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ABSTRACT

IMPLEMENTATION OF A CONTINUATION METHOD 
FOR NONLINEAR COMPLEMENTARITY PROBLEMS

VIA NORMAL MAPS

All Erkan
M.S. in Industrial Engineering 

Supervisor: Assist. Prof. Mustafa Ç. Pınar 
August, 1997

In this thesis, a continuation method for nonlinear complementarity 
problems via normal maps that is developed by Chen, Harker and Pinar [8] 
is implemented. This continuation method uses the smooth function to 
approximate the normal map reformulation of nonlinear complementarity 
problems. The algorithm is implemented and tested with two different plus­
smoothing functions namely interior point plus-smooth function and piecewise 
quadratic plus-smoothing function. These two functions are compared. Testing 
of the algorithm is made with several known problems.

Key words: Smoothing Methods, Nonlinear Programming, Complementar­

ity, Continuation Methods, Normal Maps
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ÖZET

DOĞRUSAL OLMAYAN TAMAMLAYICI PROBLEMLER 
İÇİN NORMAL MEPLİ BİR SÜREKLİLİK YÖNTEMİNİN

UYGULANMASI

Ali Erkan
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Mustafa Ç. Pınar 
Ağustos, 1997

Bu tezde, Chen, Barker ve Pınar [8] tarafından doğrusal olmayan 
tamamlayıcı (complementarity) problemler için geliştirilen ve normal mepli bir 
süreklilik (continuation) yöntemi uygulandı. Bu süreklilik metodu, doğrusal 
olmayan tamamlayıcı problemlerin normal mepli modellemesine yaklaşık sonuç 
bulabilmek için düzeltici (smoothing) fonksiyonlar kullanıldı. Algoritma iki 
farklı artı-düzleştirici fonksiyonla; iç noktalama (interior point) artı-düzleştirici 
fonksiyonu ve parçalı ikinci dereceli (piecewise quadratic) artı-düzleştirici 
fonksiyonuyla, uygulandı ve test edildi. Bu iki fonksiyon karşılaştırıldı. 
Algoritmanın testi birçok sayıda bilinen problemle yapıldı.

Anahtar sözcükler: Düzeltici (Smoothing) Yöntemler, Doğrusal Olmayan 
Programlama, Tamamlayıcılık (Complementarity), Süreklilik (Continuation) 

Yöntemleri, Normal Мер.
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Chapter 1

INTRODUCTION

Complementarity problems are important areas of applied mathematics due 

to their numerous applications: The complementarity theory derives its 

importance from the fact it unifies problems in fields such as: mathematical 

programming, game theory, the theory of equilibrium in a competitive economy, 

equilibrium of traffic flows, mechanics, engineering, lubricant evaporation in 

the cavity of a cylindrical bearing, elasticity theory, fluid flow through a 

semiimpermeable membrane, maximizing oil production, computation of fixed 

point etc.

Any mathematical programming model can be modeled as complementarity 

problem. Complementarity problem has been of great interest in the academic 

and professional communities ever since the path-breaking paper by Lemke 

and Howson. Especially after continuation methods and smoothing approaches 

complementarity problems became a very important subject. Because by using 

continuation methods and smoothing approaches, complementarity problems 

can be solved in computationally efficient time.

In this study, a continuation method for nonlinear complementarity 

problems via normal maps which was developed by Chen, Barker and Pinar [8]



is implemented. A software which is based on this algorithm is developed in 

ANSI FORTRAN 77 to solve numerous complementarity problems, and the 

software package uses a sparse linear system solver UMFPACK2.
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The organization of the thesis is as follows. In the next chapter definitions 

of nonlinear complementarity problem (NCP) and a summary of the most 

well known algorithms to solve NCPs are given. Then the smoothing method 

approximation and application of smoothing method for NCPs are explained 

in the third chapter. The fourth chapter consists of subproblems of Newton 

corrector we study. Numerical example is in the fifth chapter, explanation of 

algorithm is in the chapter six and numerical testing and comparison is in the 

chapter seven. The thesis concludes with some remarks and suggestions for 

future research.

The following notation will be used throughout the thesis. All matrices are 

denoted by boldface l e t t e r s . R " , d e n o t e ,  respectively, n dimensional 

Euclidean space, the nonnegative orthant of R ", and the strictly positive 

orthant of R ".



Chapter 2

LITERATURE REVIEW

2.1 Overview

In this section, Nonlinear Complementarity Problems (NCP) are defined 

mathematically and the related literature is briefly reviewed. To begin, let 

us define the problem under investigation:

Definition 2.1 Let F be a mapping from i?" to itself. The nonlinear 
complementarity problem (NCP), denoted by NCP(F) is to find a vector x G R" 

such that:
a; >  0, F{x) > 0 and F{x)^x =  0.

The first two inequalities are called the feasibility conditions, and the 

equality is called the complementarity condition.

When F  is affine, the NCP is reduced to the Linear Complementary 

Problem, which is defined as follows:

Definition 2.2 Let M  G and q £ BT. The LCP is to find an x € R” 

such that:
X > 0 ,  w =  Mx + q > 0 and w^x — 0.



The following definitions of various special matrices and functions will be 

used in subsequent chapters.

Definition 2 .3  The matrix M  € is said to be a
1. Po-matrix if for all x ^ 0, there exists an index i such that Xi ^ 0 and 
Xi(Mx)i >  0,

2. copositive matrix if o;^Mx >  0 for all x > 0,
3. copositive-plus matrix if it is a copositive matrix and for all x ^ 0, if 
x^M x =  0, then (M  +  M ’̂ )x =  0,

4- positive semi-definite matrix if x̂ lS/ix >  0 for all x,
5. P-matrix if for all x ^ 0 , there exists an index i such that Xi(Mx)i >  0,

6. positive definite matrix if a:^Mx >  0 for all x ^  0,
7. Ro-matrix if the following system has no solution:

X >0,

Mi.x =  0 if Xi >  0,

Mj.x >  0 if Xi =  0,

8. Q-matrix if LCP(M.^ci) has a solution for all q,
9. Z-matrix if mij <  0 for all i ^ j .

Among the above special matrices, the following relations hold: positive 

definite matrix P-matrix /o-matrix;

positive definite matrix => positive semi-definite matrix Po-matrix; 

positive semi-definite matrix => copositive plus matrix =4> copositive matrix; 

where => denotes implication.
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Definition 2 .4  The mapping F : R" —> R" is said to be a
1. Po-function over a set X  if

max [Fi{x) -  Fi{y)]' {̂xi - y i ) > 0  \/,y e  X ,x  ^ y,
l < t< n

2.P-function over a set X  if

max[Pi(rc) -  Fi{y)]' {̂xi -  yi) > 0 Vx, ?/ G X, x 7̂ y,
l < i< n



3. uniform P-function over a set X  if there exists an a > 0 such that

m&x[Fi(x) -  Fi{y)]' (̂xi -  yi) > ajja; -  y f  Vx,y € X,
l<2<n

4 . monotone function over a set X  if

[ F ( x ) - F ( y ) f ( x - y ) > 0  Vx , y€X,

5. strictly monotone function over a set X  if

[F(x) -  F { y ) f { x - y ) > O V x , y e X , x ^ y ,

6. strongly monotone function over a set X  if

[F(a;) -  F { y ) f { x  -  y) >  a||a: -  y f  Vx,y e  X.

For the above definitions, the following relationships hold:

Strong monotonicity strict monotonicity ^  monotonicity,

Uniform P-property => P-property Po-property,

Strong monotonicity => uniform P-property,

Strict monotonicity ^  P-property,

Monotonicity Po-property [4].

Let us now consider some examples which lead to complementarity 

problems.

2.2 Mathematical Programming
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In this section we consider several examples and models in finite dimensional 

spaces. Hence we consider the topological vector space P " ordered by the 

pointed closed convex cone RJf and we denote by < , >  the inner product,

< x , y > =  E r= i ® =  (^0 ; y =  ivi) [26]·



2.2.1 Linear Programming

Let c =  (ci) G BA,b =  (6j) G RP' be two vectors and let A  =  (ajj) G Mm*n(R) 

be a matrix.

Consider the primal linear program,

minimize < c,x >
(P.L.P.) ; x e F i

where, Fi =  {a; G R^ and A x — b G R™}
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and its dual.

(D.L.P.)
maximize < y,b > 
y €: F2
where, F2 = {y e  and A V  -  c G - R "  }

A fundamental result of linear programming is the following.

Theorem  2.1 If there exist Xq g F\ and yo G F2 such that < c,Xo > —< 
yo,b > then Xo is a solution of problem (P.L.P.) and yo is a solution of problem 
(D.L.P.).

Using this result we can associate to the problem, (P.L.P.) and (D.L.P.) a 

complementarity problem.

Indeed, adding slack variables u G R " and u G i?" such that, A  — v =  b and 

A V  +  u =  c and denoting.

2: =
y

w =
u

; q
c

-b
; M  =

0 - A  
A  0

we obtain the

following complementarity problem.

Finder G i?”''’™such that
[L.C.P. ) :

2: G — M z +  q G Rii.·*·"' and < z,w > =  0.



We observe that this linear complementarity problem is equivalent to the 

couple primal-dual of linear programs (P.L.P.) - (D.L.P.).

Remarks:

i- ) Condition < z,w > =  0 in the definition of problem (L.C.P.) was obtained 

observing that this condition expresses exactly the fact that <  c, a; > = <  y, b >.
ii- ) The principal contribution of complementarity problem to the linear 

programming is that it transforms an optimization problem in an equation.
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2.2.2 Quadratic Programming

Consider the quadratic programming problem,

(1)

Minimize f {x)
X  ̂ F
where, F = {x E R7\.-,b — A x  G R™} 

f { x )  =  5 <  a:, Qx >  +  <  c, X > ,  

c G R” ,Q  € Mn»n(R), (Q symmetric),

A  € Mm*n(R) and b G R*"
Denoting the Langrangian multiplier vectors of the constraints A x <  b and

a; >  0 by A G R'” and u G R " respectively and denoting the vectors of slack 

variables by u G R™, the Kuhn-Tucker necessary optimality conditions could 

be written as:

(2)

c -|- A'^A -f- Qx — u =  0 

A x +  V =  b

u G R ; , u G R^, x € R!^,A G R!p 

< u,x > =  0 and <  u, A > =  0.
Now, observe that conditions (2) can be written also as:
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✓
u

V

(3) : <

u

V

c
+

Q A ‘ ’ X

b - A 0 _ A _

e  RT̂ ·̂,
X

A
e Rl+"^;<

u
V

X

A
> = 0

If we denote,

2: =
X

A
¡9 =

c

b
;M  =

Q A ‘ 

- A  0
and f(z) —

u
V

we obtain that the Kuhn-Tucker conditions (2) are equivalent to the following 

linear complementarity problem,

find 2 G such that,

; G RŸ"^-Jiz) G R Ÿ ”  ̂ and <  z , f {z )  > =  0
( 4 ) :^  +

It is remarquable to note that there exists another connection between 

linear programming, quadratic programming and the linear complementarity 

problem.

Consider the linear programming problem.

(5 ) :

Minimize < p,x >

X e  F

where: F = {x Ç. i?” |Ax — b G R“ } 

 ̂ p G R” , 6 G R*" and A  G Mn».n(R)

Suppose that every row of A  is different from zero and consider a quadratic 

perturbation on F of problem (5) of the form.

(6) :
Minimize [< p,x > + |  <  >  ]

x e  F
In 1979 Mangasarian and Meyer proved the following result. [44].



Theorem  2.2 If program (5) has an optimal solution then program (6) has a 
unique solution xq for every e G [0,o;] and some o; >  0.

Moreover, the solution xq is independent of e and it is also a solution of program 
(5).

Consider now a more general case, precisely the quadratic program,

CHAPTER 2. LITERATURE REVIEW 9

( 7 ) d

Minimize [| <  a;,Qx >  +  <  p, x >]

X e  F
where; F = {x ^ i?"|Ax — b G R +}; 

p G i?"; b G K '̂, Q G Mn*n(R)(Qsymmetric, positive definite) and A  G Mm*n(R)

The dual program of (7) is.

Maximize [—| <  a;, Qx >  +  <  6, u >]

(8) : < (x,u)  G -fi

where: Fi — {(x,u)|a; G G Rif: and Qx — A*u +  p =  0} 
which under the positive definite assumption on Q is, (upon eliminating x,

since from (8) x =  Q "H A ‘ u — p) ), equivalent to.

Minimize (| <  u, A Q “  ̂A^u >  — <  b +  A Q “ ^p, u > )

(9) : < u e  F2
where: F2 =  {u G R^\u G +  }

Since A Q - 'A ‘ is positive semidefinite, (9) is equivalent to the following 

symmetric linear complementarity problem.

(S.L.C.P.) :
Find u G R'" such that,

u G Rf\ V =  AQA^u — (b +  A Q “ ^p) G R™ and < u, v > =  0

Readers can find more details on this subject in [43].
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2.2.3 Nonlinear Programming

Consider the convex program,

Minimize f (x)
(10) :  ̂ a: G F

where: F = {x G R^lx >  0 and gi{x) <  0;e =  l ,2 .. . ,m }

In this programming problem suppose all the functions convex and 

differentiable. The Lagrangian function L{x,u)  for (1) is given by,

m
L{x, u) =  f {x )  + Uigi{x).

i=l

Hence, u =  {ui) G BF and the Kuhn-Tucker necessary conditions for 

optimality can be written as:

n

(11) d
- 2 ^  =  A „ ,.i (x ,« )> 0 ;i  =  l,2..., mdui

a; >  0, u >  0

E "=i Xjhj{x,u) =  0 and Ui/i„+i(a;, u) =  0

hi{x)

If we denote,  ̂ =
X

u
and h[z) — hji{x^

hn-\-m (^)

then the Kuhn-Tucker conditions (11) may be stated as the following 

complementarity problem.
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(C.R) :
find 2: E such that,

2T € h(z) E and

< 2;, h(z) > — 0

Remark:

We have a similar construction for a nonlinear program (not necessarily 

convex), where /  and gi(i =  l , . . . ,m )  are (7^-functions on an open set U, 
such that U D R^.

2.3 The Homotopy Principle

Suppose that a system of nonlinear equations is given for you to solve. Our 

immediate goal is to find a point x =  (x i , ..., Xn) that solves such a system. How 

might we accomplish this? One approach is to start with another system of 

equations to which we already know the solution. Usually, this is a particularly 

simple system that has an obvious solution. We then take this simple system 

and mathematically ’’ bend” it into the original system. While bending the 

system we carefully watch the solution, as it also ’’bends” from the obvious 

solution into the solution we seek. This bending notion underlies a key idea 

that we shall develop shortly, the homotopy concept:

Let i?" denote Euclidean n space. A function F : RT ^  BA means that F{x)  
has n components, F{x)  =  (Fi(a;),..., F„(a;)), and that x has n components, 

X = (x i , ..., ,T„), so that

Fi{F  ̂ ···) ®n)) I — l,...,7 i.

We are desirous of solving the n x n system of nonlinear equations

(x) = 0

First set up a simple system

E{x)  =  0.
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Then define a special function, called a homotopy function, H{x,i)  : —>·

i?”, which has the original n variables plus an extra one, t. Here (x,t) = 
(xi, ...,Xn,t) E The homotopy function H must be constructed so that

H{x,0) =  E{x)

H{x, l )  = F{x)

It follows that at t =  0,

H(x,0) =  0

has a solution which we already know, and at t =  1,

H{x, l )  = 0

has solution x*, which we seek. In general for arbitrary t, x{t) solves

H{x{t), t) — 0.

The idea is to start at a;(0) =  and then increase t until we reach a;(l) =  a:*. 

Generally, x(t) will generate a path that we can follow from i =  0 to i =  1, 

thereby solving the original system [18].

2.3.1 Varieties of Homotopies

Newton Homotopy

H{x,t) =  F{x) -  {1 -  t)F{x^).

This form of homotopy is termed the Newton homotopy because some of the 

ideas behind it come from the work of Sir Isaac Newton himself. It is a 

particularly simple method to start. Pick an arbitrary point x .̂ Next calculate 

F{x°),  and then let

E{x) =  F{x) -  F(x°).

The function E, by construction, has solution a:°. From first equation, the 

beginning of the path a;(0) =  is obvious and immediate. Since a;° can be
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selected arbitrarily, the Newton homotopy permits us to start the path from 

wherever we choose, a very nice feature.

Fixed-Point Homotopy

H(x, t) = (1 — t)(x — .T°) -|- tF{x).

This homotopy, called the fixed — point homotopy. Observe that

E{x) = X — x° = 0

so that o:(0) =  The fixed-point homotopy is thus also easy to start since x  ̂
can be chosen arbitrarily.

Both the fixed-point and Newton homotopies can be started from any point 

which is one of the reasons that both are so widely employed.

The homotopy approach has been known to scientists at least since the 

nineteenth century. It is a standard tool in the theory of ordinary differential 

equations (Ficken [1951]). The first application to nonlinear equation systems 

seems to have been made by Lahaye [1948]. The first fail-safe general procedure 

for fixed point and related equation systems is due to Scarf [1967]. In actuality. 

Scarf did not use a homotopy approach but an entirely novel approach which 

he called primitive sets. An earlier work related to Scarf’s fundamental work is 

Cohen [1967]. The underlying principle used by Scarf to prove convergence of 

his procedure is the ’’ complementarity principle” of Lemke and Howson [1964].

2.4 Lemke’s Algorithm

Lemke’s algorithm is designed to solve the LCP. Given q and M , first choose 

a positive vector d E R  ̂ such that d -|-  ̂ >  0. Then consider the LCP:

z — d + q T M x

2̂ >  0, a; >  0, z'^x — 0.
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Clearly this equation has a trivial solution a; =  0, where z = d + q. Now define 

the homotopy:

Hi{x, t) — minimi, Zi} =  0, i =  1, n

iov z =  (1 — t)d + q +  M x. This equation is precisely equivalent to the LC 

problem

z^x =  0, a; >  0, z > 0

where

2 =  (1 — t)d +  9 +  M x.

At t =  0, notice that the trivial LC with trivial solution x =  0 is obtained, 

whereas when i =  1, we have the original LC.

Lemke’s method traces the path in H~  ̂ starting from (x,t) =  (0,0) of the 

homotopy

Hi{x,t) =  mm{xi,Zi} = 0, i =

where

■2 — (l — /)d T 9 T AIx

To avoid degeneracies a regularity condition is required: For each (x ,i) € H~^, 
at least n — 1 of the variables x,z are greater than zero.

Algorithm 

Step 0

Initially, =  (0,0), =  (x i,...,x „ ) . Increase t from zero in the system

z + td = d + q 

z > 0, t ^ R}

1. If t can be increased to 1, then x =  0 ,2: =   ̂ >  0, is an LC solution. 2. 

Otherwise, some Zi becomes zero in above equation for t — P. Let (x^,i^) =  

(0, i^),io; =  X; be the distinguished variable, and

=  {x i , . . . ,X ;_ i ,2:/,X /+ i,...,X „}.

Go to step I. 

Step k, k > 1 .
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Let (x^,P)  be the current point, wi the distinguished variable, and =  
(ui, ...Un) the zero set. Set ui = ... — Un = 0. Then increase wi from zero in

A*'w +  td =  d +  q

tu >  0, t E R}

where Af =  e* and Wi =  Zi.
1. If i becomes equal to 1, terminate. We have an LC solution at hand.

2. If wt increase to infinity in above equation, terminate. We have a path 

diverging to infinity.

3. Otherwise, some Wj becomes zero in above equation when wt = wt > 0.

Let be the new point corresponding to u>i = wi, the complement of

Wj be the distinguished variable, and =  (u i ,..., Uj_i, ryj, U j+i,..., u„). Go 

to step k + 1.
Repeat this process until i =  1 or the path diverges to infinity.

Lemke’a algorithm historically form the basis for path-following procedures. 

The LC homotopy is not differentiable but does have a special structure which 

by use of Lemke’s algorithm produces a piecewise-linear path [18].

I divided solution methods and algorithms for NCP into four classes; non- 

differentiable equation approach, continuation methods, smoothing methods 

and non-interior continuation methods for review. However, these classes 

are not strictly independent. Non-interior continuation methods consists 

of smoothing methods and continuation methods, also smoothing methods 

consists of continuation methods, etc... Now let’s look at some algorithms 

which were developed after Lemke’s algorithm for NCP. Firstly, we give make 

some definitions.

Definition 2.5 If a method maintains strictly feasible (x  ̂ > 0 or F{x)'  ̂ > 0 

(strictly greater than zero) for every iteration of solution procedure of NCP, 
then method can be called interior method. Otherwise, it is called a non-interior 
method.
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A lot of solution approaches exist for solving the NCP(F). Kostreva 

[21, 37, 38] developed a block-pivoting algorithm in which multiple exchanges 

of basic and nonbasic variables are executed. This algorithm extended Murty’s 

scheme [50] for TCP’s to the nonlinear complementarity setting. This method 

must solve a system of nonlinear equations at each iteration, and does not 

contain a line search step.

Subramanian [64] used a Gauss-Newton method to solve the nonlinear 

complementarity problem when formulated as the continuously differentiable 

equation system first introduced by Mangasarian [42]. While deriving some 

convergence results, no extensive computational evidence was reported.

Kojima, Mizuno, Nome and Yoshise [36, 35, 34, 33] have developed interior- 

point algorithms for solving monotone linear and nonlinear complementarity 

problems. When the matrix is positive semi-definite in the linear case, they 

show that the complexity of their algorithm is polynomially bounded; some 

limited computational results for this case were also reported. For the nonlinear 

case, the convergence theory exists for uniform P-functions, but only limited 

convergence results exist when F  is monotone.

In addition to these methods, non-interior continuation methods also were 

developed. Non-interior continuation methods are closely related to path­

following interior point algorithms. Non-interior continuation methods take a 

different deformation of the complementarity condition. As a result, they did 

not have to restrict intermediate iterates to stay interior (detailed inforrnation 

can be found in section 2.8).
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2.5 Non-differentiable Equation Approach

A successful algorithm for the general NCP is the Josephy-Newton [27, 28] 

method which is based on Robinson’s generalized equation approach for 

analyzing problems such as the NCP. The basic idea is to linearize the function 

F(x)  around the current iterate x ,̂ and generate the next iterate x̂ '^̂  by 

solving the following linear complementarity problem (LCP):

F(x^) +  VF(x^)(x  -  x'') >  0, X >  0,

[^(x^) +  VF(x'=)(x -  x'’)]^x =  0

The quadratic convergence rate of Newton’s method is one of the most 

important features of this approach. However, the convergence theory for this 

method requires that one start close to the solution x*. To overcome this 

problem, Mathiesen [46, 47] and Preckel [57] have introduced various heuristic 

line search procedures to widen the region of convergence.

The NCP(F) can easily be formulated as a system of nonlinear equations 

as follows:

H(x) = mm(x, F(x))  =  0

where the ”min” operator is taken component-wise. While this system of 

equations is simple, it is not differentiable [54] and thus, the traditional 

Newton method does not apply. It is, however, B-differentiable. Robinson 

[59, 60, 61, 62] first studied B-differentiable functions and Newton’s method for 

a class of such nonsmooth functions. Pang [55] presents a generalized Newton 

algorithm for the above system of B-differentiable equations which is globally 

convergent under certain assumptions. Harker and Pang [23] then used these 

results to develop a damped-Newton method for the linear complementarity 

problem, and showed through extensive computational experiments that this 

method is potentially very efficient as compared with Lemke’s method.

Harker and Xiao [24] extended the work by Harker and Pang to the 

nonlinear complementarity problem. Instead of using ”min” operator, Harker
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and Xiao converted the nonlinear complementarity problem into a system of 

equations through the use of a Minty-map [36, 61, 62]. The algorithm presented 

was similar to Kostreva’s direct block pivotal algorithm, except that they 

solved a linear system of equations at each iteration and performed a line 

search to minimize a given merit function. This merit function minimization is 

what generates the global convergence properties of the algorithm in much the 

same way as in solving F-differentiable equations [29]. Minty-map formulation 

[36, 61, 62];

H{x)  =  E(x'^) A a;“ ,

where x f  =  max(a:i,0), x~ =  min(a;i,0), a;·*· =  (xi", a;^,..., a;+)^ and x~ =  
(x]·, x j ,  ...x“ )^. It is easy to verify that there is a one-to-one correspondence 

between a solution of NCP(F) and a solution of the system of equations

H{x) - F(x'^) +  x~ =  0

In other words, x solves this equation if and only if x+ solves the NCP(F). 

Hence, the nonlinear complementarity problem can be formulated as a system 

of nonlinear equations different from first Minty map formulation [24]. Marker 

and Xiao used B-differentiable functions in their algorithm [24].

Definition 2.6 A function H ·. RA ^  BA is said to be B-differentiable at the 
point X if H is Lipschitz continuous in a neighborhood of x and there exists a 
positive homogeneous function B H (x) : R " —+ R ", called the B-derivative of H 
at X such that

,. H{x + v )~  H { x ) - B J i ( x )v  „ 
lim ------------- i =  0.
v-o ||v||

H is said to be B-diffei'entiable in a set X  if H is B-differentiable at all points 
X e  X .

2.5.1 The Damped-Newton algorithm

The damped-Newton algorithm [24] which is used to solve the above equation 

system (minty-map formulation) is stated as follows. Let x° G be an 

arbitrary initial vector, let s,p, and a be given scalars with 5 >  0, /i G (0,1)
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and (T G (0, |). In general, given with ||ff(a;̂ )|| >  e >  0 where e is the

convergence tolerance, we generate by performing the following two steps: 

Stepl. Solve the following Newton equation for the direction E R :̂

H{x' )̂ +  BH(x*‘ )d'‘ =  0

Step2. Let \k =  where rrik is the smallest nonnegative integer m which

satisfies the following Armijo condition:

g{x' )̂ — g{x̂  ̂ +  g™'sd'̂ ) > 2apT^sg{x^).

where g{x) — \H{x)^H[x) =  ||/f(a:)||̂ . Set x̂ ~̂  ̂ =  x  ̂ Xkd'̂ · This procedure 

continues until H(x^) < e.
Pang [55] derived local and global convergence results for the damped-Newton 

method applied to a system of B-differentiable equations.

Although this algorithm doesn’t use smoothing methods, its structure is similar 

to our algorithm [8]. Therefore it is included here to give a background to the 

readers.

2.6 Continuation Methods

Continuation methods study the relationship between a problem P, called the 

original problem, and the perturbed problems Pie)  associated with P. In 

this context, e is the i^erturbation parameter, which equals to zero for the 

original problem P. The content of continuation methods is rich. On the 

one hand, perturbation and parametric analysis discuss the behavior of the 

problem P(e)  based on information of P, depending on whether e is small 

or large, respectively. On the other hand, penalty related methods, proximal 

point algorithms and homotopy methods aim at finding a solution of P by 

successively solving the perturbed problems P{e).

Now, we will mention a continuation method which is developed by 

Kanzow [30]. This study is one of the recent studies and it is similar to previous 

Lemke’s algorithm and our algorithm. Therefore we thought that it is suitable 

to give Kanzow’s algorithm [30].
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2.6.1 Interior-point continuation method for comple­
mentarity problems with uniform P-functions

This is based on [30]. Let /i >  0 be given. The main tool used in this method 

is the function : R̂  R defined by

<p̂ (a, b) — a + b -  \J{a- by +  4/i.

In the special case p = 0, ipfj, = ipo I’educes to

b) — a + b — sqrt{a — bY = a + b — \a — b\ — 2m in{a, 6}.

The function min{a, b} has been used, e.g., by Pang [55] in order to characterize 

problem NCP(i^). Here, the function is used to characterize problem 

PNCP(F, /i). For this, Kanzow defined the nonlinear operator : R̂ "' 
by

F{x) -  y
=

where

Kanzow stated a theorem saying that a vector z{y) =  {x{ii),y{ix)) G solves 

the perturbed nonlinear complementarity problem PCNP(F’, //) if and only if 

z(yw) solves the nonlinear system of equations F̂ p̂ {z) — 0 where PNCP(F’, ¡1) is 

to find a solution (x{iJ,),y{iJ,)) G R?  ̂ of the following system:

a? >  0, ?/ >  0, Xiyi = n, y = F{x) i =  ( l , . . . ,n )

If yu =  0 the problem P N C P (/, reduces to the nonlinear complementarity 

problem.

2.6.2 Kanzow’s algorithm:

StepO. Let P  =  (a;°,i/°) € =  0 and {pk}keN be any sequence such that

IXk > 0(A: G N) and limfc_oo k̂ -  0.
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Stepl. If =  0, stop: solves NCP(i^).

Step2. Use a damped Newton method to determine a solution — z{p,k+i) 
of the nonlinear system of equations

(^) =  0

StepZ. Set k =  k + 1 and go to Stepl [30].

2.7 Smoothing Methods

The complementary condition

0 <  xLy  >  0.

where x and y are vectors in BA and the symbol ±  denotes orthogonality, 

plays a fundamental role in mathematical programming. Many problems can 

be formulated by using this complementarity condition. For example, most 

optimality conditions of mathematical programming [51] as well as variational 

inequalities [19] and extended complementarity problems [45, 20, 67] can be 

so formulated. It is obvious that the vectors x and y satisfy complementarity 

condition if and only if

X =  (x -  y)+

where the plus function (.)+ is defined as

(£)+ =  max{£, 0},

for a real number e. For a vector x, the vector (x)^ denotes the plus 

function applied to each component of x. In this sense, the plus function 

plays an important role in mathematical programming. But one big 

disadvantages of the plus function is that is not smooth because it is not 

differentiable. Thus numerical methods that use gradients cannot be directly 

applied to solve a problem involving a plus function. However, the smooth 

function approximation to plus function can solve this problem. With this 

approximation, many efficient algorithms, such as the Newton method, can be
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employed.

Smoothing techniques have already been applied to different problems, 

such as, /j-minimization problems [41], multi-commodity flow problems [56], 

nonsmooth programming [68, 39], linear and convex ineqaulities [10], and 

linear complementarity problems [5], [10] and [30]. These successful techniques 

motivate a systematic study of the smooth approach.

2.7.1 A  class of smoothing functions

In this section we review a class of smooth approximations to the fundamental 

function (a;)+ =  max{a;,0} [11]. Notice first that =  f^^cr{y)dy, where 

a{x) is the step function:

r(a;) =
1 if X >  0

0 if X <  0

The step function <t(x ) can in turn be written as, cr(x) =  S(y)dy, where 

(5(x) is the Dirac delta function which satisfies the following properties

r+oo/-too
S{y)dy =  1

-oo

The fact that the plus function is obtained by twice integrating the Dirac delta 

function, prompts us to propose probability density functions as a means of 

smoothing the Dirac delta function and its integrals. Chen and Mangasarian 

[11] considered the ¡jiecewise continuous function d(x) with finite number of 

pieces which is a density function. That is, it satisfies

/ OO

d{x)dx =  1.
-OO

To parametrize the density function Chen and Mangasarian defined

where /3 is a, positive parameter. When ^ goes to 0, the limit of t[x,(3) is the 

Dirac delta function 6{x). This motivates a class of smooth approximations as
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follows:

and

i(x,/3)= I  i{t, ^)dt ^  a{x)
J — CO

P(x,l^)= I  s{t,^)dt?=i {x)+
J  —oo

Therefore, Chen and Mangasarian got an approximate plus function by twice 

integrating a density function. In fact, this is the same as defining

I  {x -t)i{t,l3 )d t.
J  — CO

Now, let’s look at some smooth plus function examples:

Exam ple 2.1 Neural Networks Smooth Plus Function [10]: Let

d{x)-
(1 +  e~^y

Here D\ — log 2, = 0 and suppd{x) =  R, where
/•0

D i=  \x\d{x)dx
J — OO

and
/■+00

D2 = max{ xd{x)dx,0}
J — OO

Integrating a — we have

p{x, a) = p{x, - )  =  /  s(<i, a)d^ =  x +  -  log(l +  e“ ""’ ) a J a

s(x, a) =  s{x, i )  =  = j a)dC

1
t{x, a) = t{x, —) =

ae
OL (1 +

=  0 5 (0: , a )(l — s(x , q;)).

Exam ple 2 .2  Chen-Harker-Kanzow-Smale Smooth Plus Function [63], [30], 
and [5]:

Let
d{x) =

{x  ̂ +  4)
Here D\ = 1, D2 =  0, supp{d{x)} = R and

p{x,l3) =
X +  y / x ^ + i ^
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Exam ple 2 .3  Pinar-Zenios Smooth Plus Function [56]: 
Let

' 1 i fO < t  < 1  
0 otherwise

Here D\, D2 = supp{d{x)} =  [0,1] and

d{x) =

p{x,II) = <
0 e/a; <  0

2/3 i f O < x < P
X - 2̂ if X > jd

Exam ple 2 .4  Zang Smooth Plus Function [68]: 
let

d{x) =  ■’ ~ ~
[ 0 otherwise

Here Di =  |, Z?2 =  0, supp{d{x)} =  [—1, 4] and

p{x,/3) =
0 i f x < - §
¿ ( a ; +  1)2 i / | a ; | < f2p
X i f x >  §

2.7.2 Application to The Nonlinear Complementarity 
Problem

Recall that NCP is the problem of finding an x in i?” such that

0 <  a;±F(a:) >  0

Here F{x) is a differentiable function from i?” to R .̂ By using the smooth 

function p[x,P) introduced before, smooth nonlinear equation

R{x) = X — p(x — F{x), Id) = 0

is proposed as an approximation to the following nonsmooth equivalent 

reformulation of the NCP

X = {x — F{x))+



CHAPTER 2. LITERATURE REVIEW 25

And now we can specify Chen and Mangasarian’s algorithm [11]. The algorithm 

consists of a Newton method with an Armijo line search with parameters 6 and 

cr such that 0 <  (5 <  1 and 0 <  <7 <  |.

N ew ton N C P  A lgorithm : [11]

Given xo E i?" and let =  0.

(1) Direction dk

dk =  -V R (xk)“ ^R(xk)

(2) Stepsize A*; (Armijo)

X k + i  =  Xk +  \ k d k , X k  =  max{l ,i , i^,

fi^k) -  f{xk+i) >  crAfc|d^Vf(xk)|

k = k + I go to step(l).

The above algorithm is well defined for a monotone NCP with a continuously 

differentiable F{x).

2.7.3 Mixed Complementarity Problem

The mixed complementarity problem (MCP) is defined as follows [15]: Given 

a differentiable F  : i?" —> i?” , l,u E ■, I < where R = RC  {+oo, —oo}, 

find x,w ,v ,E  jR", such that

F{x) — w A V — 0 

0 < X — iLw >  0 

0 <  vLu — a; >  0

This MCP model includes many classes of mathematical programming 

problems, such as nonlinear equations, nonlinear programming, nonlinear 

complementarity problems and variational inequalities.

By using the smooth function p{x,/d) instead of the plus function, Chen 

and Mangasarian reformulated the MCP approximately as follows [11]. For 

i =  1 ,..., n:

Case 1. li =  —oo and Ui — oo:

Fi{x) — 0
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Case 2. /j >  —oo and U{ =  oo:

Xi -  k -  p{xi -  k -  Fi{x), /3) =  0 

Case 3. li =  —oo and Ui < oo:

Xi — U i +  p{ui -  Xi +  Fi{x),/3) — 0

Case 4. h and ui < oo:

Fi{x) -W i + Vi = 0 

Xi -  h — p{xi — k -  'iWi, /0) =  0 

Ui -  Xi — p(ui -  Xi -  Vi, /3) =  0 .
Chen and Mangasarian denoted the above 4 cases collectively by the nonlinear 

equation

R(x, w,v) = 0

Note that the natural residual for the MCP is given by the left hand side of 

above relation with the p function replaced by the plus function.

Let f{x ,w ,v )  be the I’esidual function of the nonlinear equation defined as 

follows

f{x ,w ,v )  =  -R {x ,w ,v Y  R{x,w ,v)

Chen and M angasarian’s Sm ooth Algorithm  for M C P  [1 1 ]:

Input tolerance e, parameter p > \ and initial guess xq € RA
(1) Initialization For 1 < i < n oi Case 4, let Wq =  (jF,(xo))+, Vq =  

(-F l(xo))+ , A: =  0 and ao =  a{xo,wo,vo). Choose amax -  f

(2) N ew ton A rm ijo  Step Find (xk^i,Wk+i,Vk+i) by a Newton-Armijo step 

applied to

R{x,w ,v) =  0.

(3) Param eter U pdate If a{xk+i,Wk+i,Vk+i) >  ucnk, set

otherwise if ||Vf(xk+i, Wk+i,Vk+i)||2 <  e, set

Oik+i = ôck

If oik-̂ -i ^  Oimax·) (̂ k+1 ~ ^max· Let k k -{■ 1, go to step(2).
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2.8 Non-interior Continuation Methods for 
the NCP

Finally, let’s look at non-interior continuation methods. Non-interior 

continuation methods are closely related to path-following interior point 

algorithms. Both methods deform the complementarity condition by a 

parameterized systems of smooth nonlinear equations, then solve the deformed 

NCP by Newton’s method approximately, and adjust the parameter to refine 

the deformation. Both feasible and infeasible interior point path following 

algorithms have been developed to solve linear complementarity problems 

(LCPs) and NCPs (see for example [48, 49, 52, 53, 65, 66]). Wright and 

Ralph [66] proposed to alternate between the Newton step for the NCP 

and the centering step for the deformed NCP to achieve global and local 

superlinear convergence. However, no global convergence rate was given 

for their algorithm. Tseng [65] took a different approach by choosing 

certain combination of the above two steps as a search direction at each 

iteration. For the first time, he showed both global linear convergence 

and local superlinear and quadratic convergence for monotone NCPs with 

some additional assumptions. All interior point algorithms, however, share 

a common feature: they require each intermediate iterates to stay interior 

(positive).

Non-interior continuation methods take a different deformation of the 

complementarity condition. As a result, they did not have to restrict 

intermediate iterates to stay interior. The first non-interior method was 

introduced by Chen and Marker [5], where the authors concentrated on 

establishing the structural properties of the central path for LCPs with Po 

and Ro matrices. The method was later improved by Kanzow [30], where 

the author refined the smooth function and established the convergence for 

the continuation method under similar assumptions. However, both methods 

lack a systematic procedure to reduce the continuation (or smooth) parameter 

to zero, even through they have shown impressive numerical performance
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[5, 30] compared with interior point algorithms. As a result, no rate of 

convergence results were obtained. This gap was closed recently by Burke 

and Xu [2]. Inspired by many path following interior point algorithms, the 

authors introduced a notion of neighborhood around the central path for their 

non-interior continuation methods. All intermediate iterates are required to 

stay within the neighborhood and this provides a systematic procedure to 

reduce the smooth parameter. This important addition to the continuation 

methods allowed them to establish the global linear convergence for both LCPs 

with Po and Ro matrices [2] and NCPs with uniform P functions [2]. In 

addition, their computational experiments have shown further improvement 

over previous non-interior continuation methods have been developed to 

solve linear and quadratic programs [6], complementarity problems [31], and 

variational inequalities [7, 32].

All non-interior continuation methods mentioned above are based on 

smooth functions derived from XiPi =  fx, the deformed complementarity 

condition used for interior point algorithms. Many other smooth functions 

exist. Indeed, Chen and Mangasarian [3] have proposed a broad class of smooth 

functions for the plus function =  m ax{2: ,0} as mentioned above.

The non-interior continuation methods are also closely related to a broader 

class of algorithms called smoothing methods, which have attracted much 

attention recently. In particular, Gabriel and Moré further generalized the 

Chen-Mangasarian smooth function family and applied their smooth functions 

to mixed complementarity problems [17]. Chen, Qi and Sun [13] designed 

a smooth Newton method to solve a system of non-smooth equations and 

showed global and locally superlinear convergence for their method. Their 

results are based on a even broader class of smooth functions than the Gabriel- 

More family. The method was then applied to solve general box constrained 

variational inequalities. More recently, Chen [12] developed a smoothing 

quasi-Newton method for non-smooth equations and established superlinear 

convergence for the algorithm.
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2.8.1 A  Continuation Method for NCP

A recent contribution was made by Chen and Xiu [9], which gave a globally 

linearly and locally quadratically convergent algorithm. This recent non­

interior method is conceptually important and therefore we put it here.

Recall that NCP can be written as:

min{a;, y} =  0 or a; — (a; — y)+ — 0,

where the plus function is taken component-wise. By deforming the plus 

function with the Chen-Mangasarian smooth function p ,̂ we obtain the 

following smoothed complementarity condition:

= X -  Pn{x - y )  = 0,

where >  0 is a smooth parameter, P^{x — y) =vec{p^(a;i — j/i)}, and 

'^nix^y) =vec{xj;^{xi,yi)}.
The smoothed NCP then becomes:

Hf,{x,y) -
F{x) -  y

'^^ {̂χ,y)
=  0,

and the NCP conditions (l)-(2) can be written as Ho{x,y) =  0 [9]. The

idea behind continuation methods is to solve the smoothed NCP H^{x,y) =  0 

“approximately” for each given smooth parameter p, > 0 and gradually reduce 

p to zero. Hopefully, as p approaches zero, the solution of the smoothed NCP 

approaches a solution of the NCP.

Chen and Xiu [9] mentioned importance of the structure of the Jacobian 

matrix for the convergence analysis:

Denote P'fi{z) =dia.g{p[Xzi)}. By definition,

V^^^(a;,y) = 1 -  PI{x -  y), and Vy'Hf,{x,y) = P' îx -  y).
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and

^ -  y) =  K (y  “  0 -  y) <  >̂ 0 <  P' (̂y - x )  < 1.

Thus, the Jacobian matrix can be written as

V H ,(x ,y ) =
V F (x) - I

. K (y  -  K (^  -  y)

It is well known that the Jacobian ^(x^y), due to its special structure, is 

nonsingular if and only if matrix P' {̂y — a;) +  P^(x — y){x) is nonsingular. 

Merit function for Hfj,{x,y):

Pf î^ ŷ) =  ll^(a;) -  2/11 +  || ;̂.(a;,i/)||.

Let the central path(s) of the NCP be the set of solutions of Hf^{x,y) =  0 for 

all /X >  0. To construct an implementable continuation method for the NCP, 

Chen and Xiu introduced a neighborhood around the central path:

^il^) =  {(a^>y) : />M(^>y) 0},

where parameter ^ >  0 is called the width of the neighborhood. In addition, 

they defined the slice of neighborhood with /x G 17 as

=  { (x ,? /) : pf,{x,y) <  /?/x,/x € 17}.

For simplicity, if 17 =  /x, they wrote the slice as

Chen and X iu ’s Continuation Algorithm  [9]:

Given cr G (0,1), and ai G (0,1), for /  =  1 ,2,3.

Step 0 (Initialization)

Set k = 0. Choose po > 0, (x°,?/°) G i?^", and /3 > nB such that G

N{/3,po).
Step 1 (Calculate Centering Step)

If Ho{x' ,̂ y^) =  0, stop, (x*’, y^) is a solution of the NCP; otherwise, if (x^, y )̂ 
is singular, stop. The continuation method fails; otherwise, let (Ax*, Ay*) solve 

the equation

+ «  (Aar, A j /y  =  0.
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Step 2 (Line Search For Centering Step)

If y^) =  0, set =  (x '̂, y^); otherwise, let Afc be the maximum

of the values 1 , cii, 0;^,... such that

+  AfcAx*,y^ +  A^^Ay'') <  (1 -  0-AA:)p^Jx*,y'').

Set (x''+\y''+^) =  (x^,y^) +  Afc(Ax^, Ay'').

Step 3 {p Reduction Based on Centering Step)

Let 7 a: be the maximum of the values 1, Oi, a ^ ,... such that

(x‘ +‘ , i ‘ + ' ) e i V ( / ) , ( i - 7 i i ) w ) .

Set pk+i =  (1 -  lk)lJ-k·
Step 4 (Calculate Approximate Newton Step)

Let (Ax'', Ay'') solve the equation

-^o(a: '̂,y^) (x '',y '')^(A x, Ay)^ =  0.

Set (x ''+ ',y ''+ ') =  (.'c'',y'^) +  (Ax'', Ay'').

Step 5 [p Reduction Based on Approximate Newton Step)

If (x ''+ ',y ''+ ') ^ N{p,pk^i), set

H+i = h^-u (a:''+ ',y''+') =  (x ''+ ',y ''+ '),

and A: =  +  1, Return to Step 1. Otherwise, let rjk be the maximum of the

values 1 , « 3, « 3,... such that

(x''"*’ ',y''·*·') € N{l3,'r}kfik+i)·

Set

P k + i  =  V kfik+ i, (x ''+ ',y^+ ') =  (x ''+ ',y ''+ ') , 

and A; =  A; +  1. Return to Step 1.

It is very easy to initialize the above continuation method. One may simply 

choose any p o  >  0, (x °,y °) € and /3 >  m a .x { p f ^ Q { x ^ , y ^ ) / p o y t i B } .

No computational experience is available for this method yet. This can be 

an interesting line of future work.



Chapter 3

SMOOTH APPROXIMATION  
FOR NORMAL MAP  
FORMULATION

In the present chapter we introduce the normal map formulation of the NCP 

and apply smoothing techniques to it. The material of the present chapter and 

Chapter 4 are from [8].

Given a mapping /  : RT 
finds an a; G such that

i?” , the NCP with respect to / ,  NCP[/],

X >  0, f {x )  >  0, and f [x )  =  0

It is well known that NCP[/] can be reformulated as a system of nonsmooth 

equations by using either min map or normal map. In either reformulation, the 

plus function — max{0, z} is involved, where the max is taken component­

wise. The nonsmooth equation of the min formulation is given by

32
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m in{a:,/(a;)} = x -  (x -  f{x ))+  = x

and X solves NCP[/] if and only if it solves the above equation.

Chen and Mangasarian [3] proposed a class of parametric smooth functions, 

called plus-smooth functions, to approximate the plus function (detailed 

information can be found in literature review). The plus-smooth function 

is obtained by twice integrating a parameterized probability distribution 

function d. With the help of the plus-smooth function, the nonsmooth min 

reformulation is approximated as a system of smooth nonlinear equations. 

An approximate solution can be obtained by solving these equations. Their 

numerical experiment indicates that the smoothing approach is very effective 

and efficient. Chen and Barker [7] refined the plus-smooth function proposed 

by Chen and Mangasarian and the refinements allowed them to establish 

the existence, uniqueness, and some trajectory properties of parametric 

approximations to the NCP’s.

The normal map reformulation relates NCP[/] to the following system of 

nonsmooth equations, called Normal Map Equation (NME):

fi^+) T z-  = 0

where =  m in{0,2;}. It is well known that x =  solves NCP[/] if 2: solves 

the NME and z = x — f(x )  solves the NME if x solves NCP[/]. Unlike 

the min reformulation, the normal map reformulation only requires that /  be 

defined on instead of 72".

Chen, Barker and Pınar [8] applied the plus-smooth to approximate both 

z  ̂ and 2;_ in the NME and proposes a continuation method to solve NCP[/]. 

This chapter studies the properties of the plus -smooth function based on 

[8]. Unlike previous papers, Chen, Barker and Pınar [8] classified the smooth 

function by whether it is derived from a density function with finite or infinite



support. Section 3.1 analyzes the smooth approximation to the NME. Sufficient 

conditions are provided to guarantee the boundedness and the monotonicity of 

the solution trajectory for the continuation method, respectively. Next chapter 

gives the structure of the subproblems of a Newton corrector based continuation 

method which was investigated in [8]. It is shown that the smooth function 

with finite support results in subproblems of reduced dimension, an advantage 

shared by many B-differentiable approaches to solve complementarity related 

problems ( see [24] for example). Chapter 6 reports our numerical experiments 

of the continuation method using smoothing functions with finite and infinite 

support.

Many complementarity related problems can be reformulated as a system 

of equations or an optimization problem. The plus function is involved in 

many of these reformulations. However, since the plus function is nonsmooth, 

many of the resulting equations or optimization problems ai'e nonsmooth. They 

cannot be solved directly by the traditional techniques for smooth problems.

To overcome the difficulty, Chen and Mangasarian [7] introduced a class of 

plus-smooth function p(z, it) that novelly approximates the fundamental plus 

function z+ by twice integrating a probability density function with parameter 

0 <  u <  oo. More specifically, the plus-smooth function is given by

p{z,u) = (  f  —d{—)dxdt

where d{x) is a probability density function satisfies certain assumptions.

Clearly, as u approaches zero, the probability density approaches the

delta function with all the masses concentrated at origin and the double 

integration p{z,u) approaches the plus function z+. In this regard, p{z,u) 
can be considered as a natural approximation of the plus function 2:. Indeed, 

it has been shown by Chen and Harker [7] that any ’’well” behaved smooth 

approximation of the plus function must be a double integration of a probability 

density function.
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The smooth approximation p{z,u) preserves many structural properties of



the plus function z^, which will be explored next. Chen, Harker and Pinar’s 

characterization is based on whether the plus-smooth function p has a finite 

or an infinite support, p is said to have a finite (an infinite) support if the 

probability density function d it derives from has a finite (an infinite) support.

A probability density function d is supported on range [a, b] if d{x) > 0 for 

all X € [a, b] and d(x) =  0 otherwise. If both a and b are finite numbers, 

we called d has a finite support; otherwise, d has an infinite support. Some of 

the following assumptions on the probability density function d will be used to 

characterize the plus-smooth function p:

(C l )  d{x) is symmetric and piecewise continuous with finite number of pieces.

(C 2) £̂ (|a;|) <  oo.

(C 3) lima;_oo a;^d(.T) <  oo.

(C 4) d(x) has a finite support on [—5,s] for some 0 <  s <  oo.

(C 5) d{x) has an infinite support.

The symmetric assumptions in (C l) is made only the for the convenience of 

presentation. After all, all plus-smooth functions proposed and implemented 

so far are derived from symmetric probability density functions. Assumptions 

(C2) ensures that the integration of d exists. Assumptions (C3) requires that 

both tails of d to be thin enough, a property to be used to establish the 

boundedness of solution later. Clearly, assumption (C4) implies (C3), which 

in turn implies (C2).

The following results characterizes the plus-smooth function p{z,u) under 

various assumptions of the probability density function d:
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Proposition 3.1 Let p{z,u) be defined above with u > 0 and the probability 
density function d satifying assumptions (Cl) and (C2).
1. p{z,u) is continuously differentiable, nondecreasing, and convex.

2. lim„__o p{z, u) = p{z, 0) =  2+ for all z.

3. limг__oo p{z·, u) =  0 and lim2_oo u) = z for all u > 0.
4- 0 < p'{z,u) <  1 and p {—z,u) =  1 — p (z,u).
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5. 0 < P(z,u) — (z)^ < Du for all z, where D > 0 is a fixed constant depending 
on d.
6. Equation p{z,u) =  b has a unique solution for all u > 0 and b > 0. 7. 

If in addition d satisfies (Cf), then p{z,u) is strictly increasing and convex, 
0 <  p (z,u) < 1, and z+ < p{z,u).
8. If in addition d satisfies (Cf), then p{z,u) is strictly increasing and convex 
in (—su,su), z+ < p(z,u) and 0 <  p (z,u) < 1 for all z G {—su,su), and 
p(z,u) = z^ otherwise.
9. If in addition d satisfies (C3), then p{z,u)p{—z,u) < oo for all z [8].

Proof. Results (1),(5), and the first two parts of result (6) have been shown 

in [11] and results (3) and the last part of result (6) have been shown in [7]. 

Results (2),(4), and the last part of result (8) are true by definition of p(z,u) 
and the fact that is a probability density function. To show result (6),

suppose on the contrary that the equation p{z,u) — b has two solutions 

zi < Z2- By result (3), there exists a 2o <  2i such that p(2:0, u) — bo < b. 
Clearly, p{zi,u) is strictly greater than the linear interpolation of p(zo,u) is a 

convex function. To show the first two parts of results (8), notice that if the 

probability density function d(x) is supported on [—s,s] then the functional 

has a support on [— The remaining proof is almost identical to 

that of result (7). It remains to show result (9). Since d is assumed to be

symmetric, it suffices to show that lim -̂foo <  00. Indeed,

=
pT̂TwT

T f ^—oo—d( — )dx 9/
=  p^(z,u)

J — 00 U ' U /

lim p(z,u)p(—z,u) ~
=  lim^_oo

=

<  00

ux^d{x)

Here the I’Hospital’s rule is used to obtain the second and the fourth 

equalities. The third equality is true since d is a probability density function 

and lim^_oo p(-2, ii) =  -̂  by result (2) of Proposition 3.1. □



Below are several examples of the plus-smooth function derived from a 

probability function with an infinite support. In all examples, the function 

d satisfies assumptions (C l),(C2),(C3), and (C5).

Exam ple 1. Neural network plus-smoothing function (Chen and Mangasarian

[11]):
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d(x) = p{z,u) = z + u\og{l + e “ ).
(l + e -^ y

Exam ple 2. Interior point plus-smooth function (Smale [63]):

d{x) — p{z,u) =
2 -h /̂z'̂  + Au

(a;2 4)1.5’ 2

Notice that the above probability density function d is a scaled variant of the 

t distribution with parameter n =  2. It has been shown [63] that the central 

path of many interior point algorithms can be characterized as solution of the 

parametric smooth equations obtained by applying this plus-smooth function 

to the min reformulation NCP[/] (1).

Exam ple 3. Normal plus-smooth function:

d(x) -

No close form expression for p{z,u).

1 e 2

Although it is possible to derive a plus-smooth function from many 

probability density functions with finite support, the following plus-smooth 

function with finite support seems to be a natural choice. It satisfies 

assumptions (C l), (C2), (C3), and (C4).

Exam ple 4. Uniform plus-smooth function (Zang [68]):

(a:) =
1 if -  1/2 <  X <  1/2

0 otherwise
p{z,u) =

0 a z < —u/2  

if \z\ <  u/2 

\i z >  u /2

(z+u/2)^
2u



3.1 Application to the Nonlinear Comple­
mentarity Problem

In this section, the plus-smooth functions introduced in the previous section 

are applied to the NME, the normal map reformulation of NCP[/]. As a 

result, the NME is approximated by a series of parametric smooth equations.

The properties of the solution path(s), consisting of solutions of the smooth 

equations, are investigated. Sufficient conditions are provided to ensure the 

existence and the monotonicity of the solution path. Some of the results 

have been established in literature (see [48]), but only for a specific choice 

of plus-smooth functions, such as the interior point plus-smooth function. In 

the remaining study, the probability density function d that derives the plus- 

smooth function is assumed to satisfy at least assumptions (C l) and (C2).

As mentioned in the introduction, x =  solves NCP[/j if 2 solves the 

NME: f{z+ ) + z- = 0 .  Since and can be approximated by p{z,u) 
and —p{z,u), respectively, the NME can be approximated by the following 

parametric equations, called Smooth Normal Map Equation (SNME):

H(z,u) =  {1 — u)f(p(z,ua)) — p{—z,ua) + ub = 0,

where a G R^ and b 6 R++ are fixed parameters and p(z,ua) and p(—z,ua) 
are column vectors with components p(zi,uai) and p(—Zi,uai), i =  1,2, ...,n , 

respectively. If the vector a is strictly positive, i.e., a >  0, H {z,u) is by 

result (1) of Proposition 3.1. If some of the components of a >  0 are zeros,

H(z,u) is in general piecewise C .̂

At u =  1, the SNME reduces to
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H {z,l) = - p { —z,ua)-{-b =  0

The equation has a unique solution by result (7) of Proposition 3.1. On the 

other hand, at u =  0, the SNME reduces to the NME
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=  f{z+) + 2_ = 0

Therefore, if there exists a path from the unique solution at u =  1 to a

solution at u =  0, we could apply standard homotopy techniques to find the 

solution of the NME and thus a solution of NCP[/].

3.1.1 Existence of Solution Path

We start by defining S as the set of all solutions of the SNME.i.e.,

5  =  {{z,u ) e  R  ̂ * {0, 1] : H{z,u) = 0 } ,

and the solution path T as the connected components of S emanating from the 

unique solution of H{z, 1) =  0. The following result establishes the existence 

of a solution path from the unique starting point to a solution of the NME. 

It is straight forward extension of a similar result established by Kojima et al. 

[48] for the interior point plus-smooth function:

Theorem  3.1 Let a > 0 be fixed. Then for almost every ¿0 the set T forms a 
trajectory, a 1-dimensional manifold which is homeomophic to (0, 1], such that

0 <  i <  1}

and \\mt-,oT{t) — 0 whenever T is bounded. Here, e : (0,1] —̂ i?", r(i) : 

(0,1] —> (0,1] are piecewise -mappings or -mappings when a >  0.

Proof. To prove the result, we are only interested in the set of solutions 

(z,u) € S with 0 <  n <  1. Hence, defining a piecewise C^-mapping

* (0,1] R :̂

P{z,u) = [{1 -u )f{p {z ,u a )) -  p{-z,ua)]/u
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we can rewrite the SNME as:

P{z,u) =  —b.

Clearly, the mapping P is (7̂  if a >  0 and piecewise if some of the 

components of a >  0 are zeros. Consequently, the theorem follows from

the result on regular values of piecewise CEmappings. Almost every —6 <  0 is 

a regular value of the piecewise CEmapping P.
And if —6 <  0 is a regular value of the piecewise CEmapping P  then S is 

a disjoint union of smooth 1-dimensional manifolds: specifically its connected 

component T forms a piecewise smooth trajectory (or a smooth trajectory 

when a >  0) such that either ||2 || tends to infinity or u tends to 0 along the 

trajectory T. □

The significance of the above result has been discussed in [48]: The set T 
generically forms a smooth or piecewise smooth trajectory. Furthermore, if the 

trajectory T is bounded, there exists at least one limit point as u tends to 0 

along the trajectory, and every limit point is a solution of the NME. Sufficient 

conditions to ensure the boundedness of the solution set S and therefore the 

trajectory T is discussed next.

3.1.2 Boundedness of Trajectory T

We show that the solution set S is bounded if /  is a monotone function and 

NCP[/j has a strictly feasible solution or /  is an i?o-function (to be defined).

Let Z) be a nonempty subset of R"". A continuous mapping f:D  
said to be monotone over D if

P " is

[f(x) -  f { y ) f { x  -  y) > 0 for all re, i/ G D
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Proposition 3 .2  Let a > 0 and the plus-smooth function p satisfy assump­
tions (C3). If f  is monotone over R’f  and NCPff] has a strictly positive 
solution, then the solution set S, and therefore the trajectory T, is bounded.

Proof. Let 2; be any point of set S for some u € (0,1]. We need to show 

that ||2;|| is bounded. Denotea; =  p{z,na) >  0 and y =  p{—z,ua) >  0. 

By result (5) of Proposition .3.1,

\zi\ =  (2:i)+ -  {zi)- < p{zi,uai) +  p{-Zi,uai).

It suffices to show that l^a: +  l^y is bounded. By assumption there exist 

a p o in t(i,y ) >  0 such that y =  /(a;). Define the positive numbers e and a; by

e =  min{bi,Xi,yi : i = 1, u =  max{6,-,ii,yi : ¿ =  l , . . . ,n } .

It has been shown by Kojima et al. (page 953 of [48]) that if /  is a monotone 

function then

l^a; +  l^y <  [a;^y +  nc<j ]̂/e.

Since x^y =  p{z,ua)^p{—z,ua) is bounded by assumption (C3) and result 

(9) of Proposition 3.1, l^a; +  l^y is bounded and result follows. □

We now present another condition for S to be bounded. Let D be a 

nonempty subset of i?". A continuous mapping / :  D i?” is a i?o-function 

over the set D if for any sequence {a;^} in D satisfying {||a;*||} —>■ 00 and

liminfk-̂ oo
mini/¿(a:'') ^  ^

II t|| >  0, hmmf -----n-TTi----- ^  0̂A:-»oo 11- 1 1 1

there exists an index] such that {.xH 00 and {fj{x^)} 00.

Proposition 3 .3  Let a > 0. If f  is a Rq function over R^, then the solution 
set S, and therefore the trajectory T , is bounded.
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Proof. Suppose on the contrary that S is unbounded. Then there exists an 

unbounded sequence such that 7/ ( 2 ,̂ u*") =  0 with G [0,1]. Denote

=  p(z'^,u^a) > 0 and /  =  p(-z\u'^a) >  0.k ^.k.

Then

(1 -  u^)/(.T^) -  +  u'̂ b =  0.

We claim that sequence must also be unbounded. Otherwise, to satisfy 

last equation, sequence [y^] must be bounded and so is { 2;^} since <  

+  Vi from the proof of the previous result. However, this contradicts the 

assumption that sequence {z^} is unbounded. We now consider the limiting 

behavior of unbounded sequence {x^} and the associated sequence {f(x^ )}. 
For any index i,

• If zf is bounded, then yf is bounded by definition, and /¿(a:^) bounded by 

equation (5);

• If ẑ  —> 00, then xf 00, yf ^  0 by result (3) of Proposition 3.1, and 

fi(x^) is bounded by equation (5);

• If zf —>· —00, then, by the same argument, xf —»· 0, yf —> 00, and 

/¿(a;^) 00.

It follows that sequence {a:*̂ } satisfies the assumptions of i?o-function:

liminf·"^'"'"^·k ôo \\x̂ >  0, >  0.
fc-.oo ||a;''||

By definition of jRo'function, there exists an index j  such that Xj

00 implies —> 00, y*and yf =  fiix^) —»■ 00. However, Xj ■ — *—1' ___~j
implies z'· —> —00. This leads to a contradiction. □

->· 00 

·· —00



3.1.3 Existence of Monotone Trajectory T

In general, the trajectory T defined in the previous two subsections above is 

not necessarily monotone with respect to the parameter u. i.e., to follow the 

trajectory from the starting point at u =  1 to a solution at u =  0, u does not 

always decrease monotonically. More sophisticated techniques (see e.g. [1]) 

are needed to trace the trajectory. However, u is decreased monotonically in 

most implementations of smoothing methods and interior point methods for 

complementarity related problems. This subsection provides a set of sufficient 

conditions under which there exists a unique monotone trajectory. Needed 

definitions are in literature review part of thesis.

It is well known that the Po-property is implied by both the P-property 

and the monotonicity; the P-property is in turn implied by the uniform P- 

property. In addition, it has been shown [2] that the Po-property introduced in 

the previous section is also implied by the uniform P-property. The uniqueness 

of solution to the SNME is studied first.

Proposition 3 .4  Let a >  0 and the smooth function p have an infinite support 
(condition (C5)). If f  is a Po-function over R'f, then the SNME has at most 
one solution for each u G (0, 1 ].

Proof. The result is true for u =  1, as indicated in subsection 3.1. Suppose 

on the contrary that equation H{z, u) =  0 has two different solutions ^  ẑ  
for some u E (0,1). Denote = p(z'‘ ,ua) and xĵ  — p{—z,ua) for k =  1 , 2 .

Since p has an infinite support, it is strictly increasing and convex by result 

(7) of Proposition 3.1. Thus, ^ x̂  and ^ y .̂ In addition, we have

1 k u
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f{^  ) =  1------- y +  j ^  for =  1,2.1 — rt 1 — u

Since /  is a Po-function, there exists an index i such that

xj ^ xf and ifi{x^) -  fi{x^){xi -  xf) > 0,
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or equivalently,

x] ^  and {yj -  yf){x] -  xj) >  0.

Without loss of generality, one may assume x] > x}. Then the above 

inequality implies that yj > yf. However, since p has finite support, x\ > x̂  
implies z] > zf, y] >  yj implies z} < z\. This leads to a contradiction. □

Similar uniqueness result can be established for the NME when a >  0 has 

zero components or the plus-smooth function involved has finite support.

Proposition 3 .5  Let a >  0 and the smooth function p have a finite support 
(condition (C4)). If is a P-function then the SNME has at most one solution 
for all u G [0,1].

Proof.The proof is a slight modification of the previous one. Suppose on the 

contrary that equation H{z,u) =  0 has two different solutions ẑ  /  z"̂  for 

some u G [0,1). Let a;* and y'̂  be defined the same as in the previous proof. 

We claim that x̂  x .̂ Since otherwise ŷ  = — {I — u)f{x'^) -f ub which

implies that ẑ  = z^. However, this contradicts to the assumption. Since /  is a 

P-function and by the same argument as in the previous proof, there

exists an index i such that

X· X· and [y] -  yjfix] -  x]) > 0.

Without loss of generality, one may assume x} > xf. Then the above 

inequality implies that y- > yj. However, for any plus-smooth function, 

x] > xj implies zj > zj, y] > yj implies zj > zj. This leads to a contradiction. 

□



We now provide a set of sufficient conditions to guarantee the existence 

of a monotone trajectory T for plus-smooth functions with finite or infinite 

supports.
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( A l )  a >  0, p satisfies (C4), and /  is both Po and Po-function;

( A 2 ) a >  0, p satisfies (C4) and (C5), f is a monotone function over and 

NCP[/] has strictly positive solution;

(A 3 ) a >  0 and /  is both P  and Po-function.

Theorem  3 .2  If one of the three assumptions (A1)-(A3) is satisfied, the 
following statements are true: 1. For each u E (0,1], the SNME has a unique 
solution z(u); hence the trajectory can he rewritten as T =  { ( 2 (u),u) : u E 

(0 . 1 )), which is monotone with respect to u.
2. Trajectory T is hounded; hence there is at least one limit point of z(u) as

U —> CO.

3. Let z* he any limit point of z{u) as u 0. Then z’!̂  is a solution of the 
NME. In particular, the solution is unique under assumption (A3).

Proof. To prove the first result, in view of Proposition 3.1 and 3.5, it suffices 

to show the existence of solution. Recall that the SNME H{z,u) =  0 has a 

unique solution for u = 1. Let 0 <  u <  1 be the supremum of « ’s such that 

the SNME has a solution for every u E [u, 1]. Then there exists a sequence 

{(z*’, such that z'̂  solves the SNME with parameter and limfc_oo — u. 
Proposition 3.2 and 3.3 ensure that the sequence {z'°} is bounded under all 

three assumptions (A1)-(A3). Hence, one may assume that it converges to some 

z E P ” . since function H is continuous on z, it must happen that H{z, u) =  0. 

Hence, if u =  0, the desired result follows. Assume on the contrary that u >  0. 

Under any of the assumptions (A l)-(A 3), the generalized Jacobian 5H (z, u) is 

nonsingular (see Proposition 4.1 and 4.2) for all z E R2 and u >  0. Hence, the 

SNME has a unique solution for every u sufficiently close to u. However, this 

contradicts the definition of u. Therefore, the SNME has a unique solution for



all u € (0,1] and the trajectory T is monotone. The second result is a direct 

consequence of the first result and the fact that T is bounded. To prove the last 

result, let be any limiting point of z{t) as t ^  oo. By the continuity of the 

mapping H, we have H{z*, 0) =  0 or +  2:* =  0. Hence is a solution of 

the NME. In particular, by Proposition 3.5, 2:* is unique if /  is a P-function. □
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The above result clearly applies to an NCP with a uniform P-function, since 

the uniform P-property implies both Po-property and P-property. Moreover, 

as a corollary to the above result, we have also established the existence 

of solutions for the NCP with a Pq and Po-function. In addition, if the 

trajectory T is monotone, the implementation of a continuation method could 

be simplified: A simple lift step on u can be used as a predictor.



Chapter 4

SUBPROBLEMS OF 
N EW TO N  CORRECTOR

Prom the discussion of previous chapter, z{u), the solution of SNME H{z, u) =  

0, in general forms a trajectory with a unique starting point at u =  1 and an 

ending point at a solution of the NME. Therefore, a continuation method can 

be designed to follow the trajectory and locate a solution of the NME. Most 

continuation methods perform predictor and corrector steps alternatively. The 

predictor step starts from a point close to the trajectory and moves along the 

trajectory approximately. Depending on the property of the trajectory, one 

may chose to use more complicated Euler predictor or lift predictor by simply 

reducing u. The corrector step brings back the newly moved point to a neighbor 

of the trajectory to prepare for the next predictor step. Newton’s method is 

often used as a corrector in many continuation methods. We will study the 

subproblems of the Newton corrector in this chapter.

Let a >  0 and 0 <  u <  1. As discussed in Subsection 3.1. H {z,u) is if 

a >  0 and piecewise if some components of a are zeros. At a given point 

2;, the Newton’s direction d is obtained by solving the following generalized 

Newton equations:

47
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V d  +  H(z,u) =  0

where V  G 5H (z, u) with 5H (z,u ) being the generalized Jacobian (see [14]) 

of H defined at (z,u). The method and its convergence properties has been 

studied by [58].

Although it is in general difficult to represent a generalized Jacobian explicitly, 

it can be done for the SNME, due to its special structure.

' {(1  -  u)Vf(p(z, ua))D +  I -  D|D =  diag{Di},

Di = p'{zi,uai) if Üİ > 0,

öH (z, u) == < Di =  1 if Üİ = 0,Zi > 0,

Di G [0, 1 ] if ai — 0, Zi =  0,

£ > ¿ = 0  if Üİ = 0,Zi < 0}

The following two lemmas were introduced by Chen, Harker and Pınar [8]for 

establishing nonsingularity of generalized Jacobian 5H (z,u ).

L em m a 4.1 Let D i,i =  1 ,2 ,3 , be a positive diagonal matrices of appropriate 
dimension as defined in matrix below

 ̂ IVlji 1VIi2L)i 0

M  =

\

M 21 M 22D 1 T D 2 0

 ̂ M 31 M 32D 1 D 3 j

is nonsingular if M u  is nonsingular and M 22 — M 2i M f /M i 2 is a Pq- 
matrix.

Proof. Let X =  (.'Cl, iC2, 2:3)^ be any vector such that M 'x =  0. Since M u  is 

nonsingular, we have, after some algebraic calculations,

[(M22 -  M2lMn'Mi2 )Di + Ü2]x2 = 0
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By assumption, M 22 — M 2iM ]"/M i2 is a Po-matrix. It follows that the whole 

matrix in front of X2 is a P-matrix and thus nonsingular. This implies X2 =  0· 

Following similar calculations, we have

Xi =  —M jj^1VIi 2 D i X2 =  0, X3 =  —D 3 ^ (M 3 iX i +  M 23D1X2) =  0

Therefore x =  0 and M ' is nonsingular by definition. □

L em m a 4.2  Let N1 be a P-matrix. Then M D  +  I — D  is nonsingular for all 
diagonal matrix D  such that 0 < Di < I for all i.

Proof. Let D  be any diagonal matrix such that 0 <  A  <  1 for all i. 
Define the following index set associated with D :

a — {i : Di =  1 }, 0  = {i :0 < Di <  1 } , 7  =  {i : Di =  0}

Then matrix M D  +  I — D  can be simplified as:

 ̂ M ac Oc ^

M!̂ o, MpglDg + lf )  — Dp Op

V M^c M^pDp

It is well known that any submatrix of P-matrix is also a P-matrix, and any 

Schur-complement of a P-matrix is also a P-matrix. Thus is nonsingular 

and yi.013 ■— is a P-matrix, since M  is a P-matrix. By Lemma

4.1, the whole matrix is nonsingular. □

The following result provides a sufficient condition for all V  G 5H (z, u) to 

be nonsingular.

Proposition 4.1 Let a >  0 and u > 0 .  If f  is a P-function over Rif then all 
V  G <9H(z,u) is nonsingular for all z G P ".
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Proof. Since /  is a P-function over P " ,  V f(p(z,ua)) is a P-matrix for all 

z ^ RT. The result then follows from Lemma 4 .2 . □

The nonsingularity condition can be weakened if a is chosen to be strictly 

positive. Then H (z,u) is differentiable for all n >  0 and the generalized 

Jacobian dH.(z, u) reduces to the regular Jacobian V H (z, u). If the plus-smooth 

function has an infinite support, the Jacobian of H is given by:

V H (z ,u ) =  (1 -  u)Vf(p(z,ua))diag{p'(zi,uai)} -|-diag{p'(-Zi,uai)}

The Newton corrector subproblem is obviously a system of linear equations 

of full dimension n. The nonsingularity condition is given as follows.

Proposition 4 .2  Let a >  0 and the plus-smooth function p have an infinite 
support. Then V H (z , u) is nonsingular for all z ^ RP' if f  is a Pa-function
over R^.

Proof. From result (7) of Proposition 3.1, 0 <  p'{zi,uai) < 1 for all 2; G P  

and u >  0. Since /  is a Po-function over P ^, Vf(p(z, ua)) is a Po-matrix for all 

2 G P ” . It follows that V H (z ,u ) is a P-matrix and therefore, is nonsingular. 

Now consider the case that the plus-smooth function p has a finite support 

and that a >  0. Without loss of generality, assume that the support of the 

plus-smooth function is on [-1,1], i.e., s =  1 . To study the structure of the 

Newton corrector subproblem, we define the following index sets at a given 

point (z,u) € P " X (0, Ij:

a(z,u) = { i : Zi > ua,·}

/S{z,u) — : —ua,· <  Z{ < u a j

■y{z,u) =  {e : Zi <  -ua,·}

For simplicity, the argument (z,u) of all index sets will be dropped. By 

definition and result (8) of Proposition 3.1,
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p(zi,uai) =  1 for all i 6 a,

0 <  p {zi, uui) < 1 for all i G /3,

p {zi, uui) =  0 for all z € 7

Let p =  diag{p (zi, uaj), i G ¡3] and denote Vfst as a submatrix with 

elements dfi(p{z,ua))/dzi, i G s and j  G t. Then, after some algebraic 

manipulations, we have

V fV

V H (z ,u ) =  (1 - u )

V fapPp Or \

V fja  + (Ip -  pp)/{l -  u) Of,
Vfyc, VT L ,/( l  - u )

u

Piecewise quadratic smooth plus function provides us this special structured 

Jacobian matrix. In the software package, this special structure is used for 

piecewise quadratic function and it reduces CPU time significantly for some 

test cases (see figures and tables). In the software only a small matrix with 

reduced dimension |a| +  |/?| is solved (detailed information is given in Chapter 

6). The next result provides a condition for the Jacobian to be nonsingular.

Proposition 4 .3  Let a >  0 and the plus-smooth function p have a finite 
support. Then V H (z, u) is nonsingular if at {z, u) G R  ̂ x (O.lJ
1. V f„„  is nonsingular and

2. the Schur-complement Vipp — '^^poN^aa^^ap is a Po-matrix.

Proof. The result follows directly from Lemma 4.1. □

Based on the structure of the above Jacobian, it is clear that the Newton 

corrector subproblem of a continuation method using a plus-smooth function 

with a finite support is system of linear equations of reduced dimension |a -|- 

/3\. It compares favorably to the continuation method using a plus-smooth 

function with a infinite support, where linear equations of full dimension need 

to be solved as a Newton corrector subproblem. If a solution of the NME 

is nondegenerate and if a continuation method converges to the solution, the 

correct active set a and 7  are identified in finite steps.
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Proposition 4 .4  Let z* be a solution of the NME and that z* ^  0 for all i. If 
the plus-smooth function p has an finite support, then there exists u >  0 such 
that H{z*, ua) =  0 for all 0 < u < u.

P roof. By result (8) Proposition 3.1, for any  ̂ 6 0, there exists a u >  0 

such that p(z,u) = z+ and p[—z,u) =  — for all 0 <  u <  u. The result 

then follows directly. As a result, a continuation method using a plus-smooth 

function with a finite support converges to a nondegenerate solution of the 

NME in finite step (if Newton corrector is used). □



Chapter 5

THE ALGORITHM  AND  
SOFTWARE

In this chapter we look at a simple version of a continuation method (Chen, 

Harker and Pınar [8]), summarize the computational results and describe the 

software.

5.1 The Algorithm

The algorithm monotonically reduces u at each iteration (predictor step) 

and uses Damped Newton’s method as a corrector. A nonmonotone line 

seiirch procedure is chosen instead of the traditional Armijo line search. Our 

experience indicates that the nonmonotone line search may significantly reduce 

the number of function evaluations and improve the convergence. For each 

corrector step, define the merit function ^ ( 2:,« )  =  \\H{z,u)\\l.

The nonmonotone line search consists of finding the smallest 4  =  0, 1 , 2 ... and 

thus =  2 "''= such that

^(^^ +  2 - ‘''d^ <  IT  +  ^ 2 -“"V V >(/', u'^kfd^

53
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where W  is any value satisfying

<  W" <  max

and is a nonnegative integer with large enough k so as to guarantee the 

occurrence of nonnegative indices. Our implementation of the nonmonotone 

search is as follows:

• Set W  =  at the beginning of the algorithm,

• keep the value of W  fixed as long as

<Ii{z\u^)< min
-  i = 0 , l , . . . ,5

• If this equation is not satisfied at iteration k, set W  =  'I}{z^,u^).
Interested reader can find more detailed description of the nonmonotone line 

search at [40]. The continuation method is now desribed in detail.

5.1.1 Continuation Method

Step 0 Set A: =  0. Choose 2;*, and a and b.
Step 1  If \\H{z^^u’̂ \\ < e,stop.
Step 2 IfVH(z·', u^) is nonsingular solve for <P in

+ VH(z^u‘‘)d’‘ = 0.

Otherwise, let d!’ — —H (z’̂ ,u’̂ ).
Step 3 Compute a step length a* using the nonmonotone line search.

Step 4 Set
^k+i =  k̂̂ k̂

=u'^*/3. 

k k T 1

Go to Step 1 . In the above algorithm we choose e =  10“ ® , €  (0, l ) ,a  =  1 and 

6 = 1 .
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5.2 Software

A software which is based on the algorithm is developed in ANSI FORTRAN  

77, it uses a sparse linear system solver UMFPACK2 and its name is NCPNMS 

(Nonlinear Complementarity Problem Normal Map Solver). The NCPNMS can 

exploit sparsity. Therefore it doesn’t carry zero entries of Jacobian matrices. It 

firstly calculates initial function values and its Jacobian matrix and \\H{z,u)\\2 
by using the starting point. After this initialization, in a loop (loop continues 

until termination point is reached), it use damped-Newton algorithm and 

nonmonotone line search (firstly it finds step length, then updates z).

In addition to this, for piecewise quadratic function, NCPNMS doesn’t solve 

V H  * dz =  h with full V H  Jacobian matrix. Due to special structure of V H  

matrix of piecewise quadratic function, software solve only

(1 - u ) Vfaa Vfa/3P̂
Vf/j„ + (I/? -  Pi)/(1 -  u) _

part of V H  matrix. For this purpose, NCPNMS make arrangement on V H  

matrix and it makes new indexes for a, ^ and 7 . After solving this equation 

system with reduced matrix, for 7  part, software calculates

(1 -  u) * Vf^^dc, -  (1 -  uJVty/jp^d^.

Other parts are identical to parts of the software package with interior plus 

function except that we maintain index set a, /5, 7  for the piecewise quadratic 

function. Numerical testing shows that solving this reduced matrix is more 

efficient according to compatational time. Expecially for big problems (large 

n), this difference can be seen more precisely.

5.2.1 Numerical Example

Let us consider a Modified Mathiesen problem as an example of NCP( Piecewise 

quadratic plus-smooth function is used).The dimension of this problem is 4 and
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starting point is ( 1 ,1 ,1,1) and starting fx = 1. Function vector: 

f i l )  = xi2) + x(3) +  x(4)
f(2) =  .r(l) -  (4.5 X x(3) +  2.7 x x(i))/(x(2)  +  1) 

/(3 )  =  5 -  .r(l) -  (0.5 X x(3) +  0.3 X a:(4))/(a:(3) +  1) 

/ ( 4 )  =  3 - a : ( l )

and the Jacobian matrix of the function:

1 1 1 1
1
1

4 .5 x a ;(3 )+ 2 .7 x a ;(4 ) 4.5 2.7

v / = (x (2 )+ l)2

0
® (2 )+ l

-0 .5 + 0 .3 x a ;(4 )
a :(2 )+ l

- 0 .3
(a :(3 )+ l)2 ® (3 )+ l

-1 0 0 0

For starting point  ̂ =  (1 , 1 , 1 , 1 ):

p { z A )  =

and

and

p(z,l)  =

Jacobian matrix of function:

0
0
0

0

V /  =

0 - 1 1 1

1 1.8 -2 .2 5 -1 .3 5

- 1 0 -0 .0 5 -0 .1 5

- 1 0 0 0
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due to this matrix

and

and

due to these values;

VH{zA)  =

0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0

f { p { z , 1 )) =

p ( - z , l )  =

H{z, l )  =

1

- 2.6
3.6

2

0
0

0
0

1 ’ 

1 
1 
1

and \\H{z, 1)||2 =  4 Therefore solution of VH{z,  \) x d = —H{z,  1 ):

d =

-1
-1
-1
-1

Now we must find step length, in the first iteration Armijo condition is 

satisfied at beginning with a =  Therefore new point is

z =  z -\- a  X d 

0
, 0

0 

0

2 =
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Due to this new point, new p(z,l) and f(p(z,l)) is calculated again. And for 

every entry of these vectors, minimums are selected. Norm of this new vector 

is calculated. This norm is the error term and its value is smaller than 10~® 

the algorithm stops with optimal point, otherwise the algorithm proceeds. Due 

to current point error term is 0.70887 and this is greater than 10“®, therefore 

continue...(now new /i =  0.1 )

Due to this z.

p (z ,0 . l )  =

and

p i - z ,  O.l) =

0.5

0.5

0.5 

0.5 j

■ 0.5 

0.5 

0.5 

0.5

and

p{z,0.1) =

0.0626

0.0625

0.0625

0.0625

Jacobian matrix of function:

V /  =

due to this matrix :

\/H{z,l) =

0 - 1 1 1

1 0.39862 - 4.2353 - -2.5412

- 1 0 0.4263 - 0.28235

- 1 0 0 0

0.5 -0 .2 5 0.25 0.25

0.25 0.59966 -1 .0588 -0 .6353

-0 .2 5 0 0.3934 -0.070588

-0 .2 5 0 0 0.5
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and

f {p(z ,0.1)) =

and

p{-z,O.l)  =

0.0625

-0 .361

4.89

2.9375

0.0625

0.0625

0.0625

0.0625

due to these values:

H{z ,0.1) =

0.46875 

0.25698 

2.8827 

1.90625

and 0.1)||2 =  12.23 Therefore solution of VH (z , 0.1) x d — —H{z,0.1):

d =

-4 .7 3

-2 5 .2

-1 1 .44

-6 .1 8

Now we must find step length, in this case Armijo condition is not satisfied 

with q; =  1 , a =  0.5 and a =  0.25. After two inner iteration for step length for 

a — 0.125 Armijo condition is satisfied. Therefore new point is

z =  z -\- a  X d

-0 .5912  

-3 .1504  

-1 .4301  

-0 .7722

Due to this new point, new p(z,0.1) and f(p(z,0.1)) is calculated again. 

And for every entry of these vectors, minimums are selected. Norm of this new



CHAPTER 5. THE ALGORITHM AND SOFTWARE 60

vector is calculated and this norm is error term and this value is smaller than 

10“ ® stop, optimal point is reached otherwise continue. Due to current point 

error term is 0 and this is smaller than 10“®, therefore stop optimal point is 

reached. After 2 iterations solution is reached. The solution vectors are:

X =

' 0 ' ' 0 '

0
and f(x) =

0

0 5

0 3



Chapter 6

COMPUTATIONAL RESULTS

The algorithm was implemented in FORTRAN 77 and tested on a Sparc Station 

Classic with one 60 Mhz Micro SPARC 8-CPU and 1 GB main memory running 

UNIX. I report the results of two experiments below. The first experiment was 

conducted using a uniform reduct ion scheme for u. That is, we reduce u by the 

same factor after each nonmonotone search. The second experiment consists 

of using a hybrid strategy: reduce slowly at the beginning, then reduce fast. I 

used test problems from De Luca [40] and Ferris and Rutherford [16]. Next, 

we describe briefly the test problem characteristics.

6.1 Test Problems

FORTRAN versions of below problems can be obtained from the author. 

Kojima-Shindo: This is a 4-variable problem. F  is not a Fo"function. The 

starting points are: (a) (0,0,0,0), (b) ( 1 ,1 ,1 ,1 ).

Kojima-Josephy: This is a 4-variable problem. F  is not a Po-function. The 

starting point are: (a) (0,0,0,0), (b) ( 1 ,1 ,1 ,1 ).

HS34: This problems represents the KKT conditions of a nonlinear program. 

F  is monotone on the positive orthant but not even Pq on P ". The dimension

61
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is 8. Starting point is (a) (0,1.05,2.9,0,0,0,0,0).

HS35: This problem represents the KKT conditions for the 35th problem in 

[25]. F  is linear and monotone but not strictly monotone. The dimension is 4. 

Starting point is (a) (0.5,0.5,0.5,0).

HS66: This problem represents the KKT conditions for the 66th problem in 

[25]. F  is monotone on the positive orthant but not even Pq on R .̂ The 

dimension is 8. Starting point is (a) (0,1.05,2.9,0,0,0,0,0).

HS76: This problem represents the KKT conditions for the 76th problem in 

[25]. F  is linear and monotone but not strictly monotone. The dimension is 7. 

Starting point is ( 1 ) (0.5,0.5,0.5,0.5,0,0,0).

WatsonS: This is linear complementarity problem with F{x) = Mx-\-q. M  is 

not even semi-monotone. This is known to be a hard problem. In fact, De Luca 

et al. ] indicate that none of the standard algebraic techniques can solve this 

problem. We choose q =(-1 ,0 ,...,0) as in [25]. The dimension is 10. Starting 

point is (a) (0,0,...,0).

Watsond: This problem represents the KKT conditions for a convex

programming problem involving exponentials. F  is monotone on the positive 

orthant but not even Pq on 72". The dimension is 5. Starting point is (a) 

(0,0,...,0).
Nash-Cournot: F  is not twice continuously diiferentiable. F  is a P-function 

on the strictly positive orthant. The dimension is 10. Starting points are (a) 

(10,10,...,10), (b) (1,1,...,1).
Modified Mathiesen; F  is not defined everywhere and does not belongs to 

any known class of functions. The dimension is 4. Starting points are (a) 

( 1 ,1 ,1 ,1 ), (b) ( 10 ,10 ,10 ,10 ).

Spatial: This is a spatial equilibrium model. P  is a P-function. The dimension 

is 42. Starting points are (a) (0,0,...,0), (b) ( 1 ,1 , . ..,!) .

Traffic: This is a traffic equilibrium problem. The dimension is 50. Starting 

point is (a). All the components are 0 except ẑ , ziq, zn,  ^2o, 2̂21, 2:22, ^29, Z30, 240, Z45 

which are 1 , 2:39, 242, 2:43,^46 which are 7, 241, 247, 248,250 which are 6, 244 and 

4̂9 which are 10 .

Pies: Energy Equilibrium Model. The dimension is 42. Starting point (0,..,0). 

Ehl-kost: Elasto-hydrodynamic lubrication. The dimension is 101. The
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starting point is (I ,.·!)·

Colvdual: Dual of Colville Problem Number 2. The dimension is 20. The 

starting point is ( 1 ,.T ).

MyPowell: Powell’s Nonlinear Program. The dimension is 16. The starting 

point is ( l , ..l ) .

Cycle: Cycling example. The dimension is 1 . The starting point is 1 . 

Powell-mcp: Powell’s nonlinear program, MCP form. The dimension is 8. 

The starting point is (1,..,1).

Sppe: Spatial Price Equilibrium Example. The dimension is 30. The starting 

point is ( 1 , . . ,1 ).

Explcp: A sample Linear Complementarity Problem. The dimension is 16. 

The starting point is (

Bertsekas: Bertsekas problem as a 15-variable NCP. The dimension is 15. 

The starting point is (

Freebert: Bertsekas problem as a 15-variable MCP. The dimension is 15. The 

starting point is (

Hanskoop: Hansen /Koopmans invariant capital stock problem. The

dimension is 14. The starting point is ( l , ..l ) .

Vonthmcp: General Equilibrium Variant of the Vonthunene Model. The 

dimension is 126. The starting point is (1,..,1).

Gafni: This problem is based on a traffic assignment problem. The dimension 

is 5. The starting point is (1,..,1).

Colvncp: Colville Problem. The dimension is 15. The starting point is

(0,..,0).

Hydroc06: Distillation problem. The dimension is 29. The starting point is

Hydroc20: Distillation problem. The dimension is 99. The starting point is

MethanOS: Distillation problem. The dimension is 31. The starting point is

Scarfanum: Walrasian problem. The dimension is 14. The starting point is

(0,..,0).
Scarfbnum: Walrasian problem. The dimension is 40. The starting point is
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P g v o n l0 6 : Von Thunen model. The dimension is 106. The starting point 

( 1 , . , 1 ) and (0,..,0).

6.2 Experiment 1: Uniform Reduction of u

I summarize below in Table 6.1, Table 6.2 and Table 6.3 our experiments with 

the interior smooth function with infinite support, the piecewise quadratic 

smooth function with finite support respectively and piecewise quadratic 

function with reduced V H  Jacobian matrix. The column headings are as 

follows. denotes the starting point value of u, RS refers to the u reduction 

strategy, SP stands for the starting point in reference to the previous section, 

IT stands for iteration number, FE for the number of function evaluations and 

CPU refers to CPU times. We use two alternative strategies for reducing u:
1 u by u <— u/10
2 u by u <— u /2 .

From tables and figures (figure 6.1,6.2,6.3,6.4 and 6.5), we can see that 

especially piecewise quadratic plus-smooth function with reduced V H  has less 

CPU time for a lot of problems. However, it is not possible to say that interior 

plus-smooth function is better than piecewise quadratic plus-smooth function 

or vice versa. Because for some problems interior function wants less number of 

iterations and for some other problems piecewise quadratic function wants less 

number of iterations. But piecewise quadratic function with reduced V H  can 

be prefered instead of interior. Because for a lot of problems it has less CPU 

time than interior function even when piecewise quadratic function requires 

a larger number of iterations. Especially for problems Spatial Equilibrium, 

Ehl-kost, Explcp, Hanskoop, Sppe algorithm of piecewise quadratic function 

with reduced matrix reduced CPU time to approximately half of CPU time of 

piecewise quadratic function with full matrix. These tables don’t contain all
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the experiments with fail results. Therefore some experiments with different 

starting points, different starting fj, are not in tables.

All problems are converted to ANSI Fortran 77 code from GAMS and 

MATLAB files. Some problems are in MCP format. Therefore they have 

upper and lower bounds. However, upper and lower bounds can not be used 

by normal maps. Therefore reasons of our fails for some problems may be 

trying to solve problems, whose original types have upper and lower bounds, 

without upper and lower bounds .
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PROBLEMS u RS SP IT FE CPU Timc n
Kojima-Shindo 1 10 a 14 19 0.042316) 4

10 10 b 15 17 0.044265) 4
Kojima-Josephy 10 10 b 9 15 0.024996; 4
HS34 1 10 a 10 31 0.0435 8
HS35 1 10 a 8 9 0.0244321 4
HS66 10 10 a 9 24 0.035842: 8
HS76 10 10 a 9 10 0.035105; 7
WatsonS 1 2 a 22 30 0.106676i 10
Watson4 1 2 a 39 39 0.091447 5
Nash-Cournot 1 10 a 9 15 0.059771 10

10 10 a 10 13 0.056845; 10
10 10 b 11 13 0.062692 10

Mod. Mathiesen 1 2 a 22 24 0.057889' 4
1 10 b 8 19 0.027408 4

Spatial Eq. 10 2 a 27 36 0.660758 42
1 2 b 24 31 0.552334 42

Traffic Eq. 1 10 a 15 27 0.44834 50
Bertsekas 10 10 1 23 56 0.38294 15
Colvdual 1 10 1 19 83 0.18376 20
Coivnip 10 2 1 20 139 0.165205 15

10 2 1 20 139 0.159597 15
Cycle 1 10 0 7 12 0.015487 1
EhLkost 10 2 0 42 53 0.562476 101
Expicp 10 2 1 27 73 0.222058 16

10 10 0 9 14 0.079298 16
1 10 0 8 11 0.072527 16
1 2 0 23 23 0.184209 16

Freebert 1 2 0 Fall
1 2 0 Fail
1 2 0 Fail
1 10 1 Fail
1 10 0 Fail
1 2 1 Fall
1 2 0 Fail

Gafni 1 10 1 10 14 0.071293 5
Hanskoop 10 2 1 38 94 0.58473 14
HydrocOe 1 10 1 13 23 0.26231 29
Hydroc20 10 10 1 24 52 0.92843 99
MethanOB 10 2 1 12 22 0.27453 31
Pgvon106 10 10 1 Fail

10 2 10 Fail
1 10 1 Fall

Pies 10 10 10 17 174 0.42634 42
10 10 0 Fail
10 10 1 Fail
1 10 1 Fail

Powell 10 2 1 16 22 0.23345 16
PowelLmcp 10 10 1 9 11 0.11273 8

10 2 1 Fall
10 2 0 Fall

Scarfanum 1 10 0 18 45 0.4234 14
Scarfbnum 1 10 0 23 61 0.53476 40

1 10 1 Fall
10 10 1 Fall

Sppe 10 2 0 Fall
10 10 0 12 102 0.159562 30
10 10 1 9 45 0.115617 30
10 2 1 Fall

Vonthunen 1 10 0 Fail
1 10 1 Fail
1 2 1 Fail
10 10 1 Fail
10 10 10 Fail
10 2 0 Fail

Total CPU Time (niy one CPU Time (minimum) for every problem) = 6.83362

Table 6.1
Interior Plus-Smooth Function
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PROBLEMS u RS SP IT FE CPU Tim€ n
Kojima-Shindo 1 10 a 8 13 0.028735; 4

1 10 b 9 14 0.029376; 4
Kojima-Josephy 1 10 b 8 12 0.026557 4
HS34 1 2 a 23 27 0.066008; 8
HS35 1 10 a 8 10 0.022996; 4
HS66 1 2 a 23 24 0.0722931 8
HS76 1 10 a 8 11 0.028064 7
WatsonS 10 2 a 26 35 0.109984 10
Watson4 10 2 a 26 26 0.062708 5
Nash-Cournot 10 10 a 9 10 0.048967 10

10 10 b 11 14 0.059474 10
Mod. Mathiesen 1 2 a 2 5 0.011336 4
Mod. Mathiesen 10 2 b 3 10 0.016192 4
spatial Eq. 10 2 a 27 58 0.454667 42

10 10 b 18 30 0.293117 42
Traffic Eq. 1 10 a 28 87 0.548375 50
Bertsekas 1 10 1 27 113 0.508476 15
Colvdual 10 2 0 Fall

10 10 1 18 94 0.161101 20
1 10 1 Fail

Coivnip 10 2 1 26 148 0.248946 15
10 10 1 Fail
10 10 0 Fail

Cycle 1 1 0 8 12.56 0.021833 1
EhLkost 10 10 1 38 82 0.582622 101
Expicp 10 2 1 37 170 0.24322 16

1 10 1 9 89 0.061505 16
10 10 0 Fail
1 10 0 Fail

10 10 1 Fail
Freeberl Fail
Gafni 10 2 0 9 12 0.075854 5
Hanskoop 10 10 1 34 102 0.63484 14
Hydroc06 1 10 1 11 21 0.218484 29
Hydroc20 10 10 1 18 94 0.91747 99
MethanOS 1 10 1 14 18 0.33359 31
Pgvon106 Fail
Pies 10 2 1 14 41 0.436278 . 42
Powell 1 10 1 11 31 0.168748 16
PoweiLmcp 10 10 10 10 17 0.12938 8
Scarfanum 1 2 0 20 71 0.53427 14
Scarfbnum 10 10 1 24 95 0.63573 40
Sppe 10 10 0 12 35 0.125023 30

1 2 1 23 75 0.237154 30
1 10 1 Fail

10 10 1 Fail
1 10 1 Fail

Vonthunen Fail
Total CPU Time (only one CPU Time (minimum) for every problem = 7.27484

Table 6.2
Piecewise Quadratic Function
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PROBLEMS u RS SP IT FE CPU Timc n
Kojima-Shindo 1 10 a 8 13 0.02975-i 4

1 10 b 9 14 0.03190C) 4
Kojima-Josephy 1 10 b 8 12 0.02853€; 4
HS34 1 2 a 23 27 0.0545221 8
HS35 1 10 a 8 10 0.021307 4
HS66 1 2 a 23 24 0.050484 8
HS76 1 10 a 8 11 0.023181 7
Watson3 10 2 a 26 35 0.085872 10
Watson4 10 2 a 26 26 0.062898 5
Nash-Cournot 10 10 a 9 10 0.049203 10

10 10 b 11 14 0.059618 10
Mod. Mathiesen 1 2 a 2 5 0.011407 4
Mod. Mathiesen 10 2 b 3 10 0.015638 4
Spatial Eq. 10 2 a 27 58 0.342144 42

10 10 b 18 30 0.210287 42
Traffic Eq. 1 10 a 28 87 0.43645 50
Bertsekas 1 10 1 27 113 0.41956 15
Colvdual 10 2 0 Fail

10 10 1 18 94 0.117174 20
1 10 1 Fail

Coivnip 10 2 1 26 148 0.179478 15
10 2 1 Fail
10 10 1 Fail
10 10 0 Fail

Cycle 1 1 0 8 12.56 0.022735 1
EhLkost 10 10 1 38 82 0.39534 101
Expicp 10 10 0 Fall

1 10 0 Fail
1 10 1 9 89 0.034063 16

10 10 1 Fail
10 2 1 37 170 0.147422 16

Freebert Fail
Gafni 10 2 0 9 12 0.06345 5
Hanskoop 10 10 1 34 102 0.49756 14
HydrocOG 1 10 1 11 21 0.175434 29
Hydroc20 10 10 1 18 94 0.725634 99
MethanOS 1 10 1 14 18 0.26353 31
Pgvon106 Fail
Pies 10 2 1 14 41 0.30465 42
Powell 1 10 1 11 31 0.14846 16
PowelLmcp 10 10 10 10 17 0.973452 8
Scarfanum 1 2 0 20 71 0.337645 14
Scarfbnum 10 10 1 24 95 0.419837 40
Sppe 1 10 1 Fail

10 10 0 12 35 0.077807 30
10 10 1 Fail
1 10 1 Fail
1 2 1 23 75 0.137129 30

Vonthunen Fail
Total CPU Time (only one CPU Time (minimum) for every problem) = 6.33307

Table 6.3
Piecewise Quadratic Function with reduced matrix
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CPU Time versus n

Figure 6.1
Interior plus function 
CPU Time versus n
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CPU Time versus n

Figure 6.2 
CPU Time versus n 

Piecewise Quadratic Function
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CPU Time versus n

Figure 6.3 
CPU Time versus n

Piecewise Quadratic Function with reduced matrix
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CPU Time

♦  Zang
■ ·■  - · Reduced Zang 

— -A — Interior

Figure 6.4
Comparison For CPU Time
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CPU Time per Iteration

— Zang
Reduced Zang 

— -A — Interior

Figure 6.5
Comparisons For CPU Time per Iteration
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6.3 Experiment 2; A Hybrid Reduction 
Scheme for u

I observed in our experiments reported in the previous section that some 

test problems require that u be reduced slowly at the start of the algorithm. 

However, this slow reduction of u seems to slow down the tail convergence rate 

for these problems. T herefore, we tested a hybrid u-reduction scheme where u 
is reduced slowly at the beginning (u <— uf2) until the complementarity error 

is under a certain threshold. Then u is reduced faster. We have tested two 

alternatives at the faster re duction phase:

Strategy 1 u <— u/100,
Strategy 2 u e- u/10.

In table 6.4 below, we report the results of this experiment on problems 

where some improvement could be expected. The pair of numbers under the 

column heading RS refer to the u reduction strategy and the threshold value 

of the error at which we start to reduce faster, respectively.

However, for a lot of problems hybrid reduction scheme for u doesn’t affect 

number of iterations.
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Results using the interior smooth function

Problem u RS SP IT FE
Mod. Math 1 (1.1) a 5 7
Watson4 1 (1.10) a 19 19
Nash-C. 1 (1.100) a 9 15
Watson3 1 (1.1) a 7 13
Spatial Eq 10 (2,10) a 24 33

Results using the piecewise quadratic smooth function

Problem U RS SP IT FE
Watson4 1 (2.100) a 18 18
WatsonS 1 (1.1) a 13 22
Spatial Eq 10 (2,10) b 29 47

Table 6.4

Hybrid u-reduction scheme



Chapter 7

CONCLUSION

In this thesis, a continuation method algorithm which using smoothing methods 

is implemented. As a plus-smoothing function interior-point function and 

piecewise quadratic function is used and this functions are compared by using in 

the same algorithm. Especially due to piecewise quadratic function, V H (z, u) 

Jacobian matrix has special structure and this structure reduces computational 

efforts very largely.

For different problems, number of iterations which are needed to reach 

termination point can change due to whether interior function or piecewise 

quadratic function is used. For some problems interior-point wants less 

iteration (less CPU time), for some problems piecewise quadratic function 

wants less iteration (less CPU time). Therefore, we couldn’t conclude that 

interior-point method is more powerful than piecewise quadratic function or 

vice versa. However, due to special structure of V H (z ,u ) with piecewise 

quadratic function, if this special structure is used in the algorithm, reducing 

in the computational time (CPU time) is very important. Also choosing of 

starting point and  ̂ affects number of iterations and hybrid reducing strategy 

can reduce number of iterations, at least for some problems. And unfortunately, 

algorithm couldn’t reach optimal solution for a few problems. Because we can 

not use upper and lower bounds of some problems and these may be reasons
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of fail results.

Also hybrid reduction scheme reduced number of iterations for only a few 

problems. Therefore we can not conclude that hybrid reduction scheme is 

better.

For future research, we would suggest to increase the performance of the 

algorithm for especially unsuccessful results for some problems. Also it would 

be interesting to implement a continuation method with Euler predictor step.
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Appendix A

User’s Guide to NCPNMS

A  Fortran 77 Package to solve NCP

A .l Purpose

NCPNMS is a FORTRAN 77 subroutine designed to solve nonlinear comple­

mentarity problems. The subroutine can exploit sparsity. Therefore, it is 

suitable for large ¡problems with very sparse cosntraint matrices. The target 

problem and the description of the algorithm are provided in the main body.

A .2 Specification of the Subroutine NCP­

NMS

The heading of subroutine NCPNMS is given below.

SUBROUTINE NCPNMS(N,MU,SZ,SOL,ITER,FITER)

INTEGER N,ITER,FITER

DOUBLE PRECISION MU, SZ(N), SOL(N)

Now, we give a desription of the parameters.
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A.3 Description of Parameters

N INTEGER

On entry N must specify the number of variables n. Unchanged on exit.

MU DOUBLE PRECISION

On entry mu must specify first value of mu.

SZ DOUBLE PRECISION ARRAY OF DIMENSION (N)

On entry SZ is the starting vector.

SOL DOUBLE PRECISION ARRAY OF DIMENSION (N)

SOL is the solution vector.

ITER INTEGER

ITER is number of iteration.

PITER INTEGER

PITER is number of inner loop iteration.

In addition to this, user must support two subroutines. First one is 

CALCF() for formulation of NCP problem, second one is CALCG() for Jacobian 

of NCP problem. Now, we give examples for CALCF and CALCG.

Example for CALCF:
f specifies the function vector.

C compute the function F for problem spatial equilib.;

C Mustafa C. Pinar, Bilkent, Sept. 26, 1995 

C input : X .. variables 

C Kojima-Josephy

Subroutine Calcf(f,x,n) 

Double Precision x(*),f(*) 

Integer n,i,j
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f(l) =  3*x(l)**2 +  2*x(l)*x(2) +  2*x(2)**2+x(3) +  3*x(4)-6

f(2) =  2*x(l)**2 +  x(l) +  x(2)**2 +  3*x(3)+2*x(4) -2

f(3) =  3*x(l)**2 +x(l)*x(2) +  2*x(2)**2 +  2*x(3) +  3*x(4) -1

f(4) =  x (l)**2  +  3*x(2)**2 +  2*x(3) +  3*x(4) -3

Return

End

Example for CALCG:
DFl specifies number of row of entries of Jacobian V /  matrix. 

DF2 specifies number of column of entries of Jacobian V /  matrix. 

VDF specifies value of entries of Jacobian V /  matrix, 

ne specifies number of nonzero entries of matrix.

D H l specifies number of row of entries of XH  matrix.

DH2 specifies number of column of entries o i X H  matrix.

VDH specifies value of entries of XH  matrix.

C Compute the Jacobian DF of F 

C input ; X .. variables 

C Kojima-Josephy

Subroutine CALCG(DF,x,n) 

Integer n,i,j

Double Precision DF(n,n),x(*) 

C First row

V D F (l) =  6*x(l) +  2*x(2 ) 

VDF(2) =  2*x(l) +  4*x(2) 

VDF(3) =  1 

VDF(4) =  3 

C Second row 

VDF(5) =  4*x(l) +  1 

VDF(6) =  2 *x(2)
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VDF(7) =  3 

VD F(8) =  2 

C Third row

VDF(9) =  6*x(l) +  x(2 ) 

VDF(IO) =  x (l) +  4*x(2) 

V D F (ll) =  2 

VDF(12) =  3

C Fourth row VDF(13) =  2*x(l) 

VDF(14) =  6*x(2 )

VDF(15) =  2 

VDF(16) =  3 

ne=16 

D F l(l) =  1 

DF2(1) =  1 

DF1(2) =  1 

DF2(2) =  2 

DF1(3) =  1 

DF2(3) =  3 

DF1(4) =  1 

DF2(4) =  4 

DF1(5) =  2 

DF2(5) =  1 

DF 1 (6) =  2 

DF2(6) =  2 

DF1(7) =  2 

DF2(7) =  3 

DF2(8) =  4 

DF1(9) =  3 

DF2(9) =  1 

DFl(lO) =  3 

DF2(10) =  2 

D F l(ll)  =  3 

DF2(11) =  3
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DF1 ( 1 2 ) =  3 

DF2 ( 1 2 ) =  4 

DF1(13) =  4 

DF2(13) =  1 

DF1(14) =  4 

DF2(14) =  2 

DF1(15) =  4 

DF2(15) =  3 

DF1(16) =  4 

DF2(16) =  4 

k = l

Do i= l,n

Do j= l ,n

D H l(k)=i

DH2(k)=j

VDH(k)= 0

k = k + l

End do

End do

Return

End

A.4 UMFPACK2

UMFPACK2 Version 2.0 is a package for solving systems of sparse linear 

systems, Ax = b, where A is sparse and can be unsymmetric. It is written 

in ANSI Fortran 77. There are options for choosing a good pivot order, 

factorizing a subsequent matrix with the same pivot order and nonzero pattern 

as a previously factorized matrix, and solving systems of linear equations with 

the factors (with A, L, or U, or their transposes). Iterative refinement, with 

sparse backward error estimates, can be performed. Both single and double
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precision routines are available.

A.5 BLAS

In 1973, Hanson, Krogh and Lawson described the advantages of adopting a set 

of basic routines for problems in linear algebra. The original basic linear algebra 

subprograms, commonly referred to as the BLAS or, in view of subsequent 

developments, the Level 1 BLAS, have been very successful! and have been 

used in a wide range of software includind LINPACK. Subsequently a set of 

Level 2 BLAS for matrix-vector operations, motivated by the development of 

vector-processing machines, was proposed by Dongarra. More recently a set 

of Level 3 BLAS for matrix-matrix operations, motivated by the development 

of hierarchical memory and parallel machines, has been proposed by Dongarra 

[22].

A.6 Harwell Routines

The MA38 Package in the Harwell Subroutine Library (HSL) has equivalent 

functionality (and identical calling interface) as UMFPACK. It is available for 

commercial use. Technical reports, information on HSL, and matrices are avail­

able via the World Wide Web at http://www.cis.rl.ac.uk/struct/ARCD/NUM.litrnl, 

or by anonymous ftp at .seamus.cc.rl.ac.uk/pub.

http://www.cis.rl.ac.uk/struct/ARCD/NUM.litrnl
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B l. CODE OF SOFTWARE FOR INTERIOR PLUS-SMOOTH
FUNCTION

9̂|c3fc9ic9|c3fc9ie9}c3{c%ïfc3{c9|ĉ3{c:{c3ic3)c3}c3{c9lc9)c3ic9}c9}e3{c3{c3)cï|e3|c3{c3|ej{ej{cj{c3fe3{c3|e9|c3|c9ie9lc9|c3|c3{c3fc3{c

C Nonlinear Complementary Problem
C 10.1996 
C Ali Erkan
C Industrial Engineering Deparment
C Bilkent University

C
C This program uses a continuation algorithm which consists smoothing 
C methods developed by Bintong Chen, Patrick T. Marker and Mustafa C. Pinar. 
C Program gets function model and gradient formulation of problem as 
C subroutiones namely calcf f  and calcg.f
C User must support this subroutines, starting point, mu, n, nemax, Maxiter.
C Program uses UMFPACK2 which is developed by Timothy A. Davis and Iain
C S. Duff in 1995 to solve sparse linear systems (Ax = b). Also it is written in
C ANSI FORTAN 77.

Subroutine NCPNMS(n,nemax,mu,z,dz,iter,sum,)

Integer Optflag, Maxiter 
Parameter (Maxiter =  50)
Double Precision W(Maxiter),WW(Maxiter),Phi(Maxiter),

$ R(Maxiter),M(Maxiter),E(Maxiter),Lsc(Maxiter)
Double Precision z(n),xp(n),f(n),

$ xm(n),h(n),y(n),dz(n)
Integer i,iter,n,ne,DH 1 (nemax),DH2(nemax),DF 1 (nemax),DF2(nemax) 
Double Precision dot,funcl,eps,phiO,arw,mueps,mu,sum 
Double Precision uvec(n),VDH(nemax),

$ VDF(nemax),dp(n),dpm(n),grad(n),
$ ff(n),lamda(n),zd(n),yd(n),err(n)
Real 11 (2),t2(2),tstart,tend,cputime

eps=2.204E-16 
optflag=l 
Do i=l,maxiter 

W(i)=0 
W W (i)=0  
Phi(i)=0 
R(i)=0
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M(i)=0
E(i)=0
Lsc(i)=0

End do 
iter=0 
Do i=l,n

y(i)=-z(i)
End do

C Calculate plus-smooth function p(z,mua) (a=l) for starting point. 
Call CALCP(xp,z,mu,n)

C Calculate function value f(p(z,mua)) (a=l) for starting point.
Call CALCF(f,xp,n)

C Calculate plus-smooth function p(-z,mua)) (a=l) for starting point. 
Call CALCP(xm,y,mu,n)

C
C

c

c

Calculate 2-norm of H(z,mu) = (l-mu)*f(p(z,mua)) - p(-z,mua) + ub 
for starting point. a=l, b=l.
Call NORMH(func 1 ,h,xm,f,mu,n,uvec)

Initialization for line search.
phiO=funcl
arw=phiO
w(l)=arw
mueps=eps

Starting time of CPU. 
tstart = etime(tl)

C
C

c
c

Until reach termination point such that error < 0.000001 continue 
Do While ((optflag.eq.l) .and. (Iter.ltMaxiter))

Iter=Iter+ 1 
M(Iter)=Mu

Damped-Newton's Method as corrector
Call NEWTON(func 1 ,h,dz,dot,z,mu,n,DH 1 ,DH2, VDH,

$ DF1 ,DF2, VDF,y,dp,dpm,grad,xp,f,xm,uvec,ne) 
phi(iter) = fund

Nonmonotone line search 
Calculate step length
Call NONMON(iter,phi,phiO,func 1 ,arw,ww,w)

Line search, control procedure
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С
С

Call ARMIJO(z,iter,n,mu,arw,dot,dz,lsc,ff,
$ lamda,zd,yd,h,xp,f,xm,uvec)

Control subroutine whether optimal point is reached or not.
Call OPT(eps,z,mu,n,optflag,err,xp, f)

If optimal point is not reached and mu become very small number 
then stop program, optimal point is not reached.
If (mu.le.mueps) Then 

optflag=0
Endif

C Reducing mu. 
mu=mu/10  
End do

^  :)C9iC9ic:iC9iC9iC9iC9iC9iê9iC9icHC9iC3iĉHĉ 9̂ie9iC3icHe9iC3{C3]cHC9iC9iC}iC9ie9{c){C9iC9iC3{C9)cHC9iĈ3ĤHĉ9ie9iĉ

C mî ml0 «1̂ «t#9|Q |̂W 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ ^  ^  0̂ 0̂ 0f̂ 0f̂ 0f̂ 0̂ 0̂ 0ĵ

C End time of CPU.
tend=etime(t2 )

C CPU time.
cputime = tend - tstart 
Write(*,*) 'Iterations', Iter

C Total number of inner loop iterations.
sum=0 
Do i=l,iter

sum=sum+lsc(i)
End do

^  j |e 5 |e j |e i |e ^ 5 ie H « 3 i« * * * * * * * * i ie * * * * * * i ie * * * * * * * * * * * * * * * * * * * 5 ie * * *

Write(*,*) 'Inner loop iteration = ', Sum 
Write(*,*) ' Cpu Time = ',cputime 

End

C
C
c
c
c
c

3 |e 3 |c s ie 5 !c i |c : ie 3 |e 3 |c 5 |e * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

NEWTON.F
Compute the Newton step 
Input: z,mu,n 
Output: dz,grad,dot
H e**********************************************

Subroutine NEWTON(fimc 1 ,h,dz,dot,z,mu,n,
$ DH 1 ,DH2, VDH,DF 1 ,DF2, VDF,y,dp,dpm,grad,xp,f,xm,uvec,ne) 

Double Precision funcl,h(*),dz(*),dot,z(*),mu 
Integer n,ne,DFl(*),DF2(*),DHl(*),DH2(*)
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Double Precision VDF(*),VDH(*),y(*),dp(*),dpm(*) 
Double Precision grad(*),xp(*),f(*),xm(*)
Integer i,j
Double Precision uvec(*)

dot=0 
Do i=l,n

y(i)=-z(i)
grad(i)=0

End do

C
C

Calculate d(z) of plus-smooth function p(z,ua).
Call PPRIME(dp,z,mu,n)

Calculate d(-z) of plus-smooth function p(-z,mua).
Call PPRIME(dpm,y,mu,n)

Calculate plus-smooth function p(z,mua).
Call CALCP(xp,z,mu,n)

Calculate gradient Matrix of function f(p(z,mua)).
Call C ALCG(DF 1 ,DF2, VDF,DH 1 ,DH2, VDH,xp,n,ne)

Calculate Jacobian dH(z,mu)
Call JAC0B(DH1,DH2,VDH,DF1,DF2,VDF, dp, dpm, mu,n,ne)

Calculate function value f(p(z,mua)).
Call CALCF(f,xp,n)

Calculate plus-smooth function p(-z,mua).
Call CALCP(xm,y,mu,n)

Calculate 2-norm of H(z,mu) = (l-mu)f(p(z,ua)) - p(-z,mua) + mub 
a=l,b=l.
Call NORMH(func 1 ,h,xm,f,mu,n,uvec)

Solve DH * dz = h and find dz by using UMFPACK2.
Call CALLUMF(n,DH 1 ,DH2, VDH,dz,h,ne)

Calculate grad = DH'*h'
Do i=l,n

Do j=l,ne
If (i.eq.DH2(j)) then

grad(i)=grad(i)+VDH(j)*h(DHl(j))
End if

End do
End do
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Calculate dot = -grad'*dz 
Do i=l,n

dot=dot+grad(i) *dz(i)
End do 
dot=-dot

write(*,*) 'dot=' ,dot 
Return

End

C
C
c
c
c
c

CALLUMF.F
Input and output for UMFPACK2 to solve DH * dz =h. 
UMFPACK2: Sparse linear systems solver 
By Timothy A. Davis and Iain S. Duff.

Subroutine CALLUMF(n,DH 1 ,DH2,VDH,dz,h,ne)
Integer n,ne,DHl(*),DH2(*)
Double Precision VDH(*),dz(*),h(*)

This part is needed by UMFPACK2.
Integer nmax,nemax,lvalue,lindex
Parameter(nmax=5000,nemax= 100000,lvalue=400000,lindex=700000) 
Integer keep(20),index(lindex),info(40),i,j,icntl(20),

$ ail(nemax),ai2(nemax)
Double Precision b(nmax),w(4*nmax),value(lvalue),

$ cntl(10),rinfo(20)

Nonzero values of dH(z,mu) are converted for UMFPACK2. 
Do i=l,ne

Index(i)=DHl(i)
Index(ne+i)=DH2(i)
Value(i) = VDH(i)

End do

If all entries are zero.
If (ne.eq.O) then 

Do i=l,n 
dz(i) = -h(i)

End do
If not all entries are zero.
Else

Initialization part of UMFPACK2.
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Call UMD2IN(icntl,cntl,keep)
Icntl(4)=0

Control for whether matrix dH(z,mu) is singular or not. 
Call UMD2FA(n,ne,0,.false.,lvalue,lindex,value,index, 
keep,cntl,icntl,info,rinfo)
If there is a mistake in matrix then stop.
If (info(l).lt.O) stop

If matrix is singular.
If (info(l).ne.O) then 
Do i=l,n 

dz(i) = -h(i)
End do

If matrix is nonsingular.
Else
Icntl(8)=10 
Do i=l,n 

b(i)=-h(i)
End do
Solve linear system if dH(z,mu) is nonsingular.
Call UMD2SO(n,0,.false.,lvalue,lindex,value,index,keep,
b,dz,w,cntl,icntl,info,rinfo)
if (info(l).ltO) stop
End if
End if

End

C
C
c
c
c
c

NONMON.F 
Nonmonotone line search 
Find minimum value 2-norm ||H(z,mu)|| 
to calculate step length alpha.
:|c9ic9fc}ic:ic:ic9ic3ie9ic)ic9ic:ic9ic:ic:ic)ic9icHc9ic»ic3ic9ic»ie9ie)ic9ic)ic9ie3ic9lc9ic3ic^He9ic3ic3ic3ic9ic3{cHc9ic)fc3ic:)c9ic9ie

Subroutine NONMON(iter,phi,phiO,func 1 ,arw,ww,w) 
Integer iter
Double Precision phi(*),phiO,funcl,arw,ww(*),w(*)

Integer kk,kkm5,i 
Double Precision wwl

If (Iter.gt. 1) then 
kk = Iter 
Endif
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If (kk.gt.5) then 
kkm5 = kk - 5 
Else
kkm5 = 1 
Endif
wwl = phi(kkm5)
Do 100 i=kkm5+l,kk 
If (wwl.gt-phi(i)) then 
wwl = phi(i)
Endif

100 Continue
WW(iter) = wwl 
If (kk.lt.5) then 
If (wwl.gt.phiO) then 
wwl = phiO 
Endif 
Endif
If (Funcl.gt.wwl) then
arw = fund
Endif
W(iter) = arw
Return
End

C ARMIJO.F
C Perform the Armijo linesearch
C Input:z,mu,n,arw,dot
C Output:ff(),lsc(),z,delf,rhs
Q ********♦♦****♦**♦****♦**♦*♦♦*****♦**♦******♦*♦

Subroutine ARMIJO(z,iter,n,mu,arw,dot,dz,lsc,
$ ff,lamda,zd,yd,h,xp,f,xm,uvec)

Double Precision z(*),mu,arw,dot,dz(*),lsc(*)
Integer iter,n

Double Precision func2,deltam,delta,Isitmx,sigma,delf,rhs 
Integer m,i,lsiter
Double Precision ff(*),lamda(*),zd(*)
Double Precision yd(*),h(*),xp(*),f(*),xm(*)
Double Precision uvec(*)

C For Armijo line search experiment values. 
C This values can be changed, 

delta = .5 
Isitmx = 20 
m = 0
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lsiter= 1 
sigma = .4

deltam = delta* *m 
lamda(lsiter) = deltam

Direction z(k+l) = z(k) + alpha(k)*d(k) 
Do i=l,n
zd(i) = z(i) + deltam*dz(i) 
yd(i) = -zd(i)
End do

Calculate plus-smooth function p(zd,mu). 
Call CALCP(xp,zd,mu,n)

Calculate function value f(p(zd,mu)).
Call CALCF(f,xp,n)

Calculate plus-smooth function p(-zd,mu). 
Call CALCP(xm,yd,mu,n)

Calculate 2-norm of H(zd,mu).
Call NORMH(func2,h,xm,f,mu,n,uvec)
ff(lsiter) = func2
rhs = 2*sigma*deltam*dot
delf = arw - func2

200

Continue until armijo line search finished.
Do while (delf.lt.rhs)
m=m + 1
Isiter = Isiter + 1
deltam = delta* *m
lamda(lsiter) = deltam
Do 200 i=l,n
zd(i) = z(i) + deltam*dz(i)
yd(i) = -zd(i)
Continue

Calculate plus-smooth function p(zd,mu). 
Call CALCP(xp,zd,mu,n)

Calculate function value f(p(zd,mu)).
Call CALCF(f,xp,n)

Calculate plus-smooth function p(-zd,mu). 
Call CALCP(xm,yd,mu,n)

Calculate 2-norm of H(zd,mu).
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Call NORMH(func2,h,xm,f,mu,n,uvec)
ff(lsiter) = func2
rhs = 2*sigma*deltam*dot
delf = arw - func2
End do
Isc(iter) = Isiter

New point after line search.
Do i=l,n
z(i) = z(i) + deltam*dz(i)
End do 
Return 
End

C OPT.F
C Check optimality

3{c3ic9ic>ic3ie3ic3ieHe9ic3ie9ieHc3!e3ie9ic9ic9ic9ic3ic9ic9ie3ie9ic3ie9ie}ie9ie9ic3ie9ic9ie3ie9ic)ie9ie9ic9ic9ic3{c9ic9ic9ie3ic:ic^3ic

Subroutine OPT(eps,z,mu,n,optflag,err,xp,f)
Double Precision eps,z(*),mu 
Integer n,optflag

Double Precision ecomp,nerr,err(*),xp(*),f(*)
Integer i

C Calculate plus-smooth function p(z,mu).
Call CALCP(xp,z,mu,n)

C Calculate function value f(p(z,mu)).
Call CALCF(f,xp,n)

nerr=0 
Do i=l,n 
err(i) = 1/eps 
End do

Calculate minimum of error. 
Do i=l,n
ecomp = min(xp(i),f(i)) 
err(i) = min(ecomp,err(i)) 
nerr=nerr+err(i) * *2 
End do
2-norm of error. 
nerr=nerr**0.5 
Write(2,*)' Error in opt nerr 
if (nerr.le. le-6) then
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Write(*,*) '---------- > Successful Termination <--------'

optflag = 0 
Endif 
Return 
End

C
C
c
c

CALCP.F
Compute the interior smooth function

Subroutine Calcp(p,r,mu,n) 
Double Precision p(*),r(*),mu 
Integer n

Double Precision Terml 
Integer i

Do i=l,n 
p(i) = 0 
End do

Plus-smooth function.
Do i=l,n
Terml = (r(i)**2 + 4*mu)**0.5 
p(i) = 0.5*(r(i) + terml)
End do 
Return 
End

C
C
c
c
c
c

NORMH.F
Compute the vector function h and its norm;
nh,h:output
xm,f,mu,n:input

Subroutine NORMH(nh,h,xm,f,mu,n,uvec) 
Integer n
Double Precision nh,h(*),xm(*),f(*)

Integer i
Double Precision uvec(*),mu
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nh=0 
Do i=l,n  
mu*b, b=l. 
uvec(i)=mu* 1

Calculate H(z,mu) = (l-mu)*f(p(z,mu)) - p(-z,mu) + mu. 
h(i) = (l-mu)*f(i) - xm(i) + uvec(i)

Calculate 2-norm of H(z,mu) 
nh=nh+h(i)**2

End do 
Return 
End

C PPRIME.F
C Compute the interior point smooth function's gradient
^  5lcs|caic5l<3ics(cs|c:iesies|tsies|cs|eJ!i3|c:ii3|e3|e5le3|csies)ii|cs|es|i5|c:ie3je3|esl(:ie;|e>Ie:Je3icjiej|c3|c3iej|c3|c:iej|e3iesles|esIe

Subroutine PPRIME(dp,r,mu,n)
Double Precision dp(*),r(*),mu 
Integer n

Integer i
Double Precision terml, term2

C Calculate gradient of smooth function.
Do i=l,n 
dp(i)=0
terml = (r(i)**2 + 4*mu)**0.5 
term2 = r(i)/terml 
dp(i) = 0.5*(l+term2)
End do 
Return 
End

C JACOB.F
C Compute the Jacobian matrix DH;

C VDH: value of entries of dH(z,mu).
C DH 1: number of row of dH(z,mu).
C DH2: number of column of dH(z,mu). 
C VDF: value of entries of df(p(z,mu)).



104

C DF1: number of row of df(p(z,mu)).
C DF2; number of column of df(p(z,mu)).

Subroutine JACOB(DH 1 ,DH2, VDH,DF 1 ,DF2, VDF,dp,dpm,mu,n,ne) 
Integer n,ne,DH 1 (*),DH2(*),DF 1 (*),DF2(*)
Double Precision VDH(*),VDF(*),dp(*),dpm(*),mu

Integer i,j

C Calculate dH(z,mu) = (l-mu)*df(p(z,mu))*diag{p'(z,mu)} - diag{p'(-z,mu)}. 
Do i=l,n 

Do j=l,ne
If (i.eq.DF2(j)) then

VDHG) = VDH(i) + (l-mu)*VDF(j)*dp(i)
End if 

End do 
End do 
Do j=l,ne

If (DHl(j).eq.DH2(j)) then 
VDH(j) = VDH(j) + dpm(DHl(j))
End if 

End do 
Return 
End

C CALCF.F
C Compute the function F for problem spatial equilib.
C input: X .. variables
C Kojima-Josephy

Subroutine Calcf(f,x,n)
Double Precision x(*),f(*)
Integer n,i,j

f(l) = 3*x(l)**2 + 2*x(1)M 2) + 2*x(2)**2+x(3) + 3*x(4)-6
f(2) = 2*x(l)**2 + x(l) + x(2)**2 + 3*x(3)+2*x(4) -2
f(3) = 3*x(l)**2 +x(l)*x(2) + 2*x(2)**2 + 2*x(3) + 3*x(4) -1
f(4) = x(l)**2 + 3*x(2)**2 + 2*x(3) + 3*x(4) -3
Return
End

C CALCG.F
C Compute the Jacobian DF of F for traffic equilibrium C CALCGTR.F
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c
c
c

Input: X .. variables 
Kojima-Josephy

Subroutine C ALCG(DF 1 ,DF2, VDF,DH 1 ,DH2, VDH,x,n,ne) 
Integer n,i,j,ne,DFl(*),DF2(*),DHl(*),DH2(*),k 
Double Precision VDF(*),x(*),VDH(*)

C Do i=l,n
C Doj=l,n
C DF(iJ)=0
C End do
C End do
C First row

VDF(1) = 6 *x(1) + 2 *x(2)
VDF(2) = 2*x(l) + 4*x(2)
VDF(3) = 1 
VDF(4) = 3 

C Second row
VDF(5) = 4*x(l)+ 1 
VDF(6) = 2*x(2)
VDF(7) = 3 
VDF(8) = 2 

C Third row
VDF(9) = 6 *x(1) + x(2)
VDF(10) = x(l) + 4*x(2)
VDF(11) = 2 
VDF(12) = 3 

C Fourth row
VDF(13) = 2*x(l)
VDF(14) = 6*x(2)
VDF(15) = 2 
VDF(16) = 3 
ne=16 
DF1(1)= 1 
DF2(1)= 1 
DF1(2)= 1 
DF2(2) = 2 
DF1(3)= 1 
DF2(3) = 3 
DF1(4)= 1 
DF2(4) = 4 
DF1(5) = 2 
DF2(5) = 1 
DF1(6) = 2 
DF2(6) = 2 
DF1(7) = 2 
DF2(7) = 3
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DF1(8) = 2 
DF2(8) = 4 
DF1(9) = 3 
DF2(9) = 1 
DF1(10) = 3 
DF2(10) = 2 
DF1(11) = 3 
DF2(11) = 3 
DF1(12) = 3 
DF2(12) = 4 
DF1(13) = 4 
DF2(13)= 1 
DF1(14) = 4 
DF2(14) = 2 
DF1(15) = 4 
DF2(15) = 3 
DF1(16) = 4 
DF2(16) = 4 
k=l
Do i=l,n 

Do j=l,n 
DHl(k)=i 
DH2(k)=j 
VDH(k)=0 
k=k+l 

End do 
End do 

Return 
End
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B2. CODE OF SOFTWARE FOR PIECEWISE QUADRATIC PLUS- 
SMOOTH FUNCTION WITH REDUCED JACOBIAN MATRIX

^  sjc sic :|e  sle 5|e sle 3|e :ie  >I( s|c ilc je  ^  sle )|c i|e 3|c 3|c sje )|c 3|e %  %  3{c :{e :{c 9|c :{c )|c j|c  9|c )|c :)c  3{c 3|c sjc ^

C Nonlinear Complementary Problem 
C 7.1997 
C Ali Erkan
C Industrial Engineering Deparment 
C Bilkent University

:Jc3|esle5|ts|e5|cjlei|esl(s|ejIes|csle%sle:Je5|csicsl(3|c:|c3|es(c3ic5les|esie:Jes|cs|ejle:Jes|es|e5|es|s3|i9|i!)c3lesle5le5|c:iesle:|tsle

c
C This program uses a continuation algorithm which consists smoothing 
C methods developed by Bintong Chen, Patrick T. Barker and Mustafa C. Pinar.
C Program gets function model and gradient formulation of problem as
C subroutiones namely calcf.f and calcg.f.
C User must support this subroutines, starting point, mu, n, nemax, Maxiter.
C Program uses UMFPACK2 which is developed by Timothy A. Davis and Iain
C S. Duff in 1995 to solve sparse linear systems (Ax = b). Also it is written in
C ANSI FORTAN 77.

Subroutine NCPNMS(n,nemax,mu,z,dz,iter,sum)

Integer Optflag, Maxiter 
Parameter (Maxiter = 50)
Double Precision W(Maxiter),WW(Maxiter),Phi(Maxiter),

$ R(Maxiter),M(Maxiter),E(Maxiter),Lsc(Maxiter)
Double Precision z(n),xp(n),f(n),

$ xm(n),h(n),y(n),dz(n)
Integer i,iter,n,ne,DH 1 (nemax),DH2(nemax),DF 1 (nemax),DF2(nemax),

$ sl(n),s2(n),s3(n),nl,n2,n3,nDH
Double Precision dot,funcl,eps,phiO,arw,mueps,mu,sum 
Double Precision uvec(n),VDH(nemax),

$ VDF(nemax),dp(n),dpm(n),grad(n),
$ ff(n),lamda(n),zd(n),yd(n),err(n)

Real tl (2),t2(2),tstart,tend,cputime

eps=2.204E-16
optflag=l
Do i=l,maxiter
W(i)=0
WW(i)=0
Phi(i)=0
R(i)=0
M(i)-0
E(i)-0
Lsc(i)=0
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End do

iter=0 
Do i=l,n

y(i)=-z(i)
End do

Calculate plus-smooth function p(z,mu) of starting point. 
Call CALCP(xp,z,mu,n)

Calculate function value f(p(z,mu)) of starting point.
Call CALCF(f,xp,n)

Calculate plus-smooth function p(-z,mu).
Call CALCP(xm,y,mu,n)

Calculate 2-norm of H(z,mu).
Call NORMH(funcl,h,xm,f,mu,n,uvec)

phiO=funcl 
arw=phi0 
w(l)=arw  
mueps=eps 
tstart =  etime(tl)

^ )ic9|c3(c3ic9|c9jc:ic3{c:ic3{ĉ }{ĉ 9ic){e9|c9|c:ic9|ĉ )ic3ic)ic3icHc9iĉ 9̂iĉ )ic9iĉ )ic:ic9|c9{e){c9ic9ic9{ĉ 9|c:ic:}ĉ 9ic
C Continue until termination point is reached, error < 0.000001. 

Do While ((optflag.eq.l) .and. (Iter.ltMaxiter))
Iter=Iter+l
M(Iter)=Mu

C Damped-Newton's Method as corrector.
Call NEWTON(func 1 ,h,dz,dot,z,mu,n,DH 1 ,DH2, VDH,

$ DF1 ,DF2, VDF,y,dp,dpm,grad,xp,f,xm,uvec,ne,
$ sl,s2,s3,nl,n2,n3,nDH)

phi(iter) = fund

C Nonmonotone line search
C Calculate step length

Call NONMON(iter,phi,phiO,func 1 ,arw,ww,w)

C Line search, control procedure
Call ARMIJO(z,iter,n,mu,arw,dot,dz,lsc,ff,

$ lamda,zd,yd,h,xp,f,xm,uvec)

C Control subroutine whether optimal point is reached or not. 
Call OPT(eps,z,mu,n,optflag,err,xp,f)
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C If optimal point is not reached and mu become very small number
C then stop program, optimal point is not reached.

If (mu.le.mueps) Then 
optflag=0

Endif

C Reducing mu.
mu=mu/10 
End do

Q ***********************************************

C End time of CPU.
tend=etime(t2)

C CPU time.
cputime =  tend - tstart

C Total number of inner loop iterations.
sum=0 
Do i=l,iter

sum=sum+lsc(i)
End do

Write(*,*) 'Iterations', Iter 
Write(*,*) 'Inner loop iteration = ',  Sum 
W rite(*,*)' Cpu Time = ' ,cputime 

End

C
C
c
c
c
c

NEWTON.F
Compute the Newton step 
Input: z,mu,n 
Output: dz,grad,dot

Subroutine NEWTON(func 1 ,h,dz,dot,z,mu,n,
$ DH 1 ,DH2, VDH,DF 1 ,DF2, VDF,y,dp,dpm,grad,xp,f,xm,uvec,ne, 
$ sl,s2,s3,nl,n2,n3,nDH)

Double Precision fimcl,h(*),dz(*),dot,z(*),mu 
Integer n,ne,DF 1 (*),DF2(*),DH 1 (*),DH2(*)
Integer s 1 (*),s2(*),s3(*),n 1 ,n2,n3,nDH

Double Precision VDF(*),VDH(*),y(*),dp(*),dpm(*) 
Double Precision grad(*),xp(*),f(*),xm(*)
Integer i,j
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Double Precision uvec(*)

dot=0 
Do i=l,n

y(i)=-z(i)
grad(i)=0

End do

C Calculate d(z) o f plus-smooth function p(z,mu).
Call PPRIME(dp,z,mu,n)

C Arrange for alpha,beta,gamma.
C Find index whose dp-value is 1 for alpha.
C Find index whose dp-value is 0 for gamma.
C Find index whose dp-value is between 1 and 0 for beta.

Call ZPRIME(dp,n,s 1 ,s2,s3,n 1 ,n2,n3)

C Calculate d(-z) o f plus-smooth function p(-z,mu).
Call PPRIME(dpm,y,mu,n)

C Calculate plus-smooth function p(z,mu).
Call CALCP(xp,z,mu,n)

C Calculate gradient Matrix o f function f(p(z,mu)).
Call CALCG(DF 1 ,DF2,VDF,DH 1 ,DH2,VDH,xp,n,ne)

C Calculate Jacobian dH(z,mu)
Call JACOB(DH 1 ,DH2,VDH,DF 1 ,DF2,VDF,dp,dpm,mu,n,

$ ne,sl,s2,s3,nl,n2,n3,nDH)

C Calculate function value of f(p(z,mu)).
Call CALCF(f,xp,n)

C Calculate plus-smooth function p(-z,mu).
Call CALCP(xm,y,mu,n)

C Calculate 2-norm of H(z,mu) =  (l-mu)f(p(z,mua)) - p(-z,mua) + mub 
C a=l, b=l.

Call NORMH(func 1 ,h,xm,f,mu,n,uvec)

C Solve DH * dz = h and find dz by using UMFPACK2.
Call CALLUMF(n,DH 1 ,DH2,VDH,dz,h,ne,s 1 ,s2,s3,n 1 ,n2,

$ n3,nDH,DFl,DF2,VDF,dp,mu)

C Calculate grad = DH'*h'
Do i=l,n

Do j=l,ne
If (i.eq.DH2(j)) then
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grad(i)=grad(i)+VDH(j )*h(DH 1 (j))
End if

End do
End do

Calculate dot = -grad'*dz 
Do i=l,n

dot=dot+grad(i) *dz(i)
End do 
dot=-dot
write(*,*) 'dot=' ,dot 
Return

End

C
C
c
c
c
c

CALLUMF.F
Input and output for UMFPACK2 to solve DH * dz =h. 
UMFPACK2: Sparse linear systems solver 
By Timothy A. Davis and Iain S. Duff.

Subroutine CALLUMF(n,DHl,DH2,VDH,dz,h,ne,sl,s2,s3,nl,n2,
$ n3,nDH,DFl,DF2,VDF,dp,mu)

Integer n,ne,DH 1 (*),DH2(*),s 1 (*),s2(*),s3(*),
$ nl,n2,n3,nDH,DFl(*),DF2(*)

Double Precision VDH(*),dz(*),h(*),VDF(*),dp(*),mu

C This part is needed by UMFPACK2.
Integer nmax,nemax,lvalue,lindex
Parameter(nmax=5000,nemax= 100000,lvalue=400000,lindex=700000)
Integer keep(20),index(lindex),info(40),i,j,icntl(20),

$ ail(nemax),ai2(nemax),k,l
Double Precision b(nmax),x(nmax),w(4*nmax),value(lvalue),

$ cntl(10),rinfo(20)

C Nonzero values o f alpha-beta part o f dH(z,mu)
C are converted for UMFPACK2.

Do i=l,nDH
Index(i)=DHl(i)
Index(nDH+i)=DH2(i)
Value(i) =  VDH(i)

End do

If all entries are zero. 
If (ne.eq.O) then 

Do i=l,n  
dz(i) =  -h(i)
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End do
If not all entries are zero.
Else

Initialization part o f UMFPACK2.
Call UMD2IN(icntl,cntl,keep)
Icntl(4)=0

Control for whether matrix dH(z,mu) is singular or not.
Call UMD2F A(nl+n2,nDH,0,.false.,lvalue,lindex,value,index, 

$ keep,cntl,icntI,info,rinfo)
If there is a mistake in matrix then stop 
If (info(l).lt.O) stop

If matrix is singular 
If (info(l).ne.O) then 
Do i=l,n

dz(i) =  - h(i)
End do

If matrix is nonsingular 
Else

Alpha part 
Do i=l,nl

b(i) =  -h(sl(i))
End do

Beta part 
Do i=nl+l,nl+n2

b(i) =  - h(s2(i-nl))
End do

Gamma part
Do i=nl+n2+l,nl+n2+n3

b(i) = - h(s3(i-nl-n2))
End do 
Icntl(8)=10

Solve linear system if dH(z,mu) is nonsingular.
Call UMD2SO(n l+n2,0,.false.,lvalue,lindex,value,index,keep, 

$ b,x,w,cntl,icntl,info,rinfo) 
if (info(l).lt.O) stop

Gamma part dz(n2+l) - - dz(n3)
Do i=nl+n2+l,nl+n2+n3 

x(i) =  0 
End do
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Do k=l,ne 
Do i=l,nl  

Do j=l,n3
If(DFl(k).eq.s3(i) .and. sl(j).eq.DF2(k)) then 

x(nl+n2+i) =  x(nl+n2+i) + VDF(k)*x(i)
End if 

End do
Do j=nH -l,nl+n2

If (s3(i).eq.DFl(k) .and. s2(j).eq.DF2(k)) then 
x(nl+n2+i) = x(nl+n2+i) + VDF(k)*dp(s2(j))*x(j) 

End if 
End do 

End do 
End do
Do İ=nl+n2+l,nl+n2+n3 

x(i) =  b(i) - (l-mu)*x(i)
End do 
Do i=l,nl  

dz(sl(i)) = x(i)
End do 
k=l
Do i=nl+l,n2  

dz(s2(k)) =  x(i) 
k=k+l 

End do 
1=1
Do İ=nl+n2+l,nl+n2+n3 

dz(s3(l)) = x(i)
1= 1 + 1  

End do 
End if 

End

C
C
C
C
C
C

NONMON.F 
Nonmonotone line search 
Find minimum value 2-norm ||H(z,mu)|| 
to calculate step length alpha.

Subroutine NONMON(iter,phi,phiO,func 1 ,arw,ww,w) 
Integer iter
Double Precision phi(*),phiO,funcl,arw,ww(*),w(*)

Integer kk,kkm5,i 
Double Precision wwl



114

100

If (Iter.gt.l) then 
kk = Iter 
Endif
If (kk.gt.5) then 
kkm5 =  kk - 5 
Else
kkm5 = 1 
Endif
wwl =  phi(kkm5)
Do 100 i=kkm5+l,kk 
If (wwl.gt.phi(i)) then 
wwl =  phi(i)
Endif 
Continue 
WW(iter) = wwl 
If (kk.lt.5) then 
If (wwl.gt.phiO) then 
wwl = phiO 
Endif 
Endif
If (Fund.gt.wwl) then
arw =  fund
Endif
W(iter) = arw
Return
End

C ARMIJO.F
C Perform the Armijo linesearch
C Input:z,mu,n,arw,dot
C Output: ff(),lsc(),z,delf,rhs

Subroutine ARMIJO(z,iter,n,mu,arw,dot,dz,lsc, 
$ ff,lamda,zd,yd,h,xp,f,xm,uvec)

Double Precision z(*),mu,arw,dot,dz(*),lsc(*) 
Integer iter,n

Double Precision func2,deltam,delta,Isitmx,sigma,delf,rhs 
Integer m,i,lsiter
Double Precision ff(*),lamda(*),zd(*)
Double Precision yd(*),h(*),xp(*),f(*),xm(*)
Double Precision uvec(*)
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C For Armijo line search experiment values. 
C This values can be changed, 

delta = .5 
Isitmx = 20 
m = 0 
Isiter = 1 
sigma = .4

deltam = delta* *m 
lamda(lsiter) = deltam

C Direction z(k+l) = z(k) + alpha(k)*d(k) 
Do i=l,n
zd(i) = z(i) + deltam*dz(i) 
yd(i) = -zd(i)
End do

C Calculate plus-smooth function p(zd,mu).
Call CALCP(xp,zd,mu,n)

C Calculate function value f(p(zd,mu)).
Call CALCF(f,xp,n)

C Calculate plus-smooth function p(-zd,mu).
Call CALCP(xm,yd,mu,n)

C Calculate 2-norm of H(zd,mu).
Call NORMH(func2,h,xm,f,mu,n,uvec)
ff(lsiter) = func2
rhs = 2*sigma*deltam*dot
delf = arw - func2

200

Continue until armijo line search finished.
Do while (delf.lt.rhs)
m=m + 1
Isiter = Isiter + 1
deltam = delta* *m
lamda(lsiter) = deltam
Do 200 i=l,n
zd(i) = z(i) + deltam *dz(i)
yd(i) = -zd(i)
Continue

Calculate plus-smooth function p(zd,mu). 
Call CALCP(xp,zd,mu,n)

Calculate function value f(p(zd,mu)).
Call CALCF(f,xp,n)
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Calculate plus-smooth function p(-zd,mu). 
Call CALCP(xm,yd,mu,n)

Calculate 2-norm of H(zd,mu).
Call NORMH(func2,h,xm,f,mu,n,uvec)
ff(lsiter) = func2
rhs = 2*sigma*deltam*dot
delf = arw - func2
End do
Isc(iter) = Isiter

New point after line search.
Do i=l,n
z(i) = z(i) + deltam*dz(i)
End do 
Return 
End

C
C
c
c

9iC ^9ic :i c ^9iC3iC9|e9iC ^9ie3i e ^ 9icHcHcHe3iC}ie9iC9ie9iC9iC)iC9iC9| c ^9iC9iC3{C3icHC9iC9ic :i c ^9iC3{cHc9i c ^ 9ieHe9iC3i c ^ 4c

OPT.F
Check optimality
9icHc9|c)ic9|c9ie9ie9{c}Ic3ic)ie9lc)ie3ic9ic9ic)ic9ie)ie)icHe3ie3ie3!c9icHc)ie)ic>ic9ic3ic4c3ic)Ic3ie9ie9ie9ic9icHc9ic9ic9ic9)c)ic:ic

Subroutine OPT(eps,z,mu,n,optflag,err,xp,f) 
Double Precision eps,z(*),mu 
Integer n,optflag

Double Precision ecomp,nerr,err(*),xp(*),f(*) 
Integer i

C Calculate plus-smooth function p(z,mu).
Call CALCP(xp,z,mu,n)

C Calculate function value f(p(z,mu)).
Call CALCF(f,xp,n)

nerr=0 
Do i=l,n 
err(i) = 1/eps 
End do

Calculate minimum of error. 
Do i=l,n
ecomp = min(xp(i),f(i)) 
err(i) = min(ecomp,err(i)) 
nerr=nerr+err(i) * *2
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End do
2-norm of error. 
nerr=nerr**0.5 
Write(2,*)' Error in optnerr 
if (nerr.le.le-6) then
Write(* *) '********************************♦***»
Write(*,*) '---------- > Successful Termination <--------'
Wnte(* *) **************************************
optflag = 0
Endif
Return
End

Q ***********************************************

C CALCP.F
C Compute the interior smooth function
Ç  9ic3ie9ie9ie9ie9ic}ic9ic3!c9ieHe9ic9ic9ic9ic:ic9ic9ic9{c9)c3ie9ic9ic3ie9ic9K9ic»ie9ic9ic9{c9ic9ic9ieHcHeHeHcHc3ic9ic9ic9icHcHe)ic

Subroutine Calcp(p,r,mu,n)
Double Precision p(*),r(*),mu 
Integer n

Integer i

C Piecewise quadratic function.
Do i=l,n

If (r(i).lt. -mu/2) then 
p(i) = 0

Else if (r(i).gt.mu/2) then 
p(i) = r(i)

Else
p(i) = (r(i) + mu/2)**2/(2*mu)

End if
End do 
Return 
End

C NORMH.F
C Compute the vector function h and its norm;
C nh,h:output
C xm,f,mu,n:input
Ç  sje >|e :Je ̂  sle 3|e sje :{c 9|c 3{c 9|c ïjc i{c 9|c ï|c 3{c 3|c s|e %  sfc 3{c )|c 3|c 9)c 3|c sjc s|c 9|c 3{c sjc 3|c 9|c sfc 3{c sH sK

Subroutine NORMH(nh,h,xm,f,mu,n,uvec) 
Integer n
Double Precision nh,h(*),xm(*),f(*)
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Integer i
Double Precision uvec(*),mu

nh=0 
Do i=l,n 
mu*b, b=l. 
uvec(i)=mu* 1

Calculate H(z,mu) = (l-mu)*f(p(z,mu)) - p(-z,mu) + mu. 
h(i) = (l-mu)*f(i) - xm(i) + uvec(i)

Calculate 2-norm of H(z,mu) 
nh=nh+h(i)**2

End do 
Return 
End

C PPRIME.F
C Compute the interior point smooth function's gradient
^  9{c:)ic3icHc)ic3ic9ie9ic9le)ic9ic9{c}{c9ic9ic9ic9ic3ic:ic9ic9ic9ie3ic9)c9ic9ie9ic3ic)ic9ic)ic9ic)ic9icHc9ic)!eHc)ic9ie9icHe9ie3ic3ic9ic

Subroutine PPRIME(dp,r,mu,n)
Double Precision dp(*),r(*),mu 
Integer n

Integer i,j,k,l 
Double Precision term 1

Calculate gradient of piecewise quadratic function. 
Do i=l,n

If (r(i).lt. -mu/2) then 
dp(i) = 0

Else if (r(i).gt. mu/2) then 
dp(i) = 1

Else
terml = r(i) + mu/2 
dp(i) = 2*terml/(2*mu)

End if
End do 
Return 
End
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C
C
c
c

JACOB.F
Compute the Jacobian matrix DH;

C VDH: value of entries of dH(z,mu).
C DHl: number of row of dH(z,mu).
C DH2: number of column of dH(z,mu).
C VDF: value of entries of df(p(z,mu)).
C DF1: number of row of df(p(z,mu)).
C DF2; number of column of df(p(z,mu)).
C si: index for alpha part.
C s2: index for beta part.
C s3: index for gamma.
C n 1: number of alpha entries.
C n2: number of beta entries.
C n3: number of gamma entries.

Subroutine JACOB(DH 1 ,DH2, VDH,DF 1 ,DF2, VDF,dp,dpm,mu,n, 
$ ne,sl,s2,s3,nl,n2,n3,nDH)

Integer n,ne,DH 1 (*),DH2(*),DF 1 (*),DF2(*),sl (*),s2(*),
$ s3(*),nl,n2,n3,nDH

Double Precision VDH(*),VDF(*),dp(*),dpm(*),mu 

Integer i,j,k,l

C df(alpha,alpha) part of dH(z,mu).
1=1
Do k=l,ne 

Do i=l,nl 
Do j=l,nl

If (sl(i).eq.DFl(k) .and. sl(j)-eq.DF2(k)) then 
VDH(l) = VDH(l) + (l-mu)*VDF(k)

DHl(l) = i 
DH2(l)=j 
1= 1+1  

End if 
End do 

End do 
End do

C Calculate (l-mu)*df(alpha,beta)*p'(z,mu) part of dH(z,mu)
Do k=l,ne 
Do i=l,nl 

Do j=l,n2
If (sl(i).eq.DFl(k) .and. s20.eq.DF2(k)) then 

VDH(l) = VDH(l) + (l-mu)*VDF(k)*dp(s2(j))
DHl(l) = i
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DH2(l)=j + nl 
1= 1 + 1  

End if 
End do 

End do 
End do

C Calculate ( 1 -mu)*df(beta,alpha) part of dH(z,mu).
Do k=l,ne 

Do i=l,n2 
Do j=l,nl

If (s2(i).eq.DFl(k) .and. sl(j).eq.DF2(k)) then 
VDHO) = VDH(l) + (l-mu)*VDF(k)

DHl(l) = i + nl 
DH2(l)=j 
1= 1+1 

End if 
End do 

End do 
End do

C Calculate (l-mu)*df(beta,beta)*p'(z,mu)(beta) + p'(-z,mu)(beta)
C part of dH(z,mu).

Do k=l,ne 
Do i=l,n2 
Do j=l,n2

If (s2(i).eq.DFl(k) .and. s2(j).eq.DF2(k)) then 
VDH(l) = VDH(l) + (l-mu)*VDF(k)*dp(s2(j))

DHl(l) = i + nl 
DH2(l)=j +nl 

If (DFl(k).eq.DF2(k)) then 
VDH(l) = VDH(l) + dpm(s20))

End if 
1= 1 + 1  

End if 
End do 

End do 
End do 
nDH=l-l

Calculate (l-mu)*df(gamma,alpha) part of dH(z,mu).
Do k=l,ne

Do i=l,n3
Do j=l,nl

If (s3(i).eq.DFl(k) .and. sl0.eq.DF2(k)) then 
VDH(l) = VDH(l) + (l-mu)*VDF(k)
DHl(l) = i + nl + n2 
DH2(1) = i
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1= 1 + 1  
End if

End do
End do

End do

C Calculate (l-mu)*df(gamraa,beta)*p'(z,mu) part
C of dH(z,mu).

Do k=l,ne 
Do i=l,n3 
Do j=l,n2

If (s3(i).eq.DFl(k) .and. s2(j).eq.DF2(k)) then 
VDH(l) = VDH(l) + (l-mu)*VDF(k)*dp(s2(j)) 
DHl(l) = i + nl +n2 
DH2(1) = i + nl 
1= 1+1 

End if 
End do 
End do 
End do 
Do k=l,ne 
Do i=l,n3 
Do j=l,n3

If (s3(i).eq.DFl(k) .and. s3(j).eq.DF2(k)) then 
If (DFl(k).eq.DF2(k)) then 
VDH(l) = 1 
DHl(l) = i + nl +n2 
DH2(1) = i + nl + n2 
1= 1+1 

End if 
End if 

End do 
End do 
End do 
Return 

End

C
C
c
c
c
c

CALCF.F
Compute the function F for problem spatial equilib.;
Input: X .. variables
Kojima-Josephy

Subroutine Calcf(f,x,n) 
Double Precision x(*),f(*) 
Integer n,i,j



122

f(l) = 3*x(l)**2 + 2*x(l)*x(2) + 2*x(2)**2+x(3) + 3*x(4)-6
f(2) = 2*x(l)**2 + x(l) + x(2)**2 + 3*x(3)+2*x(4) -2
f(3) = 3*x(l)**2 +x(l)*x(2) + 2*x(2)**2 + 2*x(3) + 3*x(4) -1
f(4) = x(l)**2 + 3*x(2)**2 + 2*x(3) + 3*x(4) -3
Return

End

C
C
C
C
C
C

CALCG.F
Compute the Jacobian DF of F for traffic equilibrium C CALCGTR.F
Input; X .. variables
Kojima-Josephy

Subroutine CALCG(DF 1 ,DF2,VDF,DH 1 ,DH2,VDH,x,n,ne) 
Integer n,i,j,ne,DF 1 (*),DF2(*),DH 1 (*),DH2(*),k 
Double Precision VDF(*),x(*XVDH(*)

First row
VDF(l) = 6*x(l) + 2*x(2)
VDF(2) = 2*x(l) + 4*x(2)
VDF(3) = 1
VDF(4) = 3
Second row
VDF(5) = 4*x(l)+ 1
VDF(6) = 2*x^)
VDF(7) = 3 
VDF(8) = 2 
Third row
VDF(9) = 6*x(l) + x(2) 
VDF(10) = x(1) + 4*x(2) 
VDF(11) = 2 
VDF(12) = 3 
Fourth row 
VDF(13) = 2*x(l) 
VDF(14) = 6*x^) 
VDF(15) = 2 
VDF(16) = 3 
ne=16 
DF1(1)= 1 
DF2(1)= 1 
DF1(2)= 1 
DF2(2) = 2 
DF1(3)= 1
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DF2(3) = 3 
DF1(4)= 1 
DF2(4) = 4 
D F 1 ^  = 2 
DF2(5) = 1
D F ltó  = 2
DF2(6) = 2 
DF1(7) = 2 
DF2(7) = 3 
DF1(8) = 2 
DF2(8) = 4 
DF1(9) = 3 
DF2(9) = 1 
DF1(10) = 3 
DF2(10) = 2 
DF1(11) = 3 
DF2(11) = 3 
DF1(12) = 3 
DF2(12) = 4 
DF1(13) = 4 
DF2(13)= 1 
DF1(14) = 4 
DF2(14) = 2 
DF1(15) = 4 
DF2(15) = 3 
DF106) = 4 
DF206) = 4 
k=l
Do i=l,n 

Doj=l,n 
DHl(k)=i 
DH2(k)=j 
VDH(k)=0 
k=k+l 

End do 
End do 

Return
End


