113 research outputs found

    Opportunistic device-to-device communication in cellular networks: from theory to practice

    Get PDF
    Mención Internacional en el título de doctorCellular service providers have been struggling with users’ demand since the emergence of mobile Internet. As a result, each generation of cellular network prevailed over its predecessors mainly in terms of connection speed. However, the fifth generation (5G) of cellular network promises to go beyond this trend by revolutionizing the network architecture. Device-to-Device (D2D) communication is one of the revolutionary changes that enables mobile users to communicate directly without traversing a base station. This feature is being actively studied in 3GPP with special focus on public safety as it allows mobiles to operate in adhoc mode. Although under the (partial) control of the network, D2D communications open the door to many other use-cases. This dissertation studies different aspects of D2D communications and its impact on the key performance indicators of the network. We design an architecture for the collaboration of cellular users by means of timely exploited D2D opportunities. We begin by presenting the analytical study on opportunistic outband D2D communications. The study reveals the great potential of opportunistic outband D2D communications for enhancing energy efficiency, fairness, and capacity of cellular networks when groups of D2D users can be form and managed in the cellular network. Then we introduce a protocol that is compatible with the latest release of IEEE and 3GPP standards and allows for implementation of our proposal in a today’s cellular network. To validate our analytical findings, we use our experimental Software Defined Radio (SDR)-based testbed to further study our proposal in a real world scenario. The experimental results confirm the outstanding potential of opportunistic outband D2D communications. Finally, we investigate the performance merits and disadvantages of different D2D “modes”. Our investigation reveals, despite the common belief, that all D2D modes are complementary and their merits are scenario based.This work has been supported by IMDEA Networks Institute.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Douglas Leith.- Secretario: Albert Banchs Roca.- Vocal: Carla Fabiana Chiasserin

    A novel cross-layer framework for large scale emergency communications

    Get PDF
    This paper explores the problem of improving coverage and capacity of large-scale communication networks in disaster-struck areas. We propose a novel integrated dynamic cross-layer distributed energy aware emergency framework, E3F, that spans large geographical areas and variable time ranges. E3F enables adaptive storage, dynamic packet scheduling and utility driven forwarding that avoids congestion and energy depletion. Our extensive experiments with realistic traces show significantly improved energy efficiency and low overheads while maintaining high success ratios for both data dissemination and query answering

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Survey and taxonomy of clustering algorithms in 5G

    Get PDF
    The large-scale deployment of fifth generation (5G) is expected to produce a massive amount of data with high variability due to ultra-densification and the rapid increase in a heterogeneous range of applications and services (e.g., virtual reality, augmented reality, and driver-less vehicles), and network devices (e.g., smart gadgets and sensors). Clustering organizes network topology by segregating nodes with similar interests or behaviors in a network into logical groups in order to achieve network-level and cluster-level enhancements, particularly cluster stability, load balancing, social awareness, fairness, and quality of service. Clustering has been investigated to support mobile user equipment (UE) in access networks, whereby UEs form clusters themselves and may connect to BSs. In this paper, we present a comprehensive survey of the research work of clustering schemes proposed for various scenarios in 5G networks and highlight various aspects of clustering schemes, including objectives, challenges, metrics, characteristics, performance measures. Furthermore, we present open issues of clustering in 5G
    • …
    corecore