203 research outputs found

    Enhanced Lasso Recovery on Graph

    Get PDF
    This work aims at recovering signals that are sparse on graphs. Compressed sensing offers techniques for signal recovery from a few linear measurements and graph Fourier analysis provides a signal representation on graph. In this paper, we leverage these two frameworks to introduce a new Lasso recovery algorithm on graphs. More precisely, we present a non-convex, non-smooth algorithm that outperforms the standard convex Lasso technique. We carry out numerical experiments on three benchmark graph datasets

    Augmented L1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm

    Full text link
    This paper studies the long-existing idea of adding a nice smooth function to "smooth" a non-differentiable objective function in the context of sparse optimization, in particular, the minimization of ∣∣x∣∣1+1/(2α)∣∣x∣∣22||x||_1+1/(2\alpha)||x||_2^2, where xx is a vector, as well as the minimization of ∣∣X∣∣∗+1/(2α)∣∣X∣∣F2||X||_*+1/(2\alpha)||X||_F^2, where XX is a matrix and ∣∣X∣∣∗||X||_* and ∣∣X∣∣F||X||_F are the nuclear and Frobenius norms of XX, respectively. We show that they can efficiently recover sparse vectors and low-rank matrices. In particular, they enjoy exact and stable recovery guarantees similar to those known for minimizing ∣∣x∣∣1||x||_1 and ∣∣X∣∣∗||X||_* under the conditions on the sensing operator such as its null-space property, restricted isometry property, spherical section property, or RIPless property. To recover a (nearly) sparse vector x0x^0, minimizing ∣∣x∣∣1+1/(2α)∣∣x∣∣22||x||_1+1/(2\alpha)||x||_2^2 returns (nearly) the same solution as minimizing ∣∣x∣∣1||x||_1 almost whenever α≥10∣∣x0∣∣∞\alpha\ge 10||x^0||_\infty. The same relation also holds between minimizing ∣∣X∣∣∗+1/(2α)∣∣X∣∣F2||X||_*+1/(2\alpha)||X||_F^2 and minimizing ∣∣X∣∣∗||X||_* for recovering a (nearly) low-rank matrix X0X^0, if α≥10∣∣X0∣∣2\alpha\ge 10||X^0||_2. Furthermore, we show that the linearized Bregman algorithm for minimizing ∣∣x∣∣1+1/(2α)∣∣x∣∣22||x||_1+1/(2\alpha)||x||_2^2 subject to Ax=bAx=b enjoys global linear convergence as long as a nonzero solution exists, and we give an explicit rate of convergence. The convergence property does not require a solution solution or any properties on AA. To our knowledge, this is the best known global convergence result for first-order sparse optimization algorithms.Comment: arXiv admin note: text overlap with arXiv:1207.5326 by other author

    Homotopy based algorithms for â„“0\ell_0-regularized least-squares

    Get PDF
    Sparse signal restoration is usually formulated as the minimization of a quadratic cost function ∥y−Ax∥22\|y-Ax\|_2^2, where A is a dictionary and x is an unknown sparse vector. It is well-known that imposing an ℓ0\ell_0 constraint leads to an NP-hard minimization problem. The convex relaxation approach has received considerable attention, where the ℓ0\ell_0-norm is replaced by the ℓ1\ell_1-norm. Among the many efficient ℓ1\ell_1 solvers, the homotopy algorithm minimizes ∥y−Ax∥22+λ∥x∥1\|y-Ax\|_2^2+\lambda\|x\|_1 with respect to x for a continuum of λ\lambda's. It is inspired by the piecewise regularity of the ℓ1\ell_1-regularization path, also referred to as the homotopy path. In this paper, we address the minimization problem ∥y−Ax∥22+λ∥x∥0\|y-Ax\|_2^2+\lambda\|x\|_0 for a continuum of λ\lambda's and propose two heuristic search algorithms for ℓ0\ell_0-homotopy. Continuation Single Best Replacement is a forward-backward greedy strategy extending the Single Best Replacement algorithm, previously proposed for ℓ0\ell_0-minimization at a given λ\lambda. The adaptive search of the λ\lambda-values is inspired by ℓ1\ell_1-homotopy. ℓ0\ell_0 Regularization Path Descent is a more complex algorithm exploiting the structural properties of the ℓ0\ell_0-regularization path, which is piecewise constant with respect to λ\lambda. Both algorithms are empirically evaluated for difficult inverse problems involving ill-conditioned dictionaries. Finally, we show that they can be easily coupled with usual methods of model order selection.Comment: 38 page

    A Stochastic Majorize-Minimize Subspace Algorithm for Online Penalized Least Squares Estimation

    Full text link
    Stochastic approximation techniques play an important role in solving many problems encountered in machine learning or adaptive signal processing. In these contexts, the statistics of the data are often unknown a priori or their direct computation is too intensive, and they have thus to be estimated online from the observed signals. For batch optimization of an objective function being the sum of a data fidelity term and a penalization (e.g. a sparsity promoting function), Majorize-Minimize (MM) methods have recently attracted much interest since they are fast, highly flexible, and effective in ensuring convergence. The goal of this paper is to show how these methods can be successfully extended to the case when the data fidelity term corresponds to a least squares criterion and the cost function is replaced by a sequence of stochastic approximations of it. In this context, we propose an online version of an MM subspace algorithm and we study its convergence by using suitable probabilistic tools. Simulation results illustrate the good practical performance of the proposed algorithm associated with a memory gradient subspace, when applied to both non-adaptive and adaptive filter identification problems

    Doubly Robust Smoothing of Dynamical Processes via Outlier Sparsity Constraints

    Full text link
    Coping with outliers contaminating dynamical processes is of major importance in various applications because mismatches from nominal models are not uncommon in practice. In this context, the present paper develops novel fixed-lag and fixed-interval smoothing algorithms that are robust to outliers simultaneously present in the measurements {\it and} in the state dynamics. Outliers are handled through auxiliary unknown variables that are jointly estimated along with the state based on the least-squares criterion that is regularized with the â„“1\ell_1-norm of the outliers in order to effect sparsity control. The resultant iterative estimators rely on coordinate descent and the alternating direction method of multipliers, are expressed in closed form per iteration, and are provably convergent. Additional attractive features of the novel doubly robust smoother include: i) ability to handle both types of outliers; ii) universality to unknown nominal noise and outlier distributions; iii) flexibility to encompass maximum a posteriori optimal estimators with reliable performance under nominal conditions; and iv) improved performance relative to competing alternatives at comparable complexity, as corroborated via simulated tests.Comment: Submitted to IEEE Trans. on Signal Processin

    MAGMA: Multi-level accelerated gradient mirror descent algorithm for large-scale convex composite minimization

    Full text link
    Composite convex optimization models arise in several applications, and are especially prevalent in inverse problems with a sparsity inducing norm and in general convex optimization with simple constraints. The most widely used algorithms for convex composite models are accelerated first order methods, however they can take a large number of iterations to compute an acceptable solution for large-scale problems. In this paper we propose to speed up first order methods by taking advantage of the structure present in many applications and in image processing in particular. Our method is based on multi-level optimization methods and exploits the fact that many applications that give rise to large scale models can be modelled using varying degrees of fidelity. We use Nesterov's acceleration techniques together with the multi-level approach to achieve O(1/ϵ)\mathcal{O}(1/\sqrt{\epsilon}) convergence rate, where ϵ\epsilon denotes the desired accuracy. The proposed method has a better convergence rate than any other existing multi-level method for convex problems, and in addition has the same rate as accelerated methods, which is known to be optimal for first-order methods. Moreover, as our numerical experiments show, on large-scale face recognition problems our algorithm is several times faster than the state of the art

    Implicit Regularization in Over-Parameterized Support Vector Machine

    Full text link
    In this paper, we design a regularization-free algorithm for high-dimensional support vector machines (SVMs) by integrating over-parameterization with Nesterov's smoothing method, and provide theoretical guarantees for the induced implicit regularization phenomenon. In particular, we construct an over-parameterized hinge loss function and estimate the true parameters by leveraging regularization-free gradient descent on this loss function. The utilization of Nesterov's method enhances the computational efficiency of our algorithm, especially in terms of determining the stopping criterion and reducing computational complexity. With appropriate choices of initialization, step size, and smoothness parameter, we demonstrate that unregularized gradient descent achieves a near-oracle statistical convergence rate. Additionally, we verify our theoretical findings through a variety of numerical experiments and compare the proposed method with explicit regularization. Our results illustrate the advantages of employing implicit regularization via gradient descent in conjunction with over-parameterization in sparse SVMs
    • …
    corecore