

Bootstrap is a well-known re-sampling method used in statistics to estimate bias and 

standard errors of parameter estimates. Similarly to Monte Carlo simulations, the dataset is 

randomly re-sampled b times with replacement leading to b estimates of the parameters of 

interest after building a regression model on each of the b datasets. This method assumes 

that both the original dataset and the bootstrap subsamples are representative of the 

population. Moreover, the bootstrap subsamples should be balanced; i.e. that the subsets are 

to be evenly collected throughout the dataset (Miller, 1974). Larger values of b more 

efficiently treat unsmooth and non-linear data at the expense of increased computation time 

(Efron and Tibshirani, 1993). More information on the bootstrap method can be found in 

Shao and Tu (1995). 

 

In this work, bootstrap was used to assess the importance (i.e. VIP) of each wavelength 

band of spectral images on the predictions of sample quality using a subsample size of 

0.4N, where N is the size of the original dataset. This falls within the 0.27N – 0.5N range 

recommended by Babu (1991). Re-sampling b=500 times was found to yield very 

consistent results. Such a large number of subsamples was selected to ensure that stable 

bootstrap uncertainty intervals were obtained for all four datasets. Wavelength selection 

was achieved through a PLS-bootstrap algorithm based on the variable importance on the 
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projection metric (VIP). The PLS-bootstrap approach for regression coefficients was also 

used for comparison since regression coefficients are commonly used for 

variable/wavelength selection. 

 

The typical threshold for VIP based variable selection is the greater-than-one rule (Eriksson 

et al., 2001; ElMasry et al., 2008). This criterion is based on the assumption that variables 

with VIPs above the average (1.0 as previously mentioned), should be retained in the final 

prediction model. The PLS-bootstrap algorithm was used to assess the uncertainty in the 

VIP metrics, and a wavelength was considered relevant when its average VIP value, along 

with its one standard deviation error bar (obtained from the bootstrap), was above 1.0 as 

shown in Figure 6.1. A similar methodology was applied to regression coefficients (BPLS) 

i.e. they were considered significant when their one standard deviation error bar did not 

include 0.0. Bootstrap results for one dataset are presented in Figure 6.1 to illustrate the 

typical behavior of the VIP and regression coefficients when used for wavelength selection. 

The VIP plot shows a fairly smooth spectrum with a certain number of well-defined peaks, 

while the BPLS curve is much noisier with a few peaks clearly standing out. The smoother 

VIP results are likely related to the weighing of each variable contribution according to the 

variance explained by each PLS. 

 

 

Figure 6.1. Bootstrap results at each wavelength illustrating the bootstrap average value 
and standard deviation for VIP and BPLS metrics. The PLS model built on dataset 2 with 10 
latent variables is shown. 
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6.3 Experimental 

6.3.1 Spectral image acquisition  
 

The line-scan imaging system used in this work is composed of two cameras centered on 

the same area of a sample, each coupled with a grating spectroscope, effectively covering 

the visible and near-infrared (NIR) range of the spectrum (475-1500 nm). The visible range 

is captured using a Hamamatsu C8484-05G camera (480512 pixels) coupled with an 

ImSpector V10E grating spectroscope (Specim Spectral Imaging Ltd) effectively sensing 

the 475-1000 nm wavelength range. The infrared range is captured using a XenICs XEVA-

USB-FPA camera (256320 pixels) coupled to a Specim ImSpector N17E grating 

spectroscope effectively sensing between 1000-1500 nm. Each scanned line of the sample 

is captured on the CCD array as a spatial/spectral (x) image containing hundreds of 

spectral channels (i.e. wavelengths), rather than the 3 more commonly obtained in RGB 

images. A hyperspectral image, or data cube, of the entire sample is achieved by repeatedly 

displacing the sample perpendicularly to the spectroscope slit (along the y-axis). Each 

hyperspectral image consists of a number of juxtaposed line-scans, at 1 mm intervals, 

forming a 3-D array (xy).  

 

6.3.2 Description of the datasets  
 

Four datasets of spectral images and corresponding quality measurements were used to test 

the proposed method on different materials: (1) polymer films, (2) wood/plastic 

composites, (3) Kraft liquors and (4) diesel samples. Each dataset is explained in details 

below. These four examples were chosen to verify the behavior of the method in various 

fields (polymer processing, pulp and paper, and energy). This allowed verifying whether 

the results obtained with the VIP-bootstrap approach, and the comparison with other 

metrics (i.e. BPLS), yields consistent conclusions across different fields and data structures. 

More specific points may also be addressed, such as whether the same wavelengths are 

recognized as significant in both polymer datasets, as one may expect. 
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Dataset 1: polymer films 

 

A compression press was used to mould thin polymer films (100401.5 mm) of either 

polypropylene (PP), high-density polyethylene (HDPE) or low-density polyethylene 

(LDPE). The batch process consists in molding 6 g of resin at 180C under 3 tons of 

pressure for 10 minutes, long enough to remove any previous thermal history (Chew et al., 

1989; Albano et al., 2003). The mould was then water cooled to release the sample. A total 

of 18 samples were produced, 6 for each polymer, using average cooling rates of 1, 2, 4, 5, 

8 and 16C/min. These changes in cooling rates produced samples of different overall 

crystallinity, measured using Differential Scanning Calorimetry (DSC). The samples were 

imaged using the NIR line-scanner (185 wavelengths). A total of 10 line-scans were 

captured for each of the 18 samples (3 polymer types and 6 cooling rates) and were 

averaged along one spatial axis leading to a spectral matrix (X) of dimensions (180185). 

Degree of crystallinity was measured for each sample and these measurements were 

repeated 10 times to obtain a congruent response vector y (1801). More details on this 

study are available in Gosselin et al. (2008). 

 

Dataset 2: wood/plastic composites 

 

Thin HDPE/wood composites were produced using a twin-screw extruder and tested 

experimentally under different processing conditions and wood contents. The continuously 

extruded samples measured 2 mm in thickness and 80 mm in width. They were made of 

sieved birch wood fibers (45 and 180 m) and commercial HDPE (Fortiflex A60-70-162). 

Wood fibers were obtained from a local sawmill. The following process conditions were 

investigated in a complete 23 factorial design: screw speed (70 and 90 rpm), die 

temperature (160 and 180C), polymer throughput (500 and 600 g/h) with a fixed wood 

content of 20 wt.%. Wood content (main feed disturbance) was also varied in a separate set 

of experiments at three levels (10, 20 and 30 wt.%) under constant nominal process 

conditions (i.e. center point of 23 design). Steady-states were allowed to run for about 10 

minutes for each condition tested. The samples were scanned using both the visible (485 

wavelengths) and near-infrared (185 wavelengths) imaging spectrometers. In this case 25 
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line-scans were collected for each of the 11 samples. These were again averaged along the 

machine cross-direction to yield the spectral matrix X (275485). Sample crystallinity is 

again used as the quality variable y (2751) measured by DSC. Further details are a 

provided in Gosselin et al. (2009). 

 

Dataset 3: Kraft liquors 

 

Kraft pulp and paper mills use the so-called white liquor, a mixture of sodium hydroxide 

and sodium sulfide, to extract lignin from wood fibers. The mixture of white liquor and 

lignin is known as weak black liquor. Recycling this liquor is achieved by concentrating the 

black liquor and burning off the excess solids, leaving behind a solution of sodium 

carbonate, sodium sulfate and sodium sulfide. At this stage, the blend is known as green 

liquor. The cycle back to white liquor is completed by processing the green liquor in a lime 

kiln. A preliminary study was performed to test whether spectral NIR images of liquor 

samples could be used to predict their total sulfide (S2-) concentration (y) at any point 

during the cycle. A total of 15 samples were obtained from Irving Pulp & Paper (St-John, 

New-Brunswick, Canada), 5 of each liquor type (weak black, clarified green, and clarified 

white liquors). These were selected to span a wide range of sulfide concentration (i.e. S2-). 

Previous works by Leclerc (1997) and Mustonen and Laszlo (2007) have shown that the 

sulfidity, or S2- concentration, of Kraft liquors can be predicted using near-infrared spectra. 

Thus, 10 line-scans were captured using the NIR spectrometer for each of the 15 liquor 

samples and were averaged along one direction leading to the input matrix X (150185). 

Sulfidity (y) was measured for each sample in the analytical chemistry lab of the company. 

 

Dataset 4: diesel 

 

In addition to the 3 datasets obtained in our laboratory, a fourth dataset was tested in order 

to directly compare the results of the proposed wavelength selection strategy to those 

obtained by other groups using different, but more complex methods. This dataset consists 

of NIR spectra of diesel samples measured at the Southwest Research Institute (SWRI) and 

was obtained from the Eigenvector Research Incorporated website (2005). Using cetane 
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number (equivalent to octane number for gasoline) as a quality variable, the proposed 

method will be compared to the results published by Rossi et al. (2007) and Teófilo et al. 

(2008) on the same dataset. The spectral range captured in this dataset was from 750 to 

1550 nm (discretized into 401 wavelengths) and had previously been mean centered and 

reduced to unit variance. After removing a few outliers from the original set, the spectral 

matrix X (107401) was obtained. Cetane number (y) was measured for each sample. 

 

Finally, each dataset was mean-centered and scaled to unit variance (i.e. autoscaled) prior 

to be used in PLS modeling. 

 

6.4 Results 

6.4.1 Number of PLS components and wavelength selection consistency 
 

The number of PLS components used in the calibration model have an important impact on 

both the number and the consistency of selected wavelengths. The number of relevant 

wavelengths based on the Bootstrap-VIP and the Bootstrap-B (i.e. regression coefficients) 

methods as a function of the number of PLS components is shown in Table 6.1 for dataset 

1. The number of intervals is also provided. An interval is defined by consecutive 

significant wavelengths. A single wavelength was also considered an interval if it was both 

identified as significant and isolated from other significant wavelengths. These results show 

that both the number of wavelengths and spectral intervals seem to stabilize when a 

sufficient number of latent variables (LV), or PLS components is used. In dataset 1, the 

VIPs appear to stabilize with at least 5 latent variables, while this number tends toward 10 

for the regression coefficients. Similar results were observed for the other datasets. It 

therefore appears that the VIPs require fewer LVs to yield stable results. This was expected 

due to the down-weighing of the latent variables associated with smaller eigenvalues (see 

Equation 6.7). 
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Table 6.1. Number of significant spectral bands and wavelengths obtained for dataset 1 
using increasing numbers of latent variables.  

Method LV Intervals Wavelengths 
1 5 58 
3 4 40 
5 7 42 
10 6 41 

VIP 

20 6 41 
1 2 160 
3 7 139 
5 12 115 
10 16 74 

BPLS 

20 14 68 
 

While the number of significant wavelengths and spectral intervals seems to stabilize when 

enough components are used, this does not indicate whether the same wavelengths are 

being selected in each case. To investigate the consistency of the results provided by each 

selection method, 15 PLS models were built on dataset 1 with different number of 

components (1-10, 12, 15, 20, 25, and 30) and, for each of them, relevant wavelengths were 

selected using the bootstrap-VIP and bootstrap-B approaches. The ratio of number of times 

each individual wavelength was found relevant by the VIP and B approaches for the 15 

PLS models is shown in Figure 6.2. A ratio near 1.0 for a given wavelength indicates that 

all 15 models retained it as significant, while a ratio close to 0.0 indicates that none of the 

models did. The VIP selection show drastic changes along the spectra; some wavelengths 

are nearly always identified as significant while others, even neighboring wavelengths, are 

always rejected. Moreover, the selected wavelengths often occur in bands, or spectral 

intervals, as one would expect from correlated spectral data. This indicates that Bootstrap-

VIP selection consistently identifies similar spectral regions, with little variations as the 

number of latent variables is changed. On the other hand, selection based on the regression 

coefficients follows a very different behavior: very few well-defined spectral intervals are 

identified, or even clear patterns which could lead to the identification of significant 

spectral regions. The selected wavelengths almost appear randomly distributed within the 

spectral range, and vary widely as a function of the number of PLS components since most 

of the wavelengths were found relevant about 40-60% of the time (i.e. ratios between 0.4-
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0.6). Very similar results were obtained on other datasets. The consistency of the 

Bootstrap-VIP approach was established in this section. Interpretability is investigated next. 

 

 

Figure 6.2. Influence of the number of PLS latent variables on wavelength selection 
consistency illustrated with dataset 1. Shown is the ratio of the number of times each 
wavelength was found significant by the VIP and regression coefficients (BPLS).  
 

6.4.2 Wavelength selection and interpretation 
 

As shown in Table 6.1, the number of wavelengths and spectral intervals predicted by the 

models stabilizes when a sufficient number of latent variables are used. Nevertheless, 

keeping too many latent variables may lead to increased prediction errors. Several criteria 

for selecting the optimal number of latent variables have been published: the normalized 

mean squared error (NMSE) (Rossi et al., 2007), the relative root mean squared error 

(RRMSE) (Ye et al., 2008) and the root mean squared error in cross-validation (RMSECV) 

(Brás et al., 2008; Cai et al., 2008; Cramer et al., 2008; Teófilo et al., 2008). The latter 

criterion was chosen in this work and is defined as: 

 

RMSECV 
1

N
yn  ˆ y n 2

n1

N

  (6.8) 

 

where yn  and ˆ y n  are the measured value and predicted response value in cross-validation 

of the nth sample in a dataset containing N samples. 
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In practice, wavelength selection was achieved through a two-step procedure. First, a PLS 

model was built using the complete spectral matrix X and y (Section 6.3.2) in which the 

number of latent variables (LV1) was computed to minimize the RMSECV achieved by the 

PLS model. For all datasets used in this study, the RMSECV first decreased with an 

increasing number of components, reached a minimum with less than 10 components, and 

then increased monotonously. Applying this method to the datasets, 8 latent variables are 

used in set 1 while sets 2, 3 and 4 required 7, 9 and 5 latent variables, respectively. Once 

the number of components was determined, the PLS-bootstrap method was applied to the 

data using the number of latent variables obtained in the first step (LV1). 

 

One objective of this study was to demonstrate that the stability and consistency of the VIP 

approach naturally leads to the identification of contiguous spectral intervals rather than 

spreading selected wavelengths throughout the spectra as Bootstrap-B does. Given the 

continuity of the spectra, these intervals are not only used by spectroscopists, but they are 

also much easier to interpret qualitatively (Brás et al., 2008). The relevant wavelengths 

identified by both PLS-bootstrap methods (i.e. VIP and B) with LV1 latent variables are 

shown in Figure 6.3 for all four datasets. For convenience, the wavelengths found 

significant by the VIP metric are shown below the mean spectra whereas those selected by 

the regression coefficients are identified above the spectra. As noted previously, the VIPs 

identify a relatively small number of spectral intervals, while the regression coefficients 

BPLS leads to the selection of a large number of individual wavelengths, distributed 

throughout the entire spectral range. 

 

As illustrated in Figure 6.3, the PLS-bootstrap method based on the VIPs identified a 

number of spectral intervals. Four such intervals were identified in dataset 1 (polymer 

films). The first two intervals (1000-1060 nm and 1100-1120 nm) represent the C-H 

stretching second overtone band and are linked to CH2 and CH3 vibrations (Watari et al., 

2004). Polymer crystallinity refers to the degree of structural organization within the 

material. High crystallinity levels reduce the freedom of the macromolecules and have been 

linked to decreased CH2 vibrations in the C-H stretching second overtone band (Bower and 
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Maddams, 1992). The third and fourth intervals (1270-1290 nm and 1365-1375 nm) 

represent the first overtone combination band (Ren et al., 1999; Watari et al., 2004). This 

band represents combined stretching and vibrational movements linked to polyethylene 

crystallinity (Watari et al., 2004). 

 

 

Figure 6.3. Relevant wavelength selection results for all datasets. Black line: average 
spectra. Blue bars (below spectra): VIP selection. Red bars (above spectra): BPLS selection 
(regression coefficients). 
 

Four intervals were identified in dataset 2 (wood/plastic composites). The first two (475-

525 nm and 600-615 nm) represent blue-green and orange wavelengths, respectively. Note 

that the small but sharp peaks located around 546 and 612 nm are associated with room 

fluorescent lighting. Nevertheless, further tests discussed in Section 6.4.3 indicate that the 

spectral range between 500-620 nm may have some significance. This spectral interval is 

known to be linked to a number of wood species (Pandey et al., 1998; Pastore et al., 2004) 

and appears to be associated to the presence of cellulose (Ilharco et al., 1997). The two 

remaining intervals of importance (1110-1155 nm and 1275-1300 nm) essentially 
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correspond to the second and third intervals discussed in the 1st dataset (1100-1120 nm and 

1270-1290 nm). It is important to note that very similar spectral bands around 1110 and 

1275 nm were classified as being significant in both dataset 1 and 2 as one would expect 

when similar chemical compounds are present. This indicates once again that the VIPs lead 

to consistent spectral intervals identification. 

 

Four intervals were identified in dataset 3 (Kraft liquors). In this case however, even if the 

VIP selection led to very well defined intervals, interpretation of the first three intervals 

(1000-1025 nm, 1280-1300 nm, and 1380-1420 nm) was not straightforward due to the 

very large number of chemical species present in the liquor samples. Both lignin and 

sodium sulfide, for example, strongly absorb in the 1000-1400 nm range (Huang et al., 

2008; Muttiah, 2002). On the other hand, the fourth interval (1450-1500 nm) seems to be 

linked with sodium hydroxide concentration (Heiman and Licht, 1999). This component is 

known to vary with the liquor composition. 

 

Four spectral intervals were also identified in dataset 4 (diesel). These are located in the 

following ranges: 1018-1044, 1062-1092, 1202-1236, and 1502-1544 nm. According to 

Rossi et al. (2007), these intervals correspond to absorption bands of hydrocarbons whose 

combustibility influences the cetane number. At this point, we remind the reader that the 

diesel dataset is part of the public domain and was chosen to compare the proposed 

wavelength selection method to more complex techniques previously published. However, 

one must keep in mind that the results will depend on the initial pre-processing of the 

dataset as well as criterion with which outlying samples are excluded. Accordingly, Rossi 

et al. (2007) identified intervals located at 974-1086, 1200-1262 and 1486-1550 nm as the 

most relevant ones using a functional representation of the spectra (i.e. B-splines), followed 

by forward-backward procedure using the mutual information metric for selecting the B-

splines coefficients that are the most highly correlated with Y and, finally, building a non-

linear neural network model between the selected coefficients and the responses Y. A 

second research group also identified the following 3 intervals as the most relevant ones: 

1000-1125, 1225-1325, and 1475-1550 nm (Teófilo et al., 2008). These results were 

obtained by constructing a set of informative vectors based on 7 metrics (regression 
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coefficients, VIPs, signal/noise ratios, etc.), taken separately or in pairs, followed by an 

iterative search for the best combination minimizing the RMSECV of the PLS calibration 

model. The close agreement with some of the more complex methods confirms the ability 

of the Bootstrap-VIP algorithm to clearly identify meaningful spectral intervals. The 

predictive ability of the resulting more parsimonious PLS models will be investigated in the 

next section. 

 

6.4.3 Predictions with reduced spectra 
 

The predictive ability of the more parsimonious PLS models, obtained after wavelength 

selection, is investigated in this section. Ideally, the reduced model should maintain or 

improve the predictive power of the model using the complete spectra. The proposed 

wavelength selection is a two-steps process involving: 1) building a PLS model on the 

complete spectra with LV1 latent variables, selected to minimize RMSECV, followed by 

relevant wavelength selection using the Bootstrap-VIP metric, and 2) re-estimation of the 

PLS model on the reduced spectral matrix. The number of latent variables of the final PLS 

model (LV2) is again determined to minimize RMSECV. The number of latent variables 

selected in each step as well as the predictive power of the final PLS model, quantified by 

RMSECV and Q2 statistics, are shown in Table 6.2 for all four datasets. Note that selection 

results using the VIP metric without bootstrapping are also presented in Table 6.2, but are 

discussed later in Section 6.4.3. 

 

Comparing the results obtained by using the complete spectra and the bootstrapped VIP and 

BPLS metrics (see boot-VIP and boot-B in Table 6.2) it is observed that: 1) the boot-VIP 

approach always selects much fewer wavelengths (or spectral intervals), 2) wavelength 

selection using bootstrap based approaches leads to a reduction of up to 2 components in 

the final PLS model (LV2) compared to the model based on the complete spectra (LV1), and 

3) boot-VIP have a slightly lower predictive ability. As discussed earlier, the smaller 

number of boot-VIP selected wavelengths gathered into well-defined spectral bands leads 

to easier interpretation. However such a high degree of parsimony seems to be at the limit 

of loosing predictive power, but still maintains the y-relevant latent structure contained 
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within the complete spectra (i.e. LV2 close to LV1). This approach might in fact establish a 

lower bound on the number of wavelength intervals or, when considering their location 

within the spectral range, establish the minimal amount of information required for 

interpretation and prediction of y. 

 

Table 6.2. Predictive ability of the final PLS models obtained after wavelength selection by 
VIP (with and without bootstrapping) and BPLS metrics, compared against the performance 
obtained with the complete spectra. The number of selected wavelengths and intervals as 
well as the number of latent variables in the selection (LV1) and final (LV2) steps are also 
shown. Note that LV1 corresponds to the number of components of the PLS model on the 
complete spectra. 

Set Spectral matrix 
(X) 

Wavelengths 
(Intervals) 

LV2 RMSECV Q2
cum (%) 

Complete 185(-) 8 3.038 97.1 
Boot-VIP 41(4) 7 3.471 96.1 
Boot-B 81(14) 7 2.613 97.8 

1 

VIP 59(6) 6 3.405 96.2 
Complete 485(-) 7 2.570 84.5 
Boot-VIP 51(4) 6 2.686 84.3 
Boot-B 233(32) 7 2.491 85.4 

2 

VIP 196(10) 7 2.600 84.4 
Complete 185(-) 9 0.229 88.0 
Boot-VIP 53(4) 7 0.259 85.2 
Boot-B 130(18) 8 0.229 87.8 

3 

VIP 78(4) 7 0.250 85.6 
Complete 401(-) 5 2.011 68.0 
Boot-VIP 71(4) 6 2.057 66.6 
Boot-B 114(16) 4 2.163 63.7 

4 

VIP 82(3) 6 2.041 67.1 
 

This suggests that after the interpretation phase is completed, the boot-VIP reduced model 

might require some fine-tuning in order to achieve the lowest RMSE. This could be done in 

a number of ways. Some of them are listed below: 

 

1. Progressively increase the width of the boot-VIP selected spectral bands to verify 

whether any improvements could be achieved without adding other intervals. 

 

2. Reduce the VIP cut-off criterion from 1.0 to 0.8 or lower if necessary. This will 

increase the number of selected wavelength intervals. Some of them will likely be 
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located in other section of the spectral range. This operation does not require 

redoing the bootstrap procedure, but only verifying which wavelengths have their 

bootstrap intervals above the new cutoff values. 

 

3. Alternatively, one could take advantage of the boot-B results which was found to 

spread relevant wavelengths across the entire spectral range (i.e. interpretation not 

as straightforward), but achieved better prediction results (see Table 6.2). The latter 

is obtained with virtually no additional computation cost when the boot-VIP 

procedure is performed. Wavelengths or intervals selected by boot-B, but not by 

boot-VIP, could be sequentially added to the boot-VIP model in a step-wise 

procedure. One could also cast this procedure into a multivariate design of 

experiments problem (Wold et al., 1986) to verify which additional intervals or 

combinations of intervals could be added to the boot-VIP model. 

 

4. The spectral intervals selected by boot-VIP could also be used as a very good 

starting point for more sophisticated interval search methods (Nørgaard et al., 2000; 

Du et al., 2004; Rossi et al., 2007; Cramer et al., 2008; Fang et al., 2009). 

 

To further validate that the boot-VIP is likely to select the minimum number of wavelength 

for prediction purposes, a randomization experiment was conducted. Given the high degree 

of redundancy within the spectra (i.e. collinearity), if boot-VIP selects the minimum 

number of wavelength intervals (min), then randomly selecting min wavelengths across the 

entire spectral range should yields relatively similar predictive ability. It should be 

emphasized here that this holds true only due to the high degree of collinearity within the 

spectra. Indeed, it is likely that random selection would pick wavelengths within some of 

the relevant intervals if a sufficient number of wavelengths (i.e. min) is used. For each 

dataset, a total of 10 random selections were made of 41, 51, 53, and 71 wavelengths for 

datasets 1-4, respectively. A PLS model was built on each selection (i.e. 10 random 

selections  4 datasets) and their number of latent variables was again selected to minimize 

RMSECV. The mean RMSECV and Q2
cum statistics, as well as their standard deviations, are 

reported in Table 6.3 with the boot-VIP results (taken from Table 6.2). 
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Table 6.3. Predictive capabilities of purely random wavelength selection using the same 
number of wavelengths as PLS-bootstrap methods based on VIPs. Ten random replicates 
were performed for standard deviation.  

Dataset Wavelengths Selection method LV RMSECV Q2
cum 

Boot-VIP 7 3.471 96.1 1 41 
Random 7-10 3.703 (0.276) 95.6 (0.6) 

Boot-VIP 6 2.686 84.3 2 51 
Random 6-7 2.651 (0.035) 83.5 (0.4) 

Boot-VIP 7 0.259 85.2 3 53 
Random 7-9 0.283 (0.017) 81.4 (2.2) 

Boot-VIP 6 2.010 66.6 4 71 
Random 6-8 2.156 (0.024) 65.0 (0.6) 

 

Prediction results for random selections are very similar to those obtained through the boot-

VIP selection method. In many cases, the number of latent variables, the Q2
cum and the 

RMSECV of the proposed methods fall within one standard deviation of the random 

selection results. This supports the idea that boot-VIP might very well identify the 

minimum number of wavelengths below which predictive ability degrades. The 

randomization experiment was used here only to provide additional support for this idea. 

Of course, random selection of the wavelength would not systematically lead to clear 

interpretations such as those provided by the boot-VIP approach. 

 

6.4.4 Advantages of bootstrapping 
 

The Bootstrap-VIP approach uses a re-sampling algorithm to assess the consistency of the 

VIP metrics, which comes at a computational cost. To justify this added layer of 

complexity, a comparison was made with the VIP selection using the greater-than-one rule, 

but without bootstrapping. These results are shown in Table 6.2 (see rows labeled Boot-VIP 

and VIP). It is clear that using the bootstrapped VIP metrics further reduces the number of 

selected wavelengths and leads to slightly lower prediction power than without bootstrap 

(VIP greater-than-one rule only). The VIP-selected wavelength intervals with and without 

bootstrapping are presented in Figure 6.4. 

 



 
 

178

 

Figure 6.4. Impact of bootstrapping on wavelength selection using the VIP metric. Black 
line: average spectra. Blue bars (below spectra): No-bootstrap selection. Red bars (above 
spectra): Bootstrap selection. 
 

The wavelength bands selected by the VIP metric with and without bootstrapping method 

differ to a certain extent. Overall, the boot-VIP method identifies both fewer and narrower 

spectral intervals. This difference is due to the fact that the bootstrap standard error of these 

spectral intervals included the threshold values of 1.0. However, fine-tuning the model by 

decreasing the cutoff values towards 0.8, with bootstrapping, would have led to similar 

results. The bootstrap consistency intervals around the VIP estimates allow discriminating 

wavelengths of borderline significance that may slightly improve prediction power, but 

with the advantage of providing results that are easier to interpret due to fewer, but more 

consistent wavelength bands. As mentioned in the previous section, it is recommended that 

the Boot-VIP approach should be used first for interpretation purposes, and then fine-tuned 

for improving prediction ability. 
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6.4.4 Discussion on the VIP threshold 
 

Until now, the usual VIP threshold of 1.0 was used for selecting wavelengths. This cutoff 

value is not absolute as the zero cutoff (i.e. BPLS significantly different from 0) used to 

assess the significance of regression coefficients. In fact, it has often been suggested that 

the proper cutoff may vary between 0.8 and 1.2 (Eriksson et al., 2001; Olah et al., 2004; 

Chong and Jun, 2005). The impact of the VIP cutoff value on the PLS model predictive 

ability is investigated for each dataset. A comparison is provided in Table 6.4 between the 

Boot-VIP selection with a threshold of 1.0 and the optimal cutoff value leading to the 

lowest RMSECV, identified by trial and error. Even if minimizing RMSECV is in fact a 2-

dimensional optimization problem, requiring to select both the number of latent variables of 

the reduced model (LV2) and the optimal VIP cutoff, the number of latent variables was 

kept the same (i.e. for each dataset) to test the individual impact of the VIP cutoff on 

selected wavelengths. 

 

Table 6.4. Influence of VIP cutoff on the reduced PLS model obtained after wavelength 
selection. The achieved RMSECV statistics for the optimal VIP cutoff (minimizing 
RMSECV) is compared to the greater-than-one rule. 

Dataset Optimal cutoff 
value 

RMSECV at  
optimal cutoff 

RMSECV  
Cutoff = 1 

1 0.95 3.389 3.471 
2 0.90 2.600 2.686 
3 0.85 0.251 0.259 
4 1.10 2.010 2.011 

 

The results presented in Table 6.4 show that the optimal VIP cutoff values vary between 

0.85 and 1.10, providing marginal improvements on RMSECV values compared to the 1.0 

threshold (reduction of 2.2% on average). These observations indicate that a VIP cutoff 

value of 1.0 is a good starting point, but can later be fine-tuned if necessary. 

 

The dependence of the VIP cutoff on the scaling of spectral data needs to be investigated. 

The greater-than-one rule has a particular meaning for autoscaled data which may not hold 

for other scaling options. However, after repeating the analysis of datasets 1-3 using mean-

centering only, it was found that the VIP=1.0 threshold was still a good initial value. 
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Similar results were obtained in terms of both the predictive power and the selected spectral 

ranges. Since these conclusions can hardly be generalized, it is recommended, in any case, 

to test other threshold values to verify whether a better model can be obtained. 

 

6.5 Conclusion 
 

This study explored the ability of the Bootstrap-VIP method for wavelength selection in 

spectral imaging applications and spectroscopy in general. The proposed two-steps 

approach involves building a first PLS model using the complete spectra database, with as 

many components as necessary for minimizing RMSECV. The bootstrap procedure is 

applied to that model in order to compute consistency intervals around the VIP metrics, 

followed by selection of the wavelengths having their intervals above a certain cutoff value. 

The greater-than-one rule was used in this paper. A final PLS model is then built on the 

reduced spectra. The proposed approach was tested on four different datasets, most of them 

using the NIR spectral range. Comparisons were made with the ranking of PLS regression 

coefficients, one of the most commonly used approach for selecting wavelengths 

individually (Centner et al., 1996; Spiegelman et al, 1998; Lazraq et al., 2003; Brás et al., 

2008), and with some of the more sophisticated methods involving several metrics in 

informative vectors (Teófilo et al., 2009) or searching for wavelengths intervals (Rossi et 

al., 2007). 

 

The main conclusions drawn from this work are as follows: 1) even if the bootstrap-VIP 

approach is essentially an individual wavelength selection method, it naturally leads to the 

identification of the most relevant spectral intervals related to Y, whereas selection by 

ranking of regression coefficients spreads relevant wavelengths across the spectra; 2) the 

reduced spectra obtained by the bootstrap-VIP are therefore much easier to interpret and 

this was demonstrated on the four datasets used in this work (i.e. two from polymer 

processing, a Kraft liquor database taken from a pulp and paper mill, and the diesel 

shootout database); 3) the results obtained on the diesel shootout database were found to be 

in very close agreement with those published with more sophisticated methods (Rossi et al., 

2007; Teófilo et al., 2008); 4) the very parsimonious PLS models obtained after selection 
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have a slightly lower predictive power compared to the complete spectra or to the selection 

by regression coefficients; 5) the bootstrap-VIP approach seems to select the minimal 

amount of information (i.e. wavelength intervals) below which predictive capabilities starts 

degrading. It is therefore recommended to use the proposed selection method for the 

interpretation phase, after which some fine-tuning of the reduced PLS models may be 

performed to slightly improve the predictive power. 
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Chapter 7 

A Hyperspectral Imaging Sensor for On-line Quality 
Control of Extruded Polymer Composite Products* 
 

Résumé 
Cette étude porte sur la capacité des méthodes chimiométriques à extraire de l’information 
pertinente à partir d’images spectrales afin de prédire les variations spatio-temporelles des 
propriétés de matériaux composite bois/plastique extrudés. Les échantillons ont été produits 
en variant les conditions opératoires, ainsi que l’alimentation selon un plan d’expériences. 
Les propriétés mécaniques des échantillons ont été mesurées à la fois pendant les périodes 
de régime stationnaire et les périodes de transition. D’abord, une méthode de régression 
Bootstrap-PLS a permis de sélectionner les intervalles spectraux les plus fortement 
corrélées aux propriétés mécaniques. Ensuite, un modèle PLS liant les caractéristiques 
spatiales et spectrales extraites des images à dimensionnalité réduite à la qualité des 
échantillons a été construit. Ce capteur peut simultanément estimer 7 propriétés mécaniques 
de ces matériaux composites à tout moment durant la production.  
 

Abstract 
This study examines the ability of chemometrics methods to extract meaningful 
information from visible and near-infrared spectral images of extruded wood/plastic 
composite materials for predicting spatio-temporal variations in their properties. The 
samples were produced under varying process and feed conditions according to designed 
experiments. Mechanical properties of the samples were measured using standard analytical 
methods both during steady-state and dynamic transition periods. A Bootstrap-PLS 
regression technique was first used for selecting the spectral bands (i.e. wavelengths) that 
were the most highly correlated with the material properties. In a second step, a more 
parsimonious PLS regression model was built between the spectral and textural features 
extracted from the lower dimensional spectral images and the corresponding quality 
properties of each sample. The imaging sensor was able to simultaneously monitor 7 
properties in both steady-state operation and during transitions. 
 
 
 
 
 
 
 
* Gosselin R., Duchesne C. and Rodrigue D., A hyperspectral imaging sensor for on-line 
quality control of extruded polymer composite products, Comput. Chem. Eng., submitted: 
August 2009, CACE-S-09-00415 (2009). 
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7.1 Introduction 
 

Polymer extrusion is essentially a well instrumented process with tightly controlled 

operating conditions. Common automatic feedback control loops on machine variables (i.e. 

temperature, screw speed, etc.) provide satisfactory results as long as there are no stringent 

constraints on product quality (Tadmor et al., 1974). On the other hand, raw material 

properties, such as melt flow index and composition, are seldom uniform in complex 

polymeric flows. The resulting extrudate may suffer from quality fluctuations that cannot 

be tempered by the machine variable controllers. Moreover, these fluctuations may never 

be detected in a timely fashion due to the lack of on-line sensors for key polymer 

properties, which leads to quality control issues in polymer processing plants (Ohshima and 

Tanigaki, 2000). In practice, quality control of polymer products is mainly performed by 

destructive testing in the laboratory using a very small proportion of the production. It is 

therefore likely that large amounts of abnormal products may be generated before quality 

issues are detected. This problem may be addressed by taking on-line quality measurements 

(or estimates) of the samples and including this information in quality control and 

monitoring schemes. Specifically, an efficient system should rely on in-process analysis of 

polymer characteristics during manufacturing providing real-time assessment of sample 

properties such as structure, morphology and composition (Dumoulin et al., 1996). 

 

Spectroscopic soft sensing techniques have been successfully applied in a number of fields 

such as food analysis (Mezreb et al., 2003; De Temmerman et al., 2007), pharmaceuticals 

(Côté and Abatzoglou, 2006; Cournoyer et al. 2008) and polymer science (Hansen and 

Vedula, 1998; Rohe et al., 1999; Barnes et al., 2003). The appeal of these methods lies in 

their ability to provide a great amount of information on the nature and structure of the 

sample through the location of the peaks and the intensity of the spectrum. Conventional 

machine variable control methods are simply not suited for maintaining molecular-specific 

properties to set-point, especially in complex or multi-component polymer systems. 

 

Analytical soft-sensing methods such as UV-visible, near-IR, mid-IR and Raman 

spectroscopy can be applied in four modes of operation depending on sample nature, 
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geometry and property of interest: transmittance, reflectance, transflectance (light passing 

through the sample onto a mirror and reflected back through the sample) and diffuse 

reflectance (light penetrating partway into a moderately opaque sample) (Reshadat et al., 

1999). Other on-line soft sensing methods include ultrasound transit time measurements 

(Chen et al., 1999; Barnes et al., 2003), X-ray scattering (Albano et al., 2003; Pantani et al., 

2005; Stark and Matuana, 2007), fluorescence spectroscopy (Barnes et al., 2003), and 

nuclear magnetic resonance (NMR) spectroscopy (Bergmann, 1981; Pelsoci, 2007). 

According to Barnes et al. (2003), the polymer industry has so far mainly applied 

spectroscopic methods in either off-line or near-line (e.g. pellet composition) applications. 

Nevertheless, several sample properties have now been investigated on-line. These include 

estimation of the melt viscosity (Broadhead et al., 1993; Hansen and Vedula, 1998; 

Merikoski et al., 2001; McAfee and McNally, 2006), yield stress (Broadhead et al., 1993), 

polymer density (Watari et al., 1996), composition (Hansen and Vedula, 1998; Rohe et al., 

1999; Barnes et al. 2003), extrudate temperature (Chen et al., 1999) and surface chemistry 

(Gupta et al., 2007; Stark and Matuana, 2007). 

 

However, most soft sensing methods are based on single point or averaged measurements. 

Estimating sample quality distribution over a larger area using these approaches is difficult 

to perform on a high-speed production line. At best, a coarse spatial coverage of the surface 

can be achieved using probe arrays. Nevertheless, fine spatial measurements greatly 

enhance the probability of identifying local weaknesses that may compromise the quality of 

the whole. The mechanical, optical and barrier properties of an entire sample may fall 

below specifications because of local discrepancies that may be overlooked by a coarse 

spatial analysis. 

 

Historically, modeling the open-loop response of a plasticating extrusion process can be 

traced back to the 1970s. During this period, research aimed at proposing relationships 

between screw speed, die pressure, extrudate flowrate and melt temperature (Reber et al., 

1973; Tadmor et al., 1974). Later, work was done on the dynamics and control of the 

extruder pressure in cases where variations in feed quality and feed rates were present 

(Costin et al., 1982; Chan et al., 1986; Akdogan and Rumsey, 1996). More recently, 
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Mudalamane and Bigio (2003) studied the transmission of external disturbances through 

the extruder whereas McAfee and McNally (2006) determined the extruder dynamics using 

the melt viscosity. More complex modeling techniques were also applied to the extrusion 

process, for example using finite element methods (Yuan et al., 1994; Bajimaya et al., 

2007; Ha et al., 2008), artificial neural networks (Shihani et al., 2006) and fuzzy logic 

(Fodil-Pacha et al., 2007). 

 

This work investigates a new machine vision approach for on-line monitoring of product 

quality obtained by an extrusion process. On-line visible-NIR spectral imaging is used for 

rapid and non-destructive detection of spatio-temporal variations in the polymer properties 

in far greater detail than spectroscopic probes or probe arrays may achieve. Furthermore, 

rich spatial data would also be useful for precise diagnostic of operational problems in the 

production line. The proposed methodology uses chemometrics methods for extracting the 

spatial and spectral features that are most highly correlated with the material properties, and 

use this information to predict the properties of samples unknown to the model. To 

illustrate the concepts, the proposed techniques will be applied to the production of 

extruded wood/plastic composites (WPC). Nevertheless, these methods are not specific to 

WPCs. They are intended for any product that may be distinguished by its spectral and/or 

spatial surface characteristics. 

 

The rationale behind this approach is twofold: 1) WPCs are complex multiphase systems 

that are not as well understood and controlled as neat polymers and 2) the production of 

WPCs has been increasing steadily in response to growing concerns over waste plastic 

management. In fact, the production of WPCs quadrupled between 1997 and 2000 (Li and 

Wolcott, 2004) and is expected to reach $2.4 billion US by 2011 (WRAP, 2003).  
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7.2 Materials and methods 

7.2.1 Sample production and testing  
 

Extruded high density polyethylene (HDPE)/wood composites were produced and tested 

under different processing conditions and wood contents. The polymer used was 

commercial HDPE (Fortiflex A60-70-162) and birch wood fibers were obtained from a 

local sawmill. These fibers were sieved between 45 and 180 m and dried in a vacuum 

oven at 104C overnight in order to minimize the amount of volatiles. Compounding of the 

polymer and wood was achieved using a Haake Rheomix TW-100 dual-feeder counter-

rotating twin-screw extruder. This allows proper distribution of fibers in the polymer blend. 

In this first step the barrel temperatures of the extruder were controlled at 150 – 160 – 

160C for zones 1, 2 and 3, respectively, and 160C for the die. The compound was 

extruded through a cylindrical 5 mm die, air cooled, and pelletized. After this blending 

phase, the composites were extruded using a flat horizontal 3  80 mm die. The following 

process conditions were investigated in a complete 23 factorial design: die temperature (160 

and 180C), screw speed (70 and 90 rpm), and polymer throughput (500 and 600 g/h) with 

a fixed wood content of 20 wt.%. Wood content was also varied in a separate set of 

experiments at three levels (10, 20 and 30 wt.%) under constant nominal process conditions 

(i.e. center point of 23 design). Steady-states were allowed to run for about 10 minutes for 

each condition tested. These processing conditions are presented in Table 7.1. 

 

Sample quality consists of 6 tensile properties (modulus, stress and strain at yield, stress 

and strain at break, as well as the energy at break), measured according to ASTM D638 

using an Instron 5565 in the direction of extrusion at a crosshead speed of 1 mm/min, 

measured over a 25 mm gage length. The measurements also include 1 thermal property 

(enthalpy of fusion) obtained using a Perkin Elmer DSC 7. While enthalpy of fusion and 

crystallinity are closely linked (the former is used to calculate the latter), crystallinity also 

requires an estimation of the sample composition. In order to avoid this complication 

during DSC testing (test sample typically weight 10 mg), only enthalpy of fusion was used. 

Five replicates of each composite formulation were fully tested. The quality of the extruded 

parts was studied both during steady-states and in the transitions between them (i.e. 
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dynamics). The steady-states were used as a training set for model building, while the 

transitions were used for model validation. 

 

Table 7.1. Randomized 23 full factorial design for machine variables at 20% wood (samples 
1-8) combined with 3 additional experiments in which wood content was varied under 
nominal processing conditions (samples 9-11). 

Sample Wood 
(%) 

Temperature 
(C) 

Throughput 
(g/h) 

Screw Speed 
(rpm) 

1 20 160 600 70 
2 20 160 500 90 
3 20 180 500 70 
4 20 180 600 90 
5 20 160 600 90 
6 20 160 500 70 
7 20 180 600 70 
8 20 180 500 90 
9 10 170 550 80 
10 20 170 550 80 
11 30 170 550 80 

 

7.2.2 Spectral image acquisition  
 

Spectral imaging is well suited for monitoring spatio-temporal variations across a surface. 

A line-scan imaging system was used in this study since it rapidly captures light intensities 

simultaneously at many wavelengths for a single row of pixels (x) which is better suited 

for moving samples such as those found on production lines (Figure 7.1). A full image is 

obtained after collecting several line-scans along the y-axis. The imaging system used in 

this work is composed of two cameras, each coupled with a grating spectroscope, 

effectively covering the visible and infrared range of the spectrum (475-1500 nm). Further 

information on the optical setup can be found in Gosselin et al. (2008, 2009). For each 

scanned line of the samples, the reflected light is dispersed through the spectroscope and 

captured by the CCD array of the camera as a spatial/spectral image. A hyperspectral image 

of the entire sample is achieved by repeatedly displacing the sample perpendicularly to the 

spectroscope slit, along the y-axis, forming a 3-D array (xy) of data. Each of these 

images contains 500 spectral channels (i.e. wavelengths), rather than the 3 more commonly 

obtained in RGB images. 
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Figure 7.1. Line-scan VIS-NIR imaging system used to collect spatial/spectral reflectance 
images. 
 

A diffuse tungsten-halogen lamp was chosen for its smooth flat emission spectrum over the 

required range. The raw spectral-spatial image was transformed into reflectance units using 

a flat black image and a true white image (Valadez-Blanco et al., 2007; Gosselin et al., 

2008, 2009). While NIR spectra are commonly used to study neat polymers, little work has 

been done on wood/plastic composites (Hansen and Vedula, 1998; Barnes et al., 2003). The 

samples were therefore imaged using both visible and NIR cameras (=500 wavelengths). 

Figure 7.2 illustrates the average spectral signature for samples produced under the 11 

steady-state conditions shown in Table 7.1. Averaging was performed along both spatial 

directions (x and y). The spectra appear to have similar peaks but differ in intensity, as one 

would expect in a dataset where the processing conditions were varied but the components 

remained the same. 

 

A training set of spectral data was constructed using the images collected during steady-

state operation. Each condition was imaged 25 times (y=25) at 1 mm space intervals. As a 

result, 11 spectral images of size (2525500) were obtained for describing product quality 
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in steady-state. As for the validation set, spectral images of the same size were captured 

every about 30 cm (or about every minute) during the transitions from one steady-state to 

the other. Product quality during steady-state and transitions was tested in the lab using 

samples taken within the field of view of each spectral image to ascertain the validity of the 

subsequent predictions. 

 

 

Figure 7.2. Averaged spectrum for each of the 11 steady-state samples (8-bit images). 
 

7.2.3 Spectral and textural analysis  
 

Spectral imaging typically contains both spectral and spatial information. In the case of 

WPCs, the spectral signature essentially reflects the chemical composition and small-scale 

physical structure (i.e. crystallinity) of the composites whereas the spatial information 

represents large-scale variations throughout the sample (i.e. fiber orientation and 

distribution) and can be thought of as surface smoothness. 

 

Spectral analysis 

 

Despite the fact that spectral images may contain large quantities of information relative to 

sample nature (peak location) and structure (spectrum intensity), there are often high levels 

of collinearity between neighbor wavelengths. To increase the robustness of the prediction 

models, numerous methods have been proposed to reduce the number of wavelengths from 
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spectral data including PLS-based methods (Cai et al., 2008; Brás et al., 2008), Genetic 

Algorithms (Reynes et al., 2006), Neural-Network (Boger, 2003), Support Vector Machines 

(Liu et al., 2008) as well as Fuzzy Logic methods (Setarehdan, 2006). In this study, a PLS-

bootstrap based method previously developed and presented in Gosselin et al. (2010) is 

used. Prior to wavelength selection, the spectral images were averaged along the machine 

cross direction since no systematic spectral variation were observed along the sample 

width. The spectral data matrices X obtained for steady-state (i.e. training set) and 

transitions (i.e. validation set) were reduced to (275500) and (6750500) dimensional, 

respectively. The first dimension corresponds to the total number of line-scans, and the 

second to the number of wavelengths. 

 

Wavelength selection was achieved through bootstrapping of a PLS regression model 

between spectral data (X) and corresponding quality measurements (Y). The bootstrap is a 

well-known re-sampling method used in statistics to estimate bias and standard errors of 

parameter estimates. Through generating a population of randomly selected subsets with 

replacement from the complete dataset, the uncertainty interval of any statistical parameter 

of interest describing the importance of each variable (i.e. wavelength) in the model can be 

obtained. Variable deemed uninformative can then be discarded. The PLS-bootstrap 

method is applied by first computing the PLS variable importance metric (VIP) for each 

wavelength using the complete dataset. Then, the uncertainties in each wavelength VIP was 

assessed using the bootstrap. A wavelength was considered important for predicting sample 

quality when the one standard deviation error bar around each VIP estimate were above 1.0 

(Eriksson et al., 2001; ElMasry et al., 2008). More information on PLS models is given in 

Section 7.2.4. 

 

Spatial analysis 

 

Image texture consists of the spatial organization of pixel intensities and may be used to 

quantify the aesthetics of the sample (i.e. smoothness, orientation, etc.) or may linked to the 

sample properties through the identification of local features, such as component 

segregation, that may compromise sample quality as a whole. Liu and MacGregor (2005) 
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used this concept of image texture to optimize the visual appearance of industrial injection-

molded plastic panels. The gray-level co-occurrence matrix (GLCM), a state-of-the-art 

statistical texture analysis method first proposed by Haralick et al. (1973), was used to 

quantify the visual texture of the samples. This was achieved based on a representative 

gray-level image taken from the original spectral images (2525500). Which wavelength 

was selected for texture analysis is discussed later. The GLCM compares the gray-levels of 

neighboring pixels, two-by-two, at different distance and orientation from each other, 

throughout the image. In essence, the image is found to be smooth when the gray-levels are 

similar, and rough, when they are not. Three user-defined parameters need to be selected 

for texture quantification: the distance between any pair of pixels, the angle between them, 

and the number of gray-levels in the image. The result is a roughly diagonal matrix, named 

the GLCM matrix, in which the distance from the main diagonal indicates the roughness of 

the sample. Such a matrix is obtained for each combination of the 3 GLCM parameters (i.e. 

distance, angle, and gray-levels). Several scalar features computed from these GLCM 

matrices were proposed by Haralick (1979) (e.g. correlation, entropy, energy, etc.) in order 

to allow texture comparison between different images. 

  

Distances of 2, 5 and 10 pixels were selected in both horizontal and vertical directions (i.e. 

0 and 90) in order to quantify textural features at different scales and orientation. As the 

line-scans were acquired at 1 mm intervals, the distances between pixels correspond to 

variations on the order of magnitude of the wood fibers (2 pixels) up to sample-wide 

variations (10 pixels). Texture descriptors for each GLCM matrix, computed using 32 gray-

levels, were the correlation and entropy Haralick’s scalar features. Entropy is a measure of 

randomness of the pixel intensities over the entire image and correlation as a measure of 

how correlated each pixel is to its neighbor. These are computed as follows: 

 

entropy   pi, j log pi, j 
i, j

  (7.1) 

correlation 
ijpi, j i j

 i ji, j

  (7.2) 
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where the indices i and j are the row and column numbers in the GLCM matrices, pi,j is the 

normalized value of an element (i,j) of the GLCM matrices and μ and  are the gray-level 

average and standard deviation over i and j. Using this method, image texture is quantified 

at 3 scales, in 2 directions and using 2 features, for a total of 12 texture descriptors. 

 

7.2.4 Multivariate latent variable methods  
 

Principal component analysis 

 

Principal component analysis (PCA) is a well-known multivariate statistical method that 

decomposes the variance-covariance structure of a data matrix by finding linear 

combinations of the original variables in such a way that these combinations explain the 

greatest amount of variation within the data (Eriksson et al., 2001). In the case of a dataset 

X (NK) consisting of N observations described by K variables, this decomposition is 

written as: 

 

X  tapa
T E TPT E

a1

A

  (7.3) 

 

where a is the number of principal components, ta are the score vectors, and pa are the 

loading vectors. The first score vector t1 is the linear combination of the K variables 

(defined by the loadings vectors p1) capturing the largest possible variance within the 

matrix X, while the second score vector t2 represents the second largest source of variance, 

and so on. The score vectors can therefore be viewed as a multivariate summary of each X 

observation. If the number of components is lower than the maximum number of 

components (AK), then E (NK) contains the residuals. Further information on PCA can 

be found in Wold et al. (1987). 
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Projection to latent structures 

 

The aim of this work is to build a model between the spectral and spatial features extracted 

from each image and the corresponding quality variables. According to Hansen and Vedula 

(1998), considerable overlap between the spectral bands in the NIR spectrum makes it 

difficult to build such a model using simple multiple linear regression techniques. 

Projection to Latent Structures (PLS) model may be used in such a situation. The PLS 

algorithm extracts the relationship between regressor variables (X) and response variables 

(Y) by assuming that they are generated by a common set of underlying factors (Brás et al., 

2008). This characteristic enables the model to handle highly collinear datasets. The 

structure of the latent variable PLS regression model between the image features (K 

variables) of the samples X (NK) and their corresponding quality matrix Y (NM) is given 

below: 

 

X TPT E (7.4) 

Y TQT  F  (7.5) 

T XW * (7.6)  

W*  W PT W 1
 (7.7) 

 

where the P (KA) and Q (MA) matrices contain the loading vectors of the X and Y 

spaces, respectively. The E (NK) and F (NM) matrices contain the residuals. The 

orthogonality of the PLS components (a=1,2,…A) make it possible to use a relatively small 

number of latent variables (aK). The PLS model can be expressed in such a way as to link 

T to X through W* (KA), containing the X-weights. Finally, the VIP score of a predictor 

variable (i.e. wavelength) quantifies the importance of this variable in the projection model 

(Eriksson et al., 2001; Chong and Jun, 2005). The VIP score for the kth variable 

(wavelength) for a single response y is computed according to Eriksson et al. (2001): 

 

     



A

a
aaa

A

a
aakaaak qwqKVIP

1

2

1

2 ttwtt T2T  (7.8) 
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where a = 1,2…,A, K is the number of columns of X (i.e. variables or wavelengths), wak is 

the loading weight of the kth variable in the ath component, and ta, wa, and qa are the ath 

column vectors of T, W, and Q, respectively. Since wavelengths with higher VIP scores 

are more relevant in prediction and the average of the squared values of the VIPs is equal to 

1, a greater-than-one rule is often used as a selection criterion (Olah et al., 2004; Chong and 

Jun, 2005). More details on PLS can be found in Eriksson et al. (2001). 

 

7.3 Results 

7.3.1 PCA on quality data for relevant wavelength selection  
 

The high level of collinearity (i.e. redundancy) present in spectral data allows reducing the 

number of wavelengths, resulting in simpler and potentially more robust models. The PLS-

bootstrap wavelength selection method (Gosselin et al., 2010) was designed for a single 

quality variable (y). However, 7 properties were chosen in this study: enthalpy of fusion, 

modulus, stress and strain at yield, stress and strain at break as well as the energy at break. 

Rather than selecting appropriate wavelengths for each quality variable individually, PCA 

was first performed on the quality matrix (Y) of the training set (extrusion steady-states) in 

order to determine possible correlations between the material properties. Two components 

were found sufficient for explaining most of the information contained in the quality data, 

each explaining 63.1% and 22.6% of the variance, respectively, for a total of 85.7%. The 

p1-p2 loading plot of the PCA-Y decomposition shown in Figure 7.3 is used to interpret the 

relationships between the 7 properties. The following conclusions are drawn: (1) modulus 

is strongly negatively correlated to most other properties, (2) enthalpy of fusion, energy at 

break, and the strains (both at yield and at break) are positively correlated among each 

other, and (3) properties at break are highly correlated to those at yield. 
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Figure 7.3. Loadings plot of the PCA-Y performed on the quality variables. 
 

As the first two components represent most of the variance in Y, these will be used as 

representative new variables to perform the wavelength selection. Rather than identifying 

the relevant wavelengths for each of the 7 y-variables individually, this selection is 

performed using the corresponding PCA-Y score vectors, referred to as yPCA1 and yPCA2. 

Simplifying the Y-matrix through PCA both lightens the wavelength reduction scheme and 

increases interpretability. The PLS-bootstrap method starts with building a PLS model 

using all X and the [yPCA1 yPCA2] data. The number of PLS components was chosen by 

random-subset cross-validation on entire training set. The importance of each wavelength 

(i.e. VIP metric) was computed based on this model. Wavelengths having a VIP 

significantly greater than one were considered to be the most important for predicting yPCA1 

and yPCA2, and were kept in the final prediction model. The relevant wavelengths for either 

yPCA1 and yPCA2 based on the bootstrap one standard deviation error are shown in Figure 

7.4A (see regions in blue). A limited number of wavelengths around 1100 nm are 

particularly significant, while the interval between 500-1000 nm is not (Figures 7.4B and 

C). 
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Figure 7.4. Wavelength selection achieved using the Bootstrap-PLS algorithm. The 6 
relevant wavelengths bands are shown by the blue areas in A). The VIP values and one 
standard deviation for yPCA1 and yPCA2 are shown in B and C, respectively. The VIP=1.0 
threshold is identified using the dash line. 
 

As illustrated in Figure 7.4A, the PLS-bootstrap based method identified 6 quality-relevant 

spectral bands. Inter-correlation analysis between these bands varies from 37% (bands 1 

and 3) to 95% (bands 2 and 4) with an average of 75%, confirming a certain level of 

independence between the selected wavelengths. The first of these (450-515 nm) represents 

the blue-green wavelengths. This spectral interval has previously been linked to a number 

of wood species (Pandey et al., 1998; Pastore et al., 2004) and may be associated to the 

cellulose in the wood (Ilharco et al., 1997). The second and third intervals (960-1065 nm 

and 1070-1165 nm) represent the C-H stretching second overtone band and are linked to 

CH2 vibrations (Watari et al., 2004). According to Bower and Maddams (1992), high 

crystallinity levels reduce the freedom of the macromolecules to vibrations and can be 

observed through this band. The remaining intervals (1210-1260 nm, 1280-1310 nm and 

1340-1500 nm) appear to be associated to the first overtone combination band. They 

represent combined stretching and vibrational movements linked to polyethylene 

crystallinity (Ren et al., 1999; Watari et al., 2004). 

 

The 6 spectral bands selected account for 202 of the 500 wavelengths present in the original 

images. In order to simplify the remaining spectral information, only the average value of 

each of these 6 spectral bands was kept since the wavelengths within each band are highly 

correlated to one another. This further reduced the size of the spectral data from the original 

500 wavelengths to 202 significant wavelengths grouped together into 6 equivalent spectral 

bands. The hyperspectral images now contain 6 wavelengths (i.e. after averaging) in the 

same way that RGB images contain 3 wavelengths. 
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7.3.2 PLS model building and interpretation for steady-state data  
 

Formulating a regression problem between multivariate images and response variables 

involves extracting a certain number of features (K) from each of the N images, collecting 

them in a regressor matrix X (NK), and building a PLS regression model against the 

response variables of interest Y (N7). In other words, the relevant information contained 

within each image must be condensed into a single vector of length K. This is achieved in 

two steps. First, the spectral information included in the model was averaged over each 

line-scan (extrusion machine cross-direction). As the 500 wavelengths captured by the 

imaging system had previously been reduced to 6 significant wavelength bands, the spectral 

information in each line-scan is reduced into 6 spectral features. As mentioned in Section 

7.2.2, the training set consists of 11 steady-states, each imaged 25 times, for a total of 275 

line-scans. Then, the GLCM texture analysis was performed on images corresponding to 

these 6 wavelength bands. Preliminary tests indicated that the textural information does not 

differ significantly from one wavelength band to another. The textural features extracted 

from the 4th spectral band (1210-1260 nm) had the strongest reflectance and provided a 

good signal-to-noise ratio. As previously mentioned, the GLCM analysis led to 12 textural 

variables. Combined, the matrix X contains a total of 18 image features (Figure 7.5). 

 

 

Figure 7.5. The PLS model is based on 18 image features (6 averaged wavelengths and 12 
spatial characteristics) to predict 7 quality properties of the WPC polymer composites. 
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A 6-component PLS model was then built using the PLS-toolbox software (Eigenvector 

Research Inc.) and a standard random-subsets cross-validation procedure. Overall, the 

cumulative X and Y variances explained by the model were R2
X,cum= 96.2% and R2

Y,cum= 

88.3%. Nevertheless, as much as 53.7% of the total Y-variance was captured using only the 

first 2 components of the model. To verify whether this model is able to discriminate the 

quality of the samples produced in 11 steady-state conditions using both spectral and 

textural image information, the 3 score scatter plots (t1-t2, t3-t4 and t5-t6) shown in Figure 

7.6 are used. To enhance visual interpretation, only the average location of each steady-

state sample (numbered circles), as well as the dispersion of the data within each steady-

state (3- error bars), are presented. 

 

The first score vector t1 captures the largest possible covariance between X and Y while 

each subsequent score vector captures smaller sources of covariance. This is illustrated in 

Figure 7.6 by the reduction in axis length occurring between t1-t2, t3-t4 and t5-t6. 

Consequently, the first components contain more relevant information, leading to clearer 

clustering of the data, and will be used in illustrations throughout the remainder of this 

paper. Nevertheless, the latter components make it possible to distinguish between similar 

samples; while some samples can easily be identified using t1-t2 alone (i.e. 4, 9, 11), others 

require more subtle information (i.e. samples 1 and 8 may be difficult to distinguish in t1-t2 

but differ greatly in t3-t4 and t5-t6). 

 

In order to determine whether the 11 sample types differ significantly from one another, the 

Hotelling’s T2 two-sample multivariate statistic was used (Hotelling, 1931; Mardia et al., 

1979; Shaw and Lee, 2007). This generalization of the univarite Student’s t statistic may be 

used in multivariate hypothesis testing to compare two populations. The results show that, 

when the 6 components are used, all 11 sample types differ significantly from each other (p 

< 0.001). To illustrate this point, samples 3 and 5 were taken as their intervals overlap in all 

three score plots of Figure 7.6. In this case, p = 0.1621 when a single component is used 

(t1), p = 0.0780 with two components (t1-t2) and p=0.0002 with 6 components (t1-t6). The 

proposed hyperspectral sensor can therefore discriminate the quality of the polymer product 
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obtained at each of the 11 sets of steady-state extrusion conditions. The transitions between 

them will be examined later. 

 

 
Figure 7.6. Score plots illustrating the 6 components of the PLS model (t1-t2, t3-t4 and t5-t6) 
in which each of the 11 steady-states can be distinguished. Error bars depict 3 standard 
deviations around steady-states along each component. 
 

The relationships between the spectral/textural features and the materials properties are 

interpreted using the PLS loading biplot for the first two principal components (Figure 

7.7A). This biplot shows the correlation structure of the variables both within each of the X 

and Y blocks, as well as between them. Variables with similar coordinates in the biplot are 
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positively correlated, those falling in opposite quadrants are negatively correlated, and 

those near the origin (0,0) have little or no correlation with other variables. Analyzing the 

material properties in Figure 7.7A, one finds the same type of pattern found in Figure 7.3, 

namely that the modulus is negatively correlated to all the other properties and that both the 

stress at yield and at break fall apart from the remaining 4 properties. In fact, being strongly 

correlated to the 1st component, this distinction makes up the largest source of variance in 

the dataset. Meanwhile, the 2nd component distinguishes between the enthalpy of fusion, 

strain at yield and at break as well as the energy at break. Components 3-6 only serve to 

enhance these distinctions. 

 

 

Figure 7.7. Loadings biplot of the first 2 components of the PLS model (A) depicting the 
relation between spectral variables, spatial variables and the properties of the samples. 
VIP plot depicting the relative importance of each of the regressor variable. Spatial 
variables are denoted here according to entropy and correlation, the distance between 
neighboring pixels involved in the GLCM analysis (2, 5 or 10) and the direction of which 
the texture analysis was carried out (machine direction: MD vs. transverse direction: TD). 
 

The joint analysis of the loadings of both the regressor and quality variables in Figure 7.7A 

shows that the first component (i.e. horizontal axis) mainly explains variations in wood 

content. Polymer processing knowledge shows that when wood content increases, modulus 

also increases while other properties such as the strains and enthalpy of fusion are reduced. 

Product coloration becomes darker and its surface texture is rougher. These relationships 

are clearly shown in Figure 7.7A. Modulus is positively correlated with the entropy features 

(i.e. surface roughness) but negatively correlated with the spectral intensities and other 

material properties. Indeed, lower intensities in the 1st wavelength band means coloration is 
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darker whereas the other NIR bands are related with lower polymer concentration and 

crystallinity. Therefore, based on these correlations, a material having a higher modulus 

and a rougher surface texture but lower values for all other variables should fall in the 

negative t1 quadrants, and vice-versa. This is verified in Figure 7.6 since steady-state 11 

(30% wood) fall on the left hand side in the t1-t2 score plot whereas the material produced 

with 10% wood (steady-state 9) fall on the right hand side. The spectral sensor could 

therefore detect fluctuations in the feed composition. 

 

The second component (vertical axis in Figure 7.7A) mainly involves textural features and 

modulus. These are negatively correlated with one another in the t2 direction. This was 

found to be related with the severity of the thermo-mechanical energy delivered to the 

system. As more energy is supplied to the melt by increasing barrel temperature set-point 

(thermal energy) and/or throughput or screw speed (mechanical energy) wood fiber and 

polymer degradation is progressively observed. Damaged fibers increase material surface 

roughness (entropy features) and decrease some mechanical properties such as modulus. 

This is confirmed in the score plot of Figure 7.6 where the most severe conditions, achieved 

in steady-state 4, have the highest t2 values whereas the less severe conditions of steady 

state 6 project in the negative t2 region. The t1-t2 score plot could also be used to warn 

operators that extrusion conditions may lead to material degradation. 

 

The importance of each of the 18 X-regressor variables in the 6-components PLS model 

(i.e. VIP) is reported in Figure 7.7B. The model strongly relies on the spectral information 

(i.e. the 1st and 6th wavelengths) as well as the textural information (i.e. 5 and 10-step 

correlation in the transverse direction). However, the entropy textural features are less 

important taken individually but are important as a group. 

 

In order to judge the adequacy of the model, two cumulative multiple correlation 

coefficients were computed to quantify the model predictive ability: R2
Y,cum represents the 

cumulative percentage of the total variance of the Y matrix used to build the model while 

Q2
cum represents the cumulative percentage of the total variance of a Y matrix that has not 

been used to build the model. The performance of the method in training and validation are 
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compared in Table 7.2. The results obtained for the training set show that all of the 

properties are well predicted by the model, but there are some distinctions to be made. 

First, enthalpy of fusion shows a lower R2
Y,cum compared to other properties. This was 

expected since enthalpy of fusion is obtained by measuring the heat of fusion of the 

polymer phase within a sample and comparing it to the sample total weight. However, 

laboratory testing is typically performed on small samples of the composite (10 mg), 

making it virtually impossible to estimate the true polymer fraction within any given 

sample. 

 

Second, as is typically the case, the performance of the model in validation (Q2
cum) are 

inferior to those in fit (R2
Y,cum). The magnitude of this drop however shows a distinct 

pattern. The properties at yield (both stress and strain) have higher Q2
cum values relative to 

their R2
Y,cum than do the properties at break. In other words, the yield properties are more 

easily predicted than the break properties. This was expected since ultimate properties (at 

break) usually have high data scatter (Ghaneh-Fard, 1999). Further inquiry into the subject 

indicated that the full spectra (500 wavelengths) could not predict these properties with any 

greater accuracy. Nevertheless, it is clear in the results (Figures 7.3 and 7.7) that the 

properties at break and at yield have similar trends.  

 

Table 7.2. PLS model ability in training (R2
Y,cum) and validation (Q2

cum). 
Property Steady states 

Training set 
(R2

Y,cum) 

Transitions 
Validation set 

(Q2
cum) 

Enthalpy of fusion 0.853 0.851 
Modulus 0.884 0.880 
Stress at yield 0.893 0.869 
Strain at yield 0.891 0.870 
Stress at break 0.870 0.818 
Strain at break 0.880 0.809 
Energy 0.912 0.890 
Overall 0.883 0.855 
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7.3.3 Transitions in latent variable space of the PLS model  
 

Product quality and spectral images were also collected during the transitions between the 

11 steady-states. These are used to validate the quality sensor by applying the PLS model 

developed in the previous section to the images collected in the transients. This will allow 

investigating the process dynamics between machine variables, the raw materials, and the 

final product quality. 

 

Figure 7.8A is an adaptation of the t1-t2 score plot shown in Figure 7.6 in which only the 

center points of the 11 steady-states are shown. Two transitions are superimposed on this 

plot: between steady-states 5 and 6, as well as between 9 and 10. These were chosen to 

represent simple transitions in which a single parameter was varied (9 to 10: step in wood 

content) as well as more complex transitions in which 2 step changes occurred at once (5 to 

6: simultaneous steps in throughput rate and screw speed). Both transitions begin near the 

center-point of the initial steady-state, cross the t1-t2 score plot in a relatively straight line 

and stabilize near the center-point of the final steady-state. While not shown here, 

transitions in the t3-t4 and t5-t6 score plots also occur linearly but follow noisier paths, as 

the signal-to-noise ratios of components 3-6 are inferior to those of components 1 and 2. It 

is important to note that the PLS model developed earlier is a steady state model relating 

the spectral image to the properties of the material within the field view of the camera. 

Therefore, this model can also be applied for monitoring transitions since there are no 

dynamics between the image and the material itself.  

 

Figure 7.8B illustrates transitions 5 to 6 and 9 to 10 as they occur through time, rather than 

across the score space. They are calculated using Hotelling’s T2 single-sample multivariate 

statistic (Hotelling, 1931) which essentially measures the Mahalanobis distance in the score 

plot of the current operating conditions from the initial steady-state; large T2 values 

therefore indicate that the samples imaged no longer belong to the initial steady-state 

conditions. Mirroring their representation in Figure 7.8A, the transitions begin very near 

their initial steady-states (5 or 9) and stabilize a certain distance (measured in T2) from it, 

implying that they have reached their final steady-states (6 or 10). Between these two 
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points, both transitions appear to approximately follow a 1st order with dead time dynamic 

response. In fact, most of the transitions studied in this work followed similar dynamics. 

 

 
Figure 7.8. Typical transitions as seen in the PLS score plot (A), and in time (B). Average 
steady-states are shown as open symbols. Transition 5 to 6: simultaneous -100 g/h 
throughput rate and +20 rpm screw speed (closed red dots). Transition 9 to 10: +10% step 
in wood content (light blue dots). 
 

To quantify extrusion dynamics, multiple input – single output (MISO) transfer function 

models were built between machine variables (inputs) and the measurements provided by 

the hyperspectral sensor (i.e. scores of the PLS model) using the Matlab’s System 

Identification Toolbox (R14). The first PLS component was selected for illustration, since 

it explains most of the variance in the material properties (e.g. wood content and surface 

esthetics). The four input variables were barrel temperature, throughput rate, screw-speed 

and wood content in the recipe. Based on Figure 7.8B, it was concluded that first-order 

with dead-time models adequately capture the dominant process dynamics and it was found 

that second-order models contribute little to improving the fit. These results corroborate 

earlier results (Reber et al., 1973; Cayot et al., 1995; Haley and Mulvaney, 2000; McAfee 

and McNally 2006). First-order time constant and dead-time (Tp and Td), along with their 

respective confidence intervals, were computed for transfer functions between each of the 4 

machine variables and the first score of the PLS model. The results are presented in Table 

7.3. While the system identification was performed using t1, similar results were obtained 

using the other PLS components. 
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Table 7.3. First order dynamic time constant and dead-time for each of the four transfer 
functions between machine variables and the 1st component of the PLS model. Confidence 
intervals are indicated between parentheses. 
Variable Time constant 

Tp (min) 
Dead-time 
Td (min) 

Temperature (C) 6.55 (1.78) 5.58 (2.48) 
Throughput (g/h) 3.75 (1.04) 2.61 (0.77) 
Screw speed (rpm) 3.92 (1.46) 1.70 (1.56) 
Wood content (%) 4.31 (0.33) 3.62 (0.22) 

 

Analyzing the dynamic constants in Table 7.3, it can be seen first that temperature 

variations lead to slow dynamics preceded by long delays, confirming previous 

observations (Reber et al., 1973; McAfee and McNally, 2006). Second, variations in 

throughput rates and wood content follow relatively similar dynamics. This may be 

expected since both are feed variations that need to propagate from the feed hopper to the 

die exit. However, variations in wood content do appear slightly slower than variations in 

throughput rates. This may be caused by the fact that changing the throughput rate only 

needs to affect the fill ratio of the screw to impact the extrudate whereas changes in wood 

content must also purge the entire screw (i.e. in a plug flow system, all the 20% wood 

composite needs to exit the die before the 30% wood composite can do so). Last, variations 

in screw speed lead to very short delays (Td). Unlike variations in feed conditions, this 

manipulated parameter influences the entire length of the extruder at once. 

 

A single transition does not appear to follow such a 1st order dynamic. The transition 

between samples 4 and 5 (-20°C temperature step). Figure 7.9A illustrates a significant 

excursion towards more severe thermo-mechanical energy transfer (i.e. high t2 values). This 

was caused by a temporary failure of the barrel temperature controller. The excursion along 

the positive t2 axis is associated with an abnormal increase in the entropy textural features 

for the transition samples. Looking at the samples themselves (Figure 7.9B), the presence 

of very distinct local anomalies in the composites is observed during this transitional state. 

Local agglomerations of wood fibers within the polymeric matrix can be seen. Such 

anomalies were not found elsewhere in the dataset. This illustrates the advantage of spectral 

imaging over single-point probes by their capability to identify localized defects. 
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Figure 7.9. Abnormal transition 4 to 5 (-20°C temperature step) as seen in the PLS score 
plot (A), and a few images taken within the transitions indicating the presence of distinct 
local anomalies in the composite. 
 

Whereas a sample’s location within the score plot may be useful to determine its general 

characteristics (i.e. t1 is linked to spectral information, t2 to texture), it is also necessary to 

determine its true properties. It was possible to predict each of 7 measured properties for all 

the samples within the training and validation sets by adapting Equation 7.5: 

 

ˆ Y TQT  (7.9) 

 

In accordance with the experimental plan (Section 7.2.1), the entire run between samples 1 

and 8 was considered as a single run consisting of 20% wood samples in which the 

temperature, throughput rate and screw speed were varied (run 1). Likewise, samples 9-11 

also consist of a single run in which the wood content was varied under nominal conditions 

(run 2). Beyond the 11th sample type (30% wood), the experimental conditions were 

returned to the 10th and 9th conditions (20 and 10% wood, respectively) in order to further 

validate the model. Figure 7.10 illustrates the predicted modulus and enthalpy of fusion for 

both experimental runs (run 1: 1-180 minutes run 2: 180-300 minutes). In this figure, the 

experimental dataset is shown in black, the values predicted by the training (steady states) 

set are shown in blue and the values predicted for the validation set (transitions) are shown 

in red. Results show that, in general, there is a good agreement between the measured and 

the predicted data. However, at times, the training set shows distinct biases for some 

samples: the modulus of sample 6 (≈ 120 minutes) is overestimated while the enthalpy of 

fusion of sample 2 is underestimated (≈ 30 minutes). This appears to be attributable to the 
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fact that the PLS model only accounted for 88.3% of the Y-variance (R2
Y,cum), leaving 

11.7% of the information unexplained. It is therefore no surprise that the validation data, 

which is obtained using the same model, shows the same biases the training set does. The 

transition results generally appear to fall between their respective steady-states as one 

would expect with first-order transitions.  

 

Nevertheless, the problematic transition between samples 4 and 5 (≈ 90 minutes) clearly 

underestimates both properties. This difference may be caused by the fact that the 

laboratory tests did not happen to include some of the wood fiber agglomerations identified 

by the camera. This is not unexpected; a local anomaly in the image will influence the 

textural features of the image as a whole while the laboratory tests (especially DSC) only 

measure a portion of the sample. Last, the samples produced after 250 minutes were used 

solely for validation purposes. These samples show that the model could clearly identify 

both steady states (≈ 260 and 290 minutes) even though validation data within these steady 

states is clearly noisier than the equivalent steady states used to build the training set 

(sample 9 ≈ 190 minutes and sample 10 ≈ 210 minutes). Similar results were obtained for 

the other properties. 

 

 

Figure 7.10. Modulus and enthalpy of fusion transitions comparing the experimental values 
(black line), to the values predicted by the training set (blue dots) and the validation set 
(red dots). 
 

Multivariate statistical process monitoring charts based on the PLS scores and projection 

residuals could be directly used for quality control of extruded composite products as was 
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achieved in a wide variety of fields (Kourti, 2002, 2005; Liu and MacGregor, 2008). This 

would enable the operator to quickly identify products that are off-specification due to 

disturbances such as variations in the feed (e.g. wood content) and operational problems 

such as severity of thermo-mechanical energy transfer, a faulty barrel temperature 

controller, etc. Appropriate corrective actions could then be applied with the help of the 

process understanding provided by the PLS model (i.e. loadings biplots presented in Figure 

7.7). 

 

7.4 Conclusion 
 

The objective of this work was to develop a rapid and non-intrusive on-line imaging sensor 

for monitoring spatio-temporal variations in quality across the surface of thin polymer 

composite materials. This paper discusses the ability of chemometrics methods, to extract 

relevant spectral and textural information from the visible/NIR spectral images and link it 

to sample quality. On one hand, the spectral signature of a sample reflects its chemical 

composition and small-scale physical structure. The significant wavelength intervals 

included in the model were computed using a PLS-bootstrap based method previously 

developed by Gosselin et al. (2010). On the other hand, the spatial information (visual 

texture) represents large-scale variations throughout the sample. It was quantified through 

the gray-level co-occurrence matrix (GLCM) algorithm, a common, simple and effective 

texture analysis method. 

 

The proposed approach was tested on extruded wood plastic composites. These samples 

were produced under conditions varying in barrel temperature, screw speed, throughput rate 

and wood content. Several properties were quantified: enthalpy of fusion, modulus, stress at 

yield and at break, strain at yield and at break as well as the energy at break. Overall, 11 

steady-state samples were produced to build the PLS regression model. The model was 

subsequently used to predict the quality of samples produced while changing from one 

steady-state condition to another (transient state). 
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The results show that the proposed methodology can (1) distinguish between the quality of 

the product obtained under the 11 sets of steady-state operating conditions, (2) predict the 7 

quality variables of the samples in both the steady-states and the transitions, (3) estimate 

the extrusion dynamics, and (4) provide an early detection scheme for undesired changes in 

feed composition (e.g. wood content) as well as in the severity of the thermo-mechanical 

energy delivered to the systems, which may lead to degradation in product quality. It is 

believed that such a spectral imaging sensor can provided valuable information for 

establishing an on-line product quality control strategy for the polymer processing industry. 
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Chapter 8  

Thesis conclusion 
 

The title of this thesis, “On-line Quality Control in Polymer Processing using 

Hyperspectral Imaging”, is intended to reflect the major themes discussed in this work. 

 

 The quality issues associated with the production of polymer materials and the 

limits of feedback control loops to address these quality issues. 

 The potential of spectral imaging sensors to provide a wealth of information that 

most common probe sensors cannot.  

 The notion that combining spectral imaging cameras and chemometrics methods 

can lead to better understanding and better quality control of complex composite 

materials. 

 

The stated objective of this work was to develop an on-line quality control tool adaptable to 

plastic materials of all types. Specifically, one with high spatial resolution able of detecting 

quality gradients and/or localized defects in the finished product. In order to achieve this, a 

visible and infrared (VIS-NIR) spectral imaging sensor was proposed. As our results have 

shown, this methodology made it possible to monitor spatio-temporal variations in plastic 

products (both neat and composite plastics) with a degree of precision not yet achieved in 

the field by remote sensing probes. 

 

The experimental results obtained during this thesis are presented in four chapters, each 

based on articles either published, accepted or submitted to international scientific journals. 

As mentioned in the outline of the thesis, these are: 

 

1. Crystallinity predictions. Determination of spatial crystallinity patterns across the 

surface of neat polymer films using spectral methods. 

2. Polymer blend films. Monitoring of PE/PS blends produced via extrusion film-

blowing using a combined spatial/spectral methodology. 
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3. Wood/plastic composites. Monitoring of extruded wood/plastic composites using 

independent spatial and spectral methodologies. 

4. Wavelength selection. Reducing the number of wavelengths in the spectral imaging 

data using a latent variable methodology in order to produce more parsimonious 

remote sensing models. 

 

These four chapters are linked to one another and can be interpreted sequentially. First, the 

determination of crystallinity patterns across the surface of neat polymer films was used as 

an initial step in the monitoring of polymer composites. In essence, one must determine the 

quality of a simple system before moving on to a more complex one. In this work, subtle 

variations in crystallinity were introduced in the films (LDPE, HDPE and PP) by 

controlling the cooling rates at which they were produced. These variations were then 

identified using an image analysis and regression approach (MIA/MIR) based on the near 

infrared reflectance spectra of the samples. By doing so, these latent variable techniques 

were shown to outperform other methods based on the 2nd derivative of NIR spectra. 

Finally, such predictive power was also consistently high for all three polymer species. This 

feature of the proposed approach shows an interesting potential for application to more 

complex materials such as polymer blends or composites. 

 

Second, the monitoring of polymer film blend produced via extrusion film-blowing was 

used as a case study of polymer-polymer blends. In this work, a multiresolutional 

multivariate image analysis (MR-MIA) methodology was used to extract the spatial and 

spectral features that are most highly correlated to the film properties (i.e. composition 

distribution and mechanical properties). Applied to PE/PS blends produced under various 

operating conditions, the imaging sensor was able to monitor the two dominant effects on 

mechanical properties: the effect of film composition (raw materials) and the stretching 

effect caused by post-extrusion conditions (process). 

 

Third, the monitoring of extruded wood/plastic composites was used as a case study of 

polymer-filler blends. In this work, a two-step method was used to extract the significant 

spatial and spectral image features and link them to the material properties. Unlike the film 
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blowing dataset, the seven properties of interest were measured not only during the steady-

state operating conditions, but also during the transition periods. The results show that the 

proposed methodology can distinguish between the quality of the product obtained under 

steady-state operating conditions, predict the quality of the samples in both the steady-

states and the transition states, estimate the extrusion dynamics, and provide early detection 

of abnormal operation when unforeseen situations occur. 

 

Fourth, a simple wavelength selection method having the ability to identify relevant 

spectral intervals was developed for spectral imaging applications and spectroscopy in 

general. While the work described in this chapter is not specific to composite materials, it 

plays an important role in increasing the robustness and interpretability of any multivariate 

image regression model. The proposed approach combined PLS modeling of the complete 

spectral dataset and a bootstrap procedure, making it possible to compute consistency 

intervals around the PLS VIP metrics of each wavelength. Wavelengths with VIP values 

above a certain cutoff value were deemed as important and kept for further modeling. 

Using four different datasets, it was shown that a small number of well-defined relevant 

spectral intervals were identified with the proposed approach and that these intervals were 

in agreement with more complex interval search methods. 

 

Concluding remarks 

 

These four chapters encompass much of the work carried to fruition during this project. 

They represent, however, only an introduction to what promises to be a complex and 

rewarding field of inquiry. Even in the short term, many more interesting projects could, 

and should, be tackled: 

 

 In all of these tests, the imaging system has been physically decoupled from the 

extruder, implying that the image analysis be done off-line. This need not to be the 

case. Mounting the sensors onto the extruder would make it possible to test the 

remote-sensing model in real-time. 
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 Only work on flat-surfaced samples was done in order to help with the image 

capture. However, there is no reason why, with proper consideration of the lighting 

patterns, such a methodology could not be extended to more complex shapes. A 

cylindrical extrudate may be the perfect candidate to test the principle. 

 Also, only thin samples were analyzed, reducing possible discrepancies between 

surface and core properties. A study based on thicker samples may lead to new 

insights relating to core/surface properties. Moreover, preliminary tests indicate that 

NIR waves travel significant distances inside WPCs (of the order of millimeters) 

and that and different wavelengths have different penetration capabilities. This 

suggests that a spectral NIR sensor may be used as a non-destructive means of 

obtaining property profiles inside thicker composite samples. While these 

observations appear promising, they remain highly case-specific. 

 

It is also important to consider that these tests were performed in academic settings under 

controlled laboratory conditions and should be considered as a proof of concept. While they 

show promise, they need to be put to the test in industrial settings. A number of points must 

be taken into account.  

 

 First, it is of the utmost importance to identify the proper remote sensing device for 

the case at hand. While it should be very sensitive to the material properties found 

to influence the quality of the product, its performance should be balanced with 

other criteria such as price and ease of use if it is to be industrially viable. In other 

words, the costs of highly technological solutions may be found to outweigh the 

benefits. 

 Second, it is important to considerer the nature of the production line in question. 

While some go virtually unchanged over long periods, others undergo constant 

changes (e.g. product shape or composition). In light of this, the remote sensing 

device must be sufficiently adaptable to suit the situation under consideration. 

Beyond this, it is necessary to ascertain model validity through routine maintenance 

if accuracy is to be maintained over time. 
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 Third, if the chosen device is to be successfully implemented, it must be seen by 

both the administration and the production line operator to provide a clear and 

obvious advantage over the preceding situation. While it is up to the plant 

administration to decide to implement such a system, it is up ultimately to the 

operator to determine its usefulness. In this way, the system must be considered 

simple, effective and reliable by all parties concerned.  

 Finally, several technological difficulties must also be considered. It is of paramount 

importance that the system copes with its intended environment. Such limitations 

may come in many forms. Among these, let us mention high throughput rates (i.e. 

short acquisition times), extreme operation temperatures, soiling (through dust or 

other contaminants), uneven lighting conditions, mechanical stresses (e.g. vibrations 

or impacts), as well as any limitations due to hardware maintenance.  

 

In closing, these image analysis techniques are not specific to any material, process or field. 

At their most general, they can be adapted to any product that may be distinguished by its 

spectral and/or spatial surface characteristics. As with all types of surface analysis, these 

techniques should only be used with caution on thicker samples. Nevertheless, even this 

restriction does not prevent them from being used to monitor the operating conditions 

rather than inferring product properties. By doing so, such a sensor could provide valuable 

information in a wide range of on-line quality control strategies. 
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	Chapter 1 
	Introduction
	1.1 Polymers, blends and composites

	A recent New York Times editorial crowned the common plastic window frame as the most common architectural feature of the early 21st century (New York Times, 2009). In fact, few would question the ubiquity of this modern “wonder material” (CBS News, 2007). The world production of plastics now surpasses that of steel, aluminum and copper combined (Throne, 1996). According to a report published by The Society of the Plastics Industry Inc., the US polymer industry employed more than 1.4 million workers and generated nearly $310 billion US in shipments (All Business, 2004). The report goes on to indicate that with another 770 000 workers indirectly employed by upstream suppliers of the plastics industry, the polymer industry employs about 2% of the US workforce.
	The commercialization of novel polymer species, using new monomers and/or new polymerization routes, is restricted to a few specialty applications. The number of new polymer blends, however, has been increased continuously during the past few decades (He et al., 2004). Polymer blending is being viewed as a fast and convenient route for the development of new polymeric materials. It is now commonly used to achieve improved mechanical properties (Salamone, 1996; Chang et al., 2002; Nygard et al., 2005). In fact, polymer blend now constitute over 30% of the total film consumption (Utracki, 1998). In short, polymer blends are revolutionizing the industry due to their great versatility and capability to be tailored for specific end uses (Salamone, 1996).
	According to a report by the Composites Fabricators Association, more than 13 000 composites processing facilities presently operate in the United States, employing 236 000 people and contributing $24 billion US to the economy (Stewart, 2002). Furthermore, this report also states that the American composites industry has grown from 113 million kg in 1960 to 1.9 billion kg in 2002, and is expected to continue to grow 4 to 5% annually in coming years. Closer to home, the Canadian composites industry is estimated at $2.89 billion, 82% of which located in Quebec and Ontario (RICQ, 2001). 
	According to Rapra (2003) the primary reason for choosing to manufacture an article using polymer composites, rather than simply using neat polymers, is weight saving for a relatively high stiffness and strength. To illustrate this fact, a carbon fiber composite can be five times stronger than 1020 grade steel while having only one fifth the weight. Aluminum (6061 grade) has approximately the same density as the carbon fiber composite, but the composite can have twice the modulus and up to seven times the strength (Rapra, 2003).
	Turning specifically to the case of wood/plastic composites (WPC) discussed in much detail in Chapter 7, there is a growing consumer acceptance of wood/plastic composite (WPC) products as replacements for more traditional materials, such as natural wood (Market Research, 2009). This is attributed to their long life span, minimal maintenance requirements, resistance to degradation caused by insect attack and exposure to the elements, and ability to be manipulated like natural wood. Moreover, the perception of these materials as environmentally friendly, due to their incorporation of recycled materials is likely to promote future gains in demand. For these reasons, the production of WPCs quadrupled between 1997 and 2000 (Li and Wolcott, 2004) and is expected to reach $2.4 billion US by 2011 (WRAP, 2003). 
	1.2 Quality control challenges

	Polymer processing plants typically have tightly controlled operating conditions in which automatic feedback control loops on machine variables provide suitable results as long as there are no strict constraints on product quality (Tadmor et al., 1974). Nevertheless, variations in raw material properties may cause production to suffer from quality fluctuations that cannot be tempered by the machine variable controllers alone. To make matters worse, such fluctuations may lead to serious quality control issues if they are not be detected in a timely fashion (Ohshima and Tanigaki, 2000). 
	In practice, quality control of polymer products is often performed by off-line testing in the laboratory. Such tests involve large investments, long analysis times, sample destruction and handling by qualified personnel. Analytical testing can be thought of as a three-step process: pre-analytic activities (ordering the tests, collecting the samples, transportation, handling, storage, etc.), analytic activities (maintaining the laboratory instruments, managing supplies, ensuring adequate and competent personnel, actual sample testing, etc.), and finally post-analytic activities (timely reporting of the data, sending the report to the appropriate party, taking appropriate action when results exceed critical limits) (Lab Testing, 2009).
	By providing unique and relevant information, these off-line tests are necessary and irreplaceable. However, since these analyses are time consuming and destructive, quality control is typically performed on a very low fraction of the production. It is therefore possible that significant amounts of low-grade, or defective, material may be produced before quality issues are detected. This problem may be addressed by estimating the quality on-line (through the use of remote sensing methods and inferential models) and including this information in quality control and monitoring schemes. 
	1.3 Remote sensing 

	Various spectroscopic techniques have been proposed for estimating on-line polymer quality since they are rapid and non-intrusive, they require little or no sample preparation, and provide a wealth of information (Lachenal, 1995). However, many of these methods are based on single point or averaged measurements. Estimating sample quality distribution over a larger area using these approaches is difficult to perform on a high-speed production line. At best, a coarse spatial coverage of the surface can be achieved using probe arrays. Nevertheless, fine spatial measurements greatly enhance the probability of identifying local weaknesses that may compromise the quality of the whole. The mechanical, optical and barrier properties of an entire sample may fall below specifications because of local discrepancies that may be overlooked by a coarse spatial analysis. Furthermore, rich spatial data would also be useful for precise diagnostic of operational problems in the production line, such as non-uniform cooling.
	In light of these facts, a quality control methodology based on a visible/near-infrared (VIS-NIR) hyperspectral imaging system is proposed. In essence, a spectral image captures a full spectrum for each pixel of the imaged surface. Such a device opens up a number of possibilities:
	 A high-resolution camera with a large charge-coupled device (CCD) can identify local discrepancies, as well as large-scale variations, in the surface properties of the sample.
	 The spectral information present in the image (i.e. color) can be extracted through chemometrics methods such as multivariate image analysis (discussed in Section 3.2.6), providing information relating to composition and crystallinity. These in turn can be used to determine the mechanical and barrier properties of the sample. 
	 The spatial information present in the image (i.e. patterns) can be extracted through chemometrics methods such as wavelet texture analysis (discussed in Section 3.2.7), providing information relating to surface roughness and composition distribution.
	 The visible spectral camera can also be used to monitor the esthetic aspect of the sample. Whereas a common RGB camera quantifies the visual intensity of each pixel according to 3 wavelengths (red, green and blue), a spectral camera such as the one used in this study does so using many hundred wavelengths (discussed in Section 3.1), making it much more sensitive to subtle color variations.
	1.4 Contributions and outline of the thesis 

	Contributions
	This work contains essentially two main contributions. The first of these is the development of an on-line high-resolution spectral imaging sensor capable of simultaneously mapping sample composition, inferring material properties and monitoring surface quality in a rapid and non-destructive manner. This tool has been developed specifically for the field of polymer science but can potentially be used in a wide variety of applications in which surface properties can be linked to characteristics of interest. In a context where industrial quality control is often performed using off-line analyses, such an imaging sensor makes it possible to monitor most, if not all, of the production, thus reducing costs, unnecessary delays and variations in quality. This imaging sensor was used to monitor three situations:
	 Chapter 4 discusses the possibility of extracting the spectral information contained within a spectral image in order to identify variability patterns in the surface crystallinity of neat polymer films. 
	 Chapter 5 illustrates the use of both the spatial and spectral information contained in the images to infer the mechanical properties, composition and degree of segregation of polymer film blends.
	 Chapter 7 uses both the spatial and spectral information found in the images to infer the crystallinity and mechanical properties of extruded wood/plastic composites as well as to determine the extrusion dynamics. 
	The second main contribution of this thesis is in the field of chemometrics. The high-resolution spectral imaging sensor used in this thesis has been invaluable in acquiring rich spatial and spectral material information. Nevertheless, the large quantities of data thus generated may be daunting. Moreover, spectral imaging system may be seen as too costly and complex for many industrial settings. In this context, it was realized that a simple wavelength selection methodology could mediate both these issues. In essence, by identifying the spectral intervals that are most highly correlated to the property to be estimated, one increases the interpretability of the model by linking these intervals to the presence, concentration and dispersion of known molecules or to physical states while reducing the complexity of the model by discarding less informative spectral intervals. 
	Existing methods for relevant variable/wavelength selection essentially fall into two categories: 1) methods based on individual wavelengths, and 2) approaches aiming at finding the most informative spectral intervals. The individual wavelength methods rank the importance of the wavelengths, evaluating the correlation between each individual wavelength and a quality variable, and then using a cutoff criterion to segment relevant/irrelevant variables. These methods are often more difficult to interpret since the selected wavelengths are often distributed throughout the spectra instead of within a few well-defined intervals. Interval methods, on the other hand, search for informative groups of wavelengths within the spectra. Such groups, or spectral bands, can then be linked to known functional groups and should lead to more stable predictions. These methods are often very computationally intensive. The method proposed here combines some of the advantages of both individual wavelength and interval selection methods. While remaining simple and computationally efficient, it consistently identifies relevant and contiguous spectral intervals. This methodology is presented in Chapter 6 and is applied to 4 datasets in the polymer, oil and pulp and paper industries. It is also used in Chapter 7 to monitor the production of extrusion of wood/plastic composites. 
	Outline of the thesis
	The experimental results obtained during this thesis are presented in four chapters, each based on articles published, accepted or submitted, to international scientific journals. In addition to these, other aspects of the project were published in scientific journals, proceedings and conference papers. The overarching theme of this Ph.D., including its different facets, is briefly discussed here. 
	This project concerns the quality control of plastic products using statistical imaging methods and essentially consists of five themes:
	1. Raw material mixing. This aspect considers the first step of a blending process: the dry mixing of polymer powders prior to the actual processing step using a textural method. This portion of the work, however, is not presented in the thesis.
	2. Crystallinity predictions. Considered here an initial step in the quality control of polymer composites, the determination of spatial crystallinity patterns across the surface of neat polymer films using spectral methods.
	3. Polymer blend films. The case study of polymer-polymer blends: extrusion film-blowing of PE/PS blends using a combined spatial/spectral methodology.
	4. Wood/plastic composites. The case study of polymer-filler blends: extrusion of wood/plastic composites using independent spatial and spectral methodologies.
	5. Wavelength selection. A common problem encountered in spectral analysis is the overabundance of regressor data. In many cases, a significant portion of the spectral information is of little or no relevance to the sample quality. This led to the development of a wavelength selection methodology applicable to a broad range of datasets.
	Raw material mixing
	In the first part of this project, we investigated the transverse mixing of free flowing particles in a horizontal rotating drum. Such drums are widely implemented industrially as mixers, kilns, granulators, dryers and reactors; but it is principally for their mixing capabilities that they are used in the polymer industry. While the characteristics of any particulate process depend strongly on the dispersion of the raw substances, relatively little is known about the actual mixing dynamics. In fact, the time allotted to reach the required degree of dispersion is often based solely on empiricism and rules of thumb (Berthiaux et al., 2004; Ehrhardt et al., 2005). Better knowledge of this phenomenon would ensure that the chosen mixing time truly corresponds to the required mixing time, therefore saving time and energy. 
	According to the methodology proposed in this work, the degree of mixing is estimated by analyzing the dispersion of the free flowing particles as captured by an RGB camera located outside the rotating drum. In doing so, this method avoids possible flow disruptions caused by tracers (Woodle and Munro, 1993) or thief probes (Espinosa, 2003) without the added complexity of other non-invasive methods such as positron emission particle tracking (PEPT) and nuclear magnetic resonance imaging (NMR) (Ding et al., 2002; Ingram et al., 2005). In order to avoid this however, the proposed methodology requires the camera to be in full view of the powder (i.e. the drum must be fitted with an observation window).
	While material mixing is a necessary step in the creation of many plastic products, these results are not presented in the thesis. Nevertheless, three publications have been published on this work, the first of which being: 
	 Gosselin R., Duchesne C. and Rodrigue D., On the characterization of polymer powders mixing dynamics by texture analysis, Powder Technol., 183, 177-188 (2008).
	Determining the mixing dynamics of the drum essentially comes down to estimating the powder dispersion at constant sampling intervals throughout the mixing process. This was achieved by first imaging the powder through a glass mixing drum, and then quantifying the textural features of the powder blend at each sampling interval. 
	After the initial paper cited above, the project was taken over by Amara Aït Aissa, another Ph.D. student. While he was the main experimenter in the subsequent work, I contributed to the computational aspects of his work. This work was also presented in:
	 Aït Aissa A., Gosselin R., Duchesne C. and Rodrigue D., Modeling the mixing of two polymer powders of different particle sizes, ANTEC, Milwaukee, 0819 (2008). 
	 Aït Aissa A., Cousineau-Pelletier M., Gosselin R., Duchesne C. and Rodrigue D., Mixing of polymer powders of different particle sizes in a rotating mold, ANTEC, Chicago, 0283 (2009). 
	In the initial paper, I developed the methodology (i.e. experimental setup), performed the experiments, wrote the necessary Matlab codes, developed the powder mixing model and reported the results under the guidance of my supervisors. Subsequent work by the aforementioned student was based on the framework I set up.
	Crystallinity predictions
	In the second part of this project, we investigated the spatial crystallinity variation across the surface of semi-crystalline polymer films. Widely used industrially, the total consumption of semi-crystalline polymers such as polyethylene and polypropylene now reaches 90 millions tons annually (Murphy, 2003). Nevertheless, these polymers are sensitive to the conditions in which they are produced; processing pressures, cooling rates and sample geometry are all known to influence their degree of crystallinity, which in turn affects the mechanical, optical and barrier properties of the sample (Albano et al., 2003; Pantani et al., 2005; Shepherd et al., 2006).
	The objective of this work is to develop a non-intrusive on-line sensor for monitoring spatio-temporal crystallinity variations across the surface of thin polymer materials. While some NIR probes have already been proposed for monitoring polymer crystallinity, they typically only provide single-point measurements and are therefore poorly suited to identify crystallinity gradients. This work focuses on combining NIR imaging spectroscopy, multivariate image analysis and regression methods to obtain the crystallinity spatial distribution of a sample. This methodology is illustrated using thin semi-crystalline samples (HDPE, LDPE, PP) produced via compression molding under different cooling conditions. Non-isothermal cooling rates throughout the cooling circuit ensure local crystallinity variations within a single sample. Four different methods are compared in this study.
	 Regression between the NIR spectra and the crystallinity measurements.
	 Regression between the 2nd order derivatives of the NIR spectra and the crystallinity measurements.
	 MIA applied to the NIR spectra followed by a regression with the crystallinity measurements.
	 MIA applied to the 2nd order derivatives of the NIR spectra followed by a regression with the crystallinity measurements.
	This work was presented in:
	 Gosselin R., Duchesne C. and Rodrigue D., On-line prediction of crystallinity spatial distribution across polymer films using NIR spectral imaging and chemometrics methods, Can. J. Chem. Eng., 86, 869-878 (2008).
	Some of these results were also discussed in: 
	 Gosselin R., Rodrigue D., González-Nuñez R., Duchesne C., Quality control of polymer products through spectral imaging and chemometrics methods, ANTEC, Chicago, 0281 (2009).
	No other student participated in this project; I performed all the experimental, computational, modeling and reporting work under the guidance of my supervisors. 
	Polymer blend films
	In the third part of this project, we proposed a real-time non-destructive sensor for monitoring polymer blend films. A number of techniques have recently been developed for on-line measurement of specific film properties (e.g. Raman spectroscopy, birefringence, Fourier transform infrared spectroscopy and X-ray scattering) but these probes either provide a rapid estimation of the properties of a single localized point on the sample or the average properties of a larger area. 
	Again based on a VIS-NIR spectral imaging sensor, the methodology is based on a multiresolutional multivariate image analysis (MR-MIA) technique was used for extracting both spectral and textural image features that are the most highly correlated with the film properties (i.e., composition distribution and mechanical properties), as well as for mapping them on the surface of the films. The proposed methodology is illustrated using low-density polyethylene/polystyrene (LDPE/PS) films produced by extrusion blowing under different operating conditions. 
	This work was presented in:
	 Gosselin R., Rodrigue D., González-Nuñez R. and Duchesne C., Potential of hyperspectral imaging for quality control of polymer blend films, Ind. Eng. Chem. Res., 48, 3033-3042 (2009).
	Results were also discussed in: 
	 Gosselin R., Rodrigue D., González-Nuñez R., Duchesne C., Quality control of polymer products through spectral imaging and chemometrics methods, ANTEC, Chicago, 0281 (2009). 
	 Gosselin R., Duchesne C., Rodrigue D. and González-Nuñez R., Using Image Texture to Predict the Mechanical Properties of Polymer Films, CEIMEXCAN, Québec, 0013 (2007).
	No other student participated in this project; I performed all the experimental, computational, modeling and reporting work under the guidance of my supervisors. 
	Wavelength selection
	Finally, in the fifth part of this project, we proposed a wavelength selection methodology. Recent developments in spectral imaging for on-line inspection and quality control in a variety of fields lead to the acquisition of massive amounts of spectral data that must be processed quickly and efficiently. More parsimonious models obtained by relevant wavelength selection may result in enhanced interpretability, increased robustness, and significant reduction in computation time, which is crucial for on-line spectral imaging applications.
	The main obstacle in achieving this lies in the high level of collinearity present between adjacent wavelengths throughout the spectra, which render standard statistical methods, such as multilinear regression, virtually useless. Methods for relevant variable selection essentially fall into two categories: approaches based on individual wavelengths vs. approaches aiming at finding the most informative spectral intervals. Whereas the former tends to identify significant wavelengths scattered throughout the spectrum, making interpretations difficult, the latter typically requires the user to arbitrarily split the spectrum into intervals. While effective, these methods also require some form of iterative searching for improving and reducing the number of intervals after the initial spectral splitting. This step can therefore be computationally intensive and time consuming. 
	In light of this, we proposed a Bootstrap-PLS regression methodology, using the VIPs as a selection criterion for selecting the significant wavelengths that were the most highly correlated with quality response variables. The advantage of this method lies in its capability of identifying contiguous spectral intervals without the complexities mentioned above. This work was presented in:
	 Gosselin R., Duchesne C. and Rodrigue D., A bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications, Chemometr. Intell. Lab., 100, 12-21 (2010).
	Results were also discussed in: 
	 Gosselin R., Rodrigue D., González-Nuñez R., Duchesne C., Quality control of polymer products through spectral imaging and chemometrics methods, ANTEC, Chicago, 0281 (2009).
	No other student participated in this project; I performed all the experimental, computational, modeling and reporting work under the guidance of my supervisors. 
	Wood/plastic composites
	In the fourth part of this project, we proposed an on-line imaging sensor for quality control of extruded WPCs. In line with the work on crystallinity patterns and polymer blend films, the methodology proposed in this project uses chemometrics methods to extract the spatial and spectral features that are most highly correlated with the material properties, and use this information to predict the properties of samples unknown to the model. For example, McAfee and McNally (2006) estimated the melt viscosity whereas Barnes et al. (2003) estimated the composition). While several sample properties have now been investigated on-line, we propose to simultaneously follow 7 material properties. These are: enthalpy of fusion (i.e. crystallinity), modulus, stress and strain at yield, stress and strain at break, as well as the energy at break. Furthermore, in this portion of the project, the extrudate was studied in both steady-state and transient state flow regimes, thus making it possible to determine process dynamics.
	The results show that the proposed methodology can distinguish product quality in known samples, can predict the quality of unknown samples, can be used to estimate the extrusion dynamics and can even provide an early detection scheme for undesired changes in feedstock or operating conditions. This work was presented in:
	 Gosselin R., Duchesne C. and Rodrigue D., A hyperspectral imaging sensor for on-line quality control of extruded polymer composite products, Comput. Chem. Eng., submitted: August 2009, CACE-S-09-00415 (2009).
	 Gosselin R., Rodrigue D. and Duchesne C., Property prediction of wood/plastic composites through spectral imaging and chemometrics methods, WCCE 8, Montréal, 1465 (2009).
	Results were also discussed in: 
	 Gosselin R., Rodrigue D., González-Nuñez R., Duchesne C., Quality control of polymer products through spectral imaging and chemometrics methods, ANTEC, Chicago, 0281 (2009).
	No other student participated in this project; I performed all the experimental, computational, modeling and reporting work under the guidance of my supervisors.
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	Chapter 2 
	Background on polymer processing
	2.1 Raw materials and processing
	2.1.1 Raw materials used in this study
	2.1.1.1 Consumer plastics



	The term “plastic” is used here to refer to a wide range of polymers of high molecular weight. These can be truly natural molecules (e.g. shellac), chemically modified natural molecules (e.g. collagen) or fully synthetic molecules (e.g. polyethylene). Within this last category, we define thermoplastics (e.g. polypropylene, polyvinyl chloride) and thermosets (e.g. epoxy, polyurethane). If exposed to enough heat, thermoplastics will melt whereas thermosets remain solid until they burn. This difference is in large part due to their respective molecular weights. For thermoplastics, it typically ranges between 20 000 and 500 000, while thermosets can effectively be of “infinite” molecular weight due to irreversible chemical interconnections occurring on a macroscopic scale (Goodman, 2001). Finally, a polyolefin is a thermoplastic produced from a repetition of a single alkene (or olefin), whose general formula is CnH2n (e.g. polyethylene, polypropylene). This work will focus exclusively on three common consumer polyolefin thermoplastics: low-density polyethylene (LDPE), high-density polyethylene (HDPE) and polypropylene (PP). Nevertheless, the authors believe that the methodology could be extended to other polymer species. 
	Polyethylene is produced through the polymerization of the monomer ethene (also known as ethylene). As the ethene molecule (C2H4) lacks any substituent groups that may influence the stability of the propagation head of the polymer, it can be polymerized into several different geometries. Among these, HDPE essentially consists of long linear molecules with low degrees of short branching whereas LDPE has a high degree of short and long chain branching. This difference strongly influences the spatial organization of the molecules. High degrees of branching reduce density, crystallinity and molecular interactions, all of which strongly influence the properties of the plastic.
	On the one hand, HDPE is defined by a density greater than 0.941 g/cm3. It is harder and has a greater tensile strength than LDPE, but less ductility. It has a wax-like, lusterless appearance and it is usually opaque. According to Harper (2002), the most common method for processing HDPE is blow molding where it is used to produce hollow sturdy packaging (e.g. detergent bottles, margarine tubs). On the other hand, LDPE is defined by a density range between 0.910-0.940 g/cm3. It combines high impact strength, toughness and ductility to make it the material of choice of packaging films, one of its largest applications (Harper, 2002). While LDPE is opaque, it can be made transparent in thin films.
	Figure 2.1. Schematic representation of PE branching in HDPE (A) and in LDPE (B).
	Polypropylene is produced through the polymerization of the monomer propylene. It has a similar structure to that of polyethylene, except for the substitution of a hydrogen atom by a methyl group on every other carbon. PP is harder and has a higher softening point than PE, but is more prone to high-temperature oxidation (Harper, 2002). Polypropylene is used in a wide variety of applications, including packaging, textiles and a wide range of injection molded automotive components.
	The global molded plastics market was estimated to exceed 156 million tons in 2005 (Murphy, 2003). Of this, the overall polyolefin consumption reached 117 million tons in 2007 (Townsend, 2008). Breaking it down further, all polyethylene (PE) resins account for 70 million tons (Townsend, 2008; Global Markets Direct, 2009), of which LDPE and HDPE respectively make up 18 and 29 million tons (Murphy, 2003). Most of the remaining consumption of polyolefins is taken up by PP with an estimated 46 million tons in 2007 (Ceresana 2008; Townsend, 2008).
	2.1.1.2 Polymer blends

	Three types of blends are distinguished: miscible blends, partially miscible blends and immiscible blends. According to He et al. (2004), the high molecular weight of polymers makes the entropy of mixing negligible, ensuring the immiscibility of most polymer blends. Nevertheless, the weak adhesion present at polymer interfaces can effectively be improved using common compatibilization agents. Literature can now be found on a wide variety of polymer film blends: PE/PP (Minkova and Nikolova, 1989; Minkova et al., 1992; Rohe et al., 1999), PE/nylon (López-Barrón et al., 2007; Liu et al., 2009), PE/PET (Avila and Duarte, 2003), PS/PMMA (Leukel et al., 1998), PS/PVME (El-Mabrouk et al., 2007) as well as PP/EVA (Minkova and Nikolova, 1989). A number of more complex ternary blends have also been reported (Landry et al., 1991).
	Chapter 5 will focus on the use of spectral imaging methods to predict the mechanical properties of PE/PS film blends produced via extrusion film-blowing. Such blends have also been extensively discusses in the literature: Dobreski and Nattinger, 1989; Zhu et al., 1989; Hermes et al., 1998; Nicole et al., 1999; Luzinov et al., 2000; Lorenzo et al., 2006; Díaz et al., 2007.
	2.1.1.3 Wood/plastic composites

	Natural fibers are biological structures mainly composed of cellulose, hemicellulose and lignin (Jodin, 1994). In much smaller proportions, there are also some extractibles, proteins and a certain number of inorganic products (Rowell et al., 1997). A number of these natural fibers are currently used as reinforcements, or simply as fillers, in polymer matrices; such materials are named natural fiber composites (NFC). These composite materials can be molded using many of the methods used to process common commercial plastics. Such a symbiotic use of two distinct materials makes it possible to adjust the physical and economic properties according to requirements. Furthermore, NFCs are ecologically friendly and can play an important role in revalorizing household and farming waste products (e.g. plastic bottles and produce stalks). Often degraded and contaminated, these products have little commercial value taken individually but can acquire a certain value when combined. According to Chand and Fahim (2008), the most common natural fibers used industrially in NFCs are: bamboo, cotton, flax, hemp, jute, kenaf, sisal (leaf fiber) and wood. However, within the scope of this project, only wood fiber composites (WPC) are considered here but the authors believe that the methods could be extended to other products if a spectral contrast exists between the filler and the matrix.
	Incorporating wood fibers into a polymer matrix greatly influences its mechanical properties. On the one hand, increasing fiber content will increase rigidity, while on the other hand strongly decrease ductility. Nevertheless, WPCs containing very high wood fractions often suffer from poor fiber-matrix cohesion, leading to decreased properties. According to Klason et al. (1984), this transition begins to occurs around 50% loadings, a level at which many polymer processing methods begin to encounter difficulties associated with high melt viscosity and fiber thermo-mechanical degradation. More about polymer processing methods is found in Section 2.1.2.
	Wood fibers are common, affordable and light. The density of North American woods varies between 0.28 (corkbark fir) and 1.04 (black ironwood) (Albert Forest Products, 2009) and cost on average 0.22 $ US/kg (Wilkes et al., 2005). In comparison, calcium carbonate, agricultural fibers and fiberglass (all common fillers) cost respectively 0.15, 0.33-0.88 and 1.98 $US/kg (Wilkes et al. 2005). This may help explain increasing global demand for WPCs, which is estimated to reach 2.4 billion $US by 2011 (WRAP, 2003). This demand is mainly generated by 4 markets: gardening (patio, fences), construction (housing), infrastructure (maritime and railway) and finishes (auto industry).
	Much research is currently being done on NFCs of all types. In 2009, there have been at least 28 published papers reporting on new development on WPCs alone, with many more reporting on other natural fiber composites. These include:
	 6 papers on HDPE/wood composites (Bouafif et al., 2009; Huang and Zhang, 2009; Sewda and Maiti, 2009; Xiong et al., 2009a,b; Zhang et al., 2009)
	 8 papers on PP/wood composites (Azizi and Ghasemi., 2009; Bouza et al., 2009; Chauhan et al., 2009; El-Sabbagh et al., 2009; Ghasemi et al., 2009; Haque et al., 2009; Nourbakhsh and Kouhpayehzadeh, 2009 ; Soury et al., 2009)
	 2 papers on LDPE/PP/wood composites (Tademr et al., 2009; Younesi and Bahrololoom, 2009)
	 3 papers on PVC/wood composites (Marathe and Joshi, 2009; Rocha et al., 2009; Sadler et al., 2009)
	 5 papers on polyurethane/wood composites (Casado et al., 2009; Gao et al., 2009a,b; Mosiewicki et al., 2009; Yuan and Shi, 2009)
	 3 papers on polylactic acid/wood composites (Gregorova et al., 2009; Noël et al., 2009; Pilla et al., 2009)
	 1 paper on polyamide/wood composites (Alvarez de Arcaya et al., 2009)
	In spite of this interest, several problems must be overcome during the molding process. The most important of which is the thermo-mechanical degradation of the fibers. Many natural fibers loose their rigidity around 160°C and suffer from lignin degradation around 200°C (Michaud, 2003). This problem can be avoided by selecting a plastic with a low melting point, reducing processing time and avoiding processing steps involving very high shear rates. The relation between the amount of thermo-mechanical energy delivered to the system and the subsequent fiber degradation is discussed in Chapter 7. Other problems include water retention by the fibers, hydrophilic/hydrophobic incompatibility at the wood/plastic interface as well as heterogeneous composition throughout the structure. While the wood fibers can be dried prior to blending, and coupling agents can be used to strengthen the interface, adequate fiber dispersion is both difficult to quantify and ensure. Poor dispersion ultimately leads to local weaknesses that may compromise the quality of the whole. Attempts to determine such characteristics are discussed in Section 2.2.3 using soft-sensing measurements. 
	2.1.2 Common polymer processing methods
	2.1.2.1 Overview of polymer processing 


	According to the Handbook of Industrial Engineering and Operation Management by Salvendy (2001), there are only a limited number of basic processes commonly used in the production of thermoplastic and thermosetting plastics parts:
	 Compression molding. An appropriate amount of plastic (often in powder form) is introduced into a mold, which is subsequently closed, heated and put under pressure. The plastic is softened by the heat and formed into a continuous mass of the size and shape of the mold cavity.
	 Transfer molding. In this two-step process, the plastic is first melted in an auxiliary chamber before being forced into a closed mold cavity through high pressure. The polymer is allowed to cool under pressure, before being ejected from the mold.
	 Extrusion. This process involves the continuous forming of a shape (infinitely long profile) by forcing softened plastic through an orifice. Essentially, an extruder consists of a heated barrel in which a single- or twin-screw system continuously conveys the plastic toward the forming die.
	 Injection molding. This semi-batch process is essentially a hybrid between transfer molding and extrusion. To achieve this, the barrel is fitted with a reciprocating screw system, making it possible to store molten polymer near the die of the barrel. When sufficient material has been accumulated, it is forced into a closed mold under pressure.
	 Casting. Much like the casting of metals, it involves introducing molten plastic into a mold that has been shaped to contour the piece to be formed.
	 Cold molding. In this process, a thermosetting polymer is introduced into a room-temperature mold under pressure. The mold is subsequently opened and the sample is transferred to an oven where it is baked until hardening.
	 Calendering. A continuous production of a thin sheet by passing thermoplastics between a series of heated rollers.
	 Thermoforming. Restricted to thermoplastic polymers, this is a process in which a plastic sheet is heated to a pliable temperature, formed to a specific shaped using a mold contour, and trimmed to create the finished product.
	 Blow molding. In this process, a tube of molted plastic is extruded vertically and incased in a split mold. Air is then injected into this hot section of plastic, forcing it to follow the contour of the mold.
	 Rotational molding. In this high-temperature, low-pressure process, biaxial rotation is used to produce hollow single piece parts.
	Of these methods, compression molding is used in Chapter 4 to produce thin plastic samples while extrusion is used in Chapters 5 and 7 to produce blown films and wood/plastic composites, respectively. Both methods will be discussed here in greater detail. Nevertheless, the proposed on-line quality control scheme could be applied to any of these approaches since it is based on the product itself, as it comes out of the process.
	2.1.2.2 Compression molding

	Compression molding is a common industrial process in which a plastic is placed into a heated metal mold, softened by the heat, and forced to conform to the shape of the mold cavity as the mold closes. Pressure is applied to force the material into contact with the entire cavity surface. Both heat and pressure are maintained long enough to remove prior melt history. The mold is cooled under pressure, often through water quenching, before being opened to remove the complete sample (Figure 2.2). Compression molding is known for its ability to mold large complex parts at a relatively low cost. Furthermore, it produces little waste and is capable of molding small quantities, giving it an advantage when working with expensive compounds. Lastly, it does not create weld lines and causes little or no shear stresses during the molding process.
	Figure 2.2. Illustration of a compression molding process in which (A) a measured charge is placed between two matching metal molds, (B) the molds close and the sample is subjected to heat and pressure, and (C) the cured part is ejected and trimmed. Adapted from Tecrep Engineering (2009).
	2.1.2.3 Extrusion

	Plastic extrusion is a high-volume manufacturing process used to produce indefinitely long objects of a fixed cross-section profile such as pipes and window frames. An extruder is basically an Archimedes’ screw rotating continuously inside a heated barrel (Figure 2.3). The material enters through the hopper and comes in contact with the screw system, where it is heated and forced forward into the barrel. The screw system itself can vary widely, going from single- to double-screw, co- to counter-rotating, as well as intermeshed or not. Regardless of its geometry, the system is usually divided into three zones: feeding, compression and metering (Figure 2.3). The feeding zone has a wide melt channel (thread gap) in order to receive the plastic pellets, and is used to melt the plastic. As its name indicates, the compression zone constricts the melted plastic, either by reducing the barrel section or the melt channel. This step releases any gases and volatiles that may be present. Finally, the plastic is homogenized in the metering zone. According to Kasliwal and Jones (2004), a proper mixing process must be both dispersive and distributive. In dispersive mixing, cohesive resistances have to be overcome to achieve finer levels of dispersion; while distributive mixing aims at improving the spatial distribution of the components without cohesive resistance playing a role (Gramann and Rauwendaal, 1998). In order to achieve this, a breaker plate or kneading blocks are often added to increase shear stresses. The plastic is then shaped as it exits the extruder die. A wide range of post-processing steps (e.g. cooling, cutting, thermoforming) is then performed on the extrudate.
	Figure 2.3. Illustration of an extrusion process. Polymer is fed in the hopper, conveyed through the barrel by the screw and shaped by the die. Adapted from Wikipedia Plastics Extrusion (2009).
	Extrusion film-blowing
	Extrusion film-blowing is widely used to make plastic films for the packaging industry. It is a process of forming thermoplastic film in which a plastic tube is continuously extruded and inflated to several times its initial diameter by internal air pressure, cooled and collapsed by rollers (Figure 2.4). The film is usually extruded vertically upward and air is blown in the center of the extruded tube as it emerges from the die (Figure 2.4, inset). Film thickness is controlled by varying the internal air pressure, as well as the rate of extrusion.
	Figure 2.4. Illustration of an extrusion film-blowing process in which the polymer is first extruded, blown into a film (inset) and rolled into the final product. Adapted from Antistaticbar (2009) and Berg (2009).
	2.1.3 Problems

	According to Gillespie (1988), the compression molding cycle is simple enough that problem solutions are generally obvious. Measuring load and thermal parameters can resolve many difficult problems. Nevertheless, unforeseen problems arise due to processing or material variability, operator related defects, or machine wear. Specifically, variability is typically related to material inconsistencies from the supplier, storage history, or extreme factors such as weather (Davis et al., 2003). These situations lead to poor product consistency and difficulties in controlling waste through mold flashing.
	Extrusion is basically a steady state process and most extruders are controlled to maintain relatively constant operating conditions. According to Tadmor et al. (1974), common feedback control loops on the machine variables (i.e. temperature, screw speed) perform well under most circumstances, providing that there are no stringent quality constraints. Nevertheless, the performance of an extruder is mainly determined by the characteristics of the feedstock and less by those of the machine. Material properties are seldom uniform. According to Rauwendaal (2001), the extrusion process may be affected by the feedstock’s bulk properties (e.g. particle size), melt flow properties (e.g. viscosity), as well as thermal properties (e.g. thermal diffusivity). Furthermore, the material samples used for testing may not be representative of the sample as most tests are performed on 0.01 kg or less, while most industrial extruders run at a throughput of several hundred kilograms per hour. This problem may be exacerbated when processing naturally locally heterogeneous materials such as polymer blends or composites. 
	Beyond the problems commonly associated to the extrusion process, extrusion film-blowing suffers from a host of specific problems. The first of these is a distinct sensitivity to un-melted plastic polymers in the extrudate appearing as “gels” in the final product (Perdikoulias and Vlcek, 2004). Also, fluctuations in the film thickness can be caused by inconsistently shaped pellets in the feedstock (Cantor, 2006), as well as ineffective film cooling (Giles et al., 2005). Lastly, Reifenhauser and Rahlfs (1975) observed that there may be a mismatch in (1) the rate at which the rollers are run, (2) the volumetric extrudate flow and (3) the pressure drop within the film. They suggest that this mismatch may cause unwanted uniaxial or biaxial orientation in the films.
	These examples show that feedback and/or feed-forward control loops on the machine variables are not suited to identify all the problems affecting the polymer industry. Unwanted sample variability is still very much present even under the best operating conditions. The next section discusses the notion of quality, as well as means of measuring it, both off- and on-line.
	2.2 Quality
	2.2.1 Defining quality


	Broadly speaking, the term “quality” designates the degree of excellence of an item when measured against other of a similar kind. This definition however can be interpreted in a number of ways; 5 general definitions are discussed here. Customer-based quality (1), often coined the “fitness to use” compares the item to customer expectations (Edwards, 1968; Gilmore, 1974; Juran and Godfrey, 1999). Manufacturing-based quality (2) compares the item to its design, or specifications, and ensures “conformance to specifications” (Gilmore, 1974; Crosby, 1980). Value-based quality (3) compares an item’s usefulness to its price (Broh, 1982; Feigenbaum, 1991). Applying this definition, items qualified as “low-quality” by the two previous definitions may nevertheless be deemed satisfactory if their price is set sufficiently low. Product-based quality (4) refers to an attribute of the item that makes it superior in any way to otherwise comparable items (Abbott, 1956; Leffler, 1982). Finally, a transcendence-based quality (5) is a much harder characteristic to define but is generally linked to a consumer’s immediate and irrational interest for a product (Tuchman, 1980). Keeping with the scope of the project, a manufacturing-based definition of quality must necessarily be used here.
	Quality control is defined by the American Society for Testing and Materials (ASTM) as a method of implementing the quality specifications for raw materials, intermediate and finished products as established by management, and carries out the operational techniques and the activities that sustain quality of a product or service (ASTM, 1992). Applying this to the polymer industry, sample quality typically refers to thermal properties, mechanical properties and component distribution. According to the Handbook of Industrial Engineering and Operation Management (Salvendy, 2001), the functional designer in the polymer industry is primarily concerned with the specific gravity, hardness, water absorption, outdoor weathering, coefficient of linear thermal expansion, elongation, flexural modulus, IZOD impact, deflect temperature under load and flexural yield, tensile, shear, and compressive strengths. 
	In the following section, a number of off-line and on-line methods of measuring sample quality are discussed.
	2.2.2 Laboratory quality measurements 

	According to Dumitrescu et al. (2005), quality control in the polymer industry is often limited to visual inspection of the sample, weighing, and, in a relatively small subset of the production, mechanical and analytical testing may also be carried out. The term “analytical” is used here to refer to any analysis seeking to determine the composition of a sample. While this description is accurate, it may give an over-simplified view of the present state of off-line quality control in the polymer industry. In fact, a wide range of laboratory analyses has been developed. Generally speaking, these tests fall into 7 categories: mechanical, electrical, rheological, analytical, thermal, optical and aging (Intertek Plastics Technology Laboratories, 2009).
	 Mechanical tests. The mechanical properties usually represent the response of a standardized section of the sample to a known mechanical constraint. This category includes, for example, the tensile modulus ASTM D638, Izod impact resistance ASTM D256 and Rockwell hardness ASTM D785.
	 Electrical tests. These tests usually seek to quantify the resistance or capacitance of the heart and surface of the sample. Among these we find the evaluation of the dielectric constant ASTM D150, as well as the electrical resistance of the heart and/or the surface ASTM D257.
	 Rheological tests. The study of the rheological properties enables the user to determine behavior, as well as thermal stability, of the polymers during the molding process. Whereas mechanical tests are performed on solid samples, this category only concerns their melt flow properties. Viscosity measurements can be obtained using single-point measurements such as the Melt Flow Index (MFI) ASTM D1238 or through variable shear rates tests like capillary rheometry shear sweeps ASTM D3835.
	 Analytical tests. The analytical properties represent the nature and composition of the material. This type of analysis includes differential scanning calorimetry (DSC) ASTM D3417, Fourier Transform Infrared (FTIR) ASTM E125 and Thermo-Gravimetric Analysis (TGA) ASTM E1131. These tests commonly involve very small amounts of material but require highly delicate handling.
	 Thermal tests. These methods quantify the behavior of polymers using a wide range of temperatures. Common tests include the thermal expansion coefficient ASTM E831, heat deflection temperature ASTM D648, as well as the determination of different transition points (i.e. temperature of fusion) by DSC ASTM D3417. These tests are often carried out under a neutral atmosphere to minimize polymer oxidation at high temperatures.
	 Optical tests. The most common optical tests concern the gloss ASTM D2457, haze ASTM D751, yellowness index ASTM D313 and RGB color values ASTM D6290. Nevertheless, this category remains relatively unused in the field.
	 Aging tests. There exist a number of methods able of accelerating the aging process of polymers by exposing them to harsh conditions (i.e. high temperature, water or electromagnetic radiation). Among these we find the use of a xenon arc ASTM D2565 or fluorescent lighting ASTM D4329. Both require between 500 to 2000 hours to yield complete results.
	While these seven categories of tests are well documented for neat polymers, few regulations apply to polymer blends and composites. Nevertheless, the Plastic Lumber Trade Association is working to instate an ASTM norm on HDPE based WPCs. Moreover, the Canadian Construction Materials Centre, a branch of the National Research Council, is also working to allow composite materials, such as WPCs, to be used in construction (Environment and Plastics Industry Council, 2003).
	2.2.3 Soft-sensing quality measurements 

	As seen in Section 2.2.2, the numerous steps involved in off-line laboratory measurements often limit the number of samples tested to a level where one can legitimately ask whether the test set truly represents the whole of the production. This problem may be addressed by taking on-line quality measurements (or estimates) of the samples and including this data in the control mechanism. According to Ohshima and Tanigaki (2000), the lack of on-line sensors for key polymer properties leads to quality control issues in polymer plants. This situation leads to a conundrum: the characterization of a sample must be sufficiently complete to yield relevant information but fast enough to be of any use in automatic feedback control loops. In order to achieve this goal, several rapid and non-destructive so-called soft-sensing methods have been proposed.
	According to Zhong and Yu (2000), the basic idea behind remote-sensing, also known as inference estimation, is to predict the output of the variables of interest (i.e. sample purity) by measuring a set of secondary easily measured variables (i.e. spectra), which are nevertheless correlated to the variables of interest. In essence, the core of a soft sensor is the soft sensing model of a plant, which generates a virtual measurement to replace a real sensor measurement (Yan et al., 2004). In recent years, considerable attention has been paid to the development of on-line soft-sensors in order to estimate hard-to-measure quantities or simply avoid laboratory measurement delays (Dai et al., 2006). The following sections discuss a number of soft-sensing methods and their uses in the polymer industry. Two cases of soft-sensing are discussed. Analysis of the melt properties is broadly referred to as “internal probes”, whereas analysis of the solid polymer is referred to as “remote sensing”.
	2.2.3.1 Internal probes

	Internal probes have the potential of characterizing the state of a production line without influencing the process or requiring any direct human interaction. A number of authors have studied the viability of electromagnetic and ultrasonic probes on plastic extrusion.
	NIR spectroscopic probes have been used successfully to estimate extrusion dynamics (Ohshima and Tanigaki, 2000; Alig et al., 2005), to control the production of complex polymer blends (Xanthos and Patel, 1995; Rohe et al., 1999; Coates et al., 2003; Dumitrescu et al., 2005) as well as natural fiber composites (Fischer et al., 2006). Raman and FTIR spectroscopic probes have also been used on extruded blends (Coates et al., 2003; Alig et al., 2005; Dumitrescu et al., 2005). In general, spectroscopic probes were used to predict the composition, color and humidity levels. For their part, ultrasonic probes, based on the attenuation of ultrasounds inside the polymer, have often been used to estimate blend composition (Gilmore and Tjahjidi, 2002; Coates et al., 2003; Alig et al., 2005; Fischer et al., 2006), melt density (Abu-Zahra and Seth, 2002), as well as the residence time distributions inside the extruder (Sun et al., 2004; Lee et al., 2005). In contrast with ultrasonic probes, which measure the average velocity of the melt (Agemura et al., 1995), laser Doppler velocimetry (LDV) measure single point velocities inside the extruder (Furness, 1989). Finally, more exotic probe types such as nuclear magnetic probes (NMR) have been proposed to study the molecular mobility via the relaxation times (Gottwald and Scheler, 2005).
	These examples show that internal probes can effectively quantify the polymer melt as a whole. Nevertheless, certain limitation must be noted. While electromagnetic probes provide a wealth of information, they require translucent melts, therefore limiting their usefulness when intense coloring and/or particulate fillers are present. On the other hand, ultrasonic probes are not limited to translucent melts but do not provide the same level of detail that electromagnetic probes do.
	One must also note that all single-point probes, by their very nature, only provide local or global information on the molten flow (only true for homogeneous flows). This implies that such a probe-based system may not detect local discrepancies or gradients, while the blend is still molten and is not designed to provide information on the final molded sample.
	2.2.3.2 Remote sensing

	Microscopy
	Microscopic methods will broadly be considered as “remote sensing” in spite of the fact that many of these require intensive sample preparation. In fact, microscopy methods vary widely in their capabilities and applications. Of these, atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical microscopy have all been used in micro-structural characterization of polymers (Kantz et al., 1972; Butler et al., 1995; Pantani et al., 2005; Wang and Hahn, 2007). These methods have slow acquisition times and may require surfacing, microtoming or vacuum conditions. However, on-line monitoring of multiphase polymer melts using optical microscopy has nevertheless been published (Xanthos and Patel, 1995; Leukel et al., 1998).
	Spectroscopy
	Various spectroscopic techniques have also been proposed for estimating polymer properties since they are rapid and non-intrusive. They also require little or no sample preparation and provide a wealth of information (Lachenal, 1995). However, many of these methods are based on single point measurements.
	First, among the spectroscopic methods, NIR spectroscopy has been very widely used to analyze polymeric materials. Applications include: the extent of crystallization (Lachenal, 1995; Stuart, 1996; Sato et al., 2003; Pantani et al., 2005; Pelsoci, 2007), orientation (Buffeteau et al., 1995), density (Saeki et al., 2003; Watanabe et al., 2006), film thickness (Heymann et al., 2009), as well as waste identification (Huth-Fehre et al., 1995; van den Broek et al., 1995,1996,1997; Feldhoff et al., 1997; Leitner et al., 2003).
	Among these applications, waste identification is of particular interest because it relies on chemometrics methods (i.e. PLS models) to identify plastic waste products using spectroscopic NIR images. These projects essentially tried to identify the nature, shape and size of the plastic objects. For example, van den Broek et al. (1996) were able to isolate a number of waste plastic products (17 polymer types) from other waste products (ceramics, metal, glass, paper and wood). However, the weak spectral resolution used in this study made it impossible to distinguish between the different polymer types. A certain level of success was achieved the very next year by Feldhoff et al. (1997) using uncolored polymer samples. However, an efficient polymer classification scheme would have to wait the work of Leitner et al. (2003), in which they used blob analysis to identify the composition of a number of waste plastic bottles. They effectively distinguished between PET, HDPE, PS and two types of PP with 93% accuracy (Figure 2.5). This method effectively seeks to match the experimental spectrum of each pixel in a spectral image to that of known reference samples. While it can effectively identify the nature of the elements present in the image, it is not suited to take into account intra-class variability.
	Figure 2.5. The different NIR signatures of common polymer species (A) make it possible to class household plastic waste (B) according to composition (C). Adapted from Leitner et al. (2003).
	Second, Raman spectroscopy is another spectroscopic method commonly used in polymer analysis. It uses the inelastic scattering of light to analyze rotational and vibrational modes of molecules. Among recent applications, Alig et al. (2005) used single-point laser Raman spectroscopy for on-line monitoring of an extrusion process. Work has also been reported on real-time crystallinity estimation by single-point laser Raman spectroscopy (Stuart, 1996; Batur et al., 1999; Cherukupalli and Ogale, 2004).
	The third spectroscopic method mentioned here is laser-induced breakdown spectroscopy (LIBS). This technique uses laser-induced plasma as to vaporize, atomize and excite the sampled material to determine its composition based on elemental and molecular emission intensities. It has notably been used to identify a number of polymer types (Wang et al., 2008), as well as to perform real-time composition estimation of wood/plastic composites (Rials et al., 2009).
	The fourth and last spectroscopic method discussed here is dielectric spectroscopy. Sometimes called impedance spectroscopy, it measures the dielectric properties of a medium as a function of frequency (Kremer et al., 2002). While it is still hardly used for polymer characterization, it has been used successfully by Boersma and van Turnhout (1999) as well as Alig et al. (2005) for on-line monitoring of an extrusion process.
	X-ray scattering
	X-ray scattering techniques are non-destructive methods based on the scattered intensity of a beam hitting a sample and have been extensive used in polymer analysis (Kantz et al., 1972; Brown et al., 1973; Polizzi et al., 1991; Albano et al., 2003; Alig et al., 2005; Pantani et al., 2005; Pelsoci, 2007; Briskman, 2007). X-ray scattering reveals information about the crystallographic structure, chemical composition, as well as the physical properties of the material. However, as these methods depend on the incident and scattering angles, as well as the polarization and wavelengths of the beams, they are not easily adapted to 2-D surface scans.
	Other methods
	Non-invasive nuclear magnetic resonance imaging (NMR) and positron emission particle tracking (PEPT) have been used to follow the trajectory of specific particles as they move inside the bulk (Agemura et al., 1995; Nakagawa et al., 1997; Ding et al., 2002; Ingram et al., 2005; Fischer et al., 2006). While these methods provide much physical, chemical and structural information about the polymer melts (Bergmann, 1981; Pelsoci, 2007), their use is typically expensive and time consuming (Vailaya et al., 2001; Saeki et al., 2003).
	Ultrasonic probes are usually associated to the monitoring of extruded polymer melts. Nevertheless, Alig et al. (2007) proposed a remote sensing ultrasonic application in which a plastic film’s formation was studied. Finally, white light interferometry has also been suggested by Coates (2005) to measure surface roughness across extruded PVC strips.
	Closing thoughts on quality measurements
	A number of remote sensing techniques used in polymer analysis were discussed in this section. The stated objective of this work was to develop an on-line quality control tool adaptable to plastic materials of all types. First, a discussion was made on laboratory measurements. It can be concluded that they are usually too slow, and require too much handling, to be used for on-line quality assessment in an industrial setting. Nevertheless, laboratory measurements are essential since they are uniquely capable of quantifying the material properties.
	Remote sensing tools are better adapted to the fast response times required by the industry. The real-time methods discussed in this section are both fast and accurate, but typically only provide a single local, or averaged, value at every sampling interval. Internal probes have the added inconvenience of analyzing the polymer melt rather that the final solidified sample, making them oblivious to any post-processing problems (e.g. shrinking). It will be shown that a number of chemometrics methods can effectively be used to extract relevant spectral and spectral features from hyperspectral images of the polymer composites. However, before doing so, both the images and the methods must be discussed in greater detail (Section 3.1 on spectral imaging and Section 3.2 on chemometrics).
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	Chapter 3 
	Background on multivariate imaging and chemometrics
	3.1 Spectral imaging
	3.1.1 Defining spectral imaging


	Webster’s New World College Dictionary (2005) defines the electromagnetic spectrum as: “the complete range of frequencies of electromagnetic waves from the lowest to the highest, including, in order, radio, radar, infrared, visible light, ultraviolet, X-ray, and gamma ray waves”. This definition of the spectrum is illustrated in Figure 3.1. While the full electromagnetic spectrum conceptually spans from the Planck length (1.616(10-35 m) to the size of the universe, in practice it usually ranges from 10-14 to 103 m. The spectral signature of an object is the characteristic distribution of electromagnetic radiation either emitted, absorbed, reflected or transmitted by that object. In this section, we will define three types of imaging sensors (grayscale, RGB and spectral imaging) and relate them to a sample’s spectral signature.
	Figure 3.1. Electromagnetic spectrum ranging from gamma rays to radio ways. Adapted from Color Information Resource (2007).
	A grayscale, or black-and-white, image is a 2-D matrix in which each pixel only represents intensity information. Such images are composed exclusively of shades of gray, varying from black at the weakest intensity to white at the strongest (Johnson, 2006). These images are in fact monochromatic as they do not contain any chromatic, or color, information. The information provided by the monochrome cameras is in fact the convolution of the spectrum of the incident light and the spectral sensitivity of the CCD. Since no specific wavelength filters are used in front of the CCD photosensitive detectors (as is the case with RGB/Bayer patters), then the light is not decomposed into different colors, although the CCD itself is sensitive to color. Depending on the sensor, the perceived intensity may either be at a distinct narrow wavelength, or averaged over a wide spectral interval (Figure 3.2A).
	Any image containing chromatic information does so by recording each color, or wavelength, separately. According to Bharati et al. (2003), a multivariate image consists of a stack of congruent images, with each image in the stack representing a unique wavelength. Such an image can be represented as a 3-D dataset, where two dimensions (x and y) represent spatial information in the image plane and the third dimension (() represents the spectral information. In the case of common color photography, the visible color spectrum is typically represented by multivariate images containing red, green and blue color intensities, forming a (x(y(3) 3-D image array (Figure 3.2B). In practice, the blue sensor is especially sensitive to the light between 375 and 500 nm, the green between 500 and 575 nm, and the red between 575 and 850 nm (Nikon, 2009).
	Figure 3.2. A single image as seen using (A) a monochrome (grayscale) camera, (B) a red/green/blue (RGB) color camera, and (C) a spectral imaging system.
	Finally, a spectral image can be seen as an extension of an RGB image in that it captures a much greater number of individual wavelengths, usually with an increased spectral range and/or an increased spectral resolution (Figure 3.2C). As early as in the 1960s, multispectral imaging systems with up to 20 wavelength bands were used in remote sensing applications (Liu and MacGregor, 2007). Later, the term hyperspectral imaging was coined in the fields of satellite and airborne imaging, referring to multispectral images containing more than 100 wavelengths (Grahn and Geladi, 2007). Shippert (2009), however, provides a more specific definition of the term. As the word implies, a hyperspectral image literally contains an excessive spectral resolution. These images are over-determined, meaning that they provide ample spectral information to identify and distinguish spectrally unique materials. It is not only the number of measured wavelengths that defines a sensor as hyperspectral but also the narrowness and contiguous nature (i.e. spectral resolution) of the measurements. According to this definition, a sensor capable of capturing over 100 wavelengths may not be hyperspectral if it is sensitive to a very wide spectral range.
	3.1.2 Experimental setup

	Data acquisition in this study was performed using a line-scan imaging system. There are, however, a number of spectral imaging systems available on the market, falling generally into one of three categories: point-scans, line-scans and area-scans.
	Point-scans are conceptually the simplest systems since they acquire a single spectral signature per acquisition period. This system is essentially analogous to a single surface probe. This spectral signature can either represent a very localized area of the sample as was done by Coates et al. (2003) or an average value of a larger surface as in Feldhoff et al. (1997).
	Line-scan systems acquire a single line of the sample per acquisition period. For each scanned line of the sample, the transmitted/reflected light enters the spectroscope through a slit, is then dispersed through a grating system, and finally captured by the charge-coupled device (CCD) array of the camera as a spatial/spectral image as illustrated in Figure 3.3. Thus, each image from the spectral camera includes the line pixels in one direction (spatial axis) and spectral distribution (light intensities in spectral elements) in another dimension (spectral axis). The entire sample can be imaged by slightly displacing the sample perpendicularly to the spectroscope’s slit between each acquisition; a large image may require the sample to be imaged hundreds of times. Line-scan systems have widely been used for their unique combination of fast acquisition speed and high spatial resolution (Leitner et al., 2003; Liu et al., 2007; Qiao et al., 2007; ElMasry et al., 2008).
	The third category of spectral imaging sensors consists of area-scan systems. In this case, a 2-D area of the sample is captured at every acquisition time, much as the common camera would do. In order to achieve this, the imaging system captures the scene as a succession of grayscale images taken at different wavelengths. Tunable filters are typically used to select the various wavelengths. Doing so greatly increases the capture time. While such a system is suitable for off-line applications, it cannot be used in on-line industrial applications such as scanning samples fed to a process using a rapidly moving conveyor belt. The area scanners require the sample to be static during the complete capture time, which mostly depends on the number of wavelengths captured. Nevertheless, these systems were used successfully by van den Broek et al. (1996) to identify plastic waste products.
	Figure 3.3. Illustration of a line-scan imaging system projecting a single line of the sample onto a 2-D sensor. Adapted from Specim (2009).
	A line-scan imaging system (Figure 3.4) was used in this work. It consists of three spectral cameras coregistered on the same area on the sample, effectively covering the ultraviolet (UV), visible (VIS) and near-infrared (NIR) range of the spectrum (200-1700 nm). First, the UV range is captured using a Hamamatsu C8800 camera (1000(1000 pixels) coupled with an ImSpector UV4 grating spectroscope (Specim Spectral Imaging Ltd) effectively sensing the 200-400 nm wavelength range. Second, the visible range is captured using a Hamamatsu C8484-05G camera (960(1024 pixels) coupled with an ImSpector V10E grating spectroscope (Specim Spectral Imaging Ltd) effectively sensing the 400-1000 nm wavelength range. The infrared range is captured using a XenICs XEVA-USB-FPA camera (256(320 pixels) coupled to a Specim ImSpector N17E grating spectroscope effectively sensing between 900-1700 nm.
	The system is equipped with both halogen or xenon lighting, the former for VIS-NIR applications and the latter for UV. These light sources were selected to provide relatively smooth lighting conditions over the entire spectral interval. Basically, light is reflected off the sample (tests were performed in reflection and transflection), through a system of mirrors, divided by 2 dichroic lens into UV, visible and NIR light and directed toward their respective cameras.
	Figure 3.4. Hyperspectral scanning system seen in perspective (A) and from above (B).
	Each scanned line of the sample is captured on the CCD array as a spatial/spectral (x(() image containing hundreds of spectral channels (i.e. wavelengths), rather than the three more commonly obtained in RGB images. A hyperspectral image, or data cube, of the entire sample is achieved by repeatedly displacing the sample perpendicularly to the spectroscope slit. Each hyperspectral image consists of a number of juxtaposed line-scans forming a 3-D array (x(y(().
	A simple calibration scheme is commonly applied to the raw line-scans in order to remove any linear discrepancies (Leitner et al., 2003; ElMasry et al., 2008). The raw signals of each spectral-spatial image (R) were transformed into reflectance units using a flat black (B) image and a true white image (W):
	 (3.1)
	where, rx( is an element of the raw image (R), bx( and wx( are elements of the black (B) and white (W) calibration images, and ix( is an element the standardized reflectance image (I). The flat black and true white images were obtained by collecting a spatial-spectral image leaving the lens cap in place (i.e. dark current), and by imaging a 99% reflectance standard sheet (Gigahertz-Optik), respectively. This calibration is performed on each image of a set. The resulting calibration of a narrow sample on a true white background is shown in Figure 3.5.
	Figure 3.5. Black/white calibration in which a raw image is converted into standardized reflectance units by comparing it to true white and true black images. Figure shows a WPC sample placed on a 99% reflectance standard.
	3.2 Chemometrics
	3.2.1 Defining chemometrics


	According to Zhong and Yu (2000), soft-sensors can be used to obtain a regression model between easily obtained measurements (secondary variables) and quality variables (primary variables) using statistical (Santen et al., 1997), neural networks (Wang and Shao, 1997) or chemometrics approaches (Wise and Gallagher, 1996). The latter approach was favored in this work for its ability to consider highly correlated data in a straightforward and parsimonious manner. On the one hand, statistical methods may often lead to good results but lack the ability to deal with highly correlated data. On the other hand, neural network are known for the ability to accurately predict the outcomes of complex problems (Berson et al., 1999) but are criticized for lacking interpretability and being susceptible to over-training and over-parameterization (Groth, 2000).
	The term “chemometrics” was coined by Svante Wold in 1974 (Wold, 1995) and the International Chemometrics Society (2009) was formed shortly thereafter by Svante Wold and Bruce Kowalski, two pioneers in the field. The International Chemometrics Society (ICS) offers the following definition of chemometrics: “It is the science of relating measurements made on a chemical system or process to the state of the system via application of mathematical or statistical methods.” Essentially, it is the application of mathematical or statistical methods to chemical data. The ICS states that chemometrics research spans a wide area of different methods that can be applied in chemistry biochemistry and chemical engineering. There are techniques for collecting good data (optimization of experimental parameters, design of experiments, multivariate analysis or multivariate statistics, calibration, signal processing) and for getting information from the data (statistics, pattern recognition, modeling, structure-property-relationship estimations). Some of these techniques were used in this project for image analysis and data regression.
	3.2.2 Pre-processing

	Pre-processing is an important first step of the data analysis in order to remove non-relevant information (Kohler et al., 2009). Furthermore, it was used extensively throughout this work since both latent variable methods used in this thesis, namely principal component analysis (Section 3.2.3) and projection to latent structures (Section 3.2.4), are scale dependent. It is therefore no surprise that many pre-processing methods are available to the user: mean-centering, autoscaling, direct orthogonal signal correction, standard normal variate and multiplicative signal correction just to name a few (Bakeev, 2005; Kohler et al., 2009). Nevertheless, Geladi and Grahn (1996) warn that the scaling of spectroscopic data is not always desirable and that trial and error is the only way of finding out which method, if any, works best. Among the pre-processing methods mentioned above, only mean-centering and autoscaling were used in this work and will be discussed in greater detail.
	Mean-centering
	This method involves the subtraction of the mean of each variable computed using all the samples in the dataset (Bakeev, 2005). Applying this to a data matrix X (N(K), the mean-centering is achieved by the following equation:
	 (3.2)
	where XMC (N(K) is the mean-centered data,  (1(K) contains the mean response values of each of the variables and 1N (1(N) is a unit vector. Mean-centering essentially removes the absolute intensity information (i.e. base-line value) of each variable, focusing on the response variation (Figure 3.6).
	Autoscaling
	Scaling to unit variance is typically applied after mean-centering by dividing the resulting intensities by the variable-wise standard deviations (Bakeev, 2005):
	 (3.3)
	where XAS (N(K) is the autoscaled data and SM is a square diagonal matrix containing the standard deviations for each of the variables. This method reduces each variable to a mean of zero and a standard deviation of one, effectively removing all scale effects (Figure 3.6).
	Figure 3.6. Illustration of data pre-processing in which the raw data (A) is either mean-centered (B) or autoscaled (C).
	3.2.3 Principal component analysis

	Introduction and interpretation
	Consider a dataset X (N(K) consisting N observations on K variables. The observations (i.e. rows) of X may represent samples, trials or compounds whereas the variables, or columns of X, represent characteristics such as laboratory assays or sensor inputs (e.g. temperature, pressure, spectra). With many such datasets encompassing hundreds of variables quantifying thousands of observations, one may feel the need to extract the important information from X in order to display it simply.
	Principal component analysis (PCA), the simplest of the eigenvector-based multivariate latent variable method, was first proposed by Karl Pearson (Pearson, 1901). This multivariate statistical method decomposes the variance-covariance structure of a data matrix by finding linear combinations of the original variables in such a way that these combinations explain the greatest amount of variation within the data (Eriksson et al., 2001). PCA is the decomposition of a matrix X (N(K) into simpler matrices Ma (N(K) of rank = 1:
	 (3.4)
	In terms of the eigenvector/eigenvalue decomposition, rank is the number of eigenvalues of XTX that are greater than zero (Geladi and Grahn, 1996). The rank can also be expressed as the smallest number of outer products of vectors (A) that may be used to represent X exactly. Since each of these Ma matrices has a rank = 1, they can be represented as the outer product of a single pair of vectors, ta and pa:
	 (3.5)
	The decomposition of the X-matrix can therefore be written as:
	 (3.6)
	where A is the number of orthogonal principal components, ta are the score vectors, and pa are the loading vectors. The first score vector t1 is the linear combination of the K variables (defined by the loadings vectors p1) capturing the largest possible variance within matrix X, while the second score vector t2 represents the second largest source of variance (orthogonal to t1) and so on. The score vectors can therefore be viewed as a multivariate summary of each X observation. If the number of components is lower than the maximum number of components (A(K), then E (N(K) contains the residuals.
	The PCA decomposition is illustrated graphically in Figure 3.7. First, Figure 3.7A represents the relation between the original matrix X and the T and P matrices. This method of representing the matrices is used to illustrate the relation between the data matrix (X) and the outer product of the scores and loadings (TPT). Figure 3.7B illustrates a PCA projection of a 3-D data space (as in the case of an RGB image) down to a 2-D plane. Let us discuss this projection of the data matrix in terms of loadings, scores and residuals (Equation 3.6). The loadings matrix P represents the orientation of the latent variable subspace within the original variable space. In essence, this subspace is built by linking each loading vector (pi) into a single hyperplane. Using this new subspace, the score matrix T represents the new coordinates of the data points defined by the loadings (Figure 3.7C). In projecting the data onto a 2-D plane as in the case of Figure 3.7, each data point will have a t1 and t2 value corresponding to its location on the p1 and p2 vectors. In the case where the number of latent variables (A) equals the rank of X, the data points are exactly represented by the new system of coordinates. However, if A is chosen inferior to the rank of X, the PCA effectively projects data point located in a high-dimensional generic coordinate system onto a low-dimensional latent variable subspace. While doing so captures most of the information in the dataset, a certain amount of information will necessarily be lost. This loss is the orthogonal projection error of the data point and is presented in Equation 3.6 as the residual (E). Graphically, it represents the distance of a data point off the plane created by the loadings. Further details on PCA can be found in Wold et al. (1987).
	Figure 3.7. Principal component analysis. In (A) the observations of X are represented using a small number of latent variables called scores (T) projected onto loadings (P). In (B) a 3-variable dataset (x1, x2, x3) projected onto 2 loading (p1, p2). In (C) t1-t2 score histogram created by p1 and p2 onto which each data point is projected.
	According to Geladi and Kowalski (1986), this decomposition is usually achieved by non-linear iterative partial least squares (NIPALS) or by singular value decomposition (SVD). While the NIPALS algorithm is an iterative process that calculates each or the principal component sequentially, the SVD decomposition extracts all the principal components of X (N(K) simultaneously:
	 (3.7)
	where the U, D and V matrices have certain specific properties: 
	 The columns of U (N(A) are eigenvectors of XXT and are orthonormal.
	 The diagonal elements of D (A(A) are singular values and the square roots of the eigenvalues of XTX.
	 The columns of V (K(A) are eigenvectors of XTX and are also orthonormal. U and V are identical in the case where X is a correlation matrix.
	In the case where the number of components used in the decomposition (A) is inferior to the rank of X, then the score and loading matrices (T and P) no longer represent the X exactly, leading to the presence of an error term in Equation 3.6. 
	Identifying outliers
	The Merriam-Webster Online Dictionary (2009) defines the term outlier as: “a statistical observation that is markedly different in value from the others of the sample”. While outstanding data points are sometimes relevant and can represent key aspects of the system under study, they may also be signs of flawed data possibly caused by poor acquisition tools or human error. In either case, the presence of such outlying data points can seriously affect the performance of the PCA algorithm (Gabrys et al., 2006) and should be studied with the utmost care. Keeping in mind the projections illustrated in Figure 3.7, two criteria are typically used to identify outliers. 
	First, the distance to the model in the X-space (DmodX) represents the orthogonal distance of an observation from the model plane (Figure 3.8A). As each of the PCA loadings (pi) seeks to capture the largest possible sources of variation found within X, any point falling far from the model plane differs from the bulk of the dataset. DmodX is computed by: 
	 (3.8)
	where the squared predicted errors (SPE) are adjusted for the number of degrees of freedom (DF). In doing so, DmodX represents the number of standard deviations off the plane. In turn, SPE and DF are given as:
	 (3.9)
	 (3.10)
	where SPEn sums the residual errors over all K variables for each observation n in the PCA decomposition (Equation 3.6) whereas the degrees of freedom are computed using the number of latent variables (A) as well as the dimensions of X (N(K). In essence, the DmodX sums each row of the squared residual E matrix.
	Figure 3.8. Identifying outlying data points in a PCA decomposition according to: (A) perpendicular distance from the plane (DmodX), and (B) distance from the center on the plane (Hotelling’s T2).
	The second metric used to identify outliers is the Hotelling’s T2, which is orthogonal to an observation’s distance from the model plane. It quantifies how far its projection falls from the center of the t1-t2 score plot. While an observation may appear to follow the general pattern of the PCA model (low DmodX value), it may nevertheless differ significantly from the bulk of the data by falling very far from the center of mass of the dataset (Figure 3.8B). It can be computed according to: 
	 (3.11)
	where A is the number of latent variables used in the model, tna2 is the score value of any given observation n for the ath latent variable and sa2 is the variance of ta in the model. The weighting by sa2 allows all scores to contribute equally to T2 (MacGregor et al., 2008). As the T2 values are approximately distributed according to an F-distribution, a 95% confidence interval is often drawn in the score space (Figure 3.8B) forming an ellipse in 2-D space and, in general terms, a hyperellipse in A-dimensional space. 
	It is important to note that only observations found far outside the confidence intervals of either DmodX of Hotelling’s T2 are expected to be outliers.
	Quantifying prediction errors
	As mentioned, the SPE sums each row of the squared residual matrix E (N(K). By summing E column-wise, it is possible to compute the prediction errors for each of the K variables (). According to MacGregor et al. (2008), it is computed for a single variable using:
	 (3.12)
	where SS(xk) represents the sum of squared values of X for a single column k whereas SS(ek) is its counterpart using the E matrix. For a single variable k, this ratio is the sum of squares explained by the model divided by the total sum of squares. This notion can also be generalized into a global value in which the prediction errors of all K variables are combined ():
	 (3.13)
	where SS(X) represents the sum of squared values of the entire X matrix whereas SS(E) is its counterpart using the E matrix.
	The E matrix varies with the complexity of the model. When building the model, the prediction error generally decreases in the training set as more components are used. However, when validating the model with new data, the prediction error may increase if too many components are used (Figure 3.9). This is explained by the fact that a very complex model will not only capture the underlying phenomena, but also the small-scale variations present in the training set data (e.g. experimental errors).
	Figure 3.9. Prediction error varying with model complexity.
	In order to avoid overfitting, a “goodness of fit” criterion is used to estimate the ability of the model to make predictions, using either internal existing data (i.e. through cross-validation), or an external validation set. It will be referred to as the predicted residual sum of squares (PRESS) and is computed using:
	 (3.14)
	The resemblance between Equations 3.9 and 3.14 is not coincidental. The expressions for SPE and PRESS are exactly the same; however the errors used in each come from different datasets. The former is obtained on the training set whereas the latter is calculated using the internal (i.e. cross-validation) or external validation sets. In practice, PRESS(A) is computed with each added latent variable in the model. Overfitting is avoided simply by determining whether PRESS(A) is significantly inferior to PRESS(A-1). Finally, the ability of the model to predicted new, or omitted, data is given by:
	 (3.15)
	3.2.4 Regression methods

	Phenomenological models, or first principal models, are often not available due to the complexity of industrial processes (Yan et al., 2004). As a result, empirical models are usually preferred when developing soft sensors. The problem of empirical modeling is to find a model with the best generalization and prediction performance, given the empirical data.
	Multi-linear regression vs. principal component regression
	In multiple linear regression (MLR), the X and Y matrices are linked directly using a linear relation:
	 (3.16)
	where B represents the matrix regression coefficients (a vector when a single y is used) and E consists of the regression residuals, often assumed to be identically and independently normally distributed. Furthermore, this model assumes that X is of full rank and is deterministic, that is to say that it is known perfectly without any uncertainties. In this way, all errors are assigned to Y. A number of procedures have been developed for parameter estimation in linear regression. The simplest and most commonly used is ordinary least squares (OLS). The regression parameters can be estimated () by minimizing the sum of squared residuals (E):
	 (3.17)
	 (3.18)
	However, when X is ill-conditioned, the inversion of the XTX becomes very sensitive and eventually does not exist when X is singular (i.e. when X is not full rank). Unfortunately, this situation is very typical in industrial process datasets, as well as in spectral data analysis (high spectral resolution implies that many wavelengths are correlated). The properties of PCA can be applied to MLR in order to avoid such collinearity problems. In principal component regression (PCR), the X matrix is substituted by the T matrix computed by the PCA (only the dimensions corresponding to the largest eigenvalues are kept). By doing so, the multi-linear regression can be expressed as:
	 (3.19)
	 (3.20)
	As in MLR, B and E represent the regression parameters and residuals, respectively. The matrix TTT is diagonal since the columns of T are orthogonal, so the elements of the inverse are merely the reciprocals of the diagonal elements (Jackson, 1991). In doing so, PCR avoids the problems linked to collinearity while reducing the noise present in the independent variable matrix.
	However, in the PCR approach, the decomposition of X (i.e. projection onto a lower latent variables subspace) is performed without using information from Y, and therefore, this lower dimensional space is not necessarily the most predictive of Y. It is also important to note that only selecting the components with the highest variance (large eigenvalues) may also be problematic; Jolliffe (1982) states that low-variance principal components may be more important to the regression than higher variance ones. That is, the dominant variance directions in X are not necessarily the most important for predicting Y.
	Projection to latent structures
	The third and last regression method discussed here is the Projection to Latent Structures (PLS), also known as the Partial Least Squares. This method was used throughout this work to build the empirical latent variable models linking the regressor data (e.g. image data) to the quality data (e.g. mechanical properties). PLS was selected in this work since the columns of X were highly collinear.
	According to Geladi and Kowalski (1986), the PLS analysis consists of simultaneous “internal” and “external” relations in which the X and Y data blocks are first taken individually (external relation) and then linked (internal relation). The “external” relation is essentially similar to a classic PCA on each of the X (N(K) and Y (N(M) matrices taken separately.
	 (3.21)
	 (3.22)
	where the P (K(A) and Q (M(A) matrices contain the loading vectors that best represent the X and Y spaces, whereas T (N(A) and U (M(A) each represent the latent variable space containing a number A of PLS components (i.e. latent variables). The number of PLS components or latent variables A (A(min(K,N-1)) is often selected using a cross-validation procedure. The E (N(K) and F’ (N(M) matrices contain the residuals. Using these relations, the “internal” relation essentially links Equations 3.21 and 3.22 by ensuring that T and U are maximally correlated, thus minimizing the error H (N(A) (MacGregor et al., 2008).
	 (3.23)
	 (3.24)
	 (3.25) 
	 (3.26)
	where W* (K(A) contains the X-weights defining the common latent variable space T (N(A) relating X and Y. Using this structure, the Y-block residuals are now represented by F (N(M). The W matrix is the regression coefficients for each latent variable in terms of the “deflated”, or dimensionless, X-matrix in the same way W* expresses T in terms of the original X-matrix (Equation 3.25). Hence, PLS attempts to extract the relationship between regressor variables (X) and response variables (Y) by assuming that they are generated by a common set of underlying factors T (MacGregor et al., 2008). The model structure is graphically illustrated in Figure 3.10. 
	Figure 3.10. Schematic representation of the PLS model.
	In PLS as in PCA, the X-data is represented by the outer product TPT in which the loadings matrix P represents the orientation of the latent variable subspace within the original X-variable space. Using this new subspace, the score matrix T represents the new coordinates of the X-data defined by the loadings (P). The novelty here comes from the Y-data, modelled as the outer product TQT (Equation 3.24). In fact, the loadings matrix Q can be seen as the P counterpart, representing the orientation of the latent variable subspace within the original Y-variable space.
	An important distinction must be made at this point between P and W*. According to MacGregor et al. (2008), the X-loadings P are the coefficients of least squares regression of T onto X but are seldom used in the interpretation of the results. Rather, W* is used to interpret how X is related to T in the same way the loadings are used in the PCA analysis.
	By combining Equations 3.24 and 3.25, the PLS latent variable model can be re-organized as a simple prediction equation involving a set of pseudo-regression coefficients BPLS (K(M), similarly as for multiple linear regression (Wold et al., 2004).
	 (3.27)
	The term W*QT appears in the previous equation as a mean of linking the X and Y matrices. In fact, relationships between the variables in these matrices are visualized by overlaying the wi* and qi plots for each latent variable, forming the wi*qi plot, also known as loadings biplot (MacGregor et al., 2008). Use of the biplot will be illustrated in Chapters 5 and 7.
	Another commonly used metric for judging the importance of the X-variables on Y is the variable importance on the projection (i.e. VIP). The VIP score for the kth variable for a single response y is computed according to Eriksson et al., (2001):
	 (3.28)
	where a = 1,2…,A, K is the number of columns of X (i.e. variables), wak is the loading weight of the kth variable in the ath component, and ta, wa, and qa are the ath column vectors of T, W, and Q, respectively. 
	It is generally accepted in practice that variables having a VIP > 1.0 are highly influential, values between 0.8 < VIP < 1.0 indicate moderately influential variables, and VIP < 0.8 represent less important variables (Eriksson et al., 2001). The unity threshold comes from the fact that the average of the squared values of the VIPs is equal to 1.0. The greater-than-one rule is often used as a selection criterion (Eriksson et al., 2001; Olah et al., 2004; ElMasry et al., 2008; MacGregor et al., 2008), and has a particular meaning when the data is autoscaled to unit variance.
	3.2.5 Deterministic vs. stochastic image analysis

	Machine vision can be defined as “interpretation of an image of an object or scene through the use of optical noncontact sensing mechanisms for the purpose of obtaining information and/or controlling machines or processes” (Marshall and Martin, 1992). According to Liu and MacGregor (2005), the most successful techniques and their applications in machine vision research have been confined to a specific type of environment where certain assumptions can be made about the scene. In typical manufacturing industries, an image provides a scene of objects with predetermined shape, structure and orientation; the primary goal of the inspection is to check whether there are missing objects in the image or whether objects in the image are in desired state (size, location, orientation). Image analysis from such industries will be referred to here as “deterministic”. The American Heritage Dictionary (2009) defines the term deterministic as: “every state of affairs is the inevitable consequence of antecedent states of affairs”. This definition underlines the predictable nature of the sample under scrutiny.
	Images collected in the process industries belong to a different class of problems where the major concern is some ill-defined visual appearance of products or processes (Liu, 2004). Examples of this include the state of mineral flotation froth (Bartolacci et al., 2005), the aesthetics of manufactured countertops (Liu and MacGregor, 2006) or injection-molded plastic panels (Liu and MacGregor, 2005) and the grading of softwood lumber (Bharati et al., 2003). Simple assumptions about the scene, such as the size, location or orientation of the features, can no longer be made due to the seemingly random nature of these samples. Machine vision has seldom been applied to those processes and has had little success (Liu, 2004). Image analysis from such industries will be referred to here as “stochastic”. The New Oxford American Dictionary (2007) defines the term stochastic as: “a random probability distribution that may be analyzed statistically but may not be predicted precisely”. Taking the case of softwood lumber grading, this statement may be interpreted as: it may be possible to determine that pine and spruce have statistically different wood grains, but it is not possible to predict the shape of a bark inclusion in the next sample.
	3.2.6 Multivariate image analysis

	In general terms, multivariate image analysis (MIA) is the application of PCA to multispectral images. Early work by Ready and Wintz (1973) used PCA for data compression and information extraction in 6-channel multispectral imagery. Later, Donker and Mulder (1977) introduced the score and loading plots in order to classify pixels in Landsat images. However, MIA as it is now known was not developed until Esbensen and Geladi (1989). MIA relies on the assumption that local intensity variations can be extracted by classifying each pixel according to their spectral characteristics without considering their spatial location within the image. Coupled with regression techniques, MIA can be used to extract the relevant features from digital images in order to build models between the sample quality and the visual features of an image. It has been widely used in fields ranging from combustion flame analysis (Yu and MacGregor, 2004; Szatvanyi et al., 2006) to flotation froth (Liu et al., 2005), snack food (Yu and MacGregor, 2003; Yu et al., 2003) as well as softwood lumber grading (Bharati et al., 2003). A complete overview of MIA can be found in Geladi and Grahn (1996) while applications to hyperspectral imaging are discussed in Grahn and Geladi (2007).
	The channels of a multivariate image are highly correlated with each other, as they represent congruent images capturing the same spatial information (Bharati et al., 2003). In this way, a multivariate image X (x(y(() consists of two spatial dimensions (x and y) and a spectral dimension ((). In order to analyze such large amounts of highly correlated data, MIA relies on multi-way PCA (MPCA) methods (Esbensen and Geladi, 1989). In the same way PCA decomposes a 2-D matrix X (N(K) into a lower dimensional subspace defined by the loadings and score vectors (pa and ta), MPCA decomposes a 3-D matrix X (x(y(() into a set of score matrices Ta and loading vectors pa:
	  (3.29)
	where ( is the Kronecker product, E (x(y(() is the array of residuals, and each score matrix Ta is a representation of the image in terms of the spectral features explained by each component and defined by the loading vectors.
	Nevertheless, the above MPCA decomposition is rarely used for practical purposes. Rather, the 3-D array X is first unfolded into a 2-D matrix, which is in turn decomposed using a standard PCA. The term “unfolding” was first coined by Wold et al., (1987) and consists of reorganizing the pixels into a matrix X of dimensions (xy(() as shown in Figure 3.11 (i.e. the spectrum of each pixel are collected row-wise in matrix X). In doing so, the spatial organization of the pixels (e.g. texture) is destroyed. Using this unfolding operation, the multi-way PCA method treats each pixel as a separate object independent of its neighbors (Bharati et al., 2003). Such a decomposition of the variance-covariance structure of the spectral matrix allows extracting and classifying the spectral signature of each pixel regardless of their spatial location.
	Figure 3.11. Reorganizing a 3-D image array (X) into a long and narrow 2-D matrix (X) prior to PCA decomposition.
	While it is possible to directly perform a standard PCA decomposition on the unfolded spectral image, an additional step is often preferred. In image analysis X usually has a much larger number of rows than columns (i.e. xy>>(). Therefore, it is much less computationally intensive to perform PCA on the kernel matrix Z, shown below, which has much smaller dimensions (((( vs. xy(() (Geladi and Grahn, 1996; Liu and MacGregor, 2007):
	  (3.30)
	If a PCA model is to be developed on a set of N images, rather than on a single one, the kernel matrix is adapted to take into account the entire image set:
	 (3.31)
	When PCA is applied to a data matrix, the clustering pattern of the extracted features is observed using ti-tj score scatter plots (i(j). However, when applied to a multivariate image, these score plots are typically shown as color-coded 2-D density histograms in order to ease visual interpretation, since the large number of observations in the score plot is equal to the number of pixels in the image (i.e. xy observations for each image). Pixels having similar spectral features in the original image yield similar (t1, t2) score combinations, which results in many overlapping points in this scatter plot (Figure 3.12). The number of overlapping pixels represented by a single point in a score plot is called the pixel density. This color-coding scheme uses black to represent bins containing no pixels, and various shades of red, orange, and yellow to represent increasing pixel densities, and ultimately uses white to represent bins having the highest pixel density. 
	The tendency of similarly colored pixels to project to similar t1-t2 locations can be used to analyze the spectral information contained within the image. Thus, segmentation may be performed in the lower dimensional space (i.e. score space) instead of in the original image space. To take a simple example, a region of interest (ROI) drawn in the score histogram in Figure 3.12 as been hand-selected and masked in blue and all the pixels with color characteristics corresponding to those t1-t2 coordinates were traced back into the original image. In this case the ROI was selecting the green leaf coloring. By dismissing the spatial organization of the pixels in the image, the MIA analysis could effectively locate any green pixels anywhere in the image. While simple, this methodology has been used successfully in such applications as softwood lumber grading (Bharati et al., 2003) and flame analysis (Szatvanyi et al., 2006). 
	Illustrated here using RGB images, this method has the added advantage of strongly simplifying the analysis of spectral images. By identifying the main sources of variance within the spectra, the MIA can help identify important features within the image that may not easily be detected otherwise. 
	Figure 3.12. Illustration of a MIA t1-t2 score histogram of a maple leaf (A) in which all the pixels having a similar color combination, in this case green, are projected to similar t1-t2 coordinates (B).
	An alternative way to visualize the image features extracted by each principal component is obtained by refolding the score vectors ta (xy( into score matrices Ta (x(y) according to the original spatial location of each pixel in the image X. This step is akin to computing Ta directly using Equation 3.29. The score matrices Ta are then displayed as univariate gray-level images after appropriate scaling is applied (Figure 3.13). As mentioned previously, the first component captures the largest possible source of variance within the image while each subsequent score vector captures smaller sources of covariance. In RGB images, T1 and T2 typically represent the vast majority of the information ((99%), and T3 is often associated with irrelevant information and/or noise.
	MIA extracts spectral features independent of their spatial location. It is this characteristic that makes it useful for relating images to product quality properties (Bharati, 2002; Yu, 2003). However, this disregard for the spatial information makes it unsuitable for the analysis of spatial features (i.e. image texture), therefore limiting its application to a variety of image analysis tasks (Liu, 2004). The next sections discuss a number of methods that take spatial features into account.
	Figure 3.13. A color image alternately represented as a set of gray-scale images (red, green, and blue) or as a set of gray-scale score images (T1, T2 and T3).
	3.2.7 Texture Analysis

	The unevenness patterns of the pixels in a region give rise to the visual perception of image texture (Xu and Chen, 2006). Texture reflects the variations of the optical properties of object surfaces and different materials usually produce distinctive surface textures. This makes image texture an important source for discriminating information and has been a subject of intense study by many researchers. Liu (2004) defines 4 classes of methods for texture analysis:
	Statistical methods
	They describe texture of regions in an image through higher-order moments of their grayscale histograms (Tuceryan and Jain, 1998). First order moments (e.g. mean) do not consider pixel neighbor relationships, second order moments consider the relationship between groups of two pixels and third and higher order moments consider relationships among three or more pixels (Hall-Beyer, 2008). While higher-class methods exist, they are not commonly implemented due to long calculation times and difficulties in interpretation (Akono et al., 2003). The most frequently cited statistical method is the gray-level co-occurrence matrix (GLCM) proposed by Haralick et al. (1973). This method is based on the use of second order statistics of the gray-scale image histograms.
	Structural methods
	These methods describe the texture as a combination of well-defined texture elements. This may be achieved, for example, through regularly space parallel lines (Tuceryan and Jain, 1998). These methods however appear to be limited to describe very regular textures and are rarely used in practice (Gonzalez and Woods, 1993).
	Model-based methods
	According to Liu (2004), these methods generate an empirical model of each pixel in the image based on a weighted average of the pixel intensities in its neighborhood. For example, fractal models presented by Keller et al. (1989) create unique fractal patterns that describe the image texture by following a set of well-defined rules. According to Mandelbrot (1983), fractals provide a proper mathematical framework to study the irregular, complex shapes found in nature.
	Transform based
	These methods convert the image into a new form using the spatial frequency properties of the pixel intensity variations (Liu, 2004). These methods include the Fourier and Wavelet transforms. Unlike the infinite wave functions used in the Fourier transform, a wavelet is a finite-length fast-decaying oscillating wave. This characteristic provides the wavelet transform a distinct advantage over the Fourier transform when representing non-periodic functions containing discontinuities and/or sharp peaks. The finite duration of the wavelet also allows space/time-frequency decomposition of the image signals.
	3.2.7.1 Gray-level co-occurrence matrix

	Gray-level co-occurrence matrices (GLCM) have shown their worth for quantifying image texture in a number of application such as for classifying images of steel sheets (Bharati et al., 2002, 2004), flotation froths (Bartolacci et al., 2005) and even evergreens (Samal et al., 2006). GLCM is based on second-order statistics (Akono et al., 2003) that compares two neighboring pixels at a time and compiles the frequency for which differing gray-levels can be found within a restricted area. A rough image will have numerous and significant black/white transitions whereas a smoother image will not. The GLCM texture analysis is used in Chapter 7 to identify fiber-to-fiber as well as sample-wide variations in extruded wood/plastic composites.
	A gray-scale image represents the entire range of light intensities as a finite number of levels of gray. In practice this number is often 256 (encoding an image in 8 bits = 28 gray-levels), but can be much greater in high-end equipment. Using this scheme, each pixel of a gray-scale image is represented by a value between 0-255; allowing the image to be treated as a simple matrix.
	The GLCM is a tabulation of how often different combinations of pixel brightness values (gray levels) occur in an image (Hall-Beyer, 2008). According to Haralick et al. (1973), three parameters must be taken into account when computing the GLCM of an image: (1) the number of gray-levels, which can be lower than the number of gray levels of the image (e.g. 256 for 8 bits), (2) the length of transition and (3) the angle of displacement. As illustrated in Figure 3.14A, the algorithm essentially compares the gray-level of a reference pixel to that of neighboring pixel (in this figure the neighbor is located directly to the right of the reference, noted a [0,1] transitions in a Cartesian-style reference). However, to analyze coarser textures, this second pixel can be taken at a certain distance, which is the length of transition. In Chapter 7, we use horizontal transitions of [0,2], [0,5], [0,10] and vertical transitions of [2,0], [5,0], [10,0]. Combining these results allows the analysis of textures at different resolutions. The result can be considered a roughly diagonal matrix in which increasing distance from the main diagonal indicates increasing roughness (Figure 3.14B).
	Figure 3.14. Illustration of texture analysis using the GLCM algorithm: (A) converting a gray-scale image into numerical values, and (B) compiling the differences in intensity between two neighboring pixels in the [0,1] direction.
	A number of scalar textural descriptors (or textural features) have been proposed for quantifying the texture of an image from the GLCM matrices. The most common of these descriptors, often referred to as Haralick features, are shown in Table 3.1. Indices i and j are the row and column numbers in the GLCM matrix, pi,j is the normalized value of an element (i,j) of the matrix and μ and σ are average and standard deviation of pi,j over i and j. This normalization ensures that the sum of the elements of the matrix is equal to 1. 
	Table 3.1. Common Haralick features computed from the co-occurrence probabilities (Haralick, 1979).
	Energy (uniformity)
	(3.32)
	Entropy
	(3.33)
	Maximum probability
	(3.34)
	Contrast
	(3.35)
	Inverse difference moment
	 where i(j
	(3.36)
	Correlation
	(3.37)
	Optimization of this method requires the fine-tuning of various parameters; the distance of transition depends on the size of the textural features while the angle of displacement depends more on surface isotropy. Raising the number of gray-levels simultaneously increases the sensitivity to low-contrast textural features, as well as the size of the GLCM matrix, occupying more memory and requiring calculation time.
	3.2.7.2 Wavelet texture analysis

	Wavelet Texture Analysis (WTA) has been used successfully in numerous process applications ranging from analysis of flotation froth, to countertops (Bartolacci et al., 2005; Liu and MacGregor, 2006). WTA is typically suited in applications where data contains both large and small scales of variations, in which case it is capable of isolating the former from the latter. To take a simple example, this is akin to distinguishing between daily, weekly and seasonal variations in temperature. In this thesis, WTA is used in Chapter 5 to determine the degree and direction of stretching of plastic films blends.
	In wavelet analysis, a continuous signal f(x) is decomposed in terms of a family of orthonormal bases  obtained through dilation and translation of a mother wavelet :
	 (3.38)
	where m and n are the continuous scale and shift parameters, respectively (m ( Z+ and n ( Z). For this task, numerous mother wavelets have been proposed in the literature (Burke Hubbard, 1998). According to their orthonormal property, the continuous wavelet transform (CWT) coefficients (cm,n) can then be defined as the convolution of the signal with these wavelet bases.
	 (3.39)
	The coefficients are maximized when the frequency of the signal is equivalent to that of the dilated wavelet. The discrete wavelet transform (DWT) approximates the continuous wavelet transform by recursively decomposing the original signal at a dyadic scale: each level of decomposition differing by a factor of two from the preceding resolution (Teppola and Minkkinen, 2000).
	 (3.40)
	 (3.41)
	where j ( Z+ and k ( Z. In practice, it was shown by Mallat (1989) that orthogonal wavelet analysis could be implemented using the filters traditionally used in the signal processing field. The filter-based implementation makes use of a scaling function ((x) used to dilate the mother wavelet ψ(x) in order to have it correspond to the desired level of scrutiny. The sequences h0[k] and h1[k] are low- and high-pass discrete filters used in the implementation of the wavelets (Vetterli and Kovacevic, 1995; Liu, 2004):
	 (3.42)
	where
	 (3.43)
	 (3.44)
	Using these equations, it can be shown that the DWT can be computed for any level j and position l without explicitly using ((x) and ψ(x) (Liu, 2004).
	 (3.45)
	 (3.46)
	where
	 and   (3.47)
	  and   (3.48)
	where [·]↑2 j denotes up-sampling by a factor of 2j (dyadic scale), j is the scale index and and l is the translation index (Mallat, 1989; Daubechies, 1992; Rioul and Duhamel, 1992). Two types of DWT coefficients characterize the signal: the detail coefficients (dj,l) characterizes the match between the mother wavelet and the original signal at a scale (j) and a position (l) while the approximation coefficients (aj,l) corresponds to the remaining information after extraction of the features by the detail coefficients. This rougher representation of the signal is then used as the basis for the dj+1,l coefficients. Recalling the continuous coefficients (cm,n), the discrete coefficients of a signal f(k) can be computed as the convolution of the signal expressed in terms of k (a positive integer) and the wavelet or scaling functions (Mallat, 1989; Daubechies, 1992; Liu and MacGregor, 2005, 2006):
	 (3.49)
	 (3.50)
	The values of these coefficients are maximized when the frequency of the dilated wavelet matches that of the signal. Multiresolution analysis is achieved by associating the dilated wavelet and the wavelet coefficients (aj,l and dj,l) to low-pass and high-pass filters, respectively. As shown in Figure 3.15, the first-level of decomposition extracts the highest frequency features d1f(x) from the original signal, leaving behind a slightly smoother approximation a1f(x) (not shown here). Level 2 then extracts the highest frequency information d2f(x) among the remaining details 2j times larger than the previous, from a1f(x), leaving an even smoother approximation of the original image. Each successive level then isolates a new level of coarser details from an increasingly simplified low-pass approximation.
	Figure 3.15. A discrete wavelet transform applied to a signal illustrating 5 successive decomposition level coefficients and the remaining 5th level approximation of the original signal. Based on Burke Hubbard (1998).
	Analysis of a 2-D image, rather than a 1-D signal, can be achieved through the proper combination of horizontal and vertical 1-D wavelets and their corresponding scaling functions (Vetterli and Kovacevic, 1995; Burke Hubbard, 1998). One way to perform this is through a separable solution, which uses separable filters (i.e. h0 and h1) within a multidimensional filter bank as shown in Figure 3.16. A filter bank is an array of band-pass filters that separates an input signal into multiple output components, each one carrying a subband frequency of the original signal.
	The algorithm illustrated in Figure 3.16 is basically an extension of the 1-D algorithm discussed earlier in that it converts a low-level input signal (here a gray-scale image Aj-1) into higher-level detail signals (horizontal, vertical and diagonal detail images DjH, DjV and DjD) plus a residual approximation signal (approximation image Aj). This is achieved through a two-step process. 
	Figure 3.16. A 2-D separable solution for applying a discrete wavelet transform to an image. Adapted from Liu et al. (2005).
	First, each row is filtered using the low- and high pass filters (h0 and h1), followed by a dyadic column decimation. Then, the resulting low- and high-frequency information along the horizontal direction is filtered vertically (i.e. along each column) using both filters a second time. This second filtering step is followed by a dyadic row decimation. As mentioned, the output of this algorithm consists of 4 images containing the wavelet coefficients:
	 Approximation image Aj captures the low-pass information in both directions and is used as an input approximation image for the (j+1)th level WTA decomposition.
	 Horizontal detail image DjH captures the low-pass horizontal and high-pass vertical features of the image, effectively capturing the high frequency horizontal details (i.e. the vertical edges). 
	 Vertical detail image DjV captures the high-pass horizontal and low-pass vertical features of the image, capturing the high frequency vertical details (i.e. the horizontal edges). 
	 Diagonal detail image DjD captures the high-pass information in both directions. This sensitivity to high frequency horizontal and vertical details essentially conveys information on the high frequency diagonal details. 
	It is important to note that the jth level images are 4 times smaller than the (j-1)th level images due to the dyadic column and row decimations. This reduction in resolution between each level allows the algorithm to extract larger and larger textural features. 
	An example of a 2-level 2-D wavelet decomposition is presented in Figure 3.17 in which progressively larger features are removed from the original image with each level. Further information on image analysis using multidimensional wavelets can be found in Burke Hubbard (1998) and Takei et al. (2004).
	Figure 3.17. Illustration of a 2-D wavelet decomposition. The 1st level approximation image is obtained by removing the 1st level detail coefficients from the original image. This methodology is applied recursively to produce each successive higher-level approximation image. Only the horizontal detail coefficients are shown here. Based on Walker (1999).
	3.2.8 Multiresolutional multivariate image analysis

	Since MIA is intended to extract the spectral features of a multivariate image independently of their spatial location, it is unsuitable for the analysis of spatial (i.e. textural) features (Liu, 2004). While textural methods such as GLCM and WTA are intended to analyze such spatial features in gray level images, they cannot readily be used in multivariate images. Multiresolutional MIA (MR-MIA) is intended to combine the characteristics of both these classes of methods. According to Liu and MacGregor (2007), as well as Teppola and Minkkinen (2000), this can be achieved in one of two ways:
	MR-MIA I
	1. Apply multiresolution decomposition on each image gray-scale forming the multivariate image (i.e. images at each wavelength) down to an appropriate level J. In practice, this often implies decomposition levels ranging from 3 to 6. If there are ( variables in the original multivariate image (i.e. an RGB image would have (=3), multiresolution decomposition yields a new multivariate image with ( variables at each resolution. 
	2. Apply a PCA to each of the J multivariate images. This gives score images and loading vectors at each resolution.
	Figure 3.18. Illustration of the MR-MIA I algorithm for an RGB image ((=3) using J=4 decomposition levels in the wavelet texture analysis (WTA) and 2 principal components in the principal component analysis (PCA).
	MR-MIA I makes it possible to determine the important factors present at each decomposition level and at each wavelength. In doing so, it characterizes the surface with a very high level of precision. This algorithm is best used when there are important interactions between the spectral and spectral features, for example when some textural features are only observed at specific wavelengths. 
	However, MR-MIA I implies a full multiresolutional decomposition for each observed wavelength in the image. While this may be feasible for RGB imaging, it quickly becomes overwhelming in hyperspectral imaging. It would imply hundreds of parallel texture analyses, each of which followed by a PCA decomposition. Doing so leads to very lengthy calculations and large amounts of data to interpret. In such a case, the user would be well advised to perform an initial wavelenght selection on the spectral image. Chapter 6 deals exclusively with the subject of wavelenght selection. 
	MR-MIA II
	1. Apply a PCA to the original multivariate image in order to obtain a single set of score images and loading vectors.
	2. Apply a multiresolution decomposition on each score image. If there are A principal components in the PCA, there will be A multiresolution decompositions, each performed down to J levels.
	By minimizing the required computations, MR-MIA II also simplifies the interpretation of the results. In practice, the PCA reduces the information down to a very low number of significant components before performing the texture analyses. Nevertheless, MR-MIA II relies on the hypothesis that there is little or no interaction between the spectral and spatial features. Doing so effectively smoothes over local variations when they are strongly correlated. In practice however, weak interaction between spectral and spatial features is not uncommon: spatial features captured by an RGB camera, for example, often appear simultaneously in the red, green of blue channels. 
	In spite of these shortcomings, MR-MIA has been used successfully. Gao and Ren (2005) used MR-MIA I to differentiate between nickel, cadmium, copper and zing surfaces whereas Teppola and Minkkinen (2000) and Liu et al. (2005) both used MR-MIA II to study a water purification plant and a zinc flotation column, respectively. In this study, MR-MIA II will be used to analyze an extrusion film-blowing process in Chapter 5.
	Figure 3.19. Illustration of the MR-MIA II algorithm for an RGB image using 4 decomposition levels in the wavelet texture analysis (WTA) and 2 principal components in the principal component analysis (PCA).
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	Chapter 4
	On-line prediction of crystallinity spatial distribution across polymer films using NIR spectral imaging and chemometrics methods*
	Résumé

	Un capteur basé sur l’imagerie en proche infrarouge (NIR) rapide et non intrusif a été mis au point dans cet article afin de faire le suivi des variations spatio-temporelles de cristallinité à la surface des films de polymères. Une approche par régression et analyse d’images multivariées (MIA/MIR) a été proposée et comparée aux techniques de calibration NIR utilisant des spectres moyens ou des dérivées du second ordre. Chacune des approches a permis d’obtenir des prédictions des variations de cristallinité locales et globales d’échantillons de polymères HDPE, LDPE et PP. Nos résultats montrent que de faibles variations dans la cristallinité introduites par des changements dans les vitesses de refroidissement peuvent être prédites à l’intérieur des erreurs expérimentales. Les distributions spatiales de cristallinité ont également été validées et s’avèrent cohérentes avec les conditions de traitement.
	Abstract

	A rapid non-intrusive on-line NIR imaging sensor is developed for monitoring spatio-temporal crystallinity variations across the surface of polymer films, which strongly affects the mechanical, optical and barrier properties. A multivariate image analysis and regression approach (MIA/MIR) is proposed in this work, and compared with three other techniques, for predicting both the local and global crystallinity variations of HDPE, LDPE, and PP polymer samples. Subtle variations in crystallinity introduced by changes in cooling rates were predicted within experimental errors. Predictions of crystallinity spatial distribution were also validated and found consistent with polymer processing knowledge.
	* Gosselin R., Rodrigue D. and Duchesne C., On-line prediction of crystallinity spatial distribution across polymer films using NIR spectral imaging and chemometrics methods, Can. J. Chem. Eng., 86, 869-878 (2008).
	4.1 Introduction

	The global molded plastics market was estimated to exceed 156 million tons in 2005, a large portion of which was taken up by common semi-crystalline polymers; the consumption of low-density polyethylene (LDPE), high-density polyethylene (HDPE) and polypropylene (PP) reaching 18, 29 and 40 million tons respectively (Murphy, 2003). These materials are very sensitive to the conditions in which they were produced, especially the geometry, pressure and cooling rates are known to influence their crystallinity, which in turn strongly affects their mechanical, optical and barrier properties (Rastogi et al., 1991; Apichartpattanasiri et al., 2001; Albano et al., 2003; Pantani et al., 2005; Shepherd et al., 2006; Dusunceli and Colak, 2008). Controlling the amount of crystallinity is thus essential when working with semi-crystalline polymers (Albano et al., 2003). However, theoretically establishing a relationship between the processing conditions and the final microstructure of a polymer is complex and time consuming (Pantani et al., 2005). On-line quality control of plastic film, either cast or blown, is typically limited to shape and clarity monitoring as well as detecting other irregularities like impurities, holes and scratches. While efficiently detecting macroscopic defects, these methods are somewhat ineffective at identifying smaller characteristics such as crystallinity variations, leading to film yields between 90-95% typically (Osborn and Jenkins, 1992). Rapid and non-intrusive tools for on-line crystallinity measurement would help improve quality control of thin polymer products.
	Several methods are currently being used to determine polymer crystallinity, but most of these provide off-line measurements, are destructive, and provide single point measurements. They often rely on small samples sizes and require significant handling times. The most common off-line method is differential scanning calorimetry (DSC), which relies on the heat associated with melting of small samples, typically less than 20 mg. DSC has been widely used in polymer analysis (Batur et al., 1999; Saeki et al., 2003; Sato et al., 2003; Albano et al., 2003; Watanabe et al., 2006; Pelsoci, 2007). Numerous microscopy methods also exist. Of these, atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical microscopy have all been used in micro-structural characterization of polymers (Kantz et al., 1972; Butler et al., 1995; Pantani et al., 2005). These methods have a slow acquisition time and may require surfacing and/or vacuum conditions. Nuclear magnetic resonance (NMR) spectroscopy has also been used to obtain physical, chemical and structural information about polymer phases (Bergmann, 1981; Pelsoci, 2007). Application of this method is typically expensive, time consuming and destructive (Vailaya et al., 2001; Saeki et al., 2003). X-ray scattering methods are a family of non-destructive methods based on the scattered intensity of a beam hitting a sample and providing information about the average structure and composition (Brown et al., 1973; Polizzi et al., 1991; Albano et al., 2003; Pantani et al., 2005; Pelsoci, 2007; Briskman, 2007). As these methods depend on the incident and scattering angles, the polarization and wavelengths of the beams, they are not easily adapted to 2-D surface scans.
	Various vibrational spectroscopic techniques, such as near-infrared (NIR), have also been proposed for estimating polymer crystallinity since they are rapid and non-intrusive, they require little or no sample preparation, and provide a wealth of information (Lachenal, 1995). However, most of the methods published in the past are based on single point measurements (i.e. using probes) and result in a separate calibration model for each type of polymer to be monitored. Estimating crystallinity over a larger area using these approaches require either moving the sample or the probe, which is difficult to perform on a high-speed production line, or using probe arrays, which generally result in coarse spatial coverage of the surface. However, fine spatial measurements are key in identifying local crystallinity gradients that may compromise the whole. The mechanical, optical and barrier properties of an entire sample may fall below specifications because of local discrepancies that may be overlooked by a coarse spatial analysis. Furthermore, rich spatial data would also be useful for precisely diagnosing operational problems in the production line, such as non-uniform cooling of the polymer products.
	Nevertheless, NIR spectroscopy has been used to analyze the extent of crystallization (Lachenal, 1994; Stuart, 1996; Sato et al., 2003; Pantani et al., 2005; Pelsoci, 2007), the orientation (Buffeteau et al., 1995) and the density (Saeki et al., 2003; Watanabe et al., 2006) of semi-crystalline polymers. Since these spectroscopic techniques are based on absorbance, they are usually applied to films or thin samples (< 2 mm) in which case the average degree of crystallinity is known to remain constant along the thickness (Pantani et al., 2005). While different methods have been reported, FTIR transmission spectroscopy remains the standard technique when studying polymer crystallinity when applied to microtomed slices (Pantani et al., 2005), blown films (Buffeteau et al., 1995) or thicker samples (0.5 - 2 mm) (Lachenal, 1995). Infrared reflection spectroscopy has also been used to study polymer crystallinity; Sato et al. (2003) notably collected diffusely reflected radiation, or average spectra, of plastic pellets by placing them on rotating cells. Work has also been reported on real-time crystallinity estimation by single-point laser Raman spectroscopy (Batur et al., 1999; Cherukupalli and Ogale, 2004).
	The objective of this work is to develop a non-intrusive on-line sensor for monitoring spatio-temporal crystallinity variations across the surface of thin polymer materials. While single point NIR vibrational spectroscopy has proven useful in the study of polymer crystallinity, this work focuses on combining NIR imaging spectroscopy and multivariate image analysis and regression methods (MIA and MIR) to efficiently obtain the crystallinity spatial distribution of a sample. The proposed methodology is illustrated using thin polyolefin samples produced via compression molding under different cooling conditions. Non-isothermal cooling rates throughout the cooling circuit ensure local crystallinity variations within a single sample. A total of four different methods are compared in this study: PLS regression between the full averaged NIR spectra or 2nd order spectra derivatives and crystallinity measurements (method 1 and 2), and MIA applied to the NIR spectra or 2nd order spectra derivatives followed by regression (method 3 and 4). The results obtained for 3 polymers (HDPE, LDPE and PP) are incorporated into a single model, rather than producing a model for each, in order to highlight their capability to cope with complex datasets as may be encountered with polymer blends or composites. Local crystallinity estimates may be used in process monitoring, fault detection and diagnosis (i.e. identification of non-uniform cooling rates) or for predicting both the local or overall polymer properties (i.e. mechanical, optical, orientation, etc.) of thin samples (< 2 mm) for automatic process and quality control applications. As with any surface analysis, it may also be used with caution on thicker samples, monitoring operating conditions rather than inferring the properties of the product.
	4.2 Experimental
	4.2.1 Materials and processes


	Polymers used in this study were commercial PP (Pro-fax PF-814, ( = 0.902 g/cm3; MFI = 3.0 g/10 min) supplied by Basell, HDPE (HDPE 3000, ( = 0.965 g/cm3; MFI = 8.8 g/10 min) by Pretromont and LDPE (Novapol LA-0219-A, ( = 0.919 g/cm3; MFI = 2.3 g/10 min) by Nova Chemicals.
	Sample molding
	A compression press was used to mould the polymers into thin films (100 ( 40 ( 1.5 mm). The batch process consists in molding 6 g of resin at 180(C under 3 tons of pressure for 10 minutes, long enough to remove any previous thermal history (Chew et al., 1989; Albano et al., 2003). The mould was then water cooled to release the sample. A total of 18 samples were produced, 6 for each polymer, using average cooling rates of 1, 2, 4, 5, 8 and 16(C/min. These changes in cooling rates will produce samples of different overall crystallinity. Moreover, the water-cooling circuit produced in-sample variability within the films. In other words, while each sample is characterized by its own average crystallinity, it also presents crystallinity patterns, or mosaics, across is surface.
	Differential scanning calorimetry
	DSC is a thermoanalytical technique measuring heat flow into a material as a function of temperature. The degree of crystallinity (() of a semi-crystalline polymer can be determined from the endothermic heat flow due to melting ((Hm), the exothermic heat flow due to crystallisation ((Hc) and the heat of fusion of the 100% crystalline phase ((H():
	  (4.1)
	Here, DSC thermograms were obtained using temperature ramps between 30-200(C at 10(C/min under a nitrogen atmosphere. The samples were approximately 7.5 mg and the tests were performed on a Perkin Elmer DSC 6. The fusion peak were found to be located at 110(C (LDPE), 138(C (HDPE) and 160(C (PP) and range respectively between 60-125(C, 90-155(C and 100-180(C. The heat of fusion of the crystalline phases ((H() used was 290 J/g (LDPE), 293 J/g (HDPE) or 207 J/g (PP).
	4.2.2 Image acquisition 

	The line-scan NIR imaging system used in this work is composed of a XenICs XEVA-USB-FPA camera (256 ( 320 pixels) coupled to a Specim ImSpector N17E grating spectroscope (slit: 30 m ( 14.3 mm) sensing between 900-1700 nm. Each scanned line of the sample is captured on the CCD array as a spatial/spectral image (Figure 4.1) consisting of 256 ( 320 pixels, providing a 0.5 mm/pixel spatial resolution and 2 nm/pixel spectral resolution. A hyperspectral image (R) of the entire sample is achieved by repeatedly displacing the sample perpendicularly to the spectroscope slit (along the y-axis). Each hyperspectral image consists of 500 juxtaposed line-scans, at 0.25 mm intervals.
	Figure 4.1. Line-scan NIR imaging system used to collect spatial/spectral reflectance images.
	Diffused light from a tungsten-halogen lamp was used as the light source. The raw signals of each spectral-spatial image (R) were transformed into reflectance units using a flat black image (B) and a true white image (W):
	 (4.2) 
	where rxy( is an element of the raw signal image, bx( and wx( are elements of the black and white calibration images, and ixy( is the standardized reflectance image (I). The flat black and true white images were obtained by collecting a spatial-spectral image leaving the lens cap in place (i.e. dark current), and by imaging a 99% reflectance standard sheet (Gigahertz-Optik), respectively. This simple calibration scheme was used since it successfully removed most the linear discrepancies encountered in the NIR images collected in this work. All images were captured using a single imaging system, under controlled lighting conditions, and over a short period of time. More advanced calibration techniques should be considered for long-term, industrial applications (Geladi et al., 2004; Burger and Geladi, 2005; Liu et al., 2007). Data acquisition was performed using a LabView 8.0 interface (National Instruments) and data analysis was performed using custom scripts developed in the Matlab R14 (MathWorks) environment.
	4.3 Methodology

	Predicting the polymer crystallinity spatial distribution requires building a regression model (i.e. correlations) between the information contained within NIR spectral images of the samples (X) and analytical crystallinity measurements (y) obtained using DSC. A total of four different methods were tested and compared in this work, differing mainly in the way NIR spectra are processed before applying appropriate regression techniques. Conventional NIR calibration methods involving averaged spectra (method 1) or 2nd order derivatives (method 2) and PLS regression are first tested, followed by a multivariate image regression (MIR) approach involving either the raw spectra (method 3) or its 2nd order derivatives (method 4). All spectra were initially submitted to an initial smoothing step using a symmetric 5-point smoothing window in order to stabilize the 2nd derivative computations.
	4.3.1 Collection of training dataset

	Initially, each of the 18 samples was fully scanned and calibrated into reflectance images  according to Equation 4.2, where k is the sample number (k = 1, 2, …18). A training data set was obtained by selecting a smaller region of interest (2.5 ( 5 mm or 10 ( 10 pixels) for each polymer sample as shown in Figure 4.2. These regions correspond to a multivariate sub-image  of size (10 ( 10 ( , where  is the number of spectral channels (= 256 in this work). These arrays were then unfolded into matrices  of size (100 (  by simply storing each spectrum row-wise. The  matrices are the common input of all four methods described in this section. Finally, each region of interest corresponding to the  sub-images were cut out of the samples and sent for DSC analysis. The resulting crystallinity measurements (yk) were stored in a response matrix y (18 ( 1).
	Figure 4.2. Schematic representation of the 4 methods: averaged spectra (method 1), 2nd order derivatives (method 2), MIR of the spectra (method 3) or MIR of 2nd order derivatives (method 4).
	4.3.2 PLS models based on average spectra or 2nd order derivatives

	Method 1: averaged NIR spectra
	The first method simply consists of averaging all available reflectance spectrum obtained from the region of interest of a sample (i.e. column-wise averaging of each  matrix) and storing the averaged spectra of each sample in a regressor matrix X (18 ( ), as shown in Figure 4.2. A latent variable PLS regression model is then built between the averaged spectra matrix X and the corresponding crystallinity measurements Y as:
	 (4.3)
	 (4.4)
	 (4.5)
	where the P and Q matrices contain the loading vectors that best represent the X and Y spaces respectively, whereas W* contain the loading vectors defining the common latent variable space T relating X and Y. The E and F matrices contain the residuals. The number of PLS components or latent variables (A) was selected using a standard leave-one-out cross-validation procedure. PLS was selected in this case since the columns of X are highly collinear.
	Method 2: 2nd order derivative of the NIR spectra
	Method 2 uses the 2nd order derivative of the spectra  rather than the spectra themselves. The spectra derivatives were also averaged over the region of interest and then collected in regressor matrix X (18 ( () for each sample before building a PLS regression model with y (Figure 4.2). Taking second order derivatives is a commonly used pretreatment applied to NIR spectra (Chau et al., 1990). This offers a distinct advantage when sharp absorption bands are present in the spectrum (Whitbeck, 1981). It is preferred over the 1st derivative because it does not shift the peaks, allowing better interpretability. While the 2nd order derivative emphasizes spectral transitions, it remains insensitive to systematic shifts in spectra intensity. This can be seen with the 3 spectral bands emphasized in the original spectrum (centered around 1100nm, 1300nm and 1600nm) (Figure 4.3). Numerical approximation of the 2nd order derivative were used (Gerald and Wheatley, 1994) after smoothing of the line-scan in the spectral direction using a window of 5 pixels in order to reduce the effect of bad pixels (Savitzky and Golay, 1964). Numerical differentiation leads to the loss of two columns (i.e. spectral channels) in matrix X compared to using the spectra directly.
	Figure 4.3. Spectrum vs. 2nd derivative: 2-D line-scan of a HDPE sample (left) and 1-D spectra of a single spatial position (right). Dimensionless scale used. 
	4.3.3 Multivariate image regression applied to spectra or 2nd order derivatives

	Multivariate image regression (MIR) consists of a family of latent variable techniques used for regressing quality or response variables onto features extracted from a set of digital images. Image regression problems can be formulated in several ways, depending on the nature of the features extracted from the images, ranging from simple statistics computed for each spectral channel (i.e. mean, variance, etc.) to distribution features. The reader is referred to Esbensen et al. (1992) and Yu and MacGregor (2003) for more details on MIR problem formulation and methods. In this work, distribution features were extracted from NIR spectral images. These were obtained through a decomposition of spectral image data cubes (i.e. reflectance spectra - method 3, or 2nd order derivatives - method 4, see Figure 4.2) using multi-way principal component analysis (MPCA), which is the first step of a method known as multivariate image analysis (MIA) (Geladi and Grahn, 1996).
	Multivariate image analysis
	Originally introduced by Esbensen and Geladi (1989), it has been widely used in fields ranging from flame analysis (Yu and MacGregor, 2004; Szatvanyi et al., 2006) to flotation froth (Liu et al., 2005), snack food (Yu and MacGregor, 2003; Yu et al., 2003) as well as softwood lumber grading (Bharati et al., 2003). A complete overview of MIA can be found in Geladi and Grahn (1996). MIA relies on the basis that local intensity variations can be extracted by classifying each image pixel according to its spectral characteristics regardless of its spatial location within the image. Coupled to regression techniques, MIA can be used to extract the relevant features from digital images in order to build models between the sample quality and the visual features of an image.
	The unfolded spectra matrices  corresponding to the regions of interest selected for each polymer sample are first collected together in a single matrix  of size (1800 (  (18 samples ( 100 spectrum/sample). Principal component analysis is then used to decompose the image information into a set of A orthogonal loadings vectors pa (1 (  and score vectors ta (1800 ( 1) as shown below and schematically in Figure 4.4:
	 (4.6)
	where E (1800 ( ) contains the projection residuals (non zero when A < ). The loadings vectors (pa) are usually obtained using singular value decomposition (SVD) of a kernel matrix () (Geladi and Grahn, 1996) of much smaller dimensions (i.e. 256 ( 256). The score vectors are computed using . The first score vector t1 is the linear combination of the 256 spectral channels (defined by the loadings vectors p1) capturing the largest possible variance within the spectral matrix , while the second score vector t2 represents the second largest source of variance, and so on. The score vectors can therefore be viewed as a multivariate summary of each spectrum.
	A small number of components (A) are often found sufficient in practice to extract most of the relevant information within multivariate image data. The few score vectors can therefore be used as representative distribution features of the multivariate image. These are typically displayed using scatter plots of score vectors as shown in Figure 4.4 (t1-t2 score plot is illustrated) or as 2-D density histograms (Geladi and Grahn, 1996; Yu and MacGregor, 2003; Szatvanyi et al., 2006).
	Figure 4.4. MPCA decomposition of a hyperspectral image.
	Multivariate image regression
	Formulating a regression problem between such score scatter plot (or 2-D density histograms) and response variables was investigated by Yu and MacGregor (2003). It involves extracting a certain number of features (n) from the score plots (or histograms) obtained from each of the K images, collecting them in a regressor matrix X (K ( n), and building a regression model with the response variable of interest (i.e. crystallinity) y (K ( 1), as shown in Figure 4.2.
	The formulation used specifically for relating NIR spectral images to polymer crystallinity measurements is based on observing the clustering pattern of the NIR spectra of the three polymer types shown in Figure 4.5A. 
	Figure 4.5. Score histogram allows both polymer and cooling rate identification (A). Projection of the dataset onto a single vector (t12) according to an angle (r) allows dimensional reduction (B).
	This t1-t2 scatter plot was obtained by PCA decomposition of the spectral matrix  (1800 ( 256he two first score vectors explained 95.8% and 3.2% of the variance of  for method 3, and 77.7% and 11.1% for method 4, respectively. The spectra corresponding to each of the three polymer species appear as very distinct cluster as expected; NIR spectroscopy is often used for polymer identification. Furthermore, the spectral data corresponding to each polymer type also cluster according to cooling rates with a clear spatial orientation (Figure 4.5A, HDPE cluster zoom-in). Furthermore, this zoom-in illustrates that samples cooled at 4(C/min appear equidistant from samples cooled at either 1 or 16(C/min, indicating that these samples followed asymptotical crystallization rates. While the experimental equipment used in this study could not allow for faster or slower cooling rates than 1 to 16(C/min, it is expected that similar results could be obtained for a broader range of cooling rates, as long as the relationship between the spectral information and crystallinity remain unchanged. Thus, a crystallinity related vector t12 could therefore be obtained by projecting the spectral data shown in Figure 4.5A onto a linear combination of the first two score vectors (Figure 4.5B), and then building a simple linear regression model between t12 and y using ordinary least squares:
	 (4.7)
	 (4.8)
	The linear combination or, alternatively, the angle (r) of the t12 vector should be selected in such a way to maximize the correlation between t12 and y. A similar approach was discussed in Yu and MacGregor (2003) for score density histogram segmentation as one possible formulation of multivariate image regression problems.
	4.4 Results and discussion
	4.4.1 Prediction model building using the training dataset


	Summary statistics for the PLS models built on the training set are shown in Table 4.1 for methods 1 and 2. The number of PLS components (A) of each model were selected by a standard leave-one-out cross-validation procedure using the SIMCA-P+ V10 software (Umetrics, Inc.). Three cumulative multiple correlation coefficients were computed for quantifying the model predictive ability: R2X,cum is the cumulative percentage of the total variance in X used to explain y, R2y,cum gives the cumulative percentage of the total variance of y explained by the model, and Q2cum is the cumulative percentage of the total variance of y that can be predicted by the models using the cross-validation procedure. A total of 2 components for each model were selected through cross-validation. Model 2 based on 2nd order derivatives seems to provide a better fit of the data compared to using the averaged spectra (i.e. method 1).
	The results obtained for methods 3 and 4 are presented in Table 4.2 and Figure 4.6. The linear combination of the first two score vectors obtained using MIA (t12) was selected to maximize the predictive ability (i.e. Q2cum) of the models as shown in Figure 4.6. A r-ratio of 0.8 provides the best results for method 3 (R2y,cum = 0.991 and Q2cum = 0.923). For method 4, a r-ratio of 0.1 was found to provide the best MIR model using 2nd order derivatives (R2y,cum = 0.861 and Q2cum = 0.252). The lower predictive power (Q2cum) of this model may be explained by the fact that a low r-ratio implies that crystallinity is hardly related to the first score (t1) and much more to the second (t2). Since t1 represents the largest source of variation in the data (77.7%), it appears that the bulk of the information contained in the 2nd order derivatives hardly correlate to crystallinity. Additional MIA score vectors (i.e. t3, t4 and t5) were investigated for model 4, but these were found to be uncorrelated to crystallinity.
	Table 4.1 Summary statistics of the predictive ability of methods 1 and 2.
	Method
	A
	R2X,cum (%)
	R2y,cum (%)
	Q2cum (%)
	1
	1
	0.907
	0.640
	0.605
	2
	0.967
	0.756
	0.681
	2
	1
	0.631
	0.512
	0.472
	2
	0.764
	0.957
	0.932
	Table 4.2 Model parameters and predictive ability for method 3 and 4.
	Method
	r (-)
	R2y,cum (%)
	Q2cum (%)
	3
	0.8
	-64.41
	0.90
	0.991
	0.923
	4
	0.1
	-8.13
	0.40
	0.861
	0.252
	Figure 4.6. Selection of the projection angle r yielding the crystallinity related vector t12 for methods 3 and 4. 
	The performance of the four methods in fit are compared in Figure 4.7. This figure shows the experimentally measured crystallinity by DSC compared to model predictions obtained by cross-validation. The original reflectance spectrum (method 1) provides the largest errors (root mean square error of estimation RMSEE = 9.31) while the 2nd derivative (method 2) provides much better results (RMSEE = 3.88). The MIR methods applied to the reflectance spectra (method 3) and to the 2nd order derivatives (method 4) provided RMSEE values of 1.78 and 6.83, respectively. It is therefore clear that performing MIA on the image data in order to extract the relevant features does improve predictive ability when applied to the spectra directly, but is detrimental when using 2nd order derivatives. 
	Figure 4.7. Measured crystallinity vs. cross-validated predictions obtained for the training dataset using the 4 methods.
	Generally speaking, this may be explained by the degree of correlation between the image data (spectrum or 2nd derivative) and the quality parameter to be predicted (crystallinity). In method 3, the crystallinity is predominantly correlated to t1, which represents 95.8% of the variance of  whereas method 4 essentially correlates crystallinity to t2 and only 11.1% of the variance in . In other words, method 3 relies on nearly all the spectral data while method 4 only relies on a small fraction since most of the spectral data contained in the 2nd derivatives is irrelevant to the prediction of polymer crystallinity. This characteristic of the 2nd derivative may explain the relative inability of methods 2 and 4 to explain fine surface variations. 
	4.4.2 Model validation over the entire samples

	The preceding discussion (Section 4.4.1) was centered on the predictive capabilities of the 4 methods within the training sets themselves. In the present section they will be used to predict the remaining areas of the samples that were not used to construct the models. As previously mentioned, the cooling system design is known to produce localized gradients in the cooling rates that should produce crystallinity patterns throughout the surface of the samples. If successful, it is expected that these methods should distinguish such patterns.
	Using the four models developed on the training set, one can predict crystallinity for any point on the surface of any sample (i.e. for every pixel or groups of pixels of spectral images ). One sample of each polymer type was retained for this purpose. Figure 4.8 shows the predicted crystallinity distribution for one such sample (HDPE: 4(C/min). To validate these predictions four regions of interest dispersed throughout the samples were removed, analyzed using DSC in triplicate, and compared to the predicted values. The location of these regions is also shown in Figure 4.8.
	As illustrated in Figure 4.8, the predicted crystallinity differs greatly according to the method used. The prediction made by method 1 seems to show an area of slightly lower crystallinity in the lower right section of the sample. Method 2 predicts a vertical gradient while method 4 predicts a homogeneous surface. Last, method 3 predicts a complex pattern in which the right hand side is significantly less crystalline. Comparing these predictions to measured crystallinity values (see DSC measurements on top of Figure 4.8), it can be seen that method 1 slightly overestimates crystallinity, and that both models based on 2nd order derivative (methods 2 and 4) predict an average value throughout the sample. Only method 3 based on MIR of the reflectance spectra provides a reasonable map of crystallinity distribution.
	Figure 4.8. Predicted crystallinity distribution for the HDPE sample cooled at 4(C/min. Values are given in % crystallinity. Sample size: 100 ( 40 mm.
	Together, Table 4.3 and Figure 4.9 illustrate the complete results for the 3 tested samples (1 for each polymer type) including the predicted crystallinity and the absolute mean prediction error. DSC standard deviations are based on triplicate tests. Model predictions were averaged over the region sent for DSC analyses (equivalent surface area of 20(20 pixels since more material was necessary for triplicates). These results show that the averaged experimental error associated with DSC measurements is 0.7%, independently of the polymer tested. Method 3 provided the lowest mean prediction errors (0.8%), falling practically within the DSC experimental error (i.e. method 3 yields a statistically adequate model). Finally, method 3 and 4 (MIR models) provide more consistent prediction errors for all polymer species since the angle (r) of vector t12 was selected to maximize correlation with crystallinity, irrespectively of polymer type. This may help cope with more complex materials such as polymer blends or composites.
	Table 4.3. Experimental (DSC) and model prediction errors for all three polymer species. Experimental errors are reported as one standard deviation. Prediction errors are reported in absolute values (i.e. % crystallinity).
	HDPE
	PP
	LDPE
	Mean
	DSC
	0.6
	0.7
	0.7
	0.7
	Method 1
	2.6
	1.8
	1.2
	1.8
	Method 2
	1.7
	1.0
	0.9
	1.1
	Method 3
	0.8
	0.9
	0.7
	0.8
	Method 4
	1.5
	1.3
	1.6
	1.5
	Since prediction results for both method 2 and 3 on the training set (i.e. see Figure 4.7) containing all three polymer species are quite similar, although method 3 has a slightly better fit (i.e. less scattering around 45( line), it may seem surprising that both methods predict such a different crystallinity distribution across the surface a particular polymer type as shown in Figure 4.8. This may be explained by recognizing that the variance of the cystallinity vector (y) has two main sources: (1) each polymer type has a different mean crystallinity, and (2) changes introduced by the cooling rate (i.e. scattering around each the mean crystallinity of each polymer type). Method 2 and 3 differ mainly in the source of variance each of them explains. Indeed, by enhancing spectral transitions (i.e. peaks in the spectra), the method based on 2nd order derivatives (method 2) seems better at predicting the mean crystallinity of each polymer specie or, alternatively, at identifying polymer type, than predicting more subtle variations in crystallinity due to changes in cooling rates, what we are interested in from a process operation perspective.
	To confirm this, the crystallinity measurements within the training set (y) were recalculated in deviation from the mean crystallinity values of each polymer type: 63.8% (HDPE), 35.9% (PP) and 24.7% (LDPE). Removing the mean crystallinity of each polymer type should enhance crystallinity variations caused by changes in the cooling rates. Prediction results shown in Figure 4.10 were obtained after building new regression models for method 2 and 3 using the new centered crystallinity vector (yC). In accordance with previous results, method 3 explains a greater amount of the local crystallinity variations (R2y,cum = 0.757) compared to method 2 (R2y,cum = 0.542). This confirms the higher predictive power of the MIR model based on the original reflectance spectrum. Note that this method could also be used for polymer type identification by segmenting vector t12 according to the mean crystallinity of each polymer type.
	Figure 4.9. Crystallinity predictions obtained by the 4 methods for the three polymer species (cooling rate = 4(C/min) compared to DSC values (including standard deviation). Values are given in % crystallinity.
	Figure 4.10. Measured crystallinity vs. predicted centered crystallinity (yC) values for methods 2 and 3 using the data from the training set.
	Finally, Figure 4.11 illustrates the predictions obtained for the LDPE and PP samples (both cooled at a rate of 4(C/min) using method 2 and 3. The general patterns and conclusions concur with those previously discussed with the HDPE sample. The 2nd derivative efficiently predicts the average crystallinity of the sample but remains insensitive to local variations. On the other hand, method 3 adequately predicts both local and global variations in crystallinity.
	Figure 4.11. Predicted crystallinity distribution for LDPE and a PP sample (4(C/min) using both method 2 and 3. Values are given in % crystallinity. Samples: 100 ( 40 mm.
	4.5 Conclusion

	The objective of this work was to develop a rapid and non-intrusive on-line NIR imaging sensor for monitoring spatio-temporal variations in crystallinity across the surface of thin polymer materials. Although NIR spectroscopy has already been investigated in the past for estimating polymer crystallinity, most methods were based on probes, hence providing measurements for a single point (or line) on a sample. Since most of the overall end-user properties of thin polymer materials, such as mechanical, optical and barrier properties, depend upon the local microstructure (i.e. weakest point on the sample), fine spatial measurements are key in identifying local crystallinity gradients that may compromise the quality of whole. Furthermore, rich spatial data would also be useful for precisely diagnosing operational problems in the production line, such as non-uniform cooling of the polymer products.
	Thin samples of LDPE, HDPE and PP were produced via compression molding and cooled at six different rates in order to induce a wide range of crystallinity. Each sample was then imaged using an NIR imaging spectroscope, and a certain number of regions of interest were selected for each sample, cut-off, and sent for analytical measurement of crystallinity using Differential Scanning Calorimetry (DSC). Four methods were tested and compared for extracting features from the NIR images that are correlated to polymer crystallinity obtained by DSC: 1) a conventional NIR calibration methods involving averaged spectra and PLS regression with crystallinity; this approach was used by Sato et al. (2003) for estimating crystallinity of polymer pellets, 2) a similar approach but using 2nd order spectra derivatives for calibration against crystallinity (i.e. a standard pre-treatment used in spectroscopy for enhancing the peaks), 3) a multivariate image analysis and regression approach (MIA/MIR) using either the raw reflectance spectra, or 4) its 2nd order derivatives.
	The results show that the models obtained using method 2 and 3 provide the best fit of crystallinity measurements when predicting over a wide range of crystallinity, such as the one obtained using the three polymer species (LDPE, HDPE, and PP). However, only method 3 based on MIA/MIR analysis of the original NIR spectra was successful at predicting the more subtle variations in crystallinity introduced by changes in cooling rates, with prediction errors falling practically within DSC experimental errors. It was also shown that this method provides predictions of crystallinity spatial distribution that are consistent with polymer processing knowledge, and partially validated using additional DSC measurements. Finally, such predictive power was also consistently high for all three polymer species using a single model. This feature of the proposed approach shows an interesting potential for application to more complex materials such as polymer blends or composites.
	4.6 References

	Albano C., Papa J., Gonzalez E., Navarro O. and Gonzalez R., Temperature and crystallinity profiles in polyolefines isothermal and non-isothermal solidification Processes, Eur. Polym. J., 39, 1215-1222 (2003).
	Apichartpattanasiri S., Hay J.N. and Kukureka S.N., A study of the tribological behaviour of polyamide 66 with varying injection-moulding parameters, Wear, 251, 1557-1566 (2001).
	Batur C., Vhora M.H., Cakmak M. and Serhatkulu T., On-line crystallinity measurement using laser Raman spectrometer and neural network, ISA T., 38, 139-148 (1999).
	Bergmann K., Determination of Polymer Crystallinity from proton solid-echo NMR measurements, Polym. Bull., 5, 355-360 (1981).
	Bharati M., MacGregor J.F. and Tropper W., Softwood lumber grading through on-line multivariate image analysis, Ind. Eng. Chem. Res., 42(21), 5345-5353 (2003).
	Buffeteau T., Desbat B. and Bokobza L., The use of near-infra-red spectroscopy coupled to the polarization modulation technique to investigate molecular orientation in uniaxially stretched polymers, Polymer, 36(22), 4339-4343 (1995).
	Butler J.H., Joy D.C., Bradley G.F. and Krause S.J., Low-voltage scanning electron microscopy of polymers, Polymer, 36(9), 1781-1790 (1995).
	Burger J. and Geladi P., Hyperspectral image regression part I: calibration and correction, J. Chemometr., 19, 355-363 (2005).
	Briskman B.A., Be careful when using X-ray exposure analysis for polymers, Nucl. Instrum. Meth. B., 265, 276-280 (2007).
	Brown D.S., Fulcher K.U. and Wetton R.E., Application of Small Angle X-ray Scattering to semi-Crystalline Polymers: 1. Experimental considerations and analysis of data, Polymer, 14, 379-383 (1973).
	Chau F., Liang Y., Gao J. and Shao X., Chemometrics, from Basics to Wavelet Transmform, Wiley: United Kingdom (1990).
	Cherukupalli S.S. and Ogale A.A., Online Measurements of Crystallinity using Raman Spectroscopy during Blown Film Extrusion of a Linear low-density Polyethylene, Polym. Eng. Sci., 44(8), 1484-1490 (2004).
	Chew S., Griffiths J.R. and Stachurski Z.H., The Crystallization Kinetics of Polyethylene under Isothermal and non-Isothermal Conditions, Polymer, 30, 874-881 (1989).
	Dusunceli N. and Colak O.U., Modelling Effects of Degree of Crystallinity on Mechanical Behavior of Semicrystalline Polymers, Int. J. Plasticity, 24(7), 1224-1242 (2008).
	Esbensen K.H., Geladi P. and Grahn H., Strategies for Multivariate Image Regression, Chemom. Intell. Lab. Syst., 14(1-3), 357-374 (1992).
	Esbensen K.H. and Geladi P., Strategy of Multivariate Image Analysis (MIA), Chemometr. Intell. Lab., 7, 67-86 (1989).
	Geladi P., Burger J. and Lestander T., Hypespectral Imaging: Calibration Problems and Solutions, Chemometr. Intell. Lab., 72, 209-217 (2004).
	Geladi P. and Grahn H., Multivariate Image Analysis, Wiley: United Kingdom (1996).
	Gerald C.F. and Wheatley P.O., Applied Numerical Analysis, Addison-Wesley Publishing Company: New-York, USA (1994).
	Kantz M.R., Newman J.R. and Stigale F.H., The Skin-core Morphology and Structure–property Relationships in Injection-moulded Polypropylene, J. Appl. Polym. Sci., 16, 1249-1260 (1972).
	Lachenal G., Dispersive and Fourier Transform near-Infrared Spectroscopy of Polymeric Materials, Vib. Spectrosc., 9, 93-100 (1995).
	Liu J.J., MacGregor J.F., Duchesne C. and Bartolacci G., Flotation Froth Monitoring using Multiresolutional Multivariate Image Analysis, Miner. Eng., 18, 65-76 (2005).
	Liu Z., Yu H. and MacGregor J.F., Standardization of line-scan NIR Imaging Systems, J. Chemometr., 21, 88-95 (2007).
	Murphy J., Additives for Plastics Handbook, Elsevier Advanced Technology: Great Britain (2003).
	Osborn K.R. and Jenkins W.A., Plastic Films Technology and Packaging Applications, Technomic Publishing: Switzerland (1992).
	Pantani R., Coccorullo I., Speranza V. and Titomanlio G., Modeling of Morphology Evolution in the Injection Molding Process of Thermoplastic Polymers, Prog. Polym. Sci., 30, 1185-1222 (2005).
	Pelsoci T., ATP-Funded Green Process Technologies: Improving U.S. Industrial Competitiveness with Applications in Packaging, Metals Recycling, Energy, and Water Treatment, National Institute of Standards and Technology: U.S. Department of Commerce (2007).
	Polizzi S., Fagherazzi G., Benedetti A. and Battagliarin M., Crystallinity of Polymers by X-ray Diffraction: a new Fitting Approach, Eur. Polym. J., 27(1), 85-87 (1991).
	Rastogi S., Newman M. and Keller A., Pressure-induced Amorphization and Disordering on Cooling in a Crystalline Polymer, Nature, 353, 55-57 (1991).
	Saeki K., Tanabe K., Matsumoto T., Uesaka H., Amano T. and Funatsu K., Prediction of Polyethylene Density by near-Infrared Spectroscopy Combined with Neural Network Analysis, J. Comput. Chem. Jpn., 2(1), 33-40 (2003).
	Sato H., Shimoyama M., Kamiya T., Amari T., Sasic S., Ninomiya T., Siesler H.W. and Ozaki Y., Near Infrared Spectra of Pellets and thin Films of High-density, Low-density and Linear Low-density Polyethylenes and Prediction of their Physical Properties by Multivariate Data Analysis, J. Near Infrared Spec., 11, 309-321 (2003).
	Savitzky A. and Golay M., Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., 36: 1627-1639 (1964).
	Shepherd J.E., McDowell D.L. and Jacob K.I., Modeling Morphology Evolution and Mechanical Behavior During Thermo-Mechanical Processing of semi-Crystalline Polymers, J. Mech. Phys. Solids, 54, 467-489 (2006).
	Stuart B.H., Polymer Crystallinity Studied using Raman Spectroscopy, Vib. Spectrosc., 10, 79-87 (1996).
	Szatvanyi G., Duchesne C. and Bartolacci G., Multivariate Image Analysis of Flames for Product Quality and Combustion Control in Rotary Kilns, J. Am. Chem. Soc., 5(13), 4706-4715 (2006).
	Vailaya A., Wang T., Chen Y., Huffman M., Quantitative Analysis of Dimethyl Titanocene by Iodometric Titration, gas Chromatography and NMR, J. Pharmaceut. Biomed., 25, 577-588 (2001).
	Watanabe S., J. Dybal, K. Tashiro, Y. Ozaki, “A near-Infrared study of Thermally Induced Structural changes in Polyethylene Crystal,” Polymer, 47 2010-2017 (2006).
	Whitbeck M.R., Second Derivative Infrared Spectroscopy, Appl. Spectrosc., 35(1), 93-95 (1981).
	Yu H., MacGregor J.F., Haarsma G. and Bourg W., Digital Imaging for Online Monitoring and Control of Industrial Snack Food Processes, Ind. Eng. Chem. Res., 42, 3036-3044 (2003).
	Yu H. and MacGregor J.F., Multivariate Image Analysis and Regression for Prediction of Coating Content and Distribution in the Production of Snack Foods, Chemometr. Intell. Lab., 67, 125-144 (2003).
	Yu H. and MacGregor J.F., Monitoring Flames in an Industrial Boiler Using Multivariate Image Analysis, AIChE J., 50, 1474-1483 (2004).
	Chapter 5
	Potential of hyperspectral imaging for quality control of polymer blend films*
	Résumé

	Un capteur basé sur l’imagerie visible et proche infrarouge (VIS-NIR) rapide et non intrusif est proposé dans cet article afin de faire le suivi de films composites produits par extrusion soufflage. Un tel capteur a une résolution spatiale nettement supérieure à un système basé sur les sondes. Cette caractéristique lui permet d’identifier de petits défauts localisés pouvant compromettre la qualité (mécanique, optique, propriétés de barrière) de l’échantillon entier. L’analyse d’image multirésolution et multivariée (MR-MIA) a été utilisée pour extraire les caractéristiques spectrales et spatiales des images qui sont le plus fortement corrélées à la distribution de composition des composantes ainsi qu’aux propriétés mécaniques des films. Appliqué aux mélanges de LDPE/PS produits sous différentes conditions d’opération, le capteur a été en mesure de faire le suivi des effets dominants influençant les propriétés mécaniques: (1) l’effet de la composition (matières premières) et (2) l’étirement causé par les conditions post-extrusion (procédé).
	Abstract

	A VIS-NIR hyperspectral imaging sensor is proposed for on-line non-destructive monitoring of polymer film blends produced by extrusion blowing. Such sensor provides a much higher spatial resolution of analysis compared to probes or probe arrays, which should help detecting smaller localized defects inducing poor film quality (mechanical, optical, barrier properties) at a macroscopic scale. Multiresolutional multivariate image analysis (MR-MIA) was used to extract those spectral and textural features from images that are the most highly correlated to film composition distribution and mechanical properties. When applied to a LDPE/PS blend produced under various operating conditions, the imaging sensor was able to monitor the two dominant effects on mechanical properties: (1) the effect of film composition (raw materials) and (2) the stretching effect caused by post-extrusion conditions (process).
	* Gosselin R., Rodrigue D., González-Núñez R. and Duchesne C., Potential of hyperspectral imaging for quality control of polymer blend films, Ind. Eng. Chem. Res., 48, 3033-3048 (2009).
	5.1 Introduction

	Extrusion film blowing is a continuous industrial process widely used to manufacture thin biaxially stretched polymeric materials like plastic bags and other packaging materials. Although virgin polyethylene (PE) and polypropylene (PP) resins are the most extensively used polymers in this process, films made of polymer blends now constitute over 30% of the total polymer consumption (Utracki, 1998). Film blends have revolutionized the polymer industry due to their great versatility and capability to be tailored for specific end uses (Salamone, 1996). While polymer blending is commonly used to achieve improved mechanical properties (Salamone, 1996; Chang et al., 2002; Nygard et al., 2005), it is currently used in plastic bags to improve biodegradability and recycling (Getlichermann and David, 1994; Goldstein and Olivares, 2007). Literature can now be found on a wide variety of polymer film blends: LLDPE/PS (Dobreski and Nattinger, 1989), PS/PVME (El-Mabrouk et al., 2007), LDPE/PP (Minkova and Nikolova, 1989; Minkova et al., 1992), EVA/PP (Minkova and Nikolova, 1989) as well as PE/Nylon (López-Barrón et al., 2007).
	In industrial practice, film quality control is often performed off-line in spite of the high production rates used to ensure film stability (typically 0.75 - 1.25 m/s) and the sensitivity of the film’s mechanical properties to physical defects and distribution of the various polymer species within the blend. According to Martyn et al. (2005), operators typically focus on problems such as production instability (i.e. helical, draw resonance, oscillating frost line, bubble sagging, tearing, fluttering, and breathing) as well as others caused by poor dispersion, lack of cohesion and inadequate viscosity paring when dealing with polymer blends. Laboratory quality assessment such as tensile tests (ASTM D882), Elmendorf tear strength (ASTM D1922), density (Lahrouni and Armani, 1995) and crystalline morphology (lamellar, spherulitic, etc.) using microscopy (Ajji et al., 2005) are performed at a low frequency on small samples cut-off from the rolls. Since these analyses are time consuming and destructive, film quality control is performed on a very low fraction of the production. In order to improve film’s assessment, correlations have been proposed to link tensile properties to processing conditions (Simpson and Harrison, 1994; Babel and Campbell, 1995; Ghaneh-Fard, 1999). Unfortunately, structure development in film blowing is very complex (Ghaneh-Fard, 1999). Therefore, on-line quality analysis and control is required to quickly identify any defect and to ensure consistent high quality without loss of production (Ali et al, 1994; Michie et al., 2004; Martyn et al., 2005). 
	A number of techniques were recently developed for on-line measurement of specific film properties, but those are mostly based on single-point probes (or probe arrays). Therefore, they have a limited spatial coverage of the film surface. Raman spectroscopy is based on the inelastic scattering of a monochromatic (often laser) light source and has been used to acquire real-time crystallinity measurements in blown film (Giriprasath et al., 2004). Birefringence, or the decomposition of a light ray as it passes through anisotropic materials, may be used in the determination of the average total (both crystalline and amorphous) orientation of the film (Mackley et al., 1998; Zhang et al., 2001; Ajji et al., 2005). Fourier transform infrared spectroscopy (FTIR) was used for determining the specific orientation factors of the crystalline and amorphous phases (Ajji et al., 2005; Patel et al., 2006). X-ray scattering through a thin sample reveals information about the structure, composition and properties. In polymer film analysis, X-ray pole figures yield details of crystalline phase orientation (Lahrouni and Armani, 1995; Ajji et al., 2005) while a variation of this method, the wide-angle X-ray diffraction (WAXD), refers specifically to sub-nanometer sized crystalline structures (Patel et al., 2006). These probes either provide a rapid estimation of the properties of a single localized point on the sample, or the average properties of a larger area. They are not intended to analyze a production line presenting both spatial and temporal variations. However, fine spatial measurements are the key in identifying local composition gradients and flow patterns that may compromise global quality of the films. The mechanical, optical and barrier properties of an entire sample may fall below specifications because of local discrepancies easily overlooked by a coarser spatial analysis. Recent developments in spectral imaging cameras may help developing rapid and non-destructive on-line film quality sensors, capturing spatial (both cross and machine directions) and temporal variations in film properties with much higher spatial resolution than using probe arrays.
	The objective of this work is therefore to investigate the potential of VIS-NIR spectral imaging for on-line, non-destructive monitoring of spatial as well as temporal variations in film blend properties. The proposed methodology is illustrated using low-density polyethylene/polystyrene (LDPE/PS) films produced by extrusion blowing under different operating conditions. The multiresolutional multivariate image analysis (MR-MIA) technique was used for extracting both spectral and textural image features that are the most highly correlated with the film properties (i.e. composition distribution and mechanical properties), as well as for mapping them on the surface of the films.
	5.2 Experimental
	5.2.1 Materials and processes


	Low-density polyethylene (PEMEX PX-20020X) having a melt-flow index of 2.0 g/10 min was used throughout this work as the continuous phase for the films. For the dispersed phase, three polystyrenes, all provided by Resistol, differing mainly in melt-flow index (MFI) were used: HH-103 (1.7 g/10 min), HF-777 (8.0 g/10 min) and HF-555 (16 g/10 min).
	Film production was performed on the same experimental setup as reported in previous studies (Robledo-Ortiz et al., 2006; López-Barrón et al., 2007). A single-screw Haake extruder (Rheomix 254, L/D = 27) coupled with a film-blowing device was used to prepare tubular films as described in Figure 5.1. Process specifications are typically given in terms of film thickness (T), radius (R), and velocity (V) at two positions: the initial properties (I) are taken at the die; while the final properties (F) are measured after solidification of the polymer (freeze line). The pressure drop within the bubble ((P) was measured using a water manometer fixed to the air feed. A bypass line was used to compensate for pressure variations within the bubble.
	Figure 5.1. Schematic representation of the film blowing process indicating the locations where the thickness (T), radius (R) and velocity (V) of the film are measured.
	From the operating conditions, three dimensionless parameters are commonly reported to characterize the films: the blow-up ratio is the ratio of bubble radius to die radius (BUR=RF/RI), the thickness ratio is the ratio of die slit to bubble thickness (TR=TI /TF), and the draw ratio is the ratio of the take-off roller velocity to initial film velocity (DR=VF /VI).
	Experimental conditions were chosen in order to span a wide range of variations in end-user film properties introduced by both the processing conditions and the raw material characteristics. The experiments were carried out by varying a single condition at a time around nominal processing conditions (die temperature: 200(C, pressure drop: 30 mm H2O, screw speed: 50 rpm, polymer throughput: 17.7 g/min, PS melt-flow index: 1.5 g/min, PS content: 1%, premixing: no). Investigated process conditions were: die temperature (190, 200 and 210(C), pressure drop within the bubble (20, 30 and 40 mm H2O), film drawing speed (1.50, 1.65 and 1.80 m/min) and screw speed (40, 50 and 60 rpm). The latter allowed changing the polymer throughput in flood-feed conditions (16.2, 17.7 and 19 g/min). Raw material characteristics include polystyrene (dispersed phase) melt-flow index (1.5, 8 and 17 g/10 min) and its content within the blend (0, 1, 2, 3, 4, 5, 6, 8 and 10 wt%). Blend premixing (yes or no) was also considered. Each of these conditions were varied one at a time from a nominal set of operating conditions defined as follows: screw speed of 50 rpm, temperature of 200(C, pressure drop of 30 mm H2O, drawing speed of 1.65 m/s, no initial premixing and 1% polystyrene (MFI: 1.5 g/10 min). A total of 26 experimental conditions were therefore tested including a few replicates of the nominal conditions. About 15-20 m of film was produced at each condition after reaching steady-state.
	To calibrate a regression model between the spectral images and the film properties, each film sample was characterized using standard methods. Tensile properties are by far the most commonly available mechanical tests for films (Hong et al., 2000; Bobovitch et al., 2006). These were measured in triplicate with a United SFM Universal Testing Machine according to ASTM D882 (gauge length 5.08 cm). Measured properties include Young’s modulus, toughness, tensile strength, stress at break, as well as the strain at which the latter two occurred (Figure 5.2). All properties were tested solely in the machine direction.
	Figure 5.2. Typical stress-strain curve for LDPE/PS film with the parameters studied: Young’s modulus (1), the strength and associated strain (2 and 3), the stress and strain at rupture (4 and 5) as well as the sample toughness (6).
	5.2.2 Hyperspectral imaging system

	The system consists of two line-scan imaging spectroscopes covering the VIS-NIR wavelength ranges, which fields of view are centered on the same area of a sample. However, since the visible range was sufficient to extract the desired information from the LDPE/PS blend, only the VIS spectral scanner is described in this section. Indeed, as shown later in this paper, both polymers have a different level of clarity; PS is more amorphous due to its aromatic ring whereas LDPE is more crystalline. Other polymer blends may require the use of the NIR or a combination of the VIS-NIR spectral scanners, depending on which wavelength range allow discriminating the polymer species. The proposed method for correlating spectral images to film properties is general and could be used with any spectral scanner.
	The line-scan visible imaging system consists of a Hamamatsu C8484-05G camera (960(1024 pixels) coupled with an ImSpector V10E grating spectroscope (Specim Spectral Imaging Ltd) having a slit size of 30 m ( 14.3 mm and sensing the 400-1000 nm wavelength range. For each scanned line of the sample, the transmitted light is dispersed through the spectroscope and captured by the CCD array of the camera as a spatial/spectral image as shown in Figure 5.3. That is, for each pixel along the cross-direction of the sample (i.e. spatial axis x) corresponds a spectrum of light intensities at various wavelengths (i.e. spectral axis ). The spatial and spectral resolutions (i.e. number of pixels along the x axis and number of intensity values along the  axis) are determined by the resolution of the CCD camera. In this work, each line-scan has an effective resolution of 300 pixels along x and 600 pixels along  since it was necessary to crop the images; the film samples did not cover the entire field of view and the sensitivity of the scanner at both ends of the spectral range was low. On the sample, the effective resolution of a line-scan translates into a 0.14 mm/pixel spatial resolution and 0.75 nm/pixel spectral resolution.
	After capturing and collecting several line-scans on a moving sample, such as a polymer film drawn in the machine direction (the y axis in Figure 5.3), one obtains a three-way array of data R (or data cube) – a digital hyperspectral image. To investigate the potential of spectral imagery, the films were not scanned directly on the extrusion line but rather off-line in the lab. Representative film samples were therefore cut from the rolls and 200 line-scans were collected using a Velmex motorized translation stage to move the film samples along the y axis. The scans were collected every 375 micron intervals to provide a composite image of true (x,y) spatial proportions. The (x(y() dimensions of each R spectral image were therefore (300(200(600). A total of 26 spectral images of films Ri (i=1,2,…26) were obtained, one for each experimental condition.
	Figure 5.3. Schematic representation of the line-scan system used in transmission and spatial/spectral image as captured by the CCD.
	All transmission images were obtained by placing the film on a glass plate above a diffuse light source. A tungsten-halogen lamp was chosen for its smooth flat emission spectrum over the required range. The raw spectral images Ri were first submitted to a linear pixel-by-pixel calibration between a flat black image (B), obtained by collecting an image with the lens cap in place; and a true white image (W), collected using 99% reflectance standard (Gigahertz-Optik):
	 (5.1) 
	where rxy( is an element of the raw signal image R, bx( and wx( are elements of the black and white calibration images (B and W), and xxy( is an element of the calibrated transmittance image X. Such calibration was performed periodically in order to minimize the impact of variations in lighting conditions over time. Note that more advanced calibration techniques should be considered for long-term industrial applications (Geladi et al., 2004; Burger and Geladi, 2005; Liu et al., 2007). Image acquisition was controlled through a Labview 8.0 software interface (National Instruments). Data analysis was performed using custom scripts developed in the Matlab R14 (MathWorks) environment unless otherwise stated.
	5.3 Multivariate methods for extracting image features
	5.3.1 Multivariate image analysis


	The MIA imaging technique was originally introduced by Esbensen and Geladi (1989), a detailed description of the method is provided by Geladi and Grahn (1996), and applications to hyperspectral imaging are discussed in Grahn and Geladi (2007). It basically consists of first unfolding a single spectral image X (x(y() into a matrix X of dimensions (xy( as shown in Figure 5.4 (i.e. the spectrum of each pixel are collected row-wise in matrix X), and then performing a variance-covariance decomposition of the spectral matrix X using principal component analysis (PCA):
	 (5.2)
	This decomposition yields a set of A score vectors ta (xy( and loading vectors pa (1( where A is the number of principal components kept in the model. A non-zero matrix E (xy( containing the projection residuals, is obtained when A is smaller than the number of columns of X. The first score vector t1 is the linear combination of wavelengths capturing the greatest amount of variations within the spectral image, whereas the second score vector t2 explains the second greatest source of variations, and so on. The linear combinations are defined by the corresponding loading vectors (i.e. p1, p2, etc.). Such a decomposition of the variance-covariance structure of the spectral matrix allows extracting and classifying the spectral signature of each pixel regardless of their spatial location.
	Figure 5.4. Applying standard PCA on a hyperspectral image requires initial unfolding of the data into a 2-D matrix as well as subsequent folding to regain the spatial disposition.
	In image analysis X usually has a much larger number of rows than columns (i.e. xy >>). Therefore, it is much less computationally intensive to perform PCA (or alternatively singular value decomposition SVD) on the kernel matrix  which is of much smaller dimensions ((rather than xy(). When a global PCA model is to be developed on a set of N images, the kernel matrix is given by: .
	As for PCA applied to a database, the clustering pattern of the extracted features is observed using ti-tj score scatter plots (i(j). However, when applied to a multivariate image, these score plots are typically shown as 2-D density histograms using a pre-defined color map to enhance visual interpretation, since the number of observations in the score plot is equal to the number of pixels of the image (i.e. x(y or 300(200=60000 observations for each image). An alternative way to visualize the image features extracted by each principal component is obtained by refolding the score vectors ta (xy( into score matrices Ta (x(y) according to the original spatial location of each pixel in the image X as shown in Figure 5.4 (i.e.  where ( is the Kronecker product). The score matrices Ta are then displayed as univariate gray-level images after appropriate scaling is applied. Figure 5.5 shows the T1 and T2 images of a film sample produced under the nominal process conditions described in the previous section. These images not only show intensity variations (i.e. spectral variations), but also show some textural variations across the images. As shown later in Section 5.4, both spectral and spatial (i.e. textural) information are necessary for predicting the mechanical properties of the polymer films.
	Figure 5.5. Textural features of a film sample produced under the nominal conditions as seen from the T1 (left) and T2 (right) score image.
	5.3.2. Multiresolutional multivariate image analysis

	Spectral information of an image is efficiently extracted using MIA. However, unfolding the spectral array X as shown in Figure 5.4 leads to spatial information loss. The spatial organization of pixel intensities or textural information of the T1 and T2 images shown in Figure 5.5 cannot be extracted using MIA, but requires the use of texture analysis methods. Several textural methods were overviewed and compared in Bharati et al. (2004) using images of steel sheets. One conclusion drawn in this work was that the Wavelet Texture Analysis (WTA) method appeared to be the most powerful for image texture analysis owing to its space-frequency decomposition of the image information. Later, Liu and MacGregor (2007) proposed the multiresolutional multivariate image analysis (MR-MIA) framework, combining the strengths of both MIA and WTA for spatial-spectral analysis of multispectral digital images. Two algorithms were proposed depending upon the degree of interaction between the spatial and spectral information. First, MR-MIA (I) consists of extracting textural information from each spectral channel first using WTA resulting in a set of congruent texture images, one at each resolution (i.e. frequency), and direction of analysis (horizontal, vertical and diagonal), and then using MIA on these texture images for extracting the spatial-spectral information. This approach is general, widely applicable and particularly well suited for interacting spatial-spectral information. Second, MR-MIA (II) performs spectral analysis first using MIA, and then extracts textural information using WTA applied to score images Ta. This algorithm should be used when little interaction exist between spatial-spectral information. The latter algorithm is used in this work since the textural features seen on films (Figure 5.5) are observable in most of the wavelengths across the VIS range, hence in the T1 and T2 images (i.e. there is little interaction between spectral and spatial information). The MR-MIA (II) algorithm is briefly described below, but the reader is referred to Liu and Macgregor (2005, 2006, 2007) for more details on this algorithm, and to Chau et al. (2004) and Burke Hubbard (1998) for a more general overview of spatial-spectral information extraction.
	Multiresolution analysis (MRA) is basically a succession of approximations of a signal at different resolutions (scales or frequencies), which can be obtained using methods such as orthogonal wavelet decomposition. Wavelet texture analysis (WTA) is typically suited in applications where the data contains both large and small scales variation in which case it is capable of isolating the former from the latter. WTA is akin to the windowed Fourier transform (WFT) using a non-periodic function, or wavelet. When applied to textural analysis of univariate digital images such as a gray-scale image of a scene of a score image Ta (i.e. 2-dimensional discrete signals), the separable 2-D discrete wavelet transform (DWT) algorithm is used. It approximates the image by repeatedly dilating and shifting a single mother wavelet, each level of dilation representing larger or smaller scale textural features. Two types of coefficients characterize the signal: the detail coefficients (dj,l) characterizes the match between the mother wavelet and the original image signal at a level (j) and a position (l), while the approximation coefficients (aj,l) corresponds to the remaining information after extraction of the features by the detail coefficients. This rougher representation of the signal is then used as the basis for the dj+1,l coefficients. The signal x (time series of a row or a column of pixel intensities) is decomposed through simultaneous filtering using a high-pass filter ψ(x), called the wavelet function, and a low pass filter φ(x) called the scaling function:
	 (5.3) 
	 (5.4)
	First level decomposition is achieved by applying the DWT algorithm to the input image (in this case T1). This produces three detail coefficients matrices (DHj, DVj, DDj) corresponding to the horizontal, vertical and diagonal matches between the original image and the mother wavelet (Figure 5.6). The remaining information unexplained by the detail coefficients matrices is stored in the first level approximation coefficient matrix (Aj). As each successive level isolates a new level of detail from an increasingly rough low-pass approximation, it halves the frequency interval according to Nyquist's law. In 2-D DWT, it also halves the spatial resolution in each direction, making the approximation coefficient matrix a quarter the size of the original image. Higher-order decompositions (level j+1) are achieved by applying the aforementioned algorithm on the preceding approximation coefficient matrix (Aj), reducing the size of the image at each level.
	Figure 5.6. Illustration of a 2-D wavelet decomposition of a manufactured stone walkway in which the horizontal, vertical and diagonal detail coefficient matrices (DHj, DVj and DDj) as well as the approximation coefficient matrix (Aj) are shown for each level j. 
	5.4 Results and discussion
	5.4.1 Causal relationships between materials, process conditions and mechanical properties


	The experimental design discussed in Section 5.2 generated a dataset of input variables Xdata (26(10) containing the raw material properties and process conditions for each experiment as well as a corresponding response matrix Y (26(6) containing the mechanical properties of the films (Figure 5.7). These operating parameters can be divided into three sets: dispersed phase effect (PS MFI and content), processing parameters (screw speed, die temperature, take-off speed, bubble pressure drop and premixing) and dimensionless parameters (BUR, TR and DR). This rich database was used to build causal relationships between the raw material properties, the processing conditions and the resulting film mechanical properties, which were found to provide important insights for developing the imaging sensor.
	Figure 5.7. The PLS-data model is based on the operation conditions (2 PS characteristics, 5 processing parameters and 3 dimensionless ratios) to predict the mechanical properties.
	A latent variable PLS regression model was built between Xdata and Y. The PLS model structure is given below:
	 (5.5)
	 (5.6)
	 (5.7)
	The P and Q matrices contain the loading vectors that best represent the X and Y spaces respectively, whereas W* contain the loading vectors defining the common latent variable space T relating X and Y. The E and F matrices contain the PLS model residuals (i.e. projection distance from the latent variable space of the model), and A is the total number of PLS components. Even if the design matrix Xdata is very well conditioned, PLS was selected here since the property matrix Y is highly collinear (i.e. effective rank=2 using PCA and cross-validation). The first three principal components (PC) were found significant by leave-one-out cross-validation. The cumulative Y variance explained and predicted (cross-validation) by the model were R2Y,cum=69% and Q2cum=38%. These statistics are relatively low since they combine all 6 mechanical properties, and some of them have a higher degree of uncertainty.
	Figure 5.8. Loading biplot for the first two components (left) and the VIP plot (right) of the PLS-data model.
	Relationships between raw materials properties, processing conditions and film mechanical properties are interpreted using the two plots shown in Figure 5.8. The first (left) is the PLS-data loading biplot for the first two PCs. It is used to interpret the inter-correlations of the variables both within the Xdata and Y blocks as well as between them. Variables having similar coordinates in this plot are positively correlated, those falling in opposite quadrants are negatively correlated, and those falling close to the origin (0,0) have small or no correlation with other variables. The second plot in Figure 5.8 (right) is the variable importance (VIP) plot. It indicates the relative importance of the 10 regressor variables for explaining variations in Y based on the PLS-data model.
	The PLS-data model strongly relies on polystyrene characteristics (1st and 2nd VIPs), followed by the throughput rate (3rd VIP) and the bubble geometry (4th - 7th VIP). However, blend premixing, draw ratio and extrusion temperature were much less important in modeling the tensile properties. The PS content is the single most important factor in determining the mechanical properties of the films and as such is expressed along the first component of the biplot (w1*q1). In accordance with previous studies (Barentsen and Heikens, 1973; Wang et al., 1998; Guo et al., 1998), Figure 5.8 shows that high PS content increases the modulus while decreasing all other properties, especially affecting the elongational properties (i.e. strain at break, strain at maximum stress and the toughness). In order to increase these three properties in the machine direction it is necessary to promote molecular orientation along that same axis (Simpson and Harrison, 1994; Fatahi et al., 2007). In practice, this can be achieved by reducing the bubble diameter and increasing the stretching in the machine direction. Graphically, bubble geometry is represented along the w2*q2 axis of the PLS-data biplot in which case the elongational properties are negatively correlated to BUR, TR and ∆P, and positively correlated to DR and the draw speed.
	It is important to note that the PLS-data model was developed using some variables that are generally not available on-line in practice, such as film composition (i.e. PS content), thickness and draw ratios (TR and DR) as well as the mechanical properties. Nevertheless, this model was developed and used 1) for verifying that the observed relationships between raw materials properties, processing conditions and film mechanical properties were consistent with polymer processing knowledge, and 2) as a benchmark for the spectral imaging sensor. Indeed, this model showed that two dominant sources of variations affect mechanical properties: film composition and stretching. The spectral imaging sensor should be capable of detecting both of these parameters and of predicting the mechanical properties of the films solely based on image information.
	5.4.2 Spectral analysis of the films for estimating blend composition

	The goal of the image analysis was to build a model based on the optical aspect of the films with no prior knowledge of the experimental conditions or raw material composition. Both composition and orientation must therefore be inferred from the images. Figure 5.9 shows the average transmission spectra of thin films made of pure LDPE and PS scaled according to Equation 5.1. 
	Figure 5.9. Average visible spectra of thin films made of LDPE and PS.
	A mostly flat response was obtained for PS over the entire range whereas LDPE had a steadily increasing response implying a greater transparence at longer wavelengths. Considering that both polymers can clearly be distinguished based on their transmission spectra it should therefore be possible to estimate blend composition using image spectral analysis (e.g. MIA). Furthermore, score images (later used in the texture analysis) should draw more information from shorter wavelengths (near 500 nm) than from longer ones (above 700 nm) due to the greater spectral contrast in the lower range. The localized glitches in the curves around 546 and 612 nm correspond to the typical peaks of room fluorescent lighting.
	Film composition was estimated using the first two score vectors (t1 and t2) obtained using MIA as shown in Figure 5.10. The clustering pattern of the spectra obtained for all 26 film samples is shown in Figure 5.10A using a 2-D density histogram. It shows the classification of the pixels of each film image according to their spectral characteristics. Figure 5.10B provides a closer look at this clustering pattern using the films produced with the lowest and the highest PS content. Finally, Figure 5.10C shows the regression line within the t1-t2 scatter plot that is the most highly correlated with PS content. As expected, it is strongly oriented towards t1.
	Figure 5.10. Score histogram of the film illustrating the global dataset (A), individual samples within this dataset (B) and the average location of all the samples (C). Dimensionless intensity scale given. 
	The data illustrated in Figure 5.10A fall into two basic areas: samples containing 1% PS (10 < t1 < 15) and the samples containing 2-10% PS (15 < t1 < 25). Within this latter group there is also a strong correlation between PS content and the first score vector, indicating that it accounts for a large faction of the variation. On average, pixels taken from samples containing higher levels of polystyrene have higher t1 values than pixels taken from samples containing less polystyrene. To illustrate this, samples containing 1 and 10% PS are shown in Figure 5.10B. However, this figure also shows that the pixels for 1% PS are tightly clustered, indicating a uniform composition, while those for 10% PS are scattered over a wider range of t1 values, indicating a more heterogeneous composition. This local variability at higher PS contents may be increased by the natural incompatibility between the PE and PS phases.
	The t1-t2 scatter plot can be used to predict the local composition of the films. This can be achieved by regressing the average PS content (known by design) of the samples against their corresponding average t1-t2 values using least squares regression (Figure 5.10C). This model was then used to predict PS concentration distribution within a single film sample based on the t1 and t2 values of each image pixel. This local information can be used to identify non-uniformities in the polymer distribution (Figure 5.11). Furthermore, this local composition estimation can be extended to a global value simply by summing this information for each pixel of an image.
	Figure 5.11. Determination of local PS content within a sample through spectral analysis. Right: score image of a sample containing defects. Left: illustration of estimated composition showing PS in red, PE in white and intermediates in shades of yellow – color scale is arbitrary. Sample produced at nominal conditions and 3% PS.
	It is important to note that Figure 5.11 illustrates such a classification in which the resolution was lowered to make small PS inclusions clearly visible. This analysis shows that apparently similar defects present in the score image are found to contain different concentrations of PS. In a more subtle way, it also becomes apparent that the upper section of this figure contains intermediate levels of PS dispersed throughout the matrix while the bottom of the figure does not. It is therefore expected that this method could also be used to distinguish the local concentrations of miscible polymers that do not lead to visible defects.
	Local composition gradients can cause weaknesses in the film and influence its mechanical properties. Composition mapping can therefore be used to quantify the PS dispersion throughout the PE matrix and link it to the properties of the films. The degree of composition homogeneity can be quantified using Danckwerts’ segregation intensity (IPS) for binary systems (Danckwerts et al., 1952):
	 (5.8)
	where  and  are the average and variance of the estimated PS content within the image. IPS does not reflect the size of the PS domains, but the extent to which the concentration in the clumps departs from the mean. The predicted composition, as well as its segregation intensity, can be used to predict the tensile properties.
	5.4.3 Textural analysis for modeling the stretching effect

	Application of the MR-MIA II algorithm went as follows. A global MIA was first performed on the image set in order to extract two components (T1 and T2), explaining 96% and 3% of the variance, respectively. While each loading is independent, the first two score images are essentially mirror images of one another (Figure 5.5). Quantitatively, the relative textural features extracted from T1 and T2 by WTA do not differ significantly from each other. Therefore, only the first score images were used in the following analysis. A 3-level WTA was performed on the images using bior3.7, a bi-orthogonal wavelet available in the Matlab Wavelet Toolbox. The textural features being relatively small, higher-level decompositions were not found to contain meaningful information. In order to quantify image texture, the mean energies of the horizontal and vertical detail coefficients matrices (DHj, DVj) were calculated horizontally and vertically for each score image according to: 
	 (5.9)
	 (5.10)
	The horizontal and vertical energy details (Hj or Vj) are scalars based on the Frobenius norm of the coefficient matrices (DHj or DVj) at decomposition level j. Ratios of horizontal (H: machine direction) and vertical (V: cross direction) values were also used to emphasize certain features: Hi/Vi ratios provide information on relative horizontal/vertical orientation of the films at each WTA level i while Hi/Hj and Vi/Vj ratios describe the level at which the features occur. That is to say; a large H1/H3 ratio would either imply that the sample is globally uniform (low H3) or locally rough (high H1). To summarize, 15 textural features (Hi, Vi, Hi/Vi, Hi/Hj and Vi/Vj for i,j = [1, 2, 3] where i(j and i(j) describe each image according to orientation and level as quantified by energy of the wavelet coefficients.
	5.4.4 Relationships between visual features and mechanical properties

	A second model, referred to as PLS-image, was built in which visual dataset of input variables Ximage (26(17) was used as a predictor for the mechanical properties Y (26(6) as shown in Figure 5.12. Of the 17 visual features, 15 were drawn from the textural analysis (Section 5.3) while the other two estimated the polystyrene content and polystyrene segregation intensity (Section 5.2). 
	Figure 5.12. The PLS-image model is based on the visual aspects of the films (15 textural features, estimated composition and segregation intensity) to predict the mechanical properties.
	A VIP plot for the PLS-image model, based on the 17 visual features, reveals that this model also strongly relies on the presence of polystyrene (composition: 1st VIP) as well as its distribution throughout the film (segregation: 8th VIP) to predict the tensile properties (Figure 5.13). Furthermore, PLS-image model is based on the large-scale horizontal/vertical orientation of the films (H3/V3: 2nd VIP), followed by the horizontal components at each decomposition level (H3, H2 and H1), confirming that the image analysis uses both local and global information to model the properties.
	Figure 5.13. Loading biplot for the first two components (left) and the VIP plot (right) of the PLS-image model. 
	Similar conclusions can be drawn from the PLS-image biplot. As LDPE and PS are incompatible, higher PS contents will increase the intensity of the textural features in both the machine (H) and transverse (V) directions along the w1*q1 axis. Here again, the secondary w2*q2 axis represents the bubble geometry (stretching) as shown by the strong negative correlation between opposing textural features (i.e. V3 vs. H3/V3).
	5.4.5 Prediction of tensile properties 

	In order to judge the adequacy of this second PLS-image model, it must be compared to the previous PLS-data model (Section 5.1). To do so, two cumulative multiple correlation coefficients were computed for quantifying the model predictive ability: R2Y,cum gives the cumulative percentage of the total variance of Y explained by the model, and Q2cum is the cumulative percentage of the total variance of Y that can be predicted by the models using the cross-validation procedure. Both PLS models were constructed keeping only the first three components. The PLS-data model had an R2Y,cum of 0.69 and Q2cum of 0.38 while the PLS-image model had an R2Y,cum of 0.64 and Q2cum of 0.41. Once constructed, these models were then used to predict the six mechanical properties. Relative errors, expressed as the ratio of the prediction error to the measured value, are compiled for the 26 experimental conditions. Mean values are presented in Table 5.1.
	Table 5.1. Relative error in prediction by 3-component PLS models; comparing image analysis (PLS-image) to operation parameters (PLS-data). Values are in percentage.
	Mechanical property
	PLS-image
	PLS-data
	Young’s modulus 
	5 (3)
	5 (4)
	Tensile strength 
	6 (4)
	5 (4)
	Stress at break 
	8 (10)
	7 (9)
	Strain at max stress 
	17 (14)
	16 (13)
	Strain at break 
	14 (13)
	14 (10)
	Toughness 
	14 (13)
	12 (11)
	Average error
	11 (11)
	10 (10)
	Table 5.1 shows that both PLS models have similar prediction capability. The properties that do not depend on the breaking point (Young’s modulus and tensile strength) are well represented by the models, with relative errors less than 5-6%; while the properties at break (i.e. the strain at break, strain at maximum stress and toughness) are not as well represented. This was expected since ultimate properties (at break) usually have high data scatter (Ghaneh-Fard, 1999). In our case, scatter was especially high for samples containing higher PS contents (6-10%). Despite being included in the models, these samples differ significantly from the remaining samples. The strain at which the maximum stress and break occur is much less that would predict the models. Since toughness is strongly dependent on ultimate properties, it is also difficult to predict with high precision.
	The performance of the models in both situations (i.e. properties depending on the breaking point and those that do not) is illustrated in Figure 5.14. This figure shows the experimentally measured toughness and tensile strength compared with the predictions obtained by cross-validation. Accordingly, the predicted tensile strength is closer to the experimental values (R2Y,cum: PLS-image = 0.785 and PLS-data = 0.826) than for toughness (R2Y,cum: PLS-image = 0.562 and PLS-data = 0.639).
	Figure 5.14. Prediction capabilities for toughness and tensile strength. 
	Despite the fact that the PLS-data model provides marginally better predictions than PLS-image, it is important to note that it relies on more information; namely the film composition, geometry and process conditions. However, the exact polystyrene content throughout the blend at all times, the present state of the operating conditions, as well as less accessible data such as bubble thickness, diameter and draw ratio are not usually available in real time and can only be obtained through and an array of sensors or estimated by mass balance calculations (Ito et al., 2004); i.e. the PLS-data model should be seen as a best-case scenario for which the entire process is well instrumented.
	The proposed methodology, through the PLS-image model, only relies on the visual aspect of the films through a spectral estimation of the composition and a textural estimation of the film geometry. Moreover, it serves also as a final quality control by identifying defects (such as PS inclusions) as well as composition gradients throughout the sample.
	5.5 Conclusion

	The objective of this work was to develop a rapid and non-intrusive on-line imaging sensor for monitoring spatio-temporal variations across the surface of polymer film blends. Although NIR spectroscopy has previously been investigated for estimating some film properties, most methods were based on probes, hence providing measurements for a single point (or line) on a sample. Since most of the overall end-user properties of polymer films, such as mechanical, optical and barrier properties, depend upon the local microstructure, fine spatial measurements are key in identifying local composition gradients that may compromise the quality as a whole. Rich spatial data would also be useful for precise diagnostics of operational problems in the production line such as non-uniform cooling or poor distribution of the dispersed phase.
	As a proof of concept, LDPE/PS film blends were produced via extrusion film blowing in a wide range of processing conditions including the rotational speed of the extruder screw (flow rate), the die temperature, the pressure drop within the film bubble, the drawing speed of the film as well as blend premixing. Polymer characteristics include the melt-flow index of the polystyrene dispersed phase as well as its content within the blend. Each sample was then imaged using a visible imaging spectroscope (400-1000 nm), and sent for mechanical testing. Samples were characterized according to 6 mechanical properties: Young’s modulus, the strength and associated strain, the stress and strain at rupture as well as toughness.
	A first PLS model was constructed using all the process data typically available (true composition, the operating conditions and the bubble geometry) to predict the properties of the film. In doing so, two major sources of variation were observed: the composition and stretching of the film. In light of this, a second PLS model, based on multiresolutional multivariate image analysis (MR-MIA), was constructed. This method relies on multivariate image analysis (MIA) coupled with wavelet texture analysis (WTA) to estimate the texture, composition and phase dispersion.
	Results show that both PLS models have similar predictive capabilities. However, the first model, based on process data, does so by relying on estimated process information that cannot always be easily obtained in real time (i.e. film thickness and true PS content). Knowledge of these parameters requires multiple sensors throughout the extrusion line. On the other hand, the second model avoids this limitation altogether by relying solely on image data obtained with a single sensor. Beyond predicting the mechanical properties, image analysis can provide real-time 2-D composition estimates, therefore identifying all potential local defects and composition gradients. The ability of the proposed approach to combine both local and global characteristics shows an interesting potential for application to complex materials requiring fine spatial measurements.
	5.6 References

	Ajji A., Zhang X. and Elkoun S., Biaxial Orientation in HDPE Films: Comparison of infrared spectroscopy, X-ray pole figures and birefringence techniques, Polymer, 46, 3838-3846 (2005).
	Ali A.H., Hsieh J.T.T., Kauffman K.J., Kissin Y.V., Ong S.C., Prasad G.N., Pruden A.L. and Schregenberger S.D., Producing blown film and blends from bimodal high density high molecular weight film resin using magnesium oxide-supported Ziegler catalyst, US Patent, 5284613 (1994).
	Babel A.K. and Campbell G.A., Model linking process variables to the strength of blown films produced from LDPE and LLDPE, TAPPI J., 78(5), 199-206 (1995).
	Barentsen W.M. and Heikens D., Mechanical properties of polystyrene/low density polyethylene blends, Polymer, 14, 579-585 (1973).
	Bharati M.H., Liu J.J. and MacGregor J.F., Image texture analysis: methods and comparisons. Chemom. Intell. Lab. Syst., 72, 57-71 (2004).
	Bobovitch A.L., Tkach R., Ajji A., Elkoun S., Nir Y., Unigovski Y. and Gutman E.M., Mechanical properties, stress-relaxation, and orientation of double bubble biaxially oriented polyethylene films, J. Appl. Polym. Sci., 100, 3545-3553 (2006).
	Burger J. and Geladi P., Hyperspectral image regression part I: calibration and correction, J. Chemometr., 19, 355-363 (2005).
	Burke Hubbard B., The world according to wavelets, the story of a mathematical technique in the making, A.K. Peters: USA (1998).
	Chang A.C., Tau L., Hiltner A. and Baer E., Structure of blown film from blends of polyethylene and high melt strength polypropylene, Polymer, 43, 4923-4933 (2002).
	Chau F., Liang Y., Gao J. and Shao X., Chemometrics from basics to wavelet transform, Wiley & Sons: USA (2004).
	Danckwerts P.V., The definition and measurement of some characteristic of mixtures, Appl. Sci. Res., 3A, 279-296 (1952). 
	Dobreski D.V. and Nattinger B.E., Plastic bags of blends of linear ethylene polymers and aromatic polymers, US Patent, 4804564 (1989).
	El-Mabrouk K., Belaiche M. and Bousmina M., Phase separation in PS/PVME thin and thick films, J. Colloid Interf. S., 306, 354-367 (2007).
	Esbensen K.H. and Geladi P., Strategy of multivariate image analysis (MIA). Chemom. Intell. Lab. Syst., 7, 67-86 (1989).
	Fatahi S., Ajji A. and Lafleur P.G., Invertigation on the structure and properties of different PE blown film, Int. Polym. Proc., 22, 334-345 (2007).
	Geladi P., Burger J. and Lestander T., Hypespectral imaging: calibration problems and solutions, Chemometr. Intell. Lab., 72, 209-217 (2004).
	Geladi P. and Grahn H. Multivariate Image Analysis, Wiley: United Kingdom (1996).
	Getlichermann M. and David C., Morphology of polyethylene blends: 3. Blend films of polyethylene with styrene-butadiene or styrene isoprene copolymers obtained by extrusion-blowing, Polymer, 35(12), 2542-2548 (1994).
	Ghaneh-Fard A., Effects of film blowing conditions on molecular orientation and mechanical properties of polyethylene films, J. Plast. Film Sheet., 15(3), 194-218 (1999).
	Giriprasath G., Cherukupalli S. and Ogale A., Real-time crystallinity measurements in a multilayer blown film, ANTEC, Chicago (Il), 200-204 (2004).
	Goldstein N. and Olivares C., What’s what and who’s who in compostable products, BioCycle, 48(7), 38-47 (2007).
	Grahn H. and Geladi P., Techniques and Applications of Hyperspectral Image Analysis, Wiley: USA (2007).
	Guo H.F., Packirisamy S., Mani R.S., Aronson C.L., Gvozdic N.V. and Meier D.J. Compatibilizing effects of block copolymers in low-density polyethylene/polystyrene blends, Polymer, 39(12), 2495-2502 (1998).
	Hong Y., Coombs S.J., Cooper-White J.J., Mackay M.E., Hawker C.J., Malmström E. and Rehnberg N., Film blowing of linear low-density polyethylene blended with a novel hyperbranched polymer processing aid, Polymer, 41, 7705-7713 (2000).
	Ito H., Suzuki K., Kikutani T., Kang H. and Kanai T., On-line birefringence measurements in film blowing process, ANTEC, Chicago (Il), 1856-1859 (2004).
	Lahrouni A. and Armani J., Étude de mélanges de polyéthylène et de polystyrène par diffraction de rayons X et par densimétrie, Eur. Polym. J., 31(4), 347-352 (1995).
	Liu Z., Yu H. and MacGregor J.F., Standardization of line-scan NIR Imaging Systems, J. Chemometr., 21, 88-95 (2007). 
	Liu J.J. and MacGregor J.F., Modeling and optimization of product appearance: application to injection-molded plastic panels, Ind. Eng. Chem. Res., 44, 4687-4696 (2005).
	Liu J.J. and MacGregor J.F., Estimation and monitoring of product aesthetics: application to manufacturing of “engineered stone” countertops, Mach. Vision Appl., 16(6), 374-383 (2006).
	Liu J.J. and MacGregor J.F., On the extraction of spectral and spatial information from images, Chemometr. Intell. Lab., 85, 119-130 (2007).
	López-Barrón C.R., Robledo-Ortiz J.R., Rodrigue D. and González-Núñez R., Processing, morphology, and properties of polyamide-6/low density polyethylene blends prepared by film blowing, J. Plast. Film Sheet., 23(2), 149-169 (2007).
	Mackley M.R., Rutgers R.P.G. and Gilbert D.G., Surface instabilities during the extrusion of linear low density polyethylene, J. Non-Newton. Fluid, 76, 281-297 (1998).
	Martyn M.T., Smith G.D. and Coates P.D. Effect of screw design on polyethylene blown film processing, ANTEC, Boston (NH), 286-295 (2005). 
	Michie W.J. Jr., Neubauer A.C., Cobler B.A. and Baker C.F., Polymer composition and process to manufacture high molecular weight-high density polyethylene and film therefrom, US Patent, 101674 (2004).
	Minkova L. and Nikolova M., Melting of irradiated films prepared from polymer blends, Polym. Deg. Stab., 25, 49-52 (1989).
	Minkova L., Lefterova E. and Koleva T., Thermal stability of irradiated LDPE-i-PP films, Polym. Deg. Stab., 37, 247-252 (1992).
	Nygard P.L., Jordy D.W., Knight T.W. and Vedder D.A., Process for extrusion and blowing of polyethylene film, US Patent, 005129 (2005).
	Patel R., Hermel-Davidock T., Paradkar R., Landes B., Liu L., Demirors M. and Anderson K., Characterization of amorphous and crystalline orientation in polyethylene films, ANTEC, Charlotte (NC), 612 (2006). 
	Robledo-Ortiz J.R., Ramirez-Arreola D., Gonzalez-Nuñez R. and Rodrigue D., Effect of freeze-line position and stretching force on the morphology of LDPE-PA6 blown films, J. Plast. Film Sheet., 22(4), 287-314 (2006).
	Salamone, J.C. Polymeric Materials Encyclopedia, CRC Press: USA (1996).
	Simpson D.M. and Harrison I.R. Study of the effects of processing parameters on the morphologies and tensile modulus of HDPE blown films: application of composite theories on a molecular level to characterize tensile modulus, J. Plast. Film Sheet., 10, 302-325 (1994).
	Utracki L.A. Commercial Polymer Blends, Chapman and Hall: UK (1998).
	Wang Z., Chan C., Zhu S.H. and Shen J., Compatibilization of polystyrene and low density polyethylene blends by a two-step crosslinking process, Polymer, 39(26), 6801-6806 (1998). 
	Zhang X., Ajji A. and Verilhac J.M., Processing-structure-properties relationship of multilayer films. 1. Structure characterization, Polymer, 42, 8179-8195 (2001).
	Chapter 6
	A Bootstrap-VIP Approach for Selecting Wavelength Intervals in Spectral Imaging Applications*
	Résumé

	Une méthode de ré-échantillonnage basée sur la régression par variables latentes, nommée ici PLS Bootstrap-VIP, est proposée comme outil de sélection de longueurs d’ondes. Cette méthode a l’avantage de combiner simplicité et rapidité de calcul, ce qui la rend particulièrement utile pour l’identification d’intervalles spectraux pertinentes au sein des images hyperspectrales. Elle a été testée sur quatre jeux de données (captés par des caméras visible et proche infrarouge) provenant des industries du plastique, de l’huile, ainsi que des pâtes et papier. Les résultats obtenus en utilisant les VIP ont été comparés à ceux obtenus en utilisant les coefficients de régression PLS, ainsi qu’à ceux obtenus par deux méthodes plus sophistiquées tirées de la littérature. Nos travaux montrent que la méthode PLS Bootstrap-VIP concorde avec ces méthodes plus complexes en identifiant un faible nombre d’intervalles spectrales congruentes, ce qui facilite l’interprétation des données tout en réduisant la forte corrélation présente entre les longueurs d’onde. Cette méthodologie parcimonieuse requiert parfois des ajustements mineurs améliorant légèrement les capacités prédictives du modèle.
	Abstract

	A PLS Bootstrap-VIP approach is proposed as a simple wavelength selection method, yet having the ability to identify relevant spectral intervals. This approach is particularly attractive for wavelength selection within hyperspectral images due to its simplicity and relatively low computational cost compared to more sophisticated interval search methods. The method was tested on four visible-NIR spectral imaging datasets taken from the polymer, oil and pulp and paper industries. The results were compared with those obtained using PLS regression coefficients as well as two more sophisticated methods involving several metrics or the search for wavelengths intervals. It is shown that a small number of well-defined relevant spectral intervals are identified with the proposed approach, providing easy spectral interpretation in agreement with more complex interval search methods. Before final use, fine adjustments to the VIP threshold may be tested to verify whether predictive power can be improved. 
	* Gosselin R., Duchesne C. and Rodrigue D., A bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications, Chemometr. Intell. Lab., 100, 12-21 (2010).
	6.1 Introduction

	Methods for relevant variable selection in PLS regression models have drawn considerable attention in the Chemometrics literature. These can be traced back to the work of Frank (1987) and Martens and Naes (1989) based on truncating the PLS weight vectors (w) or setting the smallest weights to zero and re-estimating the models in an iterative fashion. Since then, multivariate calibration problems had a significant contribution to new developments in variable, or more specifically, in wavelength selection algorithms. In the last two years, at least 10 new papers appeared on the subject (Ye et al., 2008; Cai et al., 2008; Krier et al., 2008; Cramer et al., 2008; ElMasry et al., 2008; Brás et al., 2008; Liu et al., 2008; Teófilo et al., 2009; Fang et al., 2009; Xu et al., 2009). The growing fields of applications of vibrational spectroscopy in chemistry and chemical engineering certainly stimulate interest in this area. In particular, recent developments in spectral imaging for on-line inspection and quality control in a variety of fields ranging from food, to agricultural, pharmaceutical and polymer processing (Kramer and Ebel, 2000; Kleynen et al., 2003; Yan et al., 2005; Cai et al., 2008; Ye et al., 2008), to name a few, led to massive amounts of spatial-spectral data (i.e. a complete spectrum for each pixel of the image) in a fraction of a second. More parsimonious models obtained by relevant wavelength selection may result in enhanced interpretability, increased robustness, and significant reduction in computation time, which is crucial for on-line spectral imaging applications.
	The wavelength selection problem arises mainly from the fact that vibrational spectroscopic methods (i.e. NIR, IR, and Raman) and other techniques sharing similar features yields complex spectra made of overlapping absorption bands, interference from diffuse light scatter, and instrumental noise (Martens and Naes, 1989; Osborne et al., 1997; Cai et al., 2008). Hence, the response of functional groups or molecules is often dispersed over several adjacent wavelengths, leading to strong collinearity in some regions of the spectra, while other regions may be corrupted by noise, or more generally, may contain irrelevant information. A theoretical justification for wavelength selection in PLS regression models was provided by Spiegelman et al. (1998), who showed that removing irrelevant information is desirable regardless of the spectral noise distribution. Experienced spectroscopists often have a good idea of the most important wavelength ranges that should be kept in calibration models. However, in the development of new products, when less theoretical work was carried out, or when a large number of chemical species are present in a sample, including some a priori unknown components, a systematic method for identifying relevant wavelengths or spectral regions may be of great help to the spectroscopist.
	Methods for relevant variable/wavelength selection essentially fall into two categories: 1) methods based on individual wavelengths, and 2) approaches aiming at finding the most informative spectral intervals. The individual wavelength methods rank the importance of the individual wavelengths according to one or several metrics, directly or indirectly evaluating the correlation between each individual wavelength and one or many responses Y, and then using a cutoff criterion to segment relevant/irrelevant variables. The metrics used for ranking wavelengths include the magnitude of the PLS regression coefficients (Frenich et al., 1995; Centner et al., 1996, Osborne et al., 1997; Spiegelman et al., 1998; Lazraq et al., 2003; Ferreira et al., 2005; Preisner et al., 2007; Cai et al., 2008; Liu et al., 2008; Xu et al., 2009), the PLS weight vectors W (Frank, 1987; Lindgren et al. 1994; Jouan-Rimbaud et al., 1995; Liu et al., 2008), the correlation coefficients or the covariance (Jouan-Rimbaud et al., 1995), and more recently, the variable importance on the projection VIP (Lazraq et al., 2003; Chong and Jun, 2005; ElMasry et al., 2008). Several of these metrics were also jointly used by Teófilo et al. (2009). The cutoff criteria used are either determined arbitrarily, based on past experience, or through statistical assessment of uncertainties in the parameters using the Bootstrap, the Jackknife or the Monte-Carlo re-sampling methods (Centner et al., 1996; Lazraq et al., 2003; Ferreira et al., 2005; Preisner et al., 2007; Cai et al., 2008). Prediction ability criteria were proposed and assessed using variants of stepwise regression (Osborne et al., 1997; Spiegelman et al., 1998). Global search methods, such as the generalized simulated annealing (GSA) (Kalivas et al., 1989) and genetic algorithms (GA) (Ferreira et al., 2005; Preisner et al., 2007) were also used to identify the most informative wavelengths using some PLS model predictive ability criteria.
	Interval methods, on the other hand, aim at finding the most informative group of wavelengths (i.e. spectral bands). This is motivated by the fact that functional groups absorb within a relatively short wavelength bands, which are easier to interpret (Nørgaard et al., 2000; Rossi et al., 2007), and should lead to more stable predictions (Höskuldsson, 2001). Intervals are essentially obtained by splitting the spectra into a certain number of intervals or through iterative construction of these intervals using, for example, moving windows. The most informative intervals are also assessed using various metrics and some cutoff criterion. One of the first interval approaches was proposed by Nørgaard et al. (2000). It consists of dividing the spectra into a certain number of equal width intervals (typically 20-30), and building a local PLS model on each (i.e. iPLS). The most important intervals to maintain good prediction performance are kept in the final PLS model. Finding the best combinations of these spectral intervals was investigated by Xu et al. (2007) using Monte Carlo cross-validation (MCCV) stacked regression. Brás et al. (2008) modified the iPLS approach by first selecting the most important regression coefficients using bootstrap intervals, followed by the construction of intervals based on a cutoff distance between selected coefficients. Orthogonal signal correction (OSC) approaches to wavelength selection, as well as more efficient approaches for defining the iPLS intervals using the most highly correlated wavelengths with Y, were also investigated by Höskuldsson (2001). Moving windows of tunable size were proposed as a method for searching the most informative combinations of wavelength intervals (Du et al., 2004; Cramer et al., 2008; Fang et al., 2009). The use of B-splines was also investigated for defining spectral intervals (Rossi et al., 2007; Krier et al., 2008), which involves careful selection of the number of nodes or width of the B-splines. A curve-resolution approach not relying on iterative variable search was proposed by Bogomolov and Hachey (2007). Intervals were defined as a fixed width around the known peaks of pure components spectra. Finally, a simple method based on the correlation between a given wavelength and its neighbors was also proposed for delimiting spectral regions (Ye et al., 2008). A representative wavelength (i.e. showing the highest correlation coefficient) was selected for each interval.
	Both families of approaches have advantages and drawbacks. The individual wavelength ranking methods make use of simple metrics (regression coefficients, W, VIP, etc.), most of which are parameters of the PLS model structure and are readily available in commercial software. Since most of these approaches are not formulated as direct search methods, they are generally less computationally intensive. However, it is argued that the results are more difficult to interpret since selected wavelengths are often distributed across the complete spectra instead of within a few confined intervals (Ferreira et al., 2005; Rossi et al., 2007). This issue will also be demonstrated in this paper using ranking of regression coefficients. Interval methods, on the other hand, directly identify the most informative wavelength bands and should lead to easier interpretation and more consistent results. However, intensive iterative search is often required.
	In this paper, a Bootstrap-VIP (variable importance on the projection) approach is investigated for variable/wavelength selection. It consists of computing the VIP scores of each wavelength, obtained from a PLS model minimizing the root mean squared error in cross-validation (RMSECV). Bootstrap re-sampling is then applied to generate consistency intervals around VIP estimates. Those wavelengths significantly greater than a threshold (e.g. 1.0) are identified as relevant. This approach combines some of the advantages of both individual wavelength and interval selection methods and could, when more precise results are required, provide a very good starting point for interval search methods. Indeed, the VIP metric and the Bootstrap or Jackknife re-sampling methods are simple and already available in Chemometrics software, and as will be shown in this paper, the approach naturally leads to the identification of relevant spectral intervals. The choice of the VIP metric was partly motivated by the simulation study performed by Chong and Jun (2005), showing that using VIP scores for selecting the most informative wavelengths was more sensitive and specific than using regression coefficients across a wide range of data structures.
	There is certainly no unique “best” approach to variable/wavelength selection for any data structure, and the authors fully recognize the difficulty to generalize conclusions obtained with a single method tested on a few datasets. However, the proposed approach is found to work well on four datasets collected in the polymer, oil and pulp and paper industries. A comparison is made with selection by ranking of PLS regression coefficients, one of the most commonly used selection technique. It is clearly shown that for comparable RMSECV, Bootstrap-VIP identifies relevant intervals whereas regression coefficients tend to spread relevant individual wavelengths across the entire spectral range. Moreover, the proposed approach is found to provide very similar results to more complex interval selection methods on one of the datasets, the diesel shootout example, which was used in a few other papers (Rossi et al., 2007; Teófilo et al., 2009).
	6.2 Methods
	6.2.1 Projection to latent structures


	Consider two data matrices, X (N(K) and Y (N(M), containing K spectral signatures from some spectroscopic method and M response variables (e.g. chemical concentration, mechanical properties, quality characteristics, etc.) for a set of N samples. The structure of the PLS calibration model defining a common latent variable space relating both data blocks is given by:
	 (6.1)
	  (6.2)
	 (6.3)
	 (6.4)
	where W* (K(A) contains the X-weights defining the common latent variable space T (N(A) relating X and Y, and A is the number of PLS components (i.e. latent variables). Cross-validation using 10 random subsets was used in this work for selecting the number of PLS components (A). The P (K(A) and Q (M(A) matrices contain the loading vectors that best represent the X and Y spaces, respectively. The E (N(K) and F (N(M) matrices contain the projection residuals. The PLS latent variable model can be re-organized as a simple prediction equation involving a set of regression coefficients BPLS (K(M), similarly as for multiple linear regression (Wold et al., 2004).
	 (6.5)
	 (6.6)
	The PLS regression coefficient BPLS has been one of the most frequently used metric for selecting individual wavelengths in a similar way as if the model between X and Y was a multi-linear regression model. Another commonly used metric for judging the importance of the X-variables on Y is the variable importance on the projection (i.e. VIP). The VIP score for the kth variable (wavelength) for a single response y is computed according to Eriksson et al., (2001):
	 (6.7)
	where a = 1,2…,A, K is the number of columns of X (i.e. variables or wavelengths), wak is the loading weight of the kth variable in the ath component, and ta, wa, and qa are the ath column vectors of T, W, and Q, respectively.
	The main difference between the BPLS and the VIP metrics, in terms of assessing the importance of each variable or wavelength in predicting y, lies in the way the VIP metric weights the contribution of each variable according to the variance explained by each PLS component. Indeed, the  term in the numerator of Equation 6.7 is the variance of y explained by the ath PLS component, whereas the summation of these terms over all A components (i.e. denominator in Equation 6.7) is the total variance explained by the model. The  expression represents the importance of the kth variable in the ath component. As the number of PLS components increases, the variance explained by each component generally decreases, and the importance of the variables is progressively down-weighted. This limits the noise propagation (associated with smaller eigenvalue components) into the VIP metric. The latter should therefore be a more stable and consistent indicator of variable importance.
	It is generally accepted in practice that variables having a VIP > 1.0 are highly influential, values between 0.8 < VIP < 1.0 indicate moderately influential variables, and VIP < 0.8 represent less important variables (Eriksson et al., 2001). The unity threshold comes from the fact that the average of the squared values of the VIPs is equal to 1.0. The greater-than-one rule is often used as a selection criterion (Eriksson et al., 2001; Olah et al., 2004; ElMasry et al., 2008). A systematic simulation study conducted by Chong and Jun (2005) indicates that this cutoff criterion should be a function of the data structure, and that proper cutoff values, maximizing sensitivity and specificity in finding the truly important variables, range between 0.83-1.21.
	6.2.2 Bootstrap and wavelength selection

	Bootstrap is a well-known re-sampling method used in statistics to estimate bias and standard errors of parameter estimates. Similarly to Monte Carlo simulations, the dataset is randomly re-sampled b times with replacement leading to b estimates of the parameters of interest after building a regression model on each of the b datasets. This method assumes that both the original dataset and the bootstrap subsamples are representative of the population. Moreover, the bootstrap subsamples should be balanced; i.e. that the subsets are to be evenly collected throughout the dataset (Miller, 1974). Larger values of b more efficiently treat unsmooth and non-linear data at the expense of increased computation time (Efron and Tibshirani, 1993). More information on the bootstrap method can be found in Shao and Tu (1995).
	In this work, bootstrap was used to assess the importance (i.e. VIP) of each wavelength band of spectral images on the predictions of sample quality using a subsample size of 0.4N, where N is the size of the original dataset. This falls within the 0.27N – 0.5N range recommended by Babu (1991). Re-sampling b=500 times was found to yield very consistent results. Such a large number of subsamples was selected to ensure that stable bootstrap uncertainty intervals were obtained for all four datasets. Wavelength selection was achieved through a PLS-bootstrap algorithm based on the variable importance on the projection metric (VIP). The PLS-bootstrap approach for regression coefficients was also used for comparison since regression coefficients are commonly used for variable/wavelength selection.
	The typical threshold for VIP based variable selection is the greater-than-one rule (Eriksson et al., 2001; ElMasry et al., 2008). This criterion is based on the assumption that variables with VIPs above the average (1.0 as previously mentioned), should be retained in the final prediction model. The PLS-bootstrap algorithm was used to assess the uncertainty in the VIP metrics, and a wavelength was considered relevant when its average VIP value, along with its one standard deviation error bar (obtained from the bootstrap), was above 1.0 as shown in Figure 6.1. A similar methodology was applied to regression coefficients (BPLS) i.e. they were considered significant when their one standard deviation error bar did not include 0.0. Bootstrap results for one dataset are presented in Figure 6.1 to illustrate the typical behavior of the VIP and regression coefficients when used for wavelength selection. The VIP plot shows a fairly smooth spectrum with a certain number of well-defined peaks, while the BPLS curve is much noisier with a few peaks clearly standing out. The smoother VIP results are likely related to the weighing of each variable contribution according to the variance explained by each PLS.
	Figure 6.1. Bootstrap results at each wavelength illustrating the bootstrap average value and standard deviation for VIP and BPLS metrics. The PLS model built on dataset 2 with 10 latent variables is shown.
	6.3 Experimental
	6.3.1 Spectral image acquisition 


	The line-scan imaging system used in this work is composed of two cameras centered on the same area of a sample, each coupled with a grating spectroscope, effectively covering the visible and near-infrared (NIR) range of the spectrum (475-1500 nm). The visible range is captured using a Hamamatsu C8484-05G camera (480(512 pixels) coupled with an ImSpector V10E grating spectroscope (Specim Spectral Imaging Ltd) effectively sensing the 475-1000 nm wavelength range. The infrared range is captured using a XenICs XEVA-USB-FPA camera (256(320 pixels) coupled to a Specim ImSpector N17E grating spectroscope effectively sensing between 1000-1500 nm. Each scanned line of the sample is captured on the CCD array as a spatial/spectral (x(() image containing hundreds of spectral channels (i.e. wavelengths), rather than the 3 more commonly obtained in RGB images. A hyperspectral image, or data cube, of the entire sample is achieved by repeatedly displacing the sample perpendicularly to the spectroscope slit (along the y-axis). Each hyperspectral image consists of a number of juxtaposed line-scans, at 1 mm intervals, forming a 3-D array (x(y((). 
	6.3.2 Description of the datasets 

	Four datasets of spectral images and corresponding quality measurements were used to test the proposed method on different materials: (1) polymer films, (2) wood/plastic composites, (3) Kraft liquors and (4) diesel samples. Each dataset is explained in details below. These four examples were chosen to verify the behavior of the method in various fields (polymer processing, pulp and paper, and energy). This allowed verifying whether the results obtained with the VIP-bootstrap approach, and the comparison with other metrics (i.e. BPLS), yields consistent conclusions across different fields and data structures. More specific points may also be addressed, such as whether the same wavelengths are recognized as significant in both polymer datasets, as one may expect.
	Dataset 1: polymer films
	A compression press was used to mould thin polymer films (100(40(1.5 mm) of either polypropylene (PP), high-density polyethylene (HDPE) or low-density polyethylene (LDPE). The batch process consists in molding 6 g of resin at 180(C under 3 tons of pressure for 10 minutes, long enough to remove any previous thermal history (Chew et al., 1989; Albano et al., 2003). The mould was then water cooled to release the sample. A total of 18 samples were produced, 6 for each polymer, using average cooling rates of 1, 2, 4, 5, 8 and 16(C/min. These changes in cooling rates produced samples of different overall crystallinity, measured using Differential Scanning Calorimetry (DSC). The samples were imaged using the NIR line-scanner (185 wavelengths). A total of 10 line-scans were captured for each of the 18 samples (3 polymer types and 6 cooling rates) and were averaged along one spatial axis leading to a spectral matrix (X) of dimensions (180(185). Degree of crystallinity was measured for each sample and these measurements were repeated 10 times to obtain a congruent response vector y (180(1). More details on this study are available in Gosselin et al. (2008).
	Dataset 2: wood/plastic composites
	Thin HDPE/wood composites were produced using a twin-screw extruder and tested experimentally under different processing conditions and wood contents. The continuously extruded samples measured 2 mm in thickness and 80 mm in width. They were made of sieved birch wood fibers (45 and 180 (m) and commercial HDPE (Fortiflex A60-70-162). Wood fibers were obtained from a local sawmill. The following process conditions were investigated in a complete 23 factorial design: screw speed (70 and 90 rpm), die temperature (160 and 180(C), polymer throughput (500 and 600 g/h) with a fixed wood content of 20 wt.%. Wood content (main feed disturbance) was also varied in a separate set of experiments at three levels (10, 20 and 30 wt.%) under constant nominal process conditions (i.e. center point of 23 design). Steady-states were allowed to run for about 10 minutes for each condition tested. The samples were scanned using both the visible (485 wavelengths) and near-infrared (185 wavelengths) imaging spectrometers. In this case 25 line-scans were collected for each of the 11 samples. These were again averaged along the machine cross-direction to yield the spectral matrix X (275(485). Sample crystallinity is again used as the quality variable y (275(1) measured by DSC. Further details are a provided in Gosselin et al. (2009).
	Dataset 3: Kraft liquors
	Kraft pulp and paper mills use the so-called white liquor, a mixture of sodium hydroxide and sodium sulfide, to extract lignin from wood fibers. The mixture of white liquor and lignin is known as weak black liquor. Recycling this liquor is achieved by concentrating the black liquor and burning off the excess solids, leaving behind a solution of sodium carbonate, sodium sulfate and sodium sulfide. At this stage, the blend is known as green liquor. The cycle back to white liquor is completed by processing the green liquor in a lime kiln. A preliminary study was performed to test whether spectral NIR images of liquor samples could be used to predict their total sulfide (S2-) concentration (y) at any point during the cycle. A total of 15 samples were obtained from Irving Pulp & Paper (St-John, New-Brunswick, Canada), 5 of each liquor type (weak black, clarified green, and clarified white liquors). These were selected to span a wide range of sulfide concentration (i.e. S2-). Previous works by Leclerc (1997) and Mustonen and Laszlo (2007) have shown that the sulfidity, or S2- concentration, of Kraft liquors can be predicted using near-infrared spectra. Thus, 10 line-scans were captured using the NIR spectrometer for each of the 15 liquor samples and were averaged along one direction leading to the input matrix X (150(185). Sulfidity (y) was measured for each sample in the analytical chemistry lab of the company.
	Dataset 4: diesel
	In addition to the 3 datasets obtained in our laboratory, a fourth dataset was tested in order to directly compare the results of the proposed wavelength selection strategy to those obtained by other groups using different, but more complex methods. This dataset consists of NIR spectra of diesel samples measured at the Southwest Research Institute (SWRI) and was obtained from the Eigenvector Research Incorporated website (2005). Using cetane number (equivalent to octane number for gasoline) as a quality variable, the proposed method will be compared to the results published by Rossi et al. (2007) and Teófilo et al. (2008) on the same dataset. The spectral range captured in this dataset was from 750 to 1550 nm (discretized into 401 wavelengths) and had previously been mean centered and reduced to unit variance. After removing a few outliers from the original set, the spectral matrix X (107(401) was obtained. Cetane number (y) was measured for each sample.
	Finally, each dataset was mean-centered and scaled to unit variance (i.e. autoscaled) prior to be used in PLS modeling.
	6.4 Results
	6.4.1 Number of PLS components and wavelength selection consistency


	The number of PLS components used in the calibration model have an important impact on both the number and the consistency of selected wavelengths. The number of relevant wavelengths based on the Bootstrap-VIP and the Bootstrap-B (i.e. regression coefficients) methods as a function of the number of PLS components is shown in Table 6.1 for dataset 1. The number of intervals is also provided. An interval is defined by consecutive significant wavelengths. A single wavelength was also considered an interval if it was both identified as significant and isolated from other significant wavelengths. These results show that both the number of wavelengths and spectral intervals seem to stabilize when a sufficient number of latent variables (LV), or PLS components is used. In dataset 1, the VIPs appear to stabilize with at least 5 latent variables, while this number tends toward 10 for the regression coefficients. Similar results were observed for the other datasets. It therefore appears that the VIPs require fewer LVs to yield stable results. This was expected due to the down-weighing of the latent variables associated with smaller eigenvalues (see Equation 6.7).
	Table 6.1. Number of significant spectral bands and wavelengths obtained for dataset 1 using increasing numbers of latent variables. 
	Method
	LV
	Intervals
	Wavelengths
	VIP
	1
	5
	58
	3
	4
	40
	5
	7
	42
	10
	6
	41
	20
	6
	41
	BPLS
	1
	2
	160
	3
	7
	139
	5
	12
	115
	10
	16
	74
	20
	14
	68
	While the number of significant wavelengths and spectral intervals seems to stabilize when enough components are used, this does not indicate whether the same wavelengths are being selected in each case. To investigate the consistency of the results provided by each selection method, 15 PLS models were built on dataset 1 with different number of components (1-10, 12, 15, 20, 25, and 30) and, for each of them, relevant wavelengths were selected using the bootstrap-VIP and bootstrap-B approaches. The ratio of number of times each individual wavelength was found relevant by the VIP and B approaches for the 15 PLS models is shown in Figure 6.2. A ratio near 1.0 for a given wavelength indicates that all 15 models retained it as significant, while a ratio close to 0.0 indicates that none of the models did. The VIP selection show drastic changes along the spectra; some wavelengths are nearly always identified as significant while others, even neighboring wavelengths, are always rejected. Moreover, the selected wavelengths often occur in bands, or spectral intervals, as one would expect from correlated spectral data. This indicates that Bootstrap-VIP selection consistently identifies similar spectral regions, with little variations as the number of latent variables is changed. On the other hand, selection based on the regression coefficients follows a very different behavior: very few well-defined spectral intervals are identified, or even clear patterns which could lead to the identification of significant spectral regions. The selected wavelengths almost appear randomly distributed within the spectral range, and vary widely as a function of the number of PLS components since most of the wavelengths were found relevant about 40-60% of the time (i.e. ratios between 0.4-0.6). Very similar results were obtained on other datasets. The consistency of the Bootstrap-VIP approach was established in this section. Interpretability is investigated next.
	Figure 6.2. Influence of the number of PLS latent variables on wavelength selection consistency illustrated with dataset 1. Shown is the ratio of the number of times each wavelength was found significant by the VIP and regression coefficients (BPLS). 
	6.4.2 Wavelength selection and interpretation

	As shown in Table 6.1, the number of wavelengths and spectral intervals predicted by the models stabilizes when a sufficient number of latent variables are used. Nevertheless, keeping too many latent variables may lead to increased prediction errors. Several criteria for selecting the optimal number of latent variables have been published: the normalized mean squared error (NMSE) (Rossi et al., 2007), the relative root mean squared error (RRMSE) (Ye et al., 2008) and the root mean squared error in cross-validation (RMSECV) (Brás et al., 2008; Cai et al., 2008; Cramer et al., 2008; Teófilo et al., 2008). The latter criterion was chosen in this work and is defined as:
	 (6.8)
	where  and  are the measured value and predicted response value in cross-validation of the nth sample in a dataset containing N samples.
	In practice, wavelength selection was achieved through a two-step procedure. First, a PLS model was built using the complete spectral matrix X and y (Section 6.3.2) in which the number of latent variables (LV1) was computed to minimize the RMSECV achieved by the PLS model. For all datasets used in this study, the RMSECV first decreased with an increasing number of components, reached a minimum with less than 10 components, and then increased monotonously. Applying this method to the datasets, 8 latent variables are used in set 1 while sets 2, 3 and 4 required 7, 9 and 5 latent variables, respectively. Once the number of components was determined, the PLS-bootstrap method was applied to the data using the number of latent variables obtained in the first step (LV1).
	One objective of this study was to demonstrate that the stability and consistency of the VIP approach naturally leads to the identification of contiguous spectral intervals rather than spreading selected wavelengths throughout the spectra as Bootstrap-B does. Given the continuity of the spectra, these intervals are not only used by spectroscopists, but they are also much easier to interpret qualitatively (Brás et al., 2008). The relevant wavelengths identified by both PLS-bootstrap methods (i.e. VIP and B) with LV1 latent variables are shown in Figure 6.3 for all four datasets. For convenience, the wavelengths found significant by the VIP metric are shown below the mean spectra whereas those selected by the regression coefficients are identified above the spectra. As noted previously, the VIPs identify a relatively small number of spectral intervals, while the regression coefficients BPLS leads to the selection of a large number of individual wavelengths, distributed throughout the entire spectral range.
	As illustrated in Figure 6.3, the PLS-bootstrap method based on the VIPs identified a number of spectral intervals. Four such intervals were identified in dataset 1 (polymer films). The first two intervals (1000-1060 nm and 1100-1120 nm) represent the C-H stretching second overtone band and are linked to CH2 and CH3 vibrations (Watari et al., 2004). Polymer crystallinity refers to the degree of structural organization within the material. High crystallinity levels reduce the freedom of the macromolecules and have been linked to decreased CH2 vibrations in the C-H stretching second overtone band (Bower and Maddams, 1992). The third and fourth intervals (1270-1290 nm and 1365-1375 nm) represent the first overtone combination band (Ren et al., 1999; Watari et al., 2004). This band represents combined stretching and vibrational movements linked to polyethylene crystallinity (Watari et al., 2004).
	Figure 6.3. Relevant wavelength selection results for all datasets. Black line: average spectra. Blue bars (below spectra): VIP selection. Red bars (above spectra): BPLS selection (regression coefficients).
	Four intervals were identified in dataset 2 (wood/plastic composites). The first two (475-525 nm and 600-615 nm) represent blue-green and orange wavelengths, respectively. Note that the small but sharp peaks located around 546 and 612 nm are associated with room fluorescent lighting. Nevertheless, further tests discussed in Section 6.4.3 indicate that the spectral range between 500-620 nm may have some significance. This spectral interval is known to be linked to a number of wood species (Pandey et al., 1998; Pastore et al., 2004) and appears to be associated to the presence of cellulose (Ilharco et al., 1997). The two remaining intervals of importance (1110-1155 nm and 1275-1300 nm) essentially correspond to the second and third intervals discussed in the 1st dataset (1100-1120 nm and 1270-1290 nm). It is important to note that very similar spectral bands around 1110 and 1275 nm were classified as being significant in both dataset 1 and 2 as one would expect when similar chemical compounds are present. This indicates once again that the VIPs lead to consistent spectral intervals identification.
	Four intervals were identified in dataset 3 (Kraft liquors). In this case however, even if the VIP selection led to very well defined intervals, interpretation of the first three intervals (1000-1025 nm, 1280-1300 nm, and 1380-1420 nm) was not straightforward due to the very large number of chemical species present in the liquor samples. Both lignin and sodium sulfide, for example, strongly absorb in the 1000-1400 nm range (Huang et al., 2008; Muttiah, 2002). On the other hand, the fourth interval (1450-1500 nm) seems to be linked with sodium hydroxide concentration (Heiman and Licht, 1999). This component is known to vary with the liquor composition.
	Four spectral intervals were also identified in dataset 4 (diesel). These are located in the following ranges: 1018-1044, 1062-1092, 1202-1236, and 1502-1544 nm. According to Rossi et al. (2007), these intervals correspond to absorption bands of hydrocarbons whose combustibility influences the cetane number. At this point, we remind the reader that the diesel dataset is part of the public domain and was chosen to compare the proposed wavelength selection method to more complex techniques previously published. However, one must keep in mind that the results will depend on the initial pre-processing of the dataset as well as criterion with which outlying samples are excluded. Accordingly, Rossi et al. (2007) identified intervals located at 974-1086, 1200-1262 and 1486-1550 nm as the most relevant ones using a functional representation of the spectra (i.e. B-splines), followed by forward-backward procedure using the mutual information metric for selecting the B-splines coefficients that are the most highly correlated with Y and, finally, building a non-linear neural network model between the selected coefficients and the responses Y. A second research group also identified the following 3 intervals as the most relevant ones: 1000-1125, 1225-1325, and 1475-1550 nm (Teófilo et al., 2008). These results were obtained by constructing a set of informative vectors based on 7 metrics (regression coefficients, VIPs, signal/noise ratios, etc.), taken separately or in pairs, followed by an iterative search for the best combination minimizing the RMSECV of the PLS calibration model. The close agreement with some of the more complex methods confirms the ability of the Bootstrap-VIP algorithm to clearly identify meaningful spectral intervals. The predictive ability of the resulting more parsimonious PLS models will be investigated in the next section.
	6.4.3 Predictions with reduced spectra

	The predictive ability of the more parsimonious PLS models, obtained after wavelength selection, is investigated in this section. Ideally, the reduced model should maintain or improve the predictive power of the model using the complete spectra. The proposed wavelength selection is a two-steps process involving: 1) building a PLS model on the complete spectra with LV1 latent variables, selected to minimize RMSECV, followed by relevant wavelength selection using the Bootstrap-VIP metric, and 2) re-estimation of the PLS model on the reduced spectral matrix. The number of latent variables of the final PLS model (LV2) is again determined to minimize RMSECV. The number of latent variables selected in each step as well as the predictive power of the final PLS model, quantified by RMSECV and Q2 statistics, are shown in Table 6.2 for all four datasets. Note that selection results using the VIP metric without bootstrapping are also presented in Table 6.2, but are discussed later in Section 6.4.3.
	Comparing the results obtained by using the complete spectra and the bootstrapped VIP and BPLS metrics (see boot-VIP and boot-B in Table 6.2) it is observed that: 1) the boot-VIP approach always selects much fewer wavelengths (or spectral intervals), 2) wavelength selection using bootstrap based approaches leads to a reduction of up to 2 components in the final PLS model (LV2) compared to the model based on the complete spectra (LV1), and 3) boot-VIP have a slightly lower predictive ability. As discussed earlier, the smaller number of boot-VIP selected wavelengths gathered into well-defined spectral bands leads to easier interpretation. However such a high degree of parsimony seems to be at the limit of loosing predictive power, but still maintains the y-relevant latent structure contained within the complete spectra (i.e. LV2 close to LV1). This approach might in fact establish a lower bound on the number of wavelength intervals or, when considering their location within the spectral range, establish the minimal amount of information required for interpretation and prediction of y.
	Table 6.2. Predictive ability of the final PLS models obtained after wavelength selection by VIP (with and without bootstrapping) and BPLS metrics, compared against the performance obtained with the complete spectra. The number of selected wavelengths and intervals as well as the number of latent variables in the selection (LV1) and final (LV2) steps are also shown. Note that LV1 corresponds to the number of components of the PLS model on the complete spectra.
	Set
	Spectral matrix
	(X)
	Wavelengths
	(Intervals)
	LV2
	RMSECV
	Q2cum (%)
	1
	Complete
	185(-)
	8
	3.038
	97.1
	Boot-VIP
	41(4)
	7
	3.471
	96.1
	Boot-B
	81(14)
	7
	2.613
	97.8
	VIP
	59(6)
	6
	3.405
	96.2
	2
	Complete
	485(-)
	7
	2.570
	84.5
	Boot-VIP
	51(4)
	6
	2.686
	84.3
	Boot-B
	233(32)
	7
	2.491
	85.4
	VIP
	196(10)
	7
	2.600
	84.4
	3
	Complete
	185(-)
	9
	0.229
	88.0
	Boot-VIP
	53(4)
	7
	0.259
	85.2
	Boot-B
	130(18)
	8
	0.229
	87.8
	VIP
	78(4)
	7
	0.250
	85.6
	4
	Complete
	401(-)
	5
	2.011
	68.0
	Boot-VIP
	71(4)
	6
	2.057
	66.6
	Boot-B
	114(16)
	4
	2.163
	63.7
	VIP
	82(3)
	6
	2.041
	67.1
	This suggests that after the interpretation phase is completed, the boot-VIP reduced model might require some fine-tuning in order to achieve the lowest RMSE. This could be done in a number of ways. Some of them are listed below:
	1. Progressively increase the width of the boot-VIP selected spectral bands to verify whether any improvements could be achieved without adding other intervals.
	2. Reduce the VIP cut-off criterion from 1.0 to 0.8 or lower if necessary. This will increase the number of selected wavelength intervals. Some of them will likely be located in other section of the spectral range. This operation does not require redoing the bootstrap procedure, but only verifying which wavelengths have their bootstrap intervals above the new cutoff values.
	3. Alternatively, one could take advantage of the boot-B results which was found to spread relevant wavelengths across the entire spectral range (i.e. interpretation not as straightforward), but achieved better prediction results (see Table 6.2). The latter is obtained with virtually no additional computation cost when the boot-VIP procedure is performed. Wavelengths or intervals selected by boot-B, but not by boot-VIP, could be sequentially added to the boot-VIP model in a step-wise procedure. One could also cast this procedure into a multivariate design of experiments problem (Wold et al., 1986) to verify which additional intervals or combinations of intervals could be added to the boot-VIP model.
	4. The spectral intervals selected by boot-VIP could also be used as a very good starting point for more sophisticated interval search methods (Nørgaard et al., 2000; Du et al., 2004; Rossi et al., 2007; Cramer et al., 2008; Fang et al., 2009).
	To further validate that the boot-VIP is likely to select the minimum number of wavelength for prediction purposes, a randomization experiment was conducted. Given the high degree of redundancy within the spectra (i.e. collinearity), if boot-VIP selects the minimum number of wavelength intervals (min), then randomly selecting min wavelengths across the entire spectral range should yields relatively similar predictive ability. It should be emphasized here that this holds true only due to the high degree of collinearity within the spectra. Indeed, it is likely that random selection would pick wavelengths within some of the relevant intervals if a sufficient number of wavelengths (i.e. min) is used. For each dataset, a total of 10 random selections were made of 41, 51, 53, and 71 wavelengths for datasets 1-4, respectively. A PLS model was built on each selection (i.e. 10 random selections ( 4 datasets) and their number of latent variables was again selected to minimize RMSECV. The mean RMSECV and Q2cum statistics, as well as their standard deviations, are reported in Table 6.3 with the boot-VIP results (taken from Table 6.2).
	Table 6.3. Predictive capabilities of purely random wavelength selection using the same number of wavelengths as PLS-bootstrap methods based on VIPs. Ten random replicates were performed for standard deviation. 
	Dataset
	Wavelengths
	Selection method
	LV
	RMSECV
	Q2cum
	1
	41
	Boot-VIP
	7
	3.471
	96.1
	Random
	7-10
	3.703 (0.276)
	95.6 (0.6)
	2
	51
	Boot-VIP
	6
	2.686
	84.3
	Random
	6-7
	2.651 (0.035)
	83.5 (0.4)
	3
	53
	Boot-VIP
	7
	0.259
	85.2
	Random
	7-9
	0.283 (0.017)
	81.4 (2.2)
	4
	71
	Boot-VIP
	6
	2.010
	66.6
	Random
	6-8
	2.156 (0.024)
	65.0 (0.6)
	Prediction results for random selections are very similar to those obtained through the boot-VIP selection method. In many cases, the number of latent variables, the Q2cum and the RMSECV of the proposed methods fall within one standard deviation of the random selection results. This supports the idea that boot-VIP might very well identify the minimum number of wavelengths below which predictive ability degrades. The randomization experiment was used here only to provide additional support for this idea. Of course, random selection of the wavelength would not systematically lead to clear interpretations such as those provided by the boot-VIP approach.
	6.4.4 Advantages of bootstrapping

	The Bootstrap-VIP approach uses a re-sampling algorithm to assess the consistency of the VIP metrics, which comes at a computational cost. To justify this added layer of complexity, a comparison was made with the VIP selection using the greater-than-one rule, but without bootstrapping. These results are shown in Table 6.2 (see rows labeled Boot-VIP and VIP). It is clear that using the bootstrapped VIP metrics further reduces the number of selected wavelengths and leads to slightly lower prediction power than without bootstrap (VIP greater-than-one rule only). The VIP-selected wavelength intervals with and without bootstrapping are presented in Figure 6.4.
	Figure 6.4. Impact of bootstrapping on wavelength selection using the VIP metric. Black line: average spectra. Blue bars (below spectra): No-bootstrap selection. Red bars (above spectra): Bootstrap selection.
	The wavelength bands selected by the VIP metric with and without bootstrapping method differ to a certain extent. Overall, the boot-VIP method identifies both fewer and narrower spectral intervals. This difference is due to the fact that the bootstrap standard error of these spectral intervals included the threshold values of 1.0. However, fine-tuning the model by decreasing the cutoff values towards 0.8, with bootstrapping, would have led to similar results. The bootstrap consistency intervals around the VIP estimates allow discriminating wavelengths of borderline significance that may slightly improve prediction power, but with the advantage of providing results that are easier to interpret due to fewer, but more consistent wavelength bands. As mentioned in the previous section, it is recommended that the Boot-VIP approach should be used first for interpretation purposes, and then fine-tuned for improving prediction ability.
	6.4.4 Discussion on the VIP threshold

	Until now, the usual VIP threshold of 1.0 was used for selecting wavelengths. This cutoff value is not absolute as the zero cutoff (i.e. BPLS significantly different from 0) used to assess the significance of regression coefficients. In fact, it has often been suggested that the proper cutoff may vary between 0.8 and 1.2 (Eriksson et al., 2001; Olah et al., 2004; Chong and Jun, 2005). The impact of the VIP cutoff value on the PLS model predictive ability is investigated for each dataset. A comparison is provided in Table 6.4 between the Boot-VIP selection with a threshold of 1.0 and the optimal cutoff value leading to the lowest RMSECV, identified by trial and error. Even if minimizing RMSECV is in fact a 2-dimensional optimization problem, requiring to select both the number of latent variables of the reduced model (LV2) and the optimal VIP cutoff, the number of latent variables was kept the same (i.e. for each dataset) to test the individual impact of the VIP cutoff on selected wavelengths.
	Table 6.4. Influence of VIP cutoff on the reduced PLS model obtained after wavelength selection. The achieved RMSECV statistics for the optimal VIP cutoff (minimizing RMSECV) is compared to the greater-than-one rule.
	Dataset
	Optimal cutoff value
	RMSECV at 
	optimal cutoff
	RMSECV 
	Cutoff = 1
	1
	0.95
	3.389
	3.471
	2
	0.90
	2.600
	2.686
	3
	0.85
	0.251
	0.259
	4
	1.10
	2.010
	2.011
	The results presented in Table 6.4 show that the optimal VIP cutoff values vary between 0.85 and 1.10, providing marginal improvements on RMSECV values compared to the 1.0 threshold (reduction of 2.2% on average). These observations indicate that a VIP cutoff value of 1.0 is a good starting point, but can later be fine-tuned if necessary.
	The dependence of the VIP cutoff on the scaling of spectral data needs to be investigated. The greater-than-one rule has a particular meaning for autoscaled data which may not hold for other scaling options. However, after repeating the analysis of datasets 1-3 using mean-centering only, it was found that the VIP=1.0 threshold was still a good initial value. Similar results were obtained in terms of both the predictive power and the selected spectral ranges. Since these conclusions can hardly be generalized, it is recommended, in any case, to test other threshold values to verify whether a better model can be obtained.
	6.5 Conclusion

	This study explored the ability of the Bootstrap-VIP method for wavelength selection in spectral imaging applications and spectroscopy in general. The proposed two-steps approach involves building a first PLS model using the complete spectra database, with as many components as necessary for minimizing RMSECV. The bootstrap procedure is applied to that model in order to compute consistency intervals around the VIP metrics, followed by selection of the wavelengths having their intervals above a certain cutoff value. The greater-than-one rule was used in this paper. A final PLS model is then built on the reduced spectra. The proposed approach was tested on four different datasets, most of them using the NIR spectral range. Comparisons were made with the ranking of PLS regression coefficients, one of the most commonly used approach for selecting wavelengths individually (Centner et al., 1996; Spiegelman et al, 1998; Lazraq et al., 2003; Brás et al., 2008), and with some of the more sophisticated methods involving several metrics in informative vectors (Teófilo et al., 2009) or searching for wavelengths intervals (Rossi et al., 2007).
	The main conclusions drawn from this work are as follows: 1) even if the bootstrap-VIP approach is essentially an individual wavelength selection method, it naturally leads to the identification of the most relevant spectral intervals related to Y, whereas selection by ranking of regression coefficients spreads relevant wavelengths across the spectra; 2) the reduced spectra obtained by the bootstrap-VIP are therefore much easier to interpret and this was demonstrated on the four datasets used in this work (i.e. two from polymer processing, a Kraft liquor database taken from a pulp and paper mill, and the diesel shootout database); 3) the results obtained on the diesel shootout database were found to be in very close agreement with those published with more sophisticated methods (Rossi et al., 2007; Teófilo et al., 2008); 4) the very parsimonious PLS models obtained after selection have a slightly lower predictive power compared to the complete spectra or to the selection by regression coefficients; 5) the bootstrap-VIP approach seems to select the minimal amount of information (i.e. wavelength intervals) below which predictive capabilities starts degrading. It is therefore recommended to use the proposed selection method for the interpretation phase, after which some fine-tuning of the reduced PLS models may be performed to slightly improve the predictive power.
	6.6 References

	Albano C., Papa J., Gonzalez E., Navarro O. and Gonzalez R., Temperature and crystallinity profiles in polyolefin isothermal and non-isothermal solidification processes, Eur. Polym. J., 39,1215-1222 (2003).
	Babu G.J., Discussion of P.K. Sen’s paper “Nonparametrics: retrospectives and perspectives”, J. Nonparam. Statist., 1, 33-35 (1991).
	Bogomolov A. and Hachey M., Application of SIMPLISMA purity function for variable selection in multivariate regression analysis: A case study of protein secondary structure determination from infrared spectra, Chemom. Intell. Lab. Syst., 88, 132-142 (2007).
	Bower D.I. and Maddams W.F., The Vibrational Spectroscopy of Polymers, Cambridge University Press: Great Britain (1992).
	Brás L.P., Lopes M., Ferreira A.P. and Menezes J.C., A bootstrap-based strategy for spectral interval selection in PLS regression, J. Chemom., 22, 695-700 (2008).
	Cai W., Li Y. and Shao X., A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra, Chemom. Intell. Lab. Syst., 90, 188-194 (2008).
	Centner V., Massart D.L., de Noord O.E., de Jong S., Vandeginste B.M. and Sterna C., Elimination of uninformative variables for multivariate calibration, Anal. Chem., 68, 3851-3858 (1996).
	Chew C., Griffiths J.R., Stachurski Z.H., The crystallization kinetics of polyethylene under isothermal and non-isothermal conditions, Polymer, 30, 874-881 (1989).
	Chong I. and Jun C., Performance of some variable selection methods when multicollinearity is present, Chemom. Intell. Lab. Syst., 78, 103-112 (2005).
	Cramer J.A., Kramer K.E., Johnson K.J., Morris R.E. and Rose-Pehrsson S.L., Automated wavelength selection for spectroscopic fuel models by symmetrically contracting repeated unmoving window partial least squares, Chemom. Intell. Lab. Syst., 92, 13-21 (2008).
	Du Y.P., Liang Y.Z., Jiang J.H., Berry R.J. and Ozaki Y., Spectral regions selection to improve prediction ability of PLS models by changeable size window partial least squares and searching combination moving window partial least squares, Anal. Chim. Acta, 501, 183-191 (2004).
	Efron B. and Tibshirani R.J., An Introduction to the Bootstrap, Monographs on Statistics and Applied Probability, Chapman and Hall: USA (1993).
	Eigenvector Research Incorporated (2005)
	http://software.eigenvector.com/Data/SWRI.
	ElMasry G., Wanga N., Vigneault C., Qiao J. and ElSayed A., Early detection of apple bruises on different background colors using hyperspectral imaging, LWT, 41, 337-345 (2008).
	Eriksson L., Johansson E., Kettaneh-Wold N. and Wold S., Multi- and Megavariate Data Analysis. Principles and Applications, Umetrics Academy: Sweden (2001).
	Fang S., Zhua M.-Q. and He C.-H., Moving window as a variable selection method in potentiometric titration multivariate calibration and its application to the simultaneous determination of ions in Raschig synthesis mixtures, J. Chemom., 23, 117-123 (2009).
	Ferreira A.P., Alves T.P. and Menezes J.C., Monitoring complex media fermentations with near-infrared spectroscopy: comparison of different variable selection methods, Biotechnol. Bioeng., 91, 474-481 (2005).
	Frank I.E., Intermediate least squares regression method, Chemom. Intell. Lab. Syst., 1, 233-242 (1987).
	Frenich A.G., Jouan-Rimbaud D., Massart D.L., Kutta-Tharmmakul S., Martinez Galera M. and Matinez Vidal J.L., Wavelength selection method for multicomponent spectrophotometric determinations using partial least squares, Analyst, 120, 2787-2792 (1995).
	Gosselin R., Rodrigue D. and Duchesne C., On-line prediction of crystallinity spatial distribution across polymer films using NIR spectral imaging and chemometrics methods, Can. J. Chem. Eng., 86, 869-878 (2008).
	Gosselin R., Rodrigue D., González-Nuñez R. and Duchesne C., Quality control of polymer products through spectral imaging and chemometrics methods, ANTEC, Chicago, 1919-1924 (2009).
	Heiman A. and Licht S., Fundamental baseline variations in aqueous near-infrared analysis, Anal. Chim. Acta, 394, 135-147 (1999).
	Höskuldsson A., Variable and subset selection in PLS regression, Chemom. Intell. Lab. Syst., 55, 23-38 (2001).
	Huang A., Gaiyun L., Fu F. and Fei B., Use of visible and near infrared spectroscopy to predict the Klason lignin content of bamboo, chinese fir, paulownia and poplar, J. Wood Chem. Technol., 28, 194-206 (2008). 
	Ilharco L.M., Garcia A.R., da Silva J.L., Lemos M.J. and Vieira Ferreira L.F., Ultraviolet-visible and Fourier transform infrared diffuse reflectance studies of benzophenone and fluorenone adsorbed onto microcrystalline cellulose, Langmuir, 13, 3787-3793 (1997).
	Jouan-Rimbaud D., Walczak B., Massart D.-L., Last I.R. and Prebble K.A., Comparison of multivariate methods based on latent vectors and methods based on wavelength selection for the analysis of near-infrared spectroscopic data, Anal. Chim. Acta, 304, 285-295 (1995).
	Kalivas J.H., Variance-decomposition of pure-component spectra as a measure of selectivity, J. Chemom., 3, 409-418 (1989).
	Kleynen O., Leemans V. and Destain M.F., Selection of the most efficient wavelength bands for “Jonagold” apple sorting, Postharvest Biol. Tec., 30, 221-232 (2003).
	Kramer K. and Ebel S., Application of NIR reflectance spectroscopy for the identification of pharmaceutical excipients, Anal. Chim. Acta, 420, 155-161 (2000).
	Krier C., Rossi F., François D. and Verleysen M., A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis, Chemom. Intell. Lab. Syst., 91, 43-53 (2008).
	Lazraq A., Cleroux R. and Gauchi J.P., Selecting both latent and explanatory variables in the PLS1 regression model, Chemom. Intell. Lab. Syst., 66, 117-126 (2003).
	Leclerc D.F., Determination of sodium sulfide and sulfidity in green liquors and smelt solutions, WIPO, 010501 (1997).
	Lindgren F., Geladi P., Rännar S., Wold S., Interactive variable selection (IVS) for PLS. Part 1: Theory and algorithms, J. Chemom., 8, 349-363 (1994).
	Liu F., He Y. and Wang L., Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis, Anal. Chim. Acta, 615, 10-17 (2008).
	Martens H. and Naes T., Multivariate Calibration, Wiley: United Kingdom (1989).
	Miller R.G., An unbalanced jackknife, Ann. Statist., 2, 880-891 (1974).
	Mustonen M. and Laszlo J., NIR (near infrared) based liquor analyzer in the pulping and recovery area, 61st Appita Annual Conference and Exhibition, Gold Coast, Australia (2007).
	Muttiah R.S., From Laboratory Spectroscopy to Remotely Sensed of Terrestrial Ecosystems, Springer: USA (2002).
	Nørgaard L., Saudland A., Wagner J., Nielsen J.P., Munck L. and Engelsen S.B., Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc., 54, 413-419 (2000). 
	Olah M., Bologa C. and Oprea T.I., An automated PLS search for biologically relevant QSAR descriptors, J. Comput. Aided Mol. Des., 18, 437-449 (2004).
	Osborne S.D., Jordan R.B. and Künnemeyer R., Method of wavelength selection for partial least squares, Analyst, 122, 1531-1537 (1997).
	Pandey K.K., Upreti N.K. and Srinivasan V.V., A fluorescence spectroscopic study on wood, Wood Sci. Technol., 32, 309-315 (1998).
	Pastore T.C.M., Santos K.O. and Rubim J.C., A spectrocolorimetric study on the effect of ultraviolet irradiation of four tropical hardwoods, Bioresource Technol., 93, 37-42 (2004).
	Preisner O., Lopes J.A., Guiomar R., Machado J. and Menezes J.C., Fourier transform infrared (FT-IR) spectroscopy in bacteriology: towards a reference method for bacteria discrimination, Anal. Bioanal. Chem., 387, 1739-1748 (2007).
	Ren Y., Shimoyama M., Ninomiya T., Matsukawa K., Inoue H., Noda I. and Osaka Y., Two-dimensional near-infrared correlation spectroscopy studies on composition-dependent spectral variations in ethylene/vinyl acetate copolymers: assignments of bands due to ethylene units in amorphous, disordered, and orthorhombic crystalline phases, Appl. Spectrosc., 53, 919-926 (1999).
	Rossi F., Francois D., Wertz V., Meurens M. and Verleysen M., Fast selection of spectral variables with B-spline compression, Chemom. Intell. Lab. Syst., 86, 208-218 (2007).
	Shao J. and Tu D., The Jackknife and Bootstrap, Springer: USA (1995). 
	Spiegelman C.H., McShane M.J., Goetz M.J., Motamedi M., Yue Q.L., Cot G.L., Theoretical justification of wavelength selection in PLS calibration: development of a new algorithm, Anal. Chem., 70, 35-44 (1998).
	Teófilo R.F., Martins J.P.A. and Ferreira M.M.C., Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression, J. Chemom., 23, 32-48 (2009).
	Watari M., Higashiyama H., Mitsui N., Tomo M. and Ozaki Y., On-line monitoring of the density of linear low-density polyethylene in a real plant by near-infrared spectroscopy and chemometrics, Appl. Spectro., 58, 248-255 (2004). 
	Wold S., Sjöström M., Carlson R., Lundstedt T., Hellberg S., Skagerberg B., Wiksström C. and Öhman J., Multivariate design, Anal. Chim. Acta, 191, 17-32 (1986).
	Wold S., Eriksson L., Trygg J. and Kattaneh N., The PLS method - partial least squares projections to latent structures - and its applications in industrial RDP (research, development, and production), Compstat, Prague (2004).
	Xu L., Jiang J.H., Zhou Y.P., Wu H.L., Shen G.L. and Yu R.Q., MCCV stacked regression for model combination and fast spectral interval selection in multivariate calibration, Chemom. Intell. Lab. Syst., 87, 226-230 (2007).
	Xu H., Liu Z., Cai W. and Shao X., A wavelength selection method based on randomization test for near-infrared spectral analysis, Chemom. Intell. Lab. Syst., 97, 189-193 (2009).
	Yan Y.L., Zhao L.L., Han D.H. and Yang S.M., The Foundation and Application of Near Infrared Spectroscopy Analysis, China Light Industry Press: China (2005).
	Ye X., Sakai K., Sasao A. and Asada S., Potential of airborne hyperspectral imagery to estimate fruit yield in citrus, Chemom. Intell. Lab. Syst., 90, 132-144 (2008). 
	Chapter 7
	A Hyperspectral Imaging Sensor for On-line Quality Control of Extruded Polymer Composite Products*
	Résumé

	Cette étude porte sur la capacité des méthodes chimiométriques à extraire de l’information pertinente à partir d’images spectrales afin de prédire les variations spatio-temporelles des propriétés de matériaux composite bois/plastique extrudés. Les échantillons ont été produits en variant les conditions opératoires, ainsi que l’alimentation selon un plan d’expériences. Les propriétés mécaniques des échantillons ont été mesurées à la fois pendant les périodes de régime stationnaire et les périodes de transition. D’abord, une méthode de régression Bootstrap-PLS a permis de sélectionner les intervalles spectraux les plus fortement corrélées aux propriétés mécaniques. Ensuite, un modèle PLS liant les caractéristiques spatiales et spectrales extraites des images à dimensionnalité réduite à la qualité des échantillons a été construit. Ce capteur peut simultanément estimer 7 propriétés mécaniques de ces matériaux composites à tout moment durant la production. 
	Abstract

	This study examines the ability of chemometrics methods to extract meaningful information from visible and near-infrared spectral images of extruded wood/plastic composite materials for predicting spatio-temporal variations in their properties. The samples were produced under varying process and feed conditions according to designed experiments. Mechanical properties of the samples were measured using standard analytical methods both during steady-state and dynamic transition periods. A Bootstrap-PLS regression technique was first used for selecting the spectral bands (i.e. wavelengths) that were the most highly correlated with the material properties. In a second step, a more parsimonious PLS regression model was built between the spectral and textural features extracted from the lower dimensional spectral images and the corresponding quality properties of each sample. The imaging sensor was able to simultaneously monitor 7 properties in both steady-state operation and during transitions.
	* Gosselin R., Duchesne C. and Rodrigue D., A hyperspectral imaging sensor for on-line quality control of extruded polymer composite products, Comput. Chem. Eng., submitted: August 2009, CACE-S-09-00415 (2009).
	7.1 Introduction

	Polymer extrusion is essentially a well instrumented process with tightly controlled operating conditions. Common automatic feedback control loops on machine variables (i.e. temperature, screw speed, etc.) provide satisfactory results as long as there are no stringent constraints on product quality (Tadmor et al., 1974). On the other hand, raw material properties, such as melt flow index and composition, are seldom uniform in complex polymeric flows. The resulting extrudate may suffer from quality fluctuations that cannot be tempered by the machine variable controllers. Moreover, these fluctuations may never be detected in a timely fashion due to the lack of on-line sensors for key polymer properties, which leads to quality control issues in polymer processing plants (Ohshima and Tanigaki, 2000). In practice, quality control of polymer products is mainly performed by destructive testing in the laboratory using a very small proportion of the production. It is therefore likely that large amounts of abnormal products may be generated before quality issues are detected. This problem may be addressed by taking on-line quality measurements (or estimates) of the samples and including this information in quality control and monitoring schemes. Specifically, an efficient system should rely on in-process analysis of polymer characteristics during manufacturing providing real-time assessment of sample properties such as structure, morphology and composition (Dumoulin et al., 1996).
	Spectroscopic soft sensing techniques have been successfully applied in a number of fields such as food analysis (Mezreb et al., 2003; De Temmerman et al., 2007), pharmaceuticals (Côté and Abatzoglou, 2006; Cournoyer et al. 2008) and polymer science (Hansen and Vedula, 1998; Rohe et al., 1999; Barnes et al., 2003). The appeal of these methods lies in their ability to provide a great amount of information on the nature and structure of the sample through the location of the peaks and the intensity of the spectrum. Conventional machine variable control methods are simply not suited for maintaining molecular-specific properties to set-point, especially in complex or multi-component polymer systems.
	Analytical soft-sensing methods such as UV-visible, near-IR, mid-IR and Raman spectroscopy can be applied in four modes of operation depending on sample nature, geometry and property of interest: transmittance, reflectance, transflectance (light passing through the sample onto a mirror and reflected back through the sample) and diffuse reflectance (light penetrating partway into a moderately opaque sample) (Reshadat et al., 1999). Other on-line soft sensing methods include ultrasound transit time measurements (Chen et al., 1999; Barnes et al., 2003), X-ray scattering (Albano et al., 2003; Pantani et al., 2005; Stark and Matuana, 2007), fluorescence spectroscopy (Barnes et al., 2003), and nuclear magnetic resonance (NMR) spectroscopy (Bergmann, 1981; Pelsoci, 2007). According to Barnes et al. (2003), the polymer industry has so far mainly applied spectroscopic methods in either off-line or near-line (e.g. pellet composition) applications. Nevertheless, several sample properties have now been investigated on-line. These include estimation of the melt viscosity (Broadhead et al., 1993; Hansen and Vedula, 1998; Merikoski et al., 2001; McAfee and McNally, 2006), yield stress (Broadhead et al., 1993), polymer density (Watari et al., 1996), composition (Hansen and Vedula, 1998; Rohe et al., 1999; Barnes et al. 2003), extrudate temperature (Chen et al., 1999) and surface chemistry (Gupta et al., 2007; Stark and Matuana, 2007).
	However, most soft sensing methods are based on single point or averaged measurements. Estimating sample quality distribution over a larger area using these approaches is difficult to perform on a high-speed production line. At best, a coarse spatial coverage of the surface can be achieved using probe arrays. Nevertheless, fine spatial measurements greatly enhance the probability of identifying local weaknesses that may compromise the quality of the whole. The mechanical, optical and barrier properties of an entire sample may fall below specifications because of local discrepancies that may be overlooked by a coarse spatial analysis.
	Historically, modeling the open-loop response of a plasticating extrusion process can be traced back to the 1970s. During this period, research aimed at proposing relationships between screw speed, die pressure, extrudate flowrate and melt temperature (Reber et al., 1973; Tadmor et al., 1974). Later, work was done on the dynamics and control of the extruder pressure in cases where variations in feed quality and feed rates were present (Costin et al., 1982; Chan et al., 1986; Akdogan and Rumsey, 1996). More recently, Mudalamane and Bigio (2003) studied the transmission of external disturbances through the extruder whereas McAfee and McNally (2006) determined the extruder dynamics using the melt viscosity. More complex modeling techniques were also applied to the extrusion process, for example using finite element methods (Yuan et al., 1994; Bajimaya et al., 2007; Ha et al., 2008), artificial neural networks (Shihani et al., 2006) and fuzzy logic (Fodil-Pacha et al., 2007).
	This work investigates a new machine vision approach for on-line monitoring of product quality obtained by an extrusion process. On-line visible-NIR spectral imaging is used for rapid and non-destructive detection of spatio-temporal variations in the polymer properties in far greater detail than spectroscopic probes or probe arrays may achieve. Furthermore, rich spatial data would also be useful for precise diagnostic of operational problems in the production line. The proposed methodology uses chemometrics methods for extracting the spatial and spectral features that are most highly correlated with the material properties, and use this information to predict the properties of samples unknown to the model. To illustrate the concepts, the proposed techniques will be applied to the production of extruded wood/plastic composites (WPC). Nevertheless, these methods are not specific to WPCs. They are intended for any product that may be distinguished by its spectral and/or spatial surface characteristics.
	The rationale behind this approach is twofold: 1) WPCs are complex multiphase systems that are not as well understood and controlled as neat polymers and 2) the production of WPCs has been increasing steadily in response to growing concerns over waste plastic management. In fact, the production of WPCs quadrupled between 1997 and 2000 (Li and Wolcott, 2004) and is expected to reach $2.4 billion US by 2011 (WRAP, 2003). 
	7.2 Materials and methods
	7.2.1 Sample production and testing 


	Extruded high density polyethylene (HDPE)/wood composites were produced and tested under different processing conditions and wood contents. The polymer used was commercial HDPE (Fortiflex A60-70-162) and birch wood fibers were obtained from a local sawmill. These fibers were sieved between 45 and 180 (m and dried in a vacuum oven at 104(C overnight in order to minimize the amount of volatiles. Compounding of the polymer and wood was achieved using a Haake Rheomix TW-100 dual-feeder counter-rotating twin-screw extruder. This allows proper distribution of fibers in the polymer blend. In this first step the barrel temperatures of the extruder were controlled at 150 – 160 – 160(C for zones 1, 2 and 3, respectively, and 160(C for the die. The compound was extruded through a cylindrical 5 mm die, air cooled, and pelletized. After this blending phase, the composites were extruded using a flat horizontal 3 ( 80 mm die. The following process conditions were investigated in a complete 23 factorial design: die temperature (160 and 180(C), screw speed (70 and 90 rpm), and polymer throughput (500 and 600 g/h) with a fixed wood content of 20 wt.%. Wood content was also varied in a separate set of experiments at three levels (10, 20 and 30 wt.%) under constant nominal process conditions (i.e. center point of 23 design). Steady-states were allowed to run for about 10 minutes for each condition tested. These processing conditions are presented in Table 7.1.
	Sample quality consists of 6 tensile properties (modulus, stress and strain at yield, stress and strain at break, as well as the energy at break), measured according to ASTM D638 using an Instron 5565 in the direction of extrusion at a crosshead speed of 1 mm/min, measured over a 25 mm gage length. The measurements also include 1 thermal property (enthalpy of fusion) obtained using a Perkin Elmer DSC 7. While enthalpy of fusion and crystallinity are closely linked (the former is used to calculate the latter), crystallinity also requires an estimation of the sample composition. In order to avoid this complication during DSC testing (test sample typically weight 10 mg), only enthalpy of fusion was used. Five replicates of each composite formulation were fully tested. The quality of the extruded parts was studied both during steady-states and in the transitions between them (i.e. dynamics). The steady-states were used as a training set for model building, while the transitions were used for model validation.
	Table 7.1. Randomized 23 full factorial design for machine variables at 20% wood (samples 1-8) combined with 3 additional experiments in which wood content was varied under nominal processing conditions (samples 9-11).
	Sample
	Wood
	(%)
	Temperature
	((C)
	Throughput
	(g/h)
	Screw Speed
	(rpm)
	1
	20
	160
	600
	70
	2
	20
	160
	500
	90
	3
	20
	180
	500
	70
	4
	20
	180
	600
	90
	5
	20
	160
	600
	90
	6
	20
	160
	500
	70
	7
	20
	180
	600
	70
	8
	20
	180
	500
	90
	9
	10
	170
	550
	80
	10
	20
	170
	550
	80
	11
	30
	170
	550
	80
	7.2.2 Spectral image acquisition 

	Spectral imaging is well suited for monitoring spatio-temporal variations across a surface. A line-scan imaging system was used in this study since it rapidly captures light intensities simultaneously at many wavelengths for a single row of pixels (x(() which is better suited for moving samples such as those found on production lines (Figure 7.1). A full image is obtained after collecting several line-scans along the y-axis. The imaging system used in this work is composed of two cameras, each coupled with a grating spectroscope, effectively covering the visible and infrared range of the spectrum (475-1500 nm). Further information on the optical setup can be found in Gosselin et al. (2008, 2009). For each scanned line of the samples, the reflected light is dispersed through the spectroscope and captured by the CCD array of the camera as a spatial/spectral image. A hyperspectral image of the entire sample is achieved by repeatedly displacing the sample perpendicularly to the spectroscope slit, along the y-axis, forming a 3-D array (x(y(() of data. Each of these images contains 500 spectral channels (i.e. wavelengths), rather than the 3 more commonly obtained in RGB images.
	Figure 7.1. Line-scan VIS-NIR imaging system used to collect spatial/spectral reflectance images.
	A diffuse tungsten-halogen lamp was chosen for its smooth flat emission spectrum over the required range. The raw spectral-spatial image was transformed into reflectance units using a flat black image and a true white image (Valadez-Blanco et al., 2007; Gosselin et al., 2008, 2009). While NIR spectra are commonly used to study neat polymers, little work has been done on wood/plastic composites (Hansen and Vedula, 1998; Barnes et al., 2003). The samples were therefore imaged using both visible and NIR cameras ((=500 wavelengths). Figure 7.2 illustrates the average spectral signature for samples produced under the 11 steady-state conditions shown in Table 7.1. Averaging was performed along both spatial directions (x and y). The spectra appear to have similar peaks but differ in intensity, as one would expect in a dataset where the processing conditions were varied but the components remained the same.
	A training set of spectral data was constructed using the images collected during steady-state operation. Each condition was imaged 25 times (y=25) at 1 mm space intervals. As a result, 11 spectral images of size (25(25(500) were obtained for describing product quality in steady-state. As for the validation set, spectral images of the same size were captured every about 30 cm (or about every minute) during the transitions from one steady-state to the other. Product quality during steady-state and transitions was tested in the lab using samples taken within the field of view of each spectral image to ascertain the validity of the subsequent predictions.
	Figure 7.2. Averaged spectrum for each of the 11 steady-state samples (8-bit images).
	7.2.3 Spectral and textural analysis 

	Spectral imaging typically contains both spectral and spatial information. In the case of WPCs, the spectral signature essentially reflects the chemical composition and small-scale physical structure (i.e. crystallinity) of the composites whereas the spatial information represents large-scale variations throughout the sample (i.e. fiber orientation and distribution) and can be thought of as surface smoothness.
	Spectral analysis
	Despite the fact that spectral images may contain large quantities of information relative to sample nature (peak location) and structure (spectrum intensity), there are often high levels of collinearity between neighbor wavelengths. To increase the robustness of the prediction models, numerous methods have been proposed to reduce the number of wavelengths from spectral data including PLS-based methods (Cai et al., 2008; Brás et al., 2008), Genetic Algorithms (Reynes et al., 2006), Neural-Network (Boger, 2003), Support Vector Machines (Liu et al., 2008) as well as Fuzzy Logic methods (Setarehdan, 2006). In this study, a PLS-bootstrap based method previously developed and presented in Gosselin et al. (2010) is used. Prior to wavelength selection, the spectral images were averaged along the machine cross direction since no systematic spectral variation were observed along the sample width. The spectral data matrices X obtained for steady-state (i.e. training set) and transitions (i.e. validation set) were reduced to (275(500) and (6750(500) dimensional, respectively. The first dimension corresponds to the total number of line-scans, and the second to the number of wavelengths.
	Wavelength selection was achieved through bootstrapping of a PLS regression model between spectral data (X) and corresponding quality measurements (Y). The bootstrap is a well-known re-sampling method used in statistics to estimate bias and standard errors of parameter estimates. Through generating a population of randomly selected subsets with replacement from the complete dataset, the uncertainty interval of any statistical parameter of interest describing the importance of each variable (i.e. wavelength) in the model can be obtained. Variable deemed uninformative can then be discarded. The PLS-bootstrap method is applied by first computing the PLS variable importance metric (VIP) for each wavelength using the complete dataset. Then, the uncertainties in each wavelength VIP was assessed using the bootstrap. A wavelength was considered important for predicting sample quality when the one standard deviation error bar around each VIP estimate were above 1.0 (Eriksson et al., 2001; ElMasry et al., 2008). More information on PLS models is given in Section 7.2.4.
	Spatial analysis
	Image texture consists of the spatial organization of pixel intensities and may be used to quantify the aesthetics of the sample (i.e. smoothness, orientation, etc.) or may linked to the sample properties through the identification of local features, such as component segregation, that may compromise sample quality as a whole. Liu and MacGregor (2005) used this concept of image texture to optimize the visual appearance of industrial injection-molded plastic panels. The gray-level co-occurrence matrix (GLCM), a state-of-the-art statistical texture analysis method first proposed by Haralick et al. (1973), was used to quantify the visual texture of the samples. This was achieved based on a representative gray-level image taken from the original spectral images (25(25(500). Which wavelength was selected for texture analysis is discussed later. The GLCM compares the gray-levels of neighboring pixels, two-by-two, at different distance and orientation from each other, throughout the image. In essence, the image is found to be smooth when the gray-levels are similar, and rough, when they are not. Three user-defined parameters need to be selected for texture quantification: the distance between any pair of pixels, the angle between them, and the number of gray-levels in the image. The result is a roughly diagonal matrix, named the GLCM matrix, in which the distance from the main diagonal indicates the roughness of the sample. Such a matrix is obtained for each combination of the 3 GLCM parameters (i.e. distance, angle, and gray-levels). Several scalar features computed from these GLCM matrices were proposed by Haralick (1979) (e.g. correlation, entropy, energy, etc.) in order to allow texture comparison between different images.
	Distances of 2, 5 and 10 pixels were selected in both horizontal and vertical directions (i.e. 0 and 90() in order to quantify textural features at different scales and orientation. As the line-scans were acquired at 1 mm intervals, the distances between pixels correspond to variations on the order of magnitude of the wood fibers (2 pixels) up to sample-wide variations (10 pixels). Texture descriptors for each GLCM matrix, computed using 32 gray-levels, were the correlation and entropy Haralick’s scalar features. Entropy is a measure of randomness of the pixel intensities over the entire image and correlation as a measure of how correlated each pixel is to its neighbor. These are computed as follows:
	 (7.1)
	 (7.2)
	where the indices i and j are the row and column numbers in the GLCM matrices, pi,j is the normalized value of an element (i,j) of the GLCM matrices and μ and ( are the gray-level average and standard deviation over i and j. Using this method, image texture is quantified at 3 scales, in 2 directions and using 2 features, for a total of 12 texture descriptors.
	7.2.4 Multivariate latent variable methods 

	Principal component analysis
	Principal component analysis (PCA) is a well-known multivariate statistical method that decomposes the variance-covariance structure of a data matrix by finding linear combinations of the original variables in such a way that these combinations explain the greatest amount of variation within the data (Eriksson et al., 2001). In the case of a dataset X (N(K) consisting of N observations described by K variables, this decomposition is written as:
	 (7.3)
	where a is the number of principal components, ta are the score vectors, and pa are the loading vectors. The first score vector t1 is the linear combination of the K variables (defined by the loadings vectors p1) capturing the largest possible variance within the matrix X, while the second score vector t2 represents the second largest source of variance, and so on. The score vectors can therefore be viewed as a multivariate summary of each X observation. If the number of components is lower than the maximum number of components (A(K), then E (N(K) contains the residuals. Further information on PCA can be found in Wold et al. (1987).
	Projection to latent structures
	The aim of this work is to build a model between the spectral and spatial features extracted from each image and the corresponding quality variables. According to Hansen and Vedula (1998), considerable overlap between the spectral bands in the NIR spectrum makes it difficult to build such a model using simple multiple linear regression techniques. Projection to Latent Structures (PLS) model may be used in such a situation. The PLS algorithm extracts the relationship between regressor variables (X) and response variables (Y) by assuming that they are generated by a common set of underlying factors (Brás et al., 2008). This characteristic enables the model to handle highly collinear datasets. The structure of the latent variable PLS regression model between the image features (K variables) of the samples X (N(K) and their corresponding quality matrix Y (N(M) is given below:
	 (7.4)
	 (7.5)
	 (7.6) 
	 (7.7)
	where the P (K(A) and Q (M(A) matrices contain the loading vectors of the X and Y spaces, respectively. The E (N(K) and F (N(M) matrices contain the residuals. The orthogonality of the PLS components (a=1,2,…A) make it possible to use a relatively small number of latent variables (a(K). The PLS model can be expressed in such a way as to link T to X through W* (K(A), containing the X-weights. Finally, the VIP score of a predictor variable (i.e. wavelength) quantifies the importance of this variable in the projection model (Eriksson et al., 2001; Chong and Jun, 2005). The VIP score for the kth variable (wavelength) for a single response y is computed according to Eriksson et al. (2001):
	 (7.8)
	where a = 1,2…,A, K is the number of columns of X (i.e. variables or wavelengths), wak is the loading weight of the kth variable in the ath component, and ta, wa, and qa are the ath column vectors of T, W, and Q, respectively. Since wavelengths with higher VIP scores are more relevant in prediction and the average of the squared values of the VIPs is equal to 1, a greater-than-one rule is often used as a selection criterion (Olah et al., 2004; Chong and Jun, 2005). More details on PLS can be found in Eriksson et al. (2001).
	7.3 Results
	7.3.1 PCA on quality data for relevant wavelength selection 


	The high level of collinearity (i.e. redundancy) present in spectral data allows reducing the number of wavelengths, resulting in simpler and potentially more robust models. The PLS-bootstrap wavelength selection method (Gosselin et al., 2010) was designed for a single quality variable (y). However, 7 properties were chosen in this study: enthalpy of fusion, modulus, stress and strain at yield, stress and strain at break as well as the energy at break. Rather than selecting appropriate wavelengths for each quality variable individually, PCA was first performed on the quality matrix (Y) of the training set (extrusion steady-states) in order to determine possible correlations between the material properties. Two components were found sufficient for explaining most of the information contained in the quality data, each explaining 63.1% and 22.6% of the variance, respectively, for a total of 85.7%. The p1-p2 loading plot of the PCA-Y decomposition shown in Figure 7.3 is used to interpret the relationships between the 7 properties. The following conclusions are drawn: (1) modulus is strongly negatively correlated to most other properties, (2) enthalpy of fusion, energy at break, and the strains (both at yield and at break) are positively correlated among each other, and (3) properties at break are highly correlated to those at yield.
	Figure 7.3. Loadings plot of the PCA-Y performed on the quality variables.
	As the first two components represent most of the variance in Y, these will be used as representative new variables to perform the wavelength selection. Rather than identifying the relevant wavelengths for each of the 7 y-variables individually, this selection is performed using the corresponding PCA-Y score vectors, referred to as yPCA1 and yPCA2. Simplifying the Y-matrix through PCA both lightens the wavelength reduction scheme and increases interpretability. The PLS-bootstrap method starts with building a PLS model using all X and the [yPCA1 yPCA2] data. The number of PLS components was chosen by random-subset cross-validation on entire training set. The importance of each wavelength (i.e. VIP metric) was computed based on this model. Wavelengths having a VIP significantly greater than one were considered to be the most important for predicting yPCA1 and yPCA2, and were kept in the final prediction model. The relevant wavelengths for either yPCA1 and yPCA2 based on the bootstrap one standard deviation error are shown in Figure 7.4A (see regions in blue). A limited number of wavelengths around 1100 nm are particularly significant, while the interval between 500-1000 nm is not (Figures 7.4B and C).
	Figure 7.4. Wavelength selection achieved using the Bootstrap-PLS algorithm. The 6 relevant wavelengths bands are shown by the blue areas in A). The VIP values and one standard deviation for yPCA1 and yPCA2 are shown in B and C, respectively. The VIP=1.0 threshold is identified using the dash line.
	As illustrated in Figure 7.4A, the PLS-bootstrap based method identified 6 quality-relevant spectral bands. Inter-correlation analysis between these bands varies from 37% (bands 1 and 3) to 95% (bands 2 and 4) with an average of 75%, confirming a certain level of independence between the selected wavelengths. The first of these (450-515 nm) represents the blue-green wavelengths. This spectral interval has previously been linked to a number of wood species (Pandey et al., 1998; Pastore et al., 2004) and may be associated to the cellulose in the wood (Ilharco et al., 1997). The second and third intervals (960-1065 nm and 1070-1165 nm) represent the C-H stretching second overtone band and are linked to CH2 vibrations (Watari et al., 2004). According to Bower and Maddams (1992), high crystallinity levels reduce the freedom of the macromolecules to vibrations and can be observed through this band. The remaining intervals (1210-1260 nm, 1280-1310 nm and 1340-1500 nm) appear to be associated to the first overtone combination band. They represent combined stretching and vibrational movements linked to polyethylene crystallinity (Ren et al., 1999; Watari et al., 2004).
	The 6 spectral bands selected account for 202 of the 500 wavelengths present in the original images. In order to simplify the remaining spectral information, only the average value of each of these 6 spectral bands was kept since the wavelengths within each band are highly correlated to one another. This further reduced the size of the spectral data from the original 500 wavelengths to 202 significant wavelengths grouped together into 6 equivalent spectral bands. The hyperspectral images now contain 6 wavelengths (i.e. after averaging) in the same way that RGB images contain 3 wavelengths.
	7.3.2 PLS model building and interpretation for steady-state data 

	Formulating a regression problem between multivariate images and response variables involves extracting a certain number of features (K) from each of the N images, collecting them in a regressor matrix X (N(K), and building a PLS regression model against the response variables of interest Y (N(7). In other words, the relevant information contained within each image must be condensed into a single vector of length K. This is achieved in two steps. First, the spectral information included in the model was averaged over each line-scan (extrusion machine cross-direction). As the 500 wavelengths captured by the imaging system had previously been reduced to 6 significant wavelength bands, the spectral information in each line-scan is reduced into 6 spectral features. As mentioned in Section 7.2.2, the training set consists of 11 steady-states, each imaged 25 times, for a total of 275 line-scans. Then, the GLCM texture analysis was performed on images corresponding to these 6 wavelength bands. Preliminary tests indicated that the textural information does not differ significantly from one wavelength band to another. The textural features extracted from the 4th spectral band (1210-1260 nm) had the strongest reflectance and provided a good signal-to-noise ratio. As previously mentioned, the GLCM analysis led to 12 textural variables. Combined, the matrix X contains a total of 18 image features (Figure 7.5).
	Figure 7.5. The PLS model is based on 18 image features (6 averaged wavelengths and 12 spatial characteristics) to predict 7 quality properties of the WPC polymer composites.
	A 6-component PLS model was then built using the PLS-toolbox software (Eigenvector Research Inc.) and a standard random-subsets cross-validation procedure. Overall, the cumulative X and Y variances explained by the model were R2X,cum= 96.2% and R2Y,cum= 88.3%. Nevertheless, as much as 53.7% of the total Y-variance was captured using only the first 2 components of the model. To verify whether this model is able to discriminate the quality of the samples produced in 11 steady-state conditions using both spectral and textural image information, the 3 score scatter plots (t1-t2, t3-t4 and t5-t6) shown in Figure 7.6 are used. To enhance visual interpretation, only the average location of each steady-state sample (numbered circles), as well as the dispersion of the data within each steady-state (3- error bars), are presented.
	The first score vector t1 captures the largest possible covariance between X and Y while each subsequent score vector captures smaller sources of covariance. This is illustrated in Figure 7.6 by the reduction in axis length occurring between t1-t2, t3-t4 and t5-t6. Consequently, the first components contain more relevant information, leading to clearer clustering of the data, and will be used in illustrations throughout the remainder of this paper. Nevertheless, the latter components make it possible to distinguish between similar samples; while some samples can easily be identified using t1-t2 alone (i.e. 4, 9, 11), others require more subtle information (i.e. samples 1 and 8 may be difficult to distinguish in t1-t2 but differ greatly in t3-t4 and t5-t6).
	In order to determine whether the 11 sample types differ significantly from one another, the Hotelling’s T2 two-sample multivariate statistic was used (Hotelling, 1931; Mardia et al., 1979; Shaw and Lee, 2007). This generalization of the univarite Student’s t statistic may be used in multivariate hypothesis testing to compare two populations. The results show that, when the 6 components are used, all 11 sample types differ significantly from each other (p < 0.001). To illustrate this point, samples 3 and 5 were taken as their intervals overlap in all three score plots of Figure 7.6. In this case, p = 0.1621 when a single component is used (t1), p = 0.0780 with two components (t1-t2) and p=0.0002 with 6 components (t1-t6). The proposed hyperspectral sensor can therefore discriminate the quality of the polymer product obtained at each of the 11 sets of steady-state extrusion conditions. The transitions between them will be examined later.
	Figure 7.6. Score plots illustrating the 6 components of the PLS model (t1-t2, t3-t4 and t5-t6) in which each of the 11 steady-states can be distinguished. Error bars depict 3 standard deviations around steady-states along each component.
	The relationships between the spectral/textural features and the materials properties are interpreted using the PLS loading biplot for the first two principal components (Figure 7.7A). This biplot shows the correlation structure of the variables both within each of the X and Y blocks, as well as between them. Variables with similar coordinates in the biplot are positively correlated, those falling in opposite quadrants are negatively correlated, and those near the origin (0,0) have little or no correlation with other variables. Analyzing the material properties in Figure 7.7A, one finds the same type of pattern found in Figure 7.3, namely that the modulus is negatively correlated to all the other properties and that both the stress at yield and at break fall apart from the remaining 4 properties. In fact, being strongly correlated to the 1st component, this distinction makes up the largest source of variance in the dataset. Meanwhile, the 2nd component distinguishes between the enthalpy of fusion, strain at yield and at break as well as the energy at break. Components 3-6 only serve to enhance these distinctions.
	Figure 7.7. Loadings biplot of the first 2 components of the PLS model (A) depicting the relation between spectral variables, spatial variables and the properties of the samples. VIP plot depicting the relative importance of each of the regressor variable. Spatial variables are denoted here according to entropy and correlation, the distance between neighboring pixels involved in the GLCM analysis (2, 5 or 10) and the direction of which the texture analysis was carried out (machine direction: MD vs. transverse direction: TD).
	The joint analysis of the loadings of both the regressor and quality variables in Figure 7.7A shows that the first component (i.e. horizontal axis) mainly explains variations in wood content. Polymer processing knowledge shows that when wood content increases, modulus also increases while other properties such as the strains and enthalpy of fusion are reduced. Product coloration becomes darker and its surface texture is rougher. These relationships are clearly shown in Figure 7.7A. Modulus is positively correlated with the entropy features (i.e. surface roughness) but negatively correlated with the spectral intensities and other material properties. Indeed, lower intensities in the 1st wavelength band means coloration is darker whereas the other NIR bands are related with lower polymer concentration and crystallinity. Therefore, based on these correlations, a material having a higher modulus and a rougher surface texture but lower values for all other variables should fall in the negative t1 quadrants, and vice-versa. This is verified in Figure 7.6 since steady-state 11 (30% wood) fall on the left hand side in the t1-t2 score plot whereas the material produced with 10% wood (steady-state 9) fall on the right hand side. The spectral sensor could therefore detect fluctuations in the feed composition.
	The second component (vertical axis in Figure 7.7A) mainly involves textural features and modulus. These are negatively correlated with one another in the t2 direction. This was found to be related with the severity of the thermo-mechanical energy delivered to the system. As more energy is supplied to the melt by increasing barrel temperature set-point (thermal energy) and/or throughput or screw speed (mechanical energy) wood fiber and polymer degradation is progressively observed. Damaged fibers increase material surface roughness (entropy features) and decrease some mechanical properties such as modulus. This is confirmed in the score plot of Figure 7.6 where the most severe conditions, achieved in steady-state 4, have the highest t2 values whereas the less severe conditions of steady state 6 project in the negative t2 region. The t1-t2 score plot could also be used to warn operators that extrusion conditions may lead to material degradation.
	The importance of each of the 18 X-regressor variables in the 6-components PLS model (i.e. VIP) is reported in Figure 7.7B. The model strongly relies on the spectral information (i.e. the 1st and 6th wavelengths) as well as the textural information (i.e. 5 and 10-step correlation in the transverse direction). However, the entropy textural features are less important taken individually but are important as a group.
	In order to judge the adequacy of the model, two cumulative multiple correlation coefficients were computed to quantify the model predictive ability: R2Y,cum represents the cumulative percentage of the total variance of the Y matrix used to build the model while Q2cum represents the cumulative percentage of the total variance of a Y matrix that has not been used to build the model. The performance of the method in training and validation are compared in Table 7.2. The results obtained for the training set show that all of the properties are well predicted by the model, but there are some distinctions to be made. First, enthalpy of fusion shows a lower R2Y,cum compared to other properties. This was expected since enthalpy of fusion is obtained by measuring the heat of fusion of the polymer phase within a sample and comparing it to the sample total weight. However, laboratory testing is typically performed on small samples of the composite (10 mg), making it virtually impossible to estimate the true polymer fraction within any given sample.
	Second, as is typically the case, the performance of the model in validation (Q2cum) are inferior to those in fit (R2Y,cum). The magnitude of this drop however shows a distinct pattern. The properties at yield (both stress and strain) have higher Q2cum values relative to their R2Y,cum than do the properties at break. In other words, the yield properties are more easily predicted than the break properties. This was expected since ultimate properties (at break) usually have high data scatter (Ghaneh-Fard, 1999). Further inquiry into the subject indicated that the full spectra (500 wavelengths) could not predict these properties with any greater accuracy. Nevertheless, it is clear in the results (Figures 7.3 and 7.7) that the properties at break and at yield have similar trends. 
	Table 7.2. PLS model ability in training (R2Y,cum) and validation (Q2cum).
	Property
	Steady states
	Training set
	(R2Y,cum)
	Transitions
	Validation set
	(Q2cum)
	Enthalpy of fusion
	0.853
	0.851
	Modulus
	0.884
	0.880
	Stress at yield
	0.893
	0.869
	Strain at yield
	0.891
	0.870
	Stress at break
	0.870
	0.818
	Strain at break
	0.880
	0.809
	Energy
	0.912
	0.890
	Overall
	0.883
	0.855
	7.3.3 Transitions in latent variable space of the PLS model 

	Product quality and spectral images were also collected during the transitions between the 11 steady-states. These are used to validate the quality sensor by applying the PLS model developed in the previous section to the images collected in the transients. This will allow investigating the process dynamics between machine variables, the raw materials, and the final product quality.
	Figure 7.8A is an adaptation of the t1-t2 score plot shown in Figure 7.6 in which only the center points of the 11 steady-states are shown. Two transitions are superimposed on this plot: between steady-states 5 and 6, as well as between 9 and 10. These were chosen to represent simple transitions in which a single parameter was varied (9 to 10: step in wood content) as well as more complex transitions in which 2 step changes occurred at once (5 to 6: simultaneous steps in throughput rate and screw speed). Both transitions begin near the center-point of the initial steady-state, cross the t1-t2 score plot in a relatively straight line and stabilize near the center-point of the final steady-state. While not shown here, transitions in the t3-t4 and t5-t6 score plots also occur linearly but follow noisier paths, as the signal-to-noise ratios of components 3-6 are inferior to those of components 1 and 2. It is important to note that the PLS model developed earlier is a steady state model relating the spectral image to the properties of the material within the field view of the camera. Therefore, this model can also be applied for monitoring transitions since there are no dynamics between the image and the material itself. 
	Figure 7.8B illustrates transitions 5 to 6 and 9 to 10 as they occur through time, rather than across the score space. They are calculated using Hotelling’s T2 single-sample multivariate statistic (Hotelling, 1931) which essentially measures the Mahalanobis distance in the score plot of the current operating conditions from the initial steady-state; large T2 values therefore indicate that the samples imaged no longer belong to the initial steady-state conditions. Mirroring their representation in Figure 7.8A, the transitions begin very near their initial steady-states (5 or 9) and stabilize a certain distance (measured in T2) from it, implying that they have reached their final steady-states (6 or 10). Between these two points, both transitions appear to approximately follow a 1st order with dead time dynamic response. In fact, most of the transitions studied in this work followed similar dynamics.
	Figure 7.8. Typical transitions as seen in the PLS score plot (A), and in time (B). Average steady-states are shown as open symbols. Transition 5 to 6: simultaneous -100 g/h throughput rate and +20 rpm screw speed (closed red dots). Transition 9 to 10: +10% step in wood content (light blue dots).
	To quantify extrusion dynamics, multiple input – single output (MISO) transfer function models were built between machine variables (inputs) and the measurements provided by the hyperspectral sensor (i.e. scores of the PLS model) using the Matlab’s System Identification Toolbox (R14). The first PLS component was selected for illustration, since it explains most of the variance in the material properties (e.g. wood content and surface esthetics). The four input variables were barrel temperature, throughput rate, screw-speed and wood content in the recipe. Based on Figure 7.8B, it was concluded that first-order with dead-time models adequately capture the dominant process dynamics and it was found that second-order models contribute little to improving the fit. These results corroborate earlier results (Reber et al., 1973; Cayot et al., 1995; Haley and Mulvaney, 2000; McAfee and McNally 2006). First-order time constant and dead-time (Tp and Td), along with their respective confidence intervals, were computed for transfer functions between each of the 4 machine variables and the first score of the PLS model. The results are presented in Table 7.3. While the system identification was performed using t1, similar results were obtained using the other PLS components.
	Table 7.3. First order dynamic time constant and dead-time for each of the four transfer functions between machine variables and the 1st component of the PLS model. Confidence intervals are indicated between parentheses.
	Variable
	Time constant
	Tp (min)
	Dead-time
	Td (min)
	Temperature ((C)
	6.55 (1.78)
	5.58 (2.48)
	Throughput (g/h)
	3.75 (1.04)
	2.61 (0.77)
	Screw speed (rpm)
	3.92 (1.46)
	1.70 (1.56)
	Wood content (%)
	4.31 (0.33)
	3.62 (0.22)
	Analyzing the dynamic constants in Table 7.3, it can be seen first that temperature variations lead to slow dynamics preceded by long delays, confirming previous observations (Reber et al., 1973; McAfee and McNally, 2006). Second, variations in throughput rates and wood content follow relatively similar dynamics. This may be expected since both are feed variations that need to propagate from the feed hopper to the die exit. However, variations in wood content do appear slightly slower than variations in throughput rates. This may be caused by the fact that changing the throughput rate only needs to affect the fill ratio of the screw to impact the extrudate whereas changes in wood content must also purge the entire screw (i.e. in a plug flow system, all the 20% wood composite needs to exit the die before the 30% wood composite can do so). Last, variations in screw speed lead to very short delays (Td). Unlike variations in feed conditions, this manipulated parameter influences the entire length of the extruder at once.
	A single transition does not appear to follow such a 1st order dynamic. The transition between samples 4 and 5 (-20°C temperature step). Figure 7.9A illustrates a significant excursion towards more severe thermo-mechanical energy transfer (i.e. high t2 values). This was caused by a temporary failure of the barrel temperature controller. The excursion along the positive t2 axis is associated with an abnormal increase in the entropy textural features for the transition samples. Looking at the samples themselves (Figure 7.9B), the presence of very distinct local anomalies in the composites is observed during this transitional state. Local agglomerations of wood fibers within the polymeric matrix can be seen. Such anomalies were not found elsewhere in the dataset. This illustrates the advantage of spectral imaging over single-point probes by their capability to identify localized defects.
	Figure 7.9. Abnormal transition 4 to 5 (-20°C temperature step) as seen in the PLS score plot (A), and a few images taken within the transitions indicating the presence of distinct local anomalies in the composite.
	Whereas a sample’s location within the score plot may be useful to determine its general characteristics (i.e. t1 is linked to spectral information, t2 to texture), it is also necessary to determine its true properties. It was possible to predict each of 7 measured properties for all the samples within the training and validation sets by adapting Equation 7.5:
	 (7.9)
	In accordance with the experimental plan (Section 7.2.1), the entire run between samples 1 and 8 was considered as a single run consisting of 20% wood samples in which the temperature, throughput rate and screw speed were varied (run 1). Likewise, samples 9-11 also consist of a single run in which the wood content was varied under nominal conditions (run 2). Beyond the 11th sample type (30% wood), the experimental conditions were returned to the 10th and 9th conditions (20 and 10% wood, respectively) in order to further validate the model. Figure 7.10 illustrates the predicted modulus and enthalpy of fusion for both experimental runs (run 1: 1-180 minutes run 2: 180-300 minutes). In this figure, the experimental dataset is shown in black, the values predicted by the training (steady states) set are shown in blue and the values predicted for the validation set (transitions) are shown in red. Results show that, in general, there is a good agreement between the measured and the predicted data. However, at times, the training set shows distinct biases for some samples: the modulus of sample 6 (≈ 120 minutes) is overestimated while the enthalpy of fusion of sample 2 is underestimated (≈ 30 minutes). This appears to be attributable to the fact that the PLS model only accounted for 88.3% of the Y-variance (R2Y,cum), leaving 11.7% of the information unexplained. It is therefore no surprise that the validation data, which is obtained using the same model, shows the same biases the training set does. The transition results generally appear to fall between their respective steady-states as one would expect with first-order transitions. 
	Nevertheless, the problematic transition between samples 4 and 5 (≈ 90 minutes) clearly underestimates both properties. This difference may be caused by the fact that the laboratory tests did not happen to include some of the wood fiber agglomerations identified by the camera. This is not unexpected; a local anomaly in the image will influence the textural features of the image as a whole while the laboratory tests (especially DSC) only measure a portion of the sample. Last, the samples produced after 250 minutes were used solely for validation purposes. These samples show that the model could clearly identify both steady states (≈ 260 and 290 minutes) even though validation data within these steady states is clearly noisier than the equivalent steady states used to build the training set (sample 9 ≈ 190 minutes and sample 10 ≈ 210 minutes). Similar results were obtained for the other properties.
	Figure 7.10. Modulus and enthalpy of fusion transitions comparing the experimental values (black line), to the values predicted by the training set (blue dots) and the validation set (red dots).
	Multivariate statistical process monitoring charts based on the PLS scores and projection residuals could be directly used for quality control of extruded composite products as was achieved in a wide variety of fields (Kourti, 2002, 2005; Liu and MacGregor, 2008). This would enable the operator to quickly identify products that are off-specification due to disturbances such as variations in the feed (e.g. wood content) and operational problems such as severity of thermo-mechanical energy transfer, a faulty barrel temperature controller, etc. Appropriate corrective actions could then be applied with the help of the process understanding provided by the PLS model (i.e. loadings biplots presented in Figure 7.7).
	7.4 Conclusion

	The objective of this work was to develop a rapid and non-intrusive on-line imaging sensor for monitoring spatio-temporal variations in quality across the surface of thin polymer composite materials. This paper discusses the ability of chemometrics methods, to extract relevant spectral and textural information from the visible/NIR spectral images and link it to sample quality. On one hand, the spectral signature of a sample reflects its chemical composition and small-scale physical structure. The significant wavelength intervals included in the model were computed using a PLS-bootstrap based method previously developed by Gosselin et al. (2010). On the other hand, the spatial information (visual texture) represents large-scale variations throughout the sample. It was quantified through the gray-level co-occurrence matrix (GLCM) algorithm, a common, simple and effective texture analysis method.
	The proposed approach was tested on extruded wood plastic composites. These samples were produced under conditions varying in barrel temperature, screw speed, throughput rate and wood content. Several properties were quantified: enthalpy of fusion, modulus, stress at yield and at break, strain at yield and at break as well as the energy at break. Overall, 11 steady-state samples were produced to build the PLS regression model. The model was subsequently used to predict the quality of samples produced while changing from one steady-state condition to another (transient state).
	The results show that the proposed methodology can (1) distinguish between the quality of the product obtained under the 11 sets of steady-state operating conditions, (2) predict the 7 quality variables of the samples in both the steady-states and the transitions, (3) estimate the extrusion dynamics, and (4) provide an early detection scheme for undesired changes in feed composition (e.g. wood content) as well as in the severity of the thermo-mechanical energy delivered to the systems, which may lead to degradation in product quality. It is believed that such a spectral imaging sensor can provided valuable information for establishing an on-line product quality control strategy for the polymer processing industry.
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	Chapter 8 
	Thesis conclusion
	The title of this thesis, “On-line Quality Control in Polymer Processing using Hyperspectral Imaging”, is intended to reflect the major themes discussed in this work.
	 The quality issues associated with the production of polymer materials and the limits of feedback control loops to address these quality issues.
	 The potential of spectral imaging sensors to provide a wealth of information that most common probe sensors cannot. 
	 The notion that combining spectral imaging cameras and chemometrics methods can lead to better understanding and better quality control of complex composite materials.
	The stated objective of this work was to develop an on-line quality control tool adaptable to plastic materials of all types. Specifically, one with high spatial resolution able of detecting quality gradients and/or localized defects in the finished product. In order to achieve this, a visible and infrared (VIS-NIR) spectral imaging sensor was proposed. As our results have shown, this methodology made it possible to monitor spatio-temporal variations in plastic products (both neat and composite plastics) with a degree of precision not yet achieved in the field by remote sensing probes.
	The experimental results obtained during this thesis are presented in four chapters, each based on articles either published, accepted or submitted to international scientific journals. As mentioned in the outline of the thesis, these are:
	1. Crystallinity predictions. Determination of spatial crystallinity patterns across the surface of neat polymer films using spectral methods.
	2. Polymer blend films. Monitoring of PE/PS blends produced via extrusion film-blowing using a combined spatial/spectral methodology.
	3. Wood/plastic composites. Monitoring of extruded wood/plastic composites using independent spatial and spectral methodologies.
	4. Wavelength selection. Reducing the number of wavelengths in the spectral imaging data using a latent variable methodology in order to produce more parsimonious remote sensing models.
	These four chapters are linked to one another and can be interpreted sequentially. First, the determination of crystallinity patterns across the surface of neat polymer films was used as an initial step in the monitoring of polymer composites. In essence, one must determine the quality of a simple system before moving on to a more complex one. In this work, subtle variations in crystallinity were introduced in the films (LDPE, HDPE and PP) by controlling the cooling rates at which they were produced. These variations were then identified using an image analysis and regression approach (MIA/MIR) based on the near infrared reflectance spectra of the samples. By doing so, these latent variable techniques were shown to outperform other methods based on the 2nd derivative of NIR spectra. Finally, such predictive power was also consistently high for all three polymer species. This feature of the proposed approach shows an interesting potential for application to more complex materials such as polymer blends or composites.
	Second, the monitoring of polymer film blend produced via extrusion film-blowing was used as a case study of polymer-polymer blends. In this work, a multiresolutional multivariate image analysis (MR-MIA) methodology was used to extract the spatial and spectral features that are most highly correlated to the film properties (i.e. composition distribution and mechanical properties). Applied to PE/PS blends produced under various operating conditions, the imaging sensor was able to monitor the two dominant effects on mechanical properties: the effect of film composition (raw materials) and the stretching effect caused by post-extrusion conditions (process).
	Third, the monitoring of extruded wood/plastic composites was used as a case study of polymer-filler blends. In this work, a two-step method was used to extract the significant spatial and spectral image features and link them to the material properties. Unlike the film blowing dataset, the seven properties of interest were measured not only during the steady-state operating conditions, but also during the transition periods. The results show that the proposed methodology can distinguish between the quality of the product obtained under steady-state operating conditions, predict the quality of the samples in both the steady-states and the transition states, estimate the extrusion dynamics, and provide early detection of abnormal operation when unforeseen situations occur.
	Fourth, a simple wavelength selection method having the ability to identify relevant spectral intervals was developed for spectral imaging applications and spectroscopy in general. While the work described in this chapter is not specific to composite materials, it plays an important role in increasing the robustness and interpretability of any multivariate image regression model. The proposed approach combined PLS modeling of the complete spectral dataset and a bootstrap procedure, making it possible to compute consistency intervals around the PLS VIP metrics of each wavelength. Wavelengths with VIP values above a certain cutoff value were deemed as important and kept for further modeling. Using four different datasets, it was shown that a small number of well-defined relevant spectral intervals were identified with the proposed approach and that these intervals were in agreement with more complex interval search methods.
	Concluding remarks
	These four chapters encompass much of the work carried to fruition during this project. They represent, however, only an introduction to what promises to be a complex and rewarding field of inquiry. Even in the short term, many more interesting projects could, and should, be tackled:
	 In all of these tests, the imaging system has been physically decoupled from the extruder, implying that the image analysis be done off-line. This need not to be the case. Mounting the sensors onto the extruder would make it possible to test the remote-sensing model in real-time.
	 Only work on flat-surfaced samples was done in order to help with the image capture. However, there is no reason why, with proper consideration of the lighting patterns, such a methodology could not be extended to more complex shapes. A cylindrical extrudate may be the perfect candidate to test the principle.
	 Also, only thin samples were analyzed, reducing possible discrepancies between surface and core properties. A study based on thicker samples may lead to new insights relating to core/surface properties. Moreover, preliminary tests indicate that NIR waves travel significant distances inside WPCs (of the order of millimeters) and that and different wavelengths have different penetration capabilities. This suggests that a spectral NIR sensor may be used as a non-destructive means of obtaining property profiles inside thicker composite samples. While these observations appear promising, they remain highly case-specific.
	It is also important to consider that these tests were performed in academic settings under controlled laboratory conditions and should be considered as a proof of concept. While they show promise, they need to be put to the test in industrial settings. A number of points must be taken into account. 
	 First, it is of the utmost importance to identify the proper remote sensing device for the case at hand. While it should be very sensitive to the material properties found to influence the quality of the product, its performance should be balanced with other criteria such as price and ease of use if it is to be industrially viable. In other words, the costs of highly technological solutions may be found to outweigh the benefits.
	 Second, it is important to considerer the nature of the production line in question. While some go virtually unchanged over long periods, others undergo constant changes (e.g. product shape or composition). In light of this, the remote sensing device must be sufficiently adaptable to suit the situation under consideration. Beyond this, it is necessary to ascertain model validity through routine maintenance if accuracy is to be maintained over time.
	 Third, if the chosen device is to be successfully implemented, it must be seen by both the administration and the production line operator to provide a clear and obvious advantage over the preceding situation. While it is up to the plant administration to decide to implement such a system, it is up ultimately to the operator to determine its usefulness. In this way, the system must be considered simple, effective and reliable by all parties concerned. 
	 Finally, several technological difficulties must also be considered. It is of paramount importance that the system copes with its intended environment. Such limitations may come in many forms. Among these, let us mention high throughput rates (i.e. short acquisition times), extreme operation temperatures, soiling (through dust or other contaminants), uneven lighting conditions, mechanical stresses (e.g. vibrations or impacts), as well as any limitations due to hardware maintenance. 
	In closing, these image analysis techniques are not specific to any material, process or field. At their most general, they can be adapted to any product that may be distinguished by its spectral and/or spatial surface characteristics. As with all types of surface analysis, these techniques should only be used with caution on thicker samples. Nevertheless, even this restriction does not prevent them from being used to monitor the operating conditions rather than inferring product properties. By doing so, such a sensor could provide valuable information in a wide range of on-line quality control strategies.

