58 research outputs found

    A descent algorithm for the optimal control of ReLU neural network informed PDEs based on approximate directional derivatives

    Get PDF
    We propose and analyze a numerical algorithm for solving a class of optimal control problems for learning-informed semilinear partial differential equations. The latter is a class of PDEs with constituents that are in principle unknown and are approximated by nonsmooth ReLU neural networks. We first show that a direct smoothing of the ReLU network with the aim to make use of classical numerical solvers can have certain disadvantages, namely potentially introducing multiple solutions for the corresponding state equation. This motivates us to devise a numerical algorithm that treats directly the nonsmooth optimal control problem, by employing a descent algorithm inspired by a bundle-free method. Several numerical examples are provided and the efficiency of the algorithm is shown

    Implementation of a continuation method for nonlinear complementarity problems via normal maps

    Get PDF
    Ankara : Department of Industrial Engineering and Institute of Engineering and Sciences, Bilkent Univ., 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references.In this thesis, a continuation method for nonlinear complementarity problems via normal maps that is developed by Chen, Harker and Pinar [8] is implemented. This continuation method uses the smooth function to approximate the normal map reformulation of nonlinear complementarity problems. The algorithm is implemented and tested with two different plussmoothing functions namely interior point plus-smooth function and piecewise quadratic plus-smoothing function. These two functions are compared. Testing of the algorithm is made with several known problems.Erkan, AliM.S

    ACQUIRE: an inexact iteratively reweighted norm approach for TV-based Poisson image restoration

    Full text link
    We propose a method, called ACQUIRE, for the solution of constrained optimization problems modeling the restoration of images corrupted by Poisson noise. The objective function is the sum of a generalized Kullback-Leibler divergence term and a TV regularizer, subject to nonnegativity and possibly other constraints, such as flux conservation. ACQUIRE is a line-search method that considers a smoothed version of TV, based on a Huber-like function, and computes the search directions by minimizing quadratic approximations of the problem, built by exploiting some second-order information. A classical second-order Taylor approximation is used for the Kullback-Leibler term and an iteratively reweighted norm approach for the smoothed TV term. We prove that the sequence generated by the method has a subsequence converging to a minimizer of the smoothed problem and any limit point is a minimizer. Furthermore, if the problem is strictly convex, the whole sequence is convergent. We note that convergence is achieved without requiring the exact minimization of the quadratic subproblems; low accuracy in this minimization can be used in practice, as shown by numerical results. Experiments on reference test problems show that our method is competitive with well-established methods for TV-based Poisson image restoration, in terms of both computational efficiency and image quality.Comment: 37 pages, 13 figure

    A trust region-type normal map-based semismooth Newton method for nonsmooth nonconvex composite optimization

    Full text link
    We propose a novel trust region method for solving a class of nonsmooth and nonconvex composite-type optimization problems. The approach embeds inexact semismooth Newton steps for finding zeros of a normal map-based stationarity measure for the problem in a trust region framework. Based on a new merit function and acceptance mechanism, global convergence and transition to fast local q-superlinear convergence are established under standard conditions. In addition, we verify that the proposed trust region globalization is compatible with the Kurdyka-{\L}ojasiewicz (KL) inequality yielding finer convergence results. We further derive new normal map-based representations of the associated second-order optimality conditions that have direct connections to the local assumptions required for fast convergence. Finally, we study the behavior of our algorithm when the Hessian matrix of the smooth part of the objective function is approximated by BFGS updates. We successfully link the KL theory, properties of the BFGS approximations, and a Dennis-Mor{\'e}-type condition to show superlinear convergence of the quasi-Newton version of our method. Numerical experiments on sparse logistic regression and image compression illustrate the efficiency of the proposed algorithm.Comment: 56 page

    A New Noninterior Continuation Method for Solving a System of Equalities and Inequalities

    Get PDF
    By using slack variables and minimum function, we first reformulate the system of equalities and inequalities as a system of nonsmooth equations, and, using smoothing technique, we construct the smooth operator. A new noninterior continuation method is proposed to solve the system of smooth equations. It shows that any accumulation point of the iteration sequence generated by our algorithm is a solution of the system of equalities and inequalities. Some numerical experiments show the feasibility and efficiency of the algorithm
    corecore