266 research outputs found

    Resilience assessment and planning in power distribution systems:Past and future considerations

    Full text link
    Over the past decade, extreme weather events have significantly increased worldwide, leading to widespread power outages and blackouts. As these threats continue to challenge power distribution systems, the importance of mitigating the impacts of extreme weather events has become paramount. Consequently, resilience has become crucial for designing and operating power distribution systems. This work comprehensively explores the current landscape of resilience evaluation and metrics within the power distribution system domain, reviewing existing methods and identifying key attributes that define effective resilience metrics. The challenges encountered during the formulation, development, and calculation of these metrics are also addressed. Additionally, this review acknowledges the intricate interdependencies between power distribution systems and critical infrastructures, including information and communication technology, transportation, water distribution, and natural gas networks. It is important to understand these interdependencies and their impact on power distribution system resilience. Moreover, this work provides an in-depth analysis of existing research on planning solutions to enhance distribution system resilience and support power distribution system operators and planners in developing effective mitigation strategies. These strategies are crucial for minimizing the adverse impacts of extreme weather events and fostering overall resilience within power distribution systems.Comment: 27 pages, 7 figures, submitted for review to Renewable and Sustainable Energy Review

    Deep Reinforcement Learning for Control of Microgrids: A Review

    Get PDF
    A microgrid is widely accepted as a prominent solution to enhance resilience and performance in distributed power systems. Microgrids are flexible for adding distributed energy resources in the ecosystem of the electrical networks. Control techniques are used to synchronize distributed energy resources (DERs) due to their turbulent nature. DERs including alternating current, direct current and hybrid load with storage systems have been used in microgrids quite frequently due to which controlling the flow of energy in microgrids have been complex task with traditional control approaches. Distributed as well central approach to apply control algorithms is well-known methods to regulate frequency and voltage in microgrids. Recently techniques based of artificial intelligence are being applied for the problems that arise in operation and control of latest generation microgrids and smart grids. Such techniques are categorized in machine learning and deep learning in broader terms. The objective of this research is to survey the latest strategies of control in microgrids using the deep reinforcement learning approach (DRL). Other techniques of artificial intelligence had already been reviewed extensively but the use of DRL has increased in the past couple of years. To bridge the gap for the researchers, this survey paper is being presented with a focus on only Microgrids control DRL techniques for voltage control and frequency regulation with distributed, cooperative and multi agent approaches are presented in this research

    Resilient power grid for smart city

    Get PDF
    Modern power grid has a fundamental role in the operation of smart cities. However, high impact low probability extreme events bring severe challenges to the security of urban power grid. With an increasing focus on these threats, the resilience of urban power grid has become a prior topic for a modern smart city. A resilient power grid can resist, adapt to, and timely recover from disruptions. It has four characteristics, namely anticipation, absorption, adaptation, and recovery. This paper aims to systematically investigate the development of resilient power grid for smart city. Firstly, this paper makes a review on the high impact low probability extreme events categories that influence power grid, which can be divided into extreme weather and natural disaster, human-made malicious attacks, and social crisis. Then, resilience evaluation frameworks and quantification metrics are discussed. In addition, various existing resilience enhancement strategies, which are based on microgrids, active distribution networks, integrated and multi energy systems, distributed energy resources and flexible resources, cyber-physical systems, and some resilience enhancement methods, including probabilistic forecasting and analysis, artificial intelligence driven methods, and other cutting-edge technologies are summarized. Finally, this paper presents some further possible directions and developments for urban power grid resilience research, which focus on power-electronized urban distribution network, flexible distributed resource aggregation, cyber-physical-social systems, multi-energy systems, intelligent electrical transportation and artificial intelligence and Big Data technology

    An improved C-DEEPSO algorithm for optimal active-reactive power dispatch in microgrids with electric vehicles

    Get PDF
    In the last years, our society's high energy demand has led to the proposal of novel ways of consuming and producing electricity. In this sense, many countries have encouraged micro generation, including the use of renewable sources such as solar irradiation and wind generation, or considering the insertion of electric vehicles as dispatchable units on the grid. This work addresses the Optimal active&-reactive power dispatch (OARPD) problem (a type of optimal power flow (OPF) task) in microgrids considering electric vehicles. We used the modified IEEE 57 and IEEE 118 bus-systems test scenarios, in which thermoelectric generators were replaced by renewable generators. In particular, under the IEEE 118 bus system, electric vehicles were integrated into the grid. To solve the OARDP problem, we proposed the use and improvement of the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO) algorithm. For further refinement in the search space, C-DEEPSO relies on local search operators. The results indicated that the proposed improved C-DEEPSO was able to show generation savings (in terms ofmillions of dollars) acting as a dispatch controller against two algorithms based on swarm intelligence.European CommissionAgencia Estatal de InvestigaciĂłnComunidad de Madri

    Deep learning-based correlation analysis for probabilistic power flow considering renewable energy and energy storage

    Get PDF
    Developing photovoltaic (PV) and wind power is one of the most efficient approaches to reduce carbon emissions. Accumulating the PV and wind energy resources at different geographical locations can minimize total power output variance as injected into the power systems. To some extent, a low degree of the variance amplitude of the renewable resources can reduce the requirement of in-depth regulation and dispatch for the fossil fuel-based thermal power plants. Such an issue can alternatively reduce carbon emissions. Thus, the correlation problem by minimizing the variance of total PV and wind power plays a vital role in power system planning and operation. However, the synergistic effect of power output correlation is mainly considered on the generation side, and it is often neglected for the correlation relationship between the power grid components. To address this problem, this paper proposes a correlation coefficient analysis method for the power grid, which can quantify the relationship between energy storage and the probabilistic power flow (PPF) of the grid. Subsequently, to accelerate the mapping efficiency of power correlation coefficients, a novel deep neural network (DNN) optimized by multi-task learning and attention mechanism (MA-DNN) is developed to predict power flow fluctuations. Finally, the simulation results show that in IEEE 9-bus and IEEE14-bus systems, the strong correlation grouping percentage between the power correlation coefficients and power flow fluctuations reached 92% and 51%, respectively. The percentages of groups indicating weak correlation are 4% and 38%. In the modified IEEE 23-bus system, the computational accuracy of MA-DNN is improved by 37.35% compared to the PPF based on Latin hypercube sampling. Additionally, the MA-DNN regression prediction model exhibits a substantial improvement in assessing power flow fluctuations in the power grid, achieving a speed enhancement of 758.85 times compared to the conventional probability power flow algorithms. These findings provide the rapid selection of the grid access point with the minimum power flow fluctuations

    Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation

    Get PDF
    With the increasing integration of wind energy sources into conventional power systems, the demand for reserve power has risen due to associated forecasting errors. Consequently, developing innovative operating strategies for automatic generation control (AGC) has become crucial. These strategies ensure a real-time balance between load and generation while minimizing the reliance on operating reserves from conventional power plant units. Wind farms exhibit a strong interest in participating in AGC operations, especially when AGC is organized into different regulation areas encompassing various generation units. Further, the integration of flexible loads, such as electric vehicles and thermostatically controlled loads, is considered indispensable in modern power systems, which can have the capability to offer ancillary services to the grid through the AGC systems. This study initially presents the fundamental concepts of wind power plants and flexible load units, highlighting their significant contribution to load frequency control (LFC) as an important aspect of AGC. Subsequently, a real-time dynamic dispatch strategy for the AGC model is proposed, integrating reserve power from wind farms and flexible load units. For simulations, a future Pakistan power system model is developed using Dig SILENT Power Factory software (2020 SP3), and the obtained results are presented. The results demonstrate that wind farms and flexible loads can effectively contribute to power-balancing operations. However, given its cost-effectiveness, wind power should be operated at maximum capacity and only be utilized when there is a need to reduce power generation. Additionally, integrating reserves from these sources ensures power system security, reduces dependence on conventional sources, and enhances economic efficiency

    Advancements in Enhancing Resilience of Electrical Distribution Systems: A Review on Frameworks, Metrics, and Technological Innovations

    Full text link
    This comprehensive review paper explores power system resilience, emphasizing its evolution, comparison with reliability, and conducting a thorough analysis of the definition and characteristics of resilience. The paper presents the resilience frameworks and the application of quantitative power system resilience metrics to assess and quantify resilience. Additionally, it investigates the relevance of complex network theory in the context of power system resilience. An integral part of this review involves examining the incorporation of data-driven techniques in enhancing power system resilience. This includes the role of data-driven methods in enhancing power system resilience and predictive analytics. Further, the paper explores the recent techniques employed for resilience enhancement, which includes planning and operational techniques. Also, a detailed explanation of microgrid (MG) deployment, renewable energy integration, and peer-to-peer (P2P) energy trading in fortifying power systems against disruptions is provided. An analysis of existing research gaps and challenges is discussed for future directions toward improvements in power system resilience. Thus, a comprehensive understanding of power system resilience is provided, which helps in improving the ability of distribution systems to withstand and recover from extreme events and disruptions

    Optimal sizing and placement of Electrical Vehicle charging stations to serve Battery Electric Trucks

    Get PDF
    For Norway to reach the emission limits in the Paris Agreement, a substantial amount of CO2 must be reduced. Road traffic alone accounts for a high percentage of the total emissions during 2021. This thesis will focus on electrifying the transport sector and analyzing charging infrastructure for heavy-duty electric vehicles. New charging infrastructure for heavy-duty Electric Vehicles (EVs) provides issues regarding profitability due to the currently low adaption rates. However, heavy-duty EVs use the same charging sockets as EVs. As a result, EVs may finance the charging infrastructure needed to increase the adaption of heavy-duty EVs. Projections from Norwegian grid operators suggest that the total electricity surplus is diminishing during the next years and will be negative by 2027. This highlights the importance of modeling the power system in combination with finding optimal locations for charging stations. This study uses prescriptive analytics to suggest optimal locations for charging infrastructure to maximize returned profits to motivate station builders to implement more charging stations. A soft-linking will be done with PyPSA-eur to model the power system, where the new infrastructure is added as an additional load. Analyzing the results, it is possible to see that charging infrastructure has the potential to become profitable as the adaption rate for heavy-duty EVs rise. The collaboration between the models offers an open-source tool for scholars, researchers, and planners to study how new charging infrastructure affects key components in the Norwegian power system and could be useful in modeling state-of-the-art technologies

    Advanced Solutions for Renewable Energy Integration into the Grid Addressing Intermittencies, Harmonics and Inertial Response

    Get PDF
    Numerous countries are trying to reach almost 100\% renewable penetration. Variable renewable energy (VRE), for instance wind and PV, will be the main provider of the future grid. The efforts to decrease the greenhouse gasses are promising on the current remarkable growth of grid connected photovoltaic (PV) capacity. This thesis provides an overview of the presented techniques, standards and grid interface of the PV systems in distribution and transmission level. This thesis reviews the most-adopted grid codes which required by system operators on large-scale grid connected Photovoltaic systems. The adopted topologies of the converters, the control methodologies for active - reactive power, maximum power point tracking (MPPT), as well as their arrangement in solar farms are studied. The unique L(LCL)2 filter is designed, developed and introduced in this thesis. This study will help researchers and industry users to establish their research based on connection requirements and compare between different existing technologies. Another, major aspect of the work is the development of Virtual Inertia Emulator (VIE) in the combination of hybrid energy storage system addressing major challenges with VRE implementations. Operation of a photovoltaic (PV) generating system under intermittent solar radiation is a challenging task. Furthermore, with high-penetration levels of photovoltaic energy sources being integrated into the current electric power grid, the performance of the conventional synchronous generators is being changed and grid inertial response is deteriorating. From an engineering standpoint, additional technical measures by the grid operators will be done to confirm the increasingly strict supply criteria in the new inverter dominated grid conditions. This dissertation proposes a combined virtual inertia emulator (VIE) and a hybrid battery-supercapacitor-based energy storage system . VIE provides a method which is based on power devices (like inverters), which makes a compatible weak grid for integration of renewable generators of electricity. This method makes the power inverters behave more similar to synchronous machines. Consequently, the synchronous machine properties, which have described the attributes of the grid up to now, will remain active, although after integration of renewable energies. Examples of some of these properties are grid and generator interactions in the function of a remote power dispatch, transients reactions, and the electrical outcomes of a rotating bulk mass. The hybrid energy storage system (HESS) is implemented to smooth the short-term power fluctuations and main reserve that allows renewable electricity generators such as PV to be considered very closely like regular rotating power generators. The objective of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth out the high frequency fluctuations of the PV power, which may occur due to shadows of passing cloud on the PV panels. A control system designed and challenged by providing a solution to reduce short-term PV output variability, stabilizing the DC link voltage and avoiding short term shocks to the battery in terms of capacity and ramp rate capability. Not only could the suggested system overcome the slow response of battery system (including dynamics of battery, controller, and converter operation) by redirecting the power surges to the supercapacitor system, but also enhance the inertial response by emulating the kinetic inertia of synchronous generator
    • …
    corecore