18 research outputs found

    Profiling Energy Efficiency of Mobile Crowdsensing Data Collection Frameworks for Smart City Applications

    Get PDF
    Mobile crowdsensing (MCS) has emerged in the last years and has become one of the most prominent paradigms for urban sensing. In MCS, citizens actively participate in the sensing process by contributing data with their smartphones, tablets, wearables and other mobile devices to a collector. As citizens sustain costs while contributing data, i.e., the energy spent from the batteries for sensing and reporting, devising energy efficient data collection frameworks (DCFs) is essential. In this work, we compare the energy efficiency of several DCFs through CrowdSenSim, which allows to perform large-scale simulation experiments in realistic urban environments. Specifically, the DCFs under analysis differ one with each other by the data reporting mechanism implemented and the signaling between users and the collector needed for sensing and reporting decisions. Results reveal that the key criterion differentiating DCFs' energy consumption is the data reporting mechanism. In principle, continuous reporting to the collector should be more energy consuming than probabilistic reporting. However, DCFs with continuous reporting that implement mechanisms to block sensing and data delivery after a certain amount of contribution are more effective in harvesting data from the crowd

    Mobile Crowd Sensing in Edge Computing Environment

    Get PDF
    abstract: The mobile crowdsensing (MCS) applications leverage the user data to derive useful information by data-driven evaluation of innovative user contexts and gathering of information at a high data rate. Such access to context-rich data can potentially enable computationally intensive crowd-sourcing applications such as tracking a missing person or capturing a highlight video of an event. Using snippets and pictures captured from multiple mobile phone cameras with specific contexts can improve the data acquired in such applications. These MCS applications require efficient processing and analysis to generate results in real time. A human user, mobile device and their interactions cause a change in context on the mobile device affecting the quality contextual data that is gathered. Usage of MCS data in real-time mobile applications is challenging due to the complex inter-relationship between: a) availability of context, context is available with the mobile phones and not with the cloud, b) cost of data transfer to remote cloud servers, both in terms of communication time and energy, and c) availability of local computational resources on the mobile phone, computation may lead to rapid battery drain or increased response time. The resource-constrained mobile devices need to offload some of their computation. This thesis proposes ContextAiDe an end-end architecture for data-driven distributed applications aware of human mobile interactions using Edge computing. Edge processing supports real-time applications by reducing communication costs. The goal is to optimize the quality and the cost of acquiring the data using a) modeling and prediction of mobile user contexts, b) efficient strategies of scheduling application tasks on heterogeneous devices including multi-core devices such as GPU c) power-aware scheduling of virtual machine (VM) applications in cloud infrastructure e.g. elastic VMs. ContextAiDe middleware is integrated into the mobile application via Android API. The evaluation consists of overheads and costs analysis in the scenario of ``perpetrator tracking" application on the cloud, fog servers, and mobile devices. LifeMap data sets containing actual sensor data traces from mobile devices are used to simulate the application run for large scale evaluation.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Energy-efficient Communications in Cloud, Mobile Cloud and Fog Computing

    Get PDF
    This thesis studies the problem of energy efficiency of communications in distributed computing paradigms, including cloud computing, mobile cloud computing and fog/edge computing. Distributed computing paradigms have significantly changed the way of doing business. With cloud computing, companies and end users can access the vast majority services online through a virtualized environment in a pay-as-you-go basis. %Three are the main services typically consumed by cloud users are Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). Mobile cloud and fog/edge computing are the natural extension of the cloud computing paradigm for mobile and Internet of Things (IoT) devices. Based on offloading, the process of outsourcing computing tasks from mobile devices to the cloud, mobile cloud and fog/edge computing paradigms have become popular techniques to augment the capabilities of the mobile devices and to reduce their battery drain. Being equipped with a number of sensors, the proliferation of mobile and IoT devices has given rise to a new cloud-based paradigm for collecting data, which is called mobile crowdsensing as for proper operation it requires a large number of participants. A plethora of communication technologies is applicable to distributing computing paradigms. For example, cloud data centers typically implement wired technologies while mobile cloud and fog/edge environments exploit wireless technologies such as 3G/4G, WiFi and Bluetooth. Communication technologies directly impact the performance and the energy drain of the system. This Ph.D. thesis analyzes from a global perspective the efficiency in using energy of communications systems in distributed computing paradigms. In particular, the following contributions are proposed: - A new framework of performance metrics for communication systems of cloud computing data centers. The proposed framework allows a fine-grain analysis and comparison of communication systems, processes, and protocols, defining their influence on the performance of cloud applications. - A novel model for the problem of computation offloading, which describes the workflow of mobile applications through a new Directed Acyclic Graph (DAG) technique. This methodology is suitable for IoT devices working in fog computing environments and was used to design an Android application, called TreeGlass, which performs recognition of trees using Google Glass. TreeGlass is evaluated experimentally in different offloading scenarios by measuring battery drain and time of execution as key performance indicators. - In mobile crowdsensing systems, novel performance metrics and a new framework for data acquisition, which exploits a new policy for user recruitment. Performance of the framework are validated through CrowdSenSim, which is a new simulator designed for mobile crowdsensing activities in large scale urban scenarios

    CrowdSenSim: a Simulation Platform for Mobile Crowdsensing in Realistic Urban Environments

    Get PDF
    Smart cities take advantage of recent ICT developments to provide added value to existing public services and improve quality of life for the citizens. The Internet of Things (IoT) paradigm makes the Internet more pervasive where objects equipped with computing, storage and sensing capabilities are interconnected with communication technologies. Because of the widespread diffusion of IoT devices, applying the IoT paradigm to smart cities is an excellent solution to build sustainable Information and Communication Technology (ICT) platforms. Having citizens involved in the process through mobile crowdsensing (MCS) techniques augments capabilities of these ICT platforms without additional costs. For proper operation, MCS systems require the contribution from a large number of participants. Simulations are therefore a candidate tool to assess the performance of MCS systems. In this paper, we illustrate the design of CrowdSenSim, a simulator for mobile crowdsensing. CrowdSenSim is designed specifically for realistic urban environments and smart cities services. We demonstrate the effectiveness of CrowdSenSim for the most popular MCS sensing paradigms (participatory and opportunistic) and we present its applicability using a smart public street lighting scenario

    High-Precision Design of Pedestrian Mobility for Smart City Simulators

    Get PDF
    The unprecedented growth of the population living in urban environments calls for a rational and sustainable urban development. Smart cities can fill this gap by providing the citizens with high-quality services through efficient use of Information and Communication Technology (ICT). To this end, active citizen participation with mobile crowdsensing (MCS) techniques is a becoming common practice. As MCS systems require wide participation, the development of large scale real testbeds is often not feasible and simulations are the only alternative solution. Modeling the urban environment with high precision is a key ingredient to obtain effective results. However, currently existing tools like OpenStreetMap (OSM) fail to provide sufficient levels of details. In this paper, we apply a procedure to augment the precision (AOP) of the graph describing the street network provided by OSM. Additionally, we compare different mobility models that are synthetic and based on a realistic dataset originated from a well known MCS data collection campaign (ParticipAct). For the dataset, we propose two arrival models that determine the users’ arrivals and match the experimental contact distribution. Finally, we assess the scalability of AOP for different cities, verify popular metrics for human mobility and the precision of different arrival models

    A Survey on Mobile Crowdsensing Systems: Challenges, Solutions, and Opportunities

    Get PDF
    Mobile crowdsensing (MCS) has gained significant attention in recent years and has become an appealing paradigm for urban sensing. For data collection, MCS systems rely on contribution from mobile devices of a large number of participants or a crowd. Smartphones, tablets, and wearable devices are deployed widely and already equipped with a rich set of sensors, making them an excellent source of information. Mobility and intelligence of humans guarantee higher coverage and better context awareness if compared to traditional sensor networks. At the same time, individuals may be reluctant to share data for privacy concerns. For this reason, MCS frameworks are specifically designed to include incentive mechanisms and address privacy concerns. Despite the growing interest in the research community, MCS solutions need a deeper investigation and categorization on many aspects that span from sensing and communication to system management and data storage. In this paper, we take the research on MCS a step further by presenting a survey on existing works in the domain and propose a detailed taxonomy to shed light on the current landscape and classify applications, methodologies, and architectures. Our objective is not only to analyze and consolidate past research but also to outline potential future research directions and synergies with other research areas

    Why Energy Matters? Profiling Energy Consumption of Mobile Crowdsensing Data Collection Frameworks

    Get PDF
    Mobile Crowdsensing (MCS) has emerged in the last years and has become one of the most prominent paradigms for urban sensing. The citizens actively participate in the sensing process by contributing data with their mobile devices. To produce data, citizens sustain costs, i.e., the energy consumed for sensing and reporting operations. Hence, devising energy efficient data collection frameworks (DCF) is essential to foster participation. In this work, we investigate from an energy-perspective the performance of different DCFs. Our methodology is as follows: (i) we developed an Android application that implements the DCFs, (ii) we profiled the energy and network performance with a power monitor and Wireshark, (iii) we included the obtained traces into CrowdSenSim simulator for large-scale evaluations in city-wide scenarios such as Luxembourg, Turin and Washington DC. The amount of collected data, energy consumption and fairness are the performance indexes evaluated. The results unveil that DCFs with continuous data reporting are more energy-efficient and fair than DCFs with probabilistic reporting. The latter exhibit high variability of energy consumption, i.e., to produce the same amount of data, the associated energy cost of different users can vary significantly

    Trust Evaluation Mechanism for User Recruitment in Mobile Crowd-Sensing in the Internet of Things

    Get PDF
    Mobile Crowd-Sensing (MCS) has appeared as a prospective solution for large-scale data collection, leveraging built-in sensors and social applications in mobile devices that enables a variety of Internet of Things (IoT) services. However, the human involvement in MCS results in a high possibility for unintentionally contributing corrupted and falsified data or intentionally spreading disinformation for malevolent purposes, consequently undermining IoT services. Therefore, recruiting trustworthy contributors plays a crucial role in collecting high quality data and providing better quality of services while minimizing the vulnerabilities and risks to MCS systems. In this article, a novel trust model called Experience-Reputation (E-R) is proposed for evaluating trust relationships between any two mobile device users in a MCS platform. To enable the E-R model, virtual interactions among the users are manipulated by considering an assessment of the quality of contributed data from such users. Based on these interactions, two indicators of trust called Experience and Reputation are calculated accordingly. By incorporating the Experience and Reputation trust indicators (TIs), trust relationships between the users are established, evaluated and maintained. Based on these trust relationships, a novel trust-based recruitment scheme is carried out for selecting the most trustworthy MCS users to contribute to data sensing tasks. In order to evaluate the performance and effectiveness of the proposed trust-based mechanism as well as the E-R trust model, we deploy several recruitment schemes in a MCS testbed which consists of both normal and malicious users. The results highlight the strength of the trust-based scheme as it delivers better quality for MCS services while being able to detect malicious users. We believe that the trust-based user recruitment offers an effective capability for selecting trustworthy users for various MCS systems and, importantly, the proposed mechanism is practical to deploy in the real world

    A crowdsensing method for water resource monitoring in smart communities

    Get PDF
    Crowdsensing aims to empower a large group of individuals to collect large amounts of data using their mobile devices, with the goal of sharing the collected data. Existing crowdsensing studies do not consider all the activities and methods of the crowdsensing process and the key success factors related to the process. Nor do they investigate the profile and behaviour of potential participants. The aim of this study was to design a crowdsensing method for water resource monitoring in smart communities. This study opted for an exploratory study using the Engaged Scholarship approach, which allows the study of complex real-world problems based on the different perspectives of key stakeholders. The proposed Crowdsensing Method considers the social, technical and programme design components. The study proposes a programme design for the Crowdsensing Methodwhich is crowdsensing ReferenceFrameworkthat includes Crowdsensing Processwith key success factors and guidelines that should be considered in each phase of the process. The method also uses the Theory of Planned Behaviour (TPB) to investigate citizens’intention to participate in crowdsensing for water resource monitoring and explores their attitudes, norms and perceived behavioural control on these intentions. Understanding the profiles of potential participants can assist with designing crowdsensing systems with appropriate incentive mechanisms to achieve adequate user participation and good service quality. A survey was conducted to validate the theoretical TB model in a real-world context. Regression and correlation analyses demonstrated that the attitudes, norms and perceived behavioural control can be used to predict participants’ intention to participate in crowdsensing for water resource monitoring. The survey results assisted with the development of an Incentive Mechanism as part of the Crowdsensing Method. This mechanism incorporates recruitment and incentive policies, as well as guidelines derived from the literature review and extant system analysis. The policies, called the OverSensepolicies, provide guidance for recruitment and rewarding of participants using the popular Stackelberg technique. The policies were evaluated using simulation experiments with a data set provided by the case study, the Nelson Mandela Bay Municipality. The results of the simulation experiments illustrated that the OverSenserecruitmentpolicycan reduce the computing resources required for the recruitment of participants and that the recruitment policy performs better than random or naïve recruitment policies. The proposed Crowdsensing Method was evaluated using an ecosystem of success factors for mobile-based interventions identified in the literature and the Crowdsensing Method adhered to a majority (90%) of the success factors. This study also contributes information systems design theory by proposing several sets of guidelines for crowdsensing projects and the development of crowdsensing systems. This study fulfils an identified need to study the applicability of crowdsensing for water resource monitoring and explores how a crowdsensing method can create a smart community

    Do Monetary Incentives Influence Users’ Behavior in Participatory Sensing?

    Get PDF
    Participatory sensing combines the powerful sensing capabilities of current mobile devices with the mobility and intelligence of human beings, and as such has to potential to collect various types of information at a high spatial and temporal resolution. Success, however, entirely relies on the willingness and motivation of the users to carry out sensing tasks, and thus it is essential to incentivize the users’ active participation. In this article, we first present an open, generic participatory sensing framework (Citizense) which aims to make participatory sensing more accessible, flexible and transparent. Within the context of this framework we adopt three monetary incentive mechanisms which prioritize the fairness for the users while maintaining their simplicity and portability: fixed micro-payment, variable micro-payment and lottery. This incentive-enabled framework is then deployed on a large scale, real-world case study, where 230 participants were exposed to 44 different sensing campaigns. By randomly distributing incentive mechanisms among participants and a subset of campaigns, we study the behaviors of the overall population as well as the behaviors of different subgroups divided by demographic information with respect to the various incentive mechanisms. As a result of our study, we can conclude that (1) in general, monetary incentives work to improve participation rate; (2) for the overall population, a general descending order in terms of effectiveness of the incentive mechanisms can be established: fixed micro-payment first, then lottery-style payout and finally variable micro-payment. These two conclusions hold for all the demographic subgroups, even though different different internal distances between the incentive mechanisms are observed for different subgroups. Finally, a negative correlation between age and participation rate was found: older participants contribute less compared to their younger peers
    corecore