966 research outputs found

    Augmented interaction for custom-fit products by means of interaction devices at low costs

    Get PDF
    This Ph.D thesis refers to a research project that aims at developing an innovative platform to design lower limb prosthesis (both for below and above knee amputation) centered on the virtual model of the amputee and based on a computer-aided and knowledge-guided approach. The attention has been put on the modeling tool of the socket, which is the most critical component of the whole prosthesis. The main aim has been to redesign and develop a new prosthetic CAD tool, named SMA2 (Socket Modelling Assistant2) exploiting a low-cost IT technologies (e.g. hand/finger tracking devices) and making the user’s interaction as much as possible natural and similar to the hand-made manipulation. The research activities have been carried out in six phases as described in the following. First, limits and criticalities of the already available modeling tool (namely SMA) have been identified. To this end, the first version of SMA has been tested with Ortopedia Panini and the orthopedic research group of Salford University in Manchester with real case studies. Main criticalities were related to: (i) automatic reconstruction of the residuum geometric model starting from medical images, (ii) performance of virtual modeling tools to generate the socket shape, and (iii) interaction mainly based on traditional devices (e.g., mouse and keyboard). The second phase lead to the software reengineering of SMA according to the limits identified in the first phase. The software architecture has been re-designed adopting an object-oriented paradigm and its modularity permits to remove or add new features in a very simple way. The new modeling system, i.e. SMA2, has been totally implemented using open source Software Development Kit-SDK (e.g., Visualization ToolKit VTK, OpenCASCADE and Qt SDK) and based on low cost technology. It includes: • A new module to automatically reconstruct the 3D model of the residual limb from MRI images. In addition, a new procedure based on low-cost technology, such as Microsoft Kinect V2 sensor, has been identified to acquire the 3D external shape of the residuum. • An open source software library, named SimplyNURBS, for NURBS modeling and specifically used for the automatic reconstruction of the residuum 3D model from medical images. Even if, SimplyNURBS has been conceived for the prosthetic domain, it can be used to develop NURBS-based modeling tools for a range of applicative domains from health-care to clothing design. • A module for mesh editing to emulate the hand-made operations carried out by orthopedic technicians during traditional socket manufacturing process. In addition several virtual widgets have been implemented to make available virtual tools similar to the real ones used by the prosthetist, such as tape measure and pencil. • A Natural User Interface (NUI) to allow the interaction with the residuum and socket models using hand-tracking and haptic devices. • A module to generate the geometric models for additive manufacturing of the socket. The third phase concerned the study and design of augmented interaction with particular attention to the Natural User Interface (NUI) for the use of hand-tracking and haptic devices into SMA2. The NUI is based on the use of the Leap Motion device. A set of gestures, mainly iconic and suitable for the considered domain, has been identified taking into account ergonomic issues (e.g., arm posture) and ease of use. The modularity of SMA2 permits us to easily generate the software interface for each device for augmented interaction. To this end, a software module, named Tracking plug-in, has been developed to automatically generate the source code of software interfaces for managing the interaction with low cost hand-tracking devices (e.g., Leap Motion and Intel Gesture Camera) and replicate/emulate manual operations usually performed to design custom-fit products, such medical devices and garments. Regarding haptic rendering, two different devices have been considered, the Falcon Novint, and a haptic mouse developed in-house. In the fourth phase, additive manufacturing technologies have been investigated, in particular FDM one. 3D printing has been exploited in order to permit the creation of trial sockets in laboratory to evaluate the potentiality of SMA2. Furthermore, research activities have been done to study new ways to design the socket. An innovative way to build the socket has been developed based on multi-material 3D printing. Taking advantage of flexible material and multi-material print possibility, new 3D printers permit to create object with soft and hard parts. In this phase, issues about infill, materials and comfort have been faced and solved considering different compositions of materials to re-design the socket shape. In the fifth phase the implemented solution, integrated within the whole prosthesis design platform, has been tested with a transfemoral amputee. Following activities have been performed: • 3D acquisition of the residuum using MRI and commercial 3D scanning systems (low cost and professional). • Creation of the residual limb and socket geometry. • Multi-material 3D printing of the socket using FDM technology. • Gait analysis of the amputee wearing the socket using a markerless motion capture system. • Acquisition of contact pressure between residual limb and a trial socket by means of Teskan’s F-Socket System. Acquired data have been combined inside an ad-hoc developed application, which permits to simultaneously visualize pressure data on the 3D model of the residual lower limb and the animation of gait analysis. Results and feedback have been possible thanks to this application that permits to find correlation between several phases of the gait cycle and the pressure data at the same time. Reached results have been considered very interested and several tests have been planned in order to try the system in orthopedic laboratories in real cases. The reached results have been very useful to evaluate the quality of SMA2 as a future instruments that can be exploited for orthopedic technicians in order to create real socket for patients. The solution has the potentiality to begin a potential commercial product, which will be able to substitute the classic procedure for socket design. The sixth phase concerned the evolution of SMA2 as a Mixed Reality environment, named Virtual Orthopedic LABoratory (VOLAB). The proposed solution is based on low cost devices and open source libraries (e.g., OpenCL and VTK). In particular, the hardware architecture consists of three Microsoft Kinect v2 for human body tracking, the head mounted display Oculus Rift SDK 2 for 3D environment rendering, and the Leap Motion device for hand/fingers tracking. The software development has been based on the modular structure of SMA2 and dedicated modules have been developed to guarantee the communication among the devices. At present, two preliminary tests have been carried out: the first to verify real-time performance of the virtual environment and the second one to verify the augmented interaction with hands using SMA2 modeling tools. Achieved results are very promising but, highlighted some limitations of this first version of VOLAB and improvements are necessary. For example, the quality of the 3D real world reconstruction, especially as far as concern the residual limb, could be improved by using two HD-RGB cameras together the Oculus Rift. To conclude, the obtained results have been evaluated very interested and encouraging from the technical staff of orthopedic laboratory. SMA2 will made possible an important change of the process to design the socket of lower limb prosthesis, from a traditional hand-made manufacturing process to a totally virtual knowledge-guided process. The proposed solutions and results reached so far can be exploited in other industrial sectors where the final product heavily depends on the human body morphology. In fact, preliminary software development has been done to create a virtual environment for clothing design by starting from the basic modules exploited in SMA2

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    Towards Reuse and Recycling of Lithium-ion Batteries: Tele-robotics for Disassembly of Electric Vehicle Batteries

    Full text link
    Disassembly of electric vehicle batteries is a critical stage in recovery, recycling and re-use of high-value battery materials, but is complicated by limited standardisation, design complexity, compounded by uncertainty and safety issues from varying end-of-life condition. Telerobotics presents an avenue for semi-autonomous robotic disassembly that addresses these challenges. However, it is suggested that quality and realism of the user's haptic interactions with the environment is important for precise, contact-rich and safety-critical tasks. To investigate this proposition, we demonstrate the disassembly of a Nissan Leaf 2011 module stack as a basis for a comparative study between a traditional asymmetric haptic-'cobot' master-slave framework and identical master and slave cobots based on task completion time and success rate metrics. We demonstrate across a range of disassembly tasks a time reduction of 22%-57% is achieved using identical cobots, yet this improvement arises chiefly from an expanded workspace and 1:1 positional mapping, and suffers a 10-30% reduction in first attempt success rate. For unbolting and grasping, the realism of force feedback was comparatively less important than directional information encoded in the interaction, however, 1:1 force mapping strengthened environmental tactile cues for vacuum pick-and-place and contact cutting tasks.Comment: 21 pages, 12 figures, Submitted to Frontiers in Robotics and AI; Human-Robot Interactio

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Exodex Adam—A Reconfigurable Dexterous Haptic User Interface for the Whole Hand

    Get PDF
    Applications for dexterous robot teleoperation and immersive virtual reality are growing. Haptic user input devices need to allow the user to intuitively command and seamlessly “feel” the environment they work in, whether virtual or a remote site through an avatar. We introduce the DLR Exodex Adam, a reconfigurable, dexterous, whole-hand haptic input device. The device comprises multiple modular, three degrees of freedom (3-DOF) robotic fingers, whose placement on the device can be adjusted to optimize manipulability for different user hand sizes. Additionally, the device is mounted on a 7-DOF robot arm to increase the user’s workspace. Exodex Adam uses a front-facing interface, with robotic fingers coupled to two of the user’s fingertips, the thumb, and two points on the palm. Including the palm, as opposed to only the fingertips as is common in existing devices, enables accurate tracking of the whole hand without additional sensors such as a data glove or motion capture. By providing “whole-hand” interaction with omnidirectional force-feedback at the attachment points, we enable the user to experience the environment with the complete hand instead of only the fingertips, thus realizing deeper immersion. Interaction using Exodex Adam can range from palpation of objects and surfaces to manipulation using both power and precision grasps, all while receiving haptic feedback. This article details the concept and design of the Exodex Adam, as well as use cases where it is deployed with different command modalities. These include mixed-media interaction in a virtual environment, gesture-based telemanipulation, and robotic hand–arm teleoperation using adaptive model-mediated teleoperation. Finally, we share the insights gained during our development process and use case deployments

    A Desktop Networked Haptic VR Interface for Mechanical Assembly

    Get PDF
    This paper presents the development of a PC-based 3D human computer interface for virtual assembly applications. This system is capable of importing complex CAD (Computer Aided Design) models, rendering them in stereo, and implementing haptic force feedback for realistic part interaction in virtual environments. Such an application will facilitate wider acceptance of the use of a VR interface for prototyping assembly tasks. This interface provides both visual and haptic feedback to the user, while allowing assembly tasks to be performed on a desktop virtual environment. The network module has the ability to communicate with multiple VR systems (such as CAVE etc.) at geographically dispersed locations using a non-dedicated network channel. The potential benefits of such a system include identification of assembly issues early in the design process where changes can be made easily, resulting in a more efficient and less costly product design process

    Towards immersive designing of production processes using virtual reality techniques

    Get PDF
    The article provides a novel approach to the implementation of virtual reality within planning and design of manual processes and systems. The use of hardware and software required to perform different production - especially assembly - tasks in a virtual environment, using CAD parts as interactive elements, is presented. Considering the CAD parts, the format conversion problem is comprehensively described and solved using format conversion software to overcome the present poor data connectivity between the CAD system and VR hardware and software. Two examples of work processes have been made in a virtual environment: peg-in-hole and wall socket assembly. In the latter case, the traditional planning approach of manual assembly tasks using predetermined motion time system MTM-2 has been compared with a modern approach in which the assembly task is fully performed within a virtual environment. The comparison comprises a discussion on the assembly task execution times. In addition, general and specific advantages and disadvantages that arise in the immersive designing of production processes using virtual reality are presented, as well as reflections on teamwork and collaborative man-machine work. Finally, novel technologies are proposed to overcome the main problems that occur when implementing VR, such as time-consuming scene defining or tedious CAD software data conversion
    • …
    corecore