
Homotopy based algorithms for L0-regularized

least-squares

Charles Soussen, Jérome Idier, Junbo Duan, David Brie

To cite this version:

Charles Soussen, Jérome Idier, Junbo Duan, David Brie. Homotopy based al-
gorithms for L0-regularized least-squares. IEEE Transactions on Signal Process-
ing, Institute of Electrical and Electronics Engineers, 2015, 63 (13), pp.3301-
3316. <http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7084156>.
<10.1109/TSP.2015.2421476>. <hal-00948313v3>

HAL Id: hal-00948313

https://hal.archives-ouvertes.fr/hal-00948313v3

Submitted on 18 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/52996798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00948313v3

TECHNICAL REPORT 1

Homotopy based algorithms for ℓ0-regularized

least-squares

Charles Soussen⋆, Jérôme Idier, Junbo Duan, and David Brie

Abstract

Sparse signal restoration is usually formulated as the minimization of a quadratic cost function

‖y−Ax‖2
2
, where A is a dictionary and x is an unknown sparse vector. It is well-known that imposing

an ℓ0 constraint leads to an NP-hard minimization problem. The convex relaxation approach has received

considerable attention, where the ℓ0-norm is replaced by the ℓ1-norm. Among the many efficient ℓ1

solvers, the homotopy algorithm minimizes ‖y −Ax‖2
2
+ λ‖x‖1 with respect to x for a continuum of

λ’s. It is inspired by the piecewise regularity of the ℓ1-regularization path, also referred to as the homotopy

path. In this paper, we address the minimization problem ‖y −Ax‖2
2
+ λ‖x‖0 for a continuum of λ’s

and propose two heuristic search algorithms for ℓ0-homotopy. Continuation Single Best Replacement is a

forward-backward greedy strategy extending the Single Best Replacement algorithm, previously proposed

for ℓ0-minimization at a given λ. The adaptive search of the λ-values is inspired by ℓ1-homotopy. ℓ0

Regularization Path Descent is a more complex algorithm exploiting the structural properties of the

ℓ0-regularization path, which is piecewise constant with respect to λ. Both algorithms are empirically

evaluated for difficult inverse problems involving ill-conditioned dictionaries. Finally, we show that they

can be easily coupled with usual methods of model order selection.

This work was carried out in part while C. Soussen was visiting IRCCyN during the academic year 2010-2011 with the

financial support of CNRS.

C. Soussen and D. Brie are with the Université de Lorraine and CNRS at the Centre de Recherche en Automatique de Nancy

(UMR 7039).Campus Sciences, B.P. 70239, F-54506 Vandœuvre-lès-Nancy, France. Tel: (+33)-3 83 59 56 43, Fax: (+33)-3 83

68 44 62. E-mail: charles.soussen@univ-lorraine.fr, david.brie@univ-lorraine.fr.

J. Idier is with L’UNAM Université, Ecole Centrale Nantes and CNRS at the Institut de Recherche en Communications et

Cybernétique de Nantes (UMR 6597), 1 rue de la Noë, BP 92101, F-44321 Nantes Cedex 3, France. Tel: (+33)-2 40 37 69 09,

Fax: (+33)-2 40 37 69 30. E-mail: jerome.idier@irccyn.ec-nantes.fr.

J. Duan was with CRAN. He is now with the Department of Biomedical Engineering, Xi’an Jiaotong University. No. 28,

Xianning West Road, Xi’an 710049, Shaanxi Province, China. Tel: (+86)-29-82 66 86 68, Fax: (+86)-29 82 66 76 67. E-mail:

junbo.duan@mail.xjtu.edu.cn.

March 18, 2015 DRAFT

TECHNICAL REPORT 2

Index Terms

Sparse signal estimation; ℓ0-regularized least-squares; ℓ0-homotopy; ℓ1-homotopy; stepwise algo-

rithms; orthogonal least squares; model order selection.

I. INTRODUCTION

Sparse approximation from noisy data is traditionally addressed as the constrained least-square problems

min
x

‖y −Ax‖22 subject to ‖x‖0 ≤ k (1)

or

min
x

‖x‖0 subject to ‖y −Ax‖22 ≤ ε (2)

where ‖x‖0 is the ℓ0-“norm” counting the number of nonzero entries in x, and the quadratic fidelity-to-

data term ‖y −Ax‖22 measures the quality of approximation. Formulation (1) is well adapted when one

has a knowledge of the maximum number k of atoms to be selected in the dictionary A. On the contrary,

the choice of (2) is more appropriate when k is unknown but one has a knowledge of the variance of

the observation noise. The value of ε may then be chosen relative to the noise variance. Since both (1)

and (2) are subset selection problems, they are discrete optimization problems. They are known to be

NP-hard except for specific cases [1].

When no knowledge is available on either k or ε, the unconstrained formulation

min
x

{J (x;λ) = ‖y −Ax‖22 + λ‖x‖0} (3)

is worth being considered, where λ expresses the trade-off between the quality of approximation and the

sparsity level [2]. In a Bayesian viewpoint, (3) can be seen as a (limit) maximum a posteriori formulation

where ‖y−Ax‖22 and the penalty ‖x‖0 are respectively related to a Gaussian noise distribution and a prior

distribution for sparse signals (a limit Bernoulli-Gaussian distribution with infinite Gaussian variance) [3].

A. Classification of methods

1) ℓ0-constrained least-squares: The discrete algorithms dedicated to problems (1)-(2) can be cate-

gorized into two classes. First, the forward greedy algorithms explore subsets of increasing cardinalities

starting from the empty set. At each iteration, a new atom is appended to the current subset, therefore

gradually improving the quality of approximation [4]. Greedy algorithms include, by increasing order of

complexity: Matching Pursuit (MP) [5], Orthogonal Matching Pursuit (OMP) [6], and Orthogonal Least

March 18, 2015 DRAFT

TECHNICAL REPORT 3

Squares (OLS) [7], also referred to as forward selection in statistical regression [8] and known as Order

Recursive Matching Pursuit (ORMP) [9] and Optimized Orthogonal Matching Pursuit (OOMP) [10]. The

second category are thresholding algorithms, where each iteration delivers a subset of same cardinality

k. Popular thresholding algorithms include Iterative Hard Thresholding [11], Subspace Pursuit [12] and

CoSaMP [13].

Among these two categories, greedy algorithms are well-adapted to the resolution of (1) and (2) for

variable sparsity levels. Indeed, they yield a series of subsets for consecutive k (i.e., for decreasing

approximation errors ε) since at each iteration, the current subset is increased by one element.

2) ℓ0-penalized least-squares: In [3], we evidenced that the minimization of J (x;λ) using a descent

algorithm leads to bidirectional extensions of forward (orthogonal) greedy algorithms. To be more specific,

consider a candidate subset S corresponding to the support of x. Including a new element into S yields a

decrease of the square error, defined as the minimum of ‖y−Ax‖22 for x supported by S. On the other

hand, the penalty term λ‖x‖0 is increased by λ. Overall, the cost function J (x;λ) decreases as soon as

the square error variation exceeds λ. Similarly, a decrease of J (x;λ) occurs when an element is removed

from S provided that the squared error increment is lower than λ. Because both inclusion and removal

operations can induce a decrease of J , the formulation (3) allows one to design descent schemes allowing

a “forward-backward” search strategy, where each iteration either selects a new atom (forward selection)

or de-selects an atom that was previously selected (backward elimination). The Bayesian OMP [14] and

Single Best Replacement (SBR) [3] algorithms have been proposed in this spirit. They are extensions of

OMP and OLS, respectively. Their advantage over forward greedy algorithms is that an early wrong atom

selection may be later cancelled. Forward-backward algorithms include the so-called stepwise regression

algorithms which are OLS extensions [8], [15], [16], and OMP based algorithms of lower complexity [14],

[17].

3) Connection with the continuous relaxation of the ℓ0 norm: The algorithms described so far are

discrete search strategies dedicated to ℓ0-regularized least-squares. A classical alternative consists in

relaxing the ℓ0-norm by a continuous function that is nondifferentiable at 0, and optimizing the resulting

cost function. See, e.g., [18], [19] and [20]–[27] for convex (ℓ1) and nonconvex relaxation, respectively.

The convex problem minx ‖y − Ax‖22 s.t. ‖x‖1 ≤ t is referred to as both Basis Pursuit Denoising

(BPDN) and the LASSO. It is noticeable that BPDN leads to stepwise algorithms [18], [28] including

the popular ℓ1-homotopy [28]–[30], a forward-backward greedy search whose complexity is close to that

of OMP. ℓ1-homotopy is closely connected to the Least Angle Regression (LARS), a simpler forward

strategy allowing only atom selections. It is referred to as “LARS with the LASSO modification” in [30].

March 18, 2015 DRAFT

TECHNICAL REPORT 4

λ

S⋆
2

E(S⋆
0)

E(S⋆
1)

E(S) + λ|S|

λ⋆
2 λ⋆

1

E(S⋆
2)

S⋆
1

S⋆
0 = ∅

λ⋆
3 = 0

Fig. 1. Representation of lines λ 7→ E(S) + λ|S| for various subsets S. The ℓ0-curve, in plain line, is the minimal curve

λ 7→ minS{E(S) + λ|S|}. It is continuous, concave, and piecewise affine with a finite number of pieces. The ℓ0-penalized

regularization path is composed of the supports (here, S⋆
0 , S⋆

1 , S⋆
2) that are optimal for some λ-values. For instance, S⋆

1 is

optimal for λ ∈ [λ⋆
2 , λ

⋆
1]. These supports S⋆ induce global minimizers of J (x;λ), defined as the least-square solutions xS⋆ .

For instance, xS⋆

1
is a global minimizer of J (x;λ) with respect to x whenever λ ∈ [λ⋆

2, λ
⋆
1].

Importantly, ℓ1-homotopy solves the BPDN for a continuum of values of t.

B. Main idea

Our approach is dedicated to ℓ0-penalized least-squares. It is based on the following geometrical

interpretation.

First, for any subset S, we can define a linear function λ 7→ E(S) + λ|S|, where E(S) = ‖y −Ax‖22

is the corresponding least-square error and |S| stands for the cardinality of S. For each subset S, this

function yields a line in the 2D domain (λ,J), as shown on Fig. 1.

Second, the set of solutions to (3) is piecewise constant with respect to λ (see Appendix A for a proof).

Geometrically, this result can be easily understood by noticing that the minimum of J (x;λ) with respect

to x is obtained for all λ-values by considering the concave envelope of the set of lines λ 7→ E(S)+λ|S|

for all subsets S. The resulting piecewise affine curve is referred to as the ℓ0-curve (see Fig. 1). Its edges

are related to the supports of the sparse solutions for all λ, and its vertices yield the breakpoints λ⋆
i

around which the set of optimal solutions argmin
x
J (x;λ) is changing.

We take advantage of this interpretation to propose two suboptimal greedy algorithms that address (3)

for a continuum of λ-values. Continuation Single Best Replacement (CSBR) repeatedly minimizes J (x;λ)

with respect to x for decreasing λ’s. ℓ0 Regularization Path Descent (ℓ0-PD) is a more complex algorithm

maintaining a list of subsets so as to improve (decrease) the current approximation of the ℓ0 curve.

March 18, 2015 DRAFT

TECHNICAL REPORT 5

k + 1 k + 2

S′

E(S⋆a)

E(S⋆c)

|S|

E(S)

k

S⋆a

S⋆b

S⋆c

E(S⋆b)

Fig. 2. Sparse approximation seen as a bi-objective optimization problem. The Pareto frontier gathers the non-dominated points:

no other point can strictly decrease both |S| and E(S). Bullets and squares are all Pareto solutions. A supported solution is a

minimizer of E(S) + λ|S| with respect to S for some λ. S⋆a and S⋆c are supported, contrary to S⋆b.

C. Related works

1) Bi-objective optimization: The formulations (1), (2) and (3) can be interpreted as the same bi-

objective problem because they all intend to minimize both the approximation error ‖y −Ax‖22 and the

sparsity measure ‖x‖0. Although x is continuous, the bi-objective optimization problem should rather be

considered as a discrete one where both objectives reread E(S) and |S|. Indeed, the continuous solutions

deduce from the discrete solutions, x reading as a least-square minimizer among all vectors supported

by S.

Fig. 2 is a classical bi-objective representation where each axis is related to a single objective [31],

namely |S| and E(S). In bi-objective optimization, a point S is called Pareto optimal when no other

point S′ can decrease both objectives [32]. In the present context, |S| takes integer values, thus the Pareto

solutions are the minimizers of E(S) subject to |S| ≤ k for consecutive values of k. Equivalently, they

minimize |S| subject to E(S) ≤ ε for some ε. They are usually classified as supported or non-supported.

The former lay on the convex envelope of the Pareto frontier (the bullet points in Fig. 2) whereas the

latter lay in the nonconvex areas (the square point). It is well known that a supported solution can be

reached when minimizing the weighted sum of both objectives, i.e., when minimizing E(S) + λ|S| with

respect to S for some weight λ. On the contrary, the non-supported solutions cannot [32]. Choosing

between the weighting sum method and a more complex method is a nontrivial question. The answer

depends on the problem at-hand and specifically, on the size of the nonconvex areas in the Pareto frontier.

March 18, 2015 DRAFT

TECHNICAL REPORT 6

2) ℓ1 and ℓ0-homotopy seen as a weighted sum method: It is important to notice that for convex

objectives, the Pareto solutions are all supported. Consider the BPDN; because ‖y −Ax‖22 and ‖x‖1

are convex functions of x, the set of minimizers of ‖y − Ax‖22 + λ‖x‖1 for all λ coincides with

the set of minimizers of ‖y − Ax‖22 s.t. ‖x‖1 ≤ t for all t [33]. Both sets are referred to as the

(unique) “ℓ1-regularization path”. The situation is different with ℓ0-regularization. Now, the weighted sum

formulation (3) may not yield the same solutions as the constrained formulations (1) and (2) because the

ℓ0-norm is nonconvex [2]. This will lead us to define two ℓ0-regularization paths, namely the “ℓ0-penalized

path” and the “ℓ0-constrained path” (Section II).

On the algorithmic side, the ℓ0 problems are acknowledged to be difficult. Many authors actually

discourage the direct optimization of J because there are a very large number of local minimizers [20],

[23]. In [3], however, we showed that forward-backward extensions of OLS are able to escape from some

local minimizers of J (x;λ) for a given λ. This motivates us to propose efficient OLS-based strategies

for minimizing J for variable λ-values.

3) Positioning with respect to other stepwise algorithms: In statistical regression, the word “stepwise”

originally refers to Efroymson’s algorithm [15], proposed in 1960 as an empirical extension of forward

selection (i.e., OLS). Other stepwise algorithms were proposed in the 1980’s [8, Chapter 3] among

which Berk’s and Broersen’s algorithms [16], [34]. All these algorithms perform a single replacement

per iteration, i.e., a forward selection or a backward elimination. They were originally applied to over-

determined problems in which the number of columns of A is lower than the number of rows. Recent

stepwise algorithms were designed as either OMP [14], [17] or OLS extensions [35], [36]. They all aim to

find subsets of cardinality k yielding a low approximation error E(S) for all k. Although our algorithms

share the same objective, they are inspired by (i) the ℓ1-homotopy algorithm; and (ii) the structural

properties of the ℓ0-regularization paths. To the best of our knowledge, the idea of reconstructing an

ℓ0-regularization path using ℓ0-homotopy procedures is novel.

CSBR and ℓ0-PD both read as descent algorithms in different senses: CSBR, first sketched in [37],

repeatedly minimizes J (x;λ) for decreasing λ’s. On the contrary, ℓ0-PD minimizes J (x;λ) for any λ-

value simultaneously by maintaining a list of candidate subsets. The idea of maintaining a list of support

candidates was recently developed within the framework of forward selection [38], [39]. Our approach

is different, because a family of optimization problems are being addressed together. In contrast, the

supports in the list are all candidate solutions to solve the same problem in [38], [39].

4) Positioning with respect to continuation algorithms: The principle of continuation is to handle a

difficult problem by solving a sequence of simpler problems with warm start initialization, and gradually

March 18, 2015 DRAFT

TECHNICAL REPORT 7

tuning some continuous hyperparameter [40]. In sparse approximation, the word continuation is used in

two opposite contexts.

First, the BDPN problem involving the ℓ1-norm. BPDN is solved for decreasing hyperparameter values

using the solution for each value as a warm starting point for the next value [4]. ℓ1-homotopy [28],

[30], [41] exploits that the ℓ1 regularization path is piecewise affine and tracks the breakpoints between

consecutive affine pieces. CSBR is designed in a similar spirit and can be interpreted as an “ℓ0-homotopy”

procedure (although the ℓ0 minimization steps are solved in a sub-optimal way) working for decreasing

λ-values.

Second, the continuous approximation of the (discrete) ℓ0 pseudo-norm [42] using a Graduated Non

Convexity (GNC) approach [43]: a series of continuous concave metrics is considered leading to the reso-

lution of continuous optimization problems with warm start initialization. Although the full reconstruction

of the ℓ0-regularization path has been rarely addressed, it is noticeable that a GNC-like approach, called

SparseNet, aims to gradually update some estimation of the regularization path induced by increasingly

non-convex sparsity measures [44]. This strategy relies on the choice of a grid of λ-values. Because

the influence of the grid is critical [33], it is useful to adapt the grid while the nonconvex measure is

modified [44]. On the contrary, our approach does not rely on a grid definition. The λ-values are rather

adaptively computed similar to the ℓ1-homotopy principle [28], [30].

The paper is organized as follows. In Section II, we define the ℓ0-regularization paths and establish

their main properties. The CSBR and ℓ0-PD algorithms are respectively proposed in Sections III and IV.

In Section V, both algorithms are analyzed and compared with the state-of-art algorithms based on

nonconvex penalties for difficult inverse problems. Additionally, we investigate the automatic choice of

the cardinality k using classical order selection rules.

II. ℓ0-REGULARIZATION PATHS

A. Definitions, terminology and working assumptions

Let m×n denote the size of the dictionary A (usually, m ≤ n in sparse approximation). The observation

signal y and the weight vector x are of size m×1 and n×1, respectively. We assume that any min(m,n)

columns of A are linearly independent so that for any subset S ⊂ {1, . . . , n}, the submatrix of A gathering

the columns indexed by S is full rank, and the least-square error E(S) can be numerically computed.

This assumption is however not necessary for the theoretical results provided hereafter.

We denote by |S| the cardinality of a subset S. We use the alternative notations “S+{i}” and “S−{i}”

for the forward selection S ∪ {i} and backward elimination S \ {i}. We can then introduce the generic

March 18, 2015 DRAFT

TECHNICAL REPORT 8

notation S ±{i} for single replacements: S ± {i} stands for S + {i} if i /∈ S, and S −{i} if i ∈ S. We

will frequently resort to the geometrical interpretation of Fig. 1. With a slight abuse of terminology, the

line λ 7→ E(S) + λ|S| will be simply referred to as “the line S”.

Hereafter, we start by defining the ℓ0-regularized paths as the set of supports of the solutions to prob-

lems (1), (2) and (3) for varying hyperparameters. As seen in Section I, the solutions may differ whether

the ℓ0-regularization takes the form of a bound constraint or a penalty. This will lead us to distinguish the

“ℓ0-constrained path” and the “ℓ0-penalized path”. We will keep the generic terminology “ℓ0-regularization

paths” for statements that apply to both. The solutions delivered by our greedy algorithms will be referred

to as the “approximate ℓ0-penalized path” since they are suboptimal algorithms.

B. Definition and properties of the ℓ0-regularized paths

The continuous problems (1), (2) and (3) can be converted as the discrete problems:

min
S
E(S) subject to |S| ≤ k, (4)

min
S
|S| subject to E(S) ≤ ε, (5)

min
S

{

Ĵ (S;λ) , E(S) + λ|S|
}

, (6)

where S stands for the support of x. The optimal solutions x to problems (1), (2) and (3) can indeed

be simply deduced from those of (4), (5) and (6), respectively, x reading as the least-square minimizers

among all vectors supported by S. In the following, the formulation (5) will be omitted because it leads

to the same ℓ0-regularization path as formulation (4) [2].

Let us first define the set of solutions to (4) and (6) and the ℓ0-curve, related to the minimum value

in (6) for all λ > 0.

Definition 1 For k ≤ min(m,n), let S⋆C(k) be the set of minimizers of the constrained problem (4).

For λ > 0, let S⋆P(λ) be the set of minimizers of the penalized problem (6). Additionally, we define

the ℓ0-curve as the function λ 7→ minS{Ĵ (S;λ)}. It is the concave envelope of a finite number of linear

functions. Thus, it is concave and piecewise affine. Let λ⋆
I+1 , 0 < λ⋆

I < . . . < λ⋆
1 < λ⋆

0 , +∞ delimit

the affine intervals (I + 1 contiguous intervals; see Fig. 1 in the case where I = 2).

Each set S⋆C(k) or S⋆P(λ) can be thought of as a single support (e.g., S⋆C(k) is reduced to the support

S⋆a in the example of Fig. 2). They are defined as sets of supports because the minimizers of (4) and (6)

might not be always unique. Let us now provide a key property of the set S⋆P(λ).

March 18, 2015 DRAFT

TECHNICAL REPORT 9

Theorem 1 S⋆P(λ) is a piecewise constant function of λ, being constant on each interval λ ∈ (λ⋆
i+1, λ

⋆
i).

Proof: See Appendix A.

This property allows us to define the ℓ0-regularization paths in a simple way.

Definition 2 The ℓ0-constrained path is the set (of sets) S⋆C = {S⋆C(k), k = 0, . . . ,min(m,n)}.

The ℓ0-penalized path is defined as S⋆P = {S⋆P(λ), λ > 0}. According to Theorem 1, S⋆P is composed

of (I + 1) distinct sets S⋆P(λ), one for each interval λ ∈ (λ⋆
i+1, λ

⋆
i).

S⋆C gathers the solutions to (4) for all k. As illustrated on Fig. 2, the elements of S⋆C are the Pareto solutions

whereas the elements of S⋆P correspond to the convex envelope of the Pareto frontier. Therefore, both

ℓ0-regularization paths may not coincide [2], [31]. As stated in Theorem 2, S⋆P ⊂ S
⋆
C, but the reverse

inclusion is not guaranteed.

Theorem 2 S⋆P ⊂ S
⋆
C. Moreover, for any λ /∈ {λ⋆

I , . . . , λ
⋆
0}, there exists k such that S⋆P(λ) = S

⋆
C(k).

Proof: See Appendix A.

C. Approximate ℓ0-penalized regularization path

Let us introduce notations for the approximate ℓ0-penalized path delivered by our heuristic search

algorithms. Throughout the paper, the ⋆ notation is reserved for optimal solutions (e.g., S⋆P). It is removed

when dealing with numerical solutions. The outputs of our algorithms will be composed of a list λ =

{λ1, . . . , λJ+1} of decreasing λ-values, and a list S = {S0, . . . , SJ} of candidate supports, with S0 = ∅.

Sj is a suboptimal solution to (6) for λ ∈ (λj+1, λj). In the first interval λ > λ1, the solution is

S0 = ∅. The reader shall keep in mind that each output Sj induces a suboptimal solution xj to (3) for

λ ∈ (λj+1, λj). This vector is the least-square solution supported by Sj . It can be computed using the

pseudo-inverse of the subdictionary indexed by the set of atoms in Sj .

Geometrically, each support Sj yields a line segment. Appending these segments yields an approximate

ℓ0-curve covering the domain (λJ+1,+∞), as illustrated on Fig. 3.

III. GREEDY CONTINUATION ALGORITHM (CSBR)

Our starting point is the Single Best Replacement algorithm [3] dedicated to the minimization of

J (x;λ) with respect to x, or equivalently to Ĵ (S;λ) = E(S)+λ|S| with respect to S. We first describe

SBR for a given λ. Then, the CSBR extension is presented for decreasing and adaptive λ’s.

March 18, 2015 DRAFT

TECHNICAL REPORT 10

Ĵ (S; λ)

E(Sj)

S0

Sj

SJ

λλ1λjλj+1λJ+1

Fig. 3. Notations relative to our heuristic search algorithms. Their outputs are: (i) a sequence of values λj sorted in the decreasing

order; (ii) as many supports Sj , Sj being the solution associated to all λ ∈ (λj+1, λj). By extension, S0 = ∅ for λ > λ1.

A. Single Best Replacement

SBR is a deterministic descent algorithm dedicated to the minimization of Ĵ (S;λ) with the initial

solution S = ∅. An SBR iteration consists of three steps:

1) Compute Ĵ (S ± {i};λ) for all possible single replacements S ± {i} (n insertion and removal

trials);

2) Select the best replacement Sbest = S ± {ℓ}, with

ℓ ∈ argmin
i∈{1,...,n}

Ĵ (S ± {i};λ); (7)

3) Update S ← Sbest.

SBR terminates when Ĵ (Sbest;λ) ≥ Ĵ (S;λ), i.e., when no single replacement can decrease the cost

function. This occurs after a finite number of iterations because SBR is a descent algorithm and there are

a finite number of possible subsets S ⊂ {1, . . . , n}. In the limit case λ = 0, we have Ĵ (S; 0) = E(S).

Only insertions can be performed since any removal increases the squared error E(S). SBR coincides with

the well-known OLS algorithm [7]. Generally, the n replacement trials necessitate to compute E(S+{i})

for all insertion trials and E(S − {i}) for all removals. In [3], we proposed a fast and stable recursive

implementation based on the Cholesky factorization of the Gram matrix AT
SAS when S is modified by

one element (where AS stands for the submatrix of A gathering the active columns). SBR is summarized

in Tab. I. The optional output parameters ℓadd and δEadd are unnecessary in the standard version. Their

knowledge will be useful to implement the extended CSBR algorithm.

Let us illustrate the behavior of SBR on a simple example using the geometrical interpretation of Fig. 4,

where a single replacement is represented by a vertical displacement (from top to bottom) between the

two lines S and S ± {ℓ}. Sinit = ∅ yields an horizontal line since Ĵ (∅;λ) = ‖y‖22 does not depend on

March 18, 2015 DRAFT

TECHNICAL REPORT 11

TABLE I

SBR ALGORITHM FOR MINIMIZATION OF Ĵ (S;λ) FOR FIXED λ [3]. BY DEFAULT, Sinit = ∅. THE OUTPUTS δEadd AND ℓadd

ARE OPTIONAL. THE SINGLE REPLACEMENT TESTS APPEAR IN THE FOR LOOP.

inputs : A, y, λ, Sinit

outputs: S, δEadd, ℓadd

Sbest ← Sinit;

repeat

S ← Sbest;

for i = 1 to n do

Compute Ĵ (S ± {i};λ);

end

Sbest ← S ± {ℓ} with ℓ computed from (7);

until Ĵ (Sbest;λ) ≥ Ĵ (S;λ);

Compute ℓadd according to (11);

Set δEadd = E(S)− E(S + {ℓadd});

λ. At the first SBR iteration, a new dictionary atom ℓ = a is selected. The line related to the updated

support S ← {a} is of slope |S| = 1. Similarly, some new dictionary atoms b and c are being selected

in the next iterations, yielding the supports S ← {a, b} and S ← {a, b, c}. On Fig. 4, the dotted lines

related to the latter supports have slopes equal to 2 and 3. At iteration 4, the single best replacement is

the removal ℓ = a. The resulting support S ← {b, c} is of cardinality 2, and the related line is parallel to

the line {a, b} found at iteration 2. During the fifth iteration, none of the n single replacements decreases

Ĵ ({b, c};λ). SBR stops with output S = {b, c}.

B. Principle of the continuation search

Our continuation strategy is inspired by ℓ1-homotopy which recursively computes the minimizers of

‖y−Ax‖22 +λ‖x‖1 when λ is continuously decreasing [28]–[30]. An iteration of ℓ1-homotopy consists

in two steps:

• Find the next value λnew < λcur for which the ℓ1 optimality conditions are violated with the current

active set S (λcur denotes the current value);

• Compute the single replacement S ← S ± {i} allowing to fulfill the ℓ1 optimality conditions at

λ = λnew.

March 18, 2015 DRAFT

TECHNICAL REPORT 12

λ

Ĵ (S;λ)

λ0

Sinit = ∅

S = {b, c}
+

+

+

–

{a}

{a, b}{a, b, c}

E({a, b})

E({b, c})

E({a, b, c})

E({a})

‖y‖22

Fig. 4. Step-by-step illustration of the call S = SBR(∅;λ). Each single replacement is represented by a vertical displacement

(from top to bottom) from lines S to S ± {ℓ}. The symbols ‘+’ and ‘-’ respectively refer to the selection and de-selection of

atoms a, b and c. Four SBR iterations are done from the initial support Sinit = ∅: the selection of a, b and c, and the de-selection

of a. The final output S ← {b, c} is of cardinality 2.

CSBR follows the same principle. The first step is now related to some local ℓ0-optimality conditions,

and the second step consists in calling SBR at λnew with the current active set as initial solution; see

Fig. 5 for a sketch. A main difference with ℓ1-homotopy is that the ℓ0 solutions are suboptimal, i.e., they

are local minimizers of J (x;λ) with respect to x.

1) Local optimality conditions: Let us first reformulate the stopping conditions of SBR at a given λ.

SBR terminates when a local minimum of Ĵ (S;λ) has been found:

∀i ∈ {1, . . . , n}, Ĵ (S ± {i};λ) ≥ Ĵ (S;λ). (8)

This condition is illustrated on Fig. 6(a): all lines related to single replacements S ± {i} lay above the

black point representing the value of Ĵ (S;λ) for the current λ. By separating the conditions related to

insertions S + {i} and removals S − {i}, (8) rereads as the interval condition:

λ ∈ [δEadd(S), δErmv(S)], (9)

where

δEadd(S) , max
i/∈S

{

E(S)− E(S + {i})
}

(10a)

δErmv(S) , min
i∈S

{

E(S − {i}) − E(S)
}

(10b)

refer to the maximum variation of the squared error when an atom is added in the support S (respectively,

removed from S).

March 18, 2015 DRAFT

TECHNICAL REPORT 13

S3

S2

Ĵ (S;λ)

λ

S1

S0

SBR

SBR

SBR

λ1λ2λ3λstopλ40

Fig. 5. Step-by-step illustration of CSBR with the early stopping condition λj ≤ λstop. The initial support is S0 = ∅. SBR is

called for three decreasing values (plain vertical arrows), with output Sj at λj . The search for the next value λj+1 is represented

by an oblique displacement along the line Sj .

(a)

λ

Ĵ

λ

S + {i}
S

S − {i}

0

(b)

λ

Ĵ

λnew

SBR

λcur

S + {ℓadd}

S

δE
a
d
d
(S

)

0

Fig. 6. Termination of SBR and next call to SBR. (a) When SBR terminates, no single replacement S ± {i} can decrease

Ĵ (S;λ). The dotted lines S + {i} (of slope |S| + 1) lay above the black point (λ, Ĵ (S;λ)). Similarly, all lines S − {i}, of

slope |S| − 1, lay above this point. (b) Here, S is the SBR output at λcur. The next call to SBR is done at λnew = δEadd(S)

with the initial subset S + {ℓadd}. The line S + {ℓadd} lays below all other lines S + {i} (dotted lines). Here, the λ-axis has

been stretched by an arbitrary factor for improved readability. The horizontal length λnew does not match the vertical length

δEadd(S), as it should without any stretching. The same stretching process will be done in Fig. 7.

2) Violation of the local optimality conditions: Consider the current output S = SBR(Sinit;λcur). The

local optimality condition (9) is then met for λ = λcur, but also for any λ ∈ [δEadd(S), λcur]. The new

value for which (9) is violated is λnew = δEadd(S) − c where c > 0 is arbitrarily small. The violation

occurs for i = ℓadd, with

ℓadd ∈ argmax
i/∈S

{E(S) − E(S + {i})}. (11)

March 18, 2015 DRAFT

TECHNICAL REPORT 14

TABLE II

CSBR ALGORITHM: SBR IS CALLED REPEATEDLY FOR DECREASING λj ’S. AT ITERATION j , BOTH THE NEXT VALUE λj+1

AND THE NEXT INITIAL SUBSET Sj + {ℓadd} ARE PROVIDED AS SBR OUTPUTS.

inputs : A, y

outputs: S : list of supports Sj ; λ: list of λj

S0 ← ∅;

Sinit ← {ℓadd} with ℓadd computed from (13);

Compute λ1 according to (13);

j ← 1;

while λj > 0 do

Call [Sj , δEadd, ℓadd] = SBR(Sinit;λj);

Sinit ← Sj + {ℓadd};

λj+1 ← δEadd;

j ← j + 1;

end

In practice, λnew can be set to the limit value

λnew = δEadd(S) (12)

provided that S is replaced with S + {ℓadd}.

As illustrated on Fig. 6(b), the line S+ {ℓadd} lays below all other parallel lines S+ {i}. It intersects

line S at λnew. The vertical arrow represents the new call to SBR with inputs S + {ℓadd} and λnew.

Because S and S+{ℓadd} both lead to the same value of Ĵ (. ;λnew), the de-selection of ℓadd is forbidden

in the first iteration of SBR.

C. CSBR algorithm

CSBR is summarized in Tab. II. The repeated calls to SBR deliver subsets Sj for decreasing λj . As

shown on Fig. 5, the solution Sj covers the interval (λj+1, λj]. At the very first iteration, we have S0 = ∅,

and (11)-(12) reread:

ℓadd ∈ argmax
i∈{1,...,n}

|〈y,ai〉|

‖ai‖2
and λ1 =

〈y,aℓadd〉
2

‖aℓadd‖
2
2

. (13)

According to Tab. II, CSBR stops when λj = 0, i.e., the whole domain λ ∈ R+ has been scanned.

However, this choice may not be appropriate when dealing with noisy data and overcomplete dictionaries.

In such cases, ad hoc early stopping rules can be considered [28], [45]. A natural rule takes the form

March 18, 2015 DRAFT

TECHNICAL REPORT 15

λj ≤ λstop with λstop > 0. Alternative rules involve a maximum cardinality (|Sj | ≥ kstop) and/or a

minimum squared error (E(Sj) ≤ εstop).

Fig. 5 shows a step-by-step illustration with the early stop λj ≤ λstop. The initial support Sinit = {ℓadd}

and λ1 are precomputed in (13). In the first call S1 = SBR(Sinit;λ1), a number of single replacements

updates S ← S±{ℓ} are carried out leading to S1 = S. This process is represented by the plain vertical

arrow at λ1 linking both lines S0 and S1 (the line Sinit is not shown for readability reasons). Once S1 is

obtained, the next value λ2 is computed. This process is represented by an oblique, dashed arrow joining

λ1 and λ2. These two processes are being repeated alternatively at the second and third iterations of

CSBR. Finally, CSBR terminates after λ4 has been computed because λ4 ≤ λstop.

IV. ℓ0-REGULARIZATION PATH DESCENT (ℓ0-PD)

On the theoretical side, the ℓ0-penalized regularization path is piecewise constant (Theorem 1). It yields

the ℓ0 curve which is piecewise affine, continuous and concave (Fig. 1). The curve related to the CSBR

outputs does not fulfill this property since: (i) there might be jumps in this curve; and (ii) the slope of the

line Sj is not necessarily increasing with j (see Fig. 5). This motivates us to propose another algorithm

whose outputs are consistent with the structural properties of the ℓ0-curve.

We propose to gradually update a list S of candidate subsets Sj while imposing that the related curve

is a concave polygon, obtained as the concave envelope of the set of lines Sj (see Fig. 7(a)). The subsets

in S are updated so as to decrease at most the concave polygonal curve. In particular, we impose that

the least value is λJ+1 = 0, so that the concave envelope is computed over the whole domain λ ∈ R+.

A. Descent of the concave polygon

The principle of ℓ0-PD is to perform a series of descent steps, where a new candidate subset Snew

is considered and included in the list S only if the resulting concave polygon can be decreased. This

descent test is illustrated on Fig. 7 for two examples (top and bottom subfigures). For each example, the

initial polygon is represented in (a). It is updated when its intersection with the line Snew is non-empty

(b). The new concave polygon (c) is obtained as the concave envelope of the former polygon and the

line Snew. All subsets in S whose edges lay above the line Snew are removed from S .

This procedure is formally presented in Tab. III. Let us now specify how the new candidate subsets

Snew are built.

March 18, 2015 DRAFT

TECHNICAL REPORT 16

0 λj+1 λj

Ĵ (S; λ)

Sj

λ λinf λsup

Ĵ (S; λ)

Sj

δEadd

Snew

λj+1 λj

Ĵ (S; λ)

Sj

λ

(a) (b) Snew = Sj + {ℓadd} (c)

0 λλj+1 λj

Sj

Ĵ (S;λ)

0 λλinf = δErmv λsup

Snew

Sj

Ĵ (S;λ)

0 λλj+1 λj

Sj

Ĵ (S;λ)

(a) (b) Snew = Sj − {ℓrmv} (c)

Fig. 7. ℓ0-PD algorithm: descent of the concave polygon when a new support Snew = Sj+{ℓadd} (top) or Snew = Sj−{ℓrmv}

(bottom) is included. (a) Initial configuration. (b) The intersection with line Snew is computed. This yields an interval [λinf , λsup]

for which Snew lays below the concave polygon. (c) When this interval is non-empty, the supports Sj whose related edges lay

above the line Snew are removed while Snew is included in S . The list of values λj (corresponding to the vertices of the new

concave polygon) is being updated. Their number may either increase or decrease.

B. Selection of the new candidate support

We first need to assign a Boolean label Sj .expl to each subset Sj . It equals 1 if Sj has already

been “explored” and 0 otherwise. The following exploration process is being carried out given a subset

S = Sj: all the possible single replacements S±{i} are tested. The best insertion ℓadd and removal ℓrmv

are both kept in memory, with ℓadd defined in (11) and similarly,

ℓrmv ∈ argmin
i∈S

{E(S − {i}) − E(S)}. (14)

At any ℓ0-PD iteration, the unexplored subset Sj of lowest cardinality (i.e., of lowest index j) is

selected. ℓ0-PD attempts to include Sadd = Sj + {ℓadd} and Srmv = Sj − {ℓrmv} into S , so that the

concave polygon can be decreased at most. The CCV Descent procedure (Tab. III) is first called with

Snew ← Sadd leading to possible updates of S and λ. It is called again with Snew ← Srmv. Fig. 7

illustrates each of these calls: the slope of Snew is |Sj | + 1 and |Sj| − 1, respectively. When a support

March 18, 2015 DRAFT

TECHNICAL REPORT 17

TABLE III

CONCAVE POLYGON DESCENT PROCEDURE. WHEN A NEW SUBSET IS INCLUDED, BOTH LISTS S AND λ ARE UPDATED. THE

FUNCTION intersect COMPUTES THE INTERSECTION BETWEEN A LINE AND A CONCAVE POLYGON. THIS YIELDS AN

INTERVAL [λinf , λsup]. BY CONVENTION, λinf > λsup WHEN THE INTERSECTION IS EMPTY.

Procedure: CCV Descent(S , Snew , λ)

Call [λinf , λsup] = intersect(S , Snew);

if λinf < λsup then

Include Snew as an unexplored support in S ;

Remove any subset Sj from S such that [λj+1, λj] ⊂ [λinf , λsup];

Sort the subsets in S by increasing cardinality;

Sort λ in the decreasing order;

end

Sj has been explored, the new supports that have been included in S (if any) are tagged as unexplored.

C. ℓ0-PD algorithm

ℓ0-PD is stated in Tab. IV. Initially, S is formed of the empty support S0 = ∅. The resulting concave

polygon is reduced to a single horizontal edge. The corresponding endpoints are λ1 = 0 and (by extension)

λ0 , +∞. In the first iteration, S0 is explored: the best insertion Sadd = {ℓadd} is computed in (13),

and included in S during the call to CCV Descent. The updated set S is now composed of S0 = ∅

(explored) and S1 = Sadd (unexplored). The new concave polygon has two edges delimited by λ2 = 0,

λ1 and λ0 = +∞, with λ1 given in (13). Generally, either 0, 1, or 2 new unexplored supports Sadd and

Srmv may be included in S at a given iteration while a variable number of supports may be removed

from S .

ℓ0-PD terminates when all supports in S have been explored. When this occurs, the concave polygon

cannot decrease anymore with any single replacement Sj±{i}, with Sj ∈ S . Practically, the early stopping

rule λj ≤ λstop can be adopted, where j denotes the unexplored subset having the least cardinality. This

rule ensures that all candidate subsets Sj corresponding to the interval (λstop,+∞) have been explored.

Similar to CSBR, alternative stopping conditions of the form |Sj | ≥ kstop or E(Sj) ≤ εstop can be

adopted.

March 18, 2015 DRAFT

TECHNICAL REPORT 18

TABLE IV

ℓ0-PD ALGORITHM. THE ALGORITHM MAINTAINS A LIST S OF SUPPORTS Sj WHOSE CARDINALITY IS INCREASING WITH j .

THE UNEXPLORED SUPPORT HAVING THE LOWEST CARDINALITY IS EXPLORED AT EACH ITERATION. THE LISTS S AND λ

ARE UPDATED DURING THE CALLS TO CCV Descent; λ IS SORTED IN THE DECREASING ORDER, WITH λJ+1 = 0. DURING

THE FIRST ITERATION, j = 0 LEADS TO Srmv ← ∅.

inputs : A, y

outputs: S , λ

λ← {λ1} with λ1 ← 0;

S0 ← ∅, S0.expl← 0;

S ← {S0};

while {∃j : Sj .expl = 0} do

Set j as the lowest index such that Sj .expl = 0;

Sj .expl← 1;

Compute Sadd ← Sj + {ℓadd} from (11);

if j = 0 then

Srmv ← ∅;

else

Compute Srmv ← Sj − {ℓrmv} from (14);

end

Call CCV Descent(S , Sadd, λ);

Call CCV Descent(S , Srmv, λ);

end

D. Fast implementation

The CCV Descent procedure calls the function intersect to compute the intersection between a

concave polygon S and a line Snew. Lemma 1 states that this intersection is empty in two simple

situations. Hence, the call to intersect is not needed in these situations. This implementation detail is

omitted in Tab. III for brevity reasons.

Lemma 1 Let S = {Sj , j = 0, . . . , J} be a list of supports associated to a continuous, concave polygon

λ 7→ minj Ĵ (Sj ;λ) with J + 1 edges, delimited by λ = {λ0, . . . , λJ+1}. The following properties hold

for all j:

• If δEadd(Sj) < λj+1, then the line Sadd = Sj + {ℓadd} lays above the current concave polygon.

• If δErmv(Sj) > λj , then the line Srmv = Sj − {ℓrmv} lays above the current concave polygon.

March 18, 2015 DRAFT

TECHNICAL REPORT 19

Proof: We give a sketch of proof using geometrical arguments. Firstly, δEadd(Sj) is the λ-value of

the intersection point between lines Sj and Snew = Sj + {ℓadd}; see Fig. 7(b). Secondly, we notice that

|Sj | ≤ |Sadd| ≤ |Sj+1| because the concave polygon is concave and |Sadd| = |Sj| + 1. It follows from

these two facts that if δEadd(Sj) < λj+1, the line Sadd lays above Sj+1 for λ ≤ λj+1, and above Sj for

λ ≥ λj+1.

This proves the first result. A similar sketch applies to the second result.

E. Main differences between CSBR and ℓ0-PD

First, we stress that contrary to CSBR, the index j in λj does not identify with the iteration number

anymore for ℓ0-PD. Actually, the current iteration of ℓ0-PD is related to an edge of the concave polygon,

i.e., a whole interval (λj+1, λj), whereas the current iteration of CSBR is dedicated to a single value λj

which is decreasing when the iteration number j increases.

Second, the computation of the next value λj+1 ≤ λj in CSBR is only based on the violation of the

lower bound of (9), corresponding to atom selections. In ℓ0-PD, the upper bound is considered as well.

This is the reason why the λ-values are not scanned in a decreasing order anymore. This may improve

the very sparse solutions found in the early iterations within an increased computation time, as we will

see hereafter.

V. NUMERICAL RESULTS

The algorithms are evaluated on two kinds of problems involving ill-conditioned dictionaries. The be-

havior of CSBR and ℓ0-PD is first analyzed for simple examples. Then, we provide a detailed comparison

with other nonconvex algorithms for many scenarii.

A. Two generic problems

The sparse deconvolution problem takes the form y = h ∗ x⋆ + n where the impulse response h is

a Gaussian filter of standard deviation σ, and the noise n is assumed i.i.d. and Gaussian. The problem

rereads y = Ax⋆+n where A is a convolution matrix. In the default setting, y and x are sampled at the

same frequency. h is approximated by a finite impulse response of length 6σ by thresholding the smallest

values. A is a Toeplitz matrix of dimensions chosen so that any Gaussian feature h∗x⋆ if fully contained

within the observation window {1, . . . ,m}. This implies that A is slightly undercomplete: m > n with

m ≈ n. Two simulated data vectors y are represented in Fig. 8(a,b) where x⋆ are k-sparse vectors with

March 18, 2015 DRAFT

TECHNICAL REPORT 20

(a) (b)

(c) (d)

Fig. 8. Generic deconvolution (a,b) and jump detection (c,d) problems. The data vectors y and the k nonzero amplitudes of

x⋆ are represented in plain lines and with small circles, respectively. (a) Sparse deconvolution problem with k = 10 spikes,

SNR = 25 dB, σ = 24 (Gaussian impulse response), and m = 900, n = 756 (size of dictionary A). (b) Sparse deconvolution

problem with k = 30, SNR = 10 dB, σ = 3, m = 300, n = 252. (c) Jump detection problem with k = 30, SNR = 25 dB,

m = n = 300. (d) Jump detection problem with k = 10, SNR = 10 dB, m = n = 300.

k = 10 and 30, and the signal-to-noise ratio (SNR) is equal to 25 and 10 dB, respectively. It is defined

by SNR = 10 log(‖Ax⋆‖22/(mσ2
n)) where σ2

n is the variance of the noise process n.

The jump detection problem is illustrated on Fig. 8(c,d). Here, A is the squared dictionary (m = n)

defined by Ai,j = 1 if i ≥ j, and 0 otherwise. The atom aj codes for a jump at location j, and x⋆j

matches the height of the jump. When x⋆ is k-sparse, Ax⋆ yields a piecewise constant signal with k

pieces, x⋆ being the first-order derivative of the signal Ax⋆.

Both generic problems involve either square or slightly undercomplete dictionaries. The case of over-

complete dictionaries will be discussed as well, e.g., by considering the deconvolution problem with

undersampled observations y. The generic problems are already difficult because neighboring columns of

A are highly correlated, and a number of fast algorithms that are efficient for well-conditioned dictionaries

may fail to recover the support of x⋆. The degree of difficulty of the deconvolution problem is controlled

by the width σ of the Gaussian impulse response and the sparsity k: for large values of k and/or σ, the

Gaussian features resulting from the convolution h∗x⋆ strongly overlap. For the jump detection problem,

March 18, 2015 DRAFT

TECHNICAL REPORT 21

(a) |S5| = 7, λ5 = 7.8e−2 (b) |S9| = 11, λ9 = 4.1e−2 (c) |S36| = 41, λ36 = 3.4e−4

Fig. 9. Jump detection example: processing of the data of Fig. 8(c) using CSBR. Three sparse solutions xj are shown, each

being related to some CSBR output Sj , with ‖xj‖0 = |Sj |. The original vector y is represented in dashed lines and the

approximation Axj is in solid line.

all the step signals related to the atoms aj have overlapping supports.

B. Empirical behavior of CSBR and ℓ0-PD

1) Example: Consider the problem shown on Fig. 8(c). Because CSBR and ℓ0-PD provide very similar

results, we only show the CSBR results. CSBR delivers sparse solutions xj for decreasing λj , xj being

the least-square solution supported by the j-th output of CSBR (Sj). Three sparse solutions xj are

represented on Fig. 9. For the first solution (lowest value of |Sj |, largest λj), only the seven main jumps

are being detected (Fig. 9(a)). The cardinality of Sj increases with j, and some other jumps are obtained

together with possible false detections (Figs. 9(b,c)).

2) Model order selection: It may often be useful to select a single solution xj . The proposed algorithms

are compatible with most classical methods of model order selection [46], [47] because they are greedy

algorithms. Assuming that the variance of the observation noise is unknown, we distinguish two categories

of cost functions for estimation of the order ‖xj‖0 = |Sj |. The first take the form minj{m log E(Sj) +

α|Sj |} where α equals 2, logm, and 2 log logm for the Akaike, Minimum Description Length (MDL)

and Hannan and Quinn criteria, respectively [46]. The second are cross-validation criteria [48], [49]. The

sparse approximation framework allows one to derive simplified expressions of the latter up to the storage

of intermediate solutions of greedy algorithms for consecutive cardinalities [8], [47], [50].

For the sparse deconvolution and jump detection problems, we found that the Akaike and cross

validation criteria severely over-estimate the expected number of spikes. On the contrary, the MDL

March 18, 2015 DRAFT

TECHNICAL REPORT 22

(a) (b)

Fig. 10. Model order selection using MDLc: display of the selected sparse solution xj and the related data approximation

signal. The data of Fig. 8(c,b) (k = 30 true spikes) are processed using CSBR and ℓ0-PD, respectively. (a) corresponds to the

simulation shown on Fig. 9. The MDLc solution is the CSBR output support S27 of cardinality 27. (b) is related to the ℓ0-PD

output S15, with |S15| = 16.

(a) (b)

Fig. 11. Typical approximate ℓ0-curves found for the deconvolution problem of Fig. 8(a): zoom in for small and large λ’s. The

ℓ0-PD curve is concave and continuous on λ ∈ R+. The CSBR curve is continuous only for large λ-values (black circles). For

low λ’s, there can be discontinuities at breakpoint locations (white circles). Here, both curves almost coincide for large λ’s. The

ℓ0-PD curve lays below the CSBR curve for low λ’s.

criterion yields quite accurate results. We found that the modified MDLc version dedicated to short data

records (i.e., when the number of observations is moderately larger than the model order) [51] yields the

best results for all the scenarii we have tested. It reads:

min
j

{

log E(Sj) +
log(m)(|Sj |+ 1)

m− |Sj | − 2

}

. (15)

Fig. 10(a) illustrates that the number of spikes found using MDLc is very accurate for high SNRs (27

spikes are found, the unknown order being 30). It is underestimated for low SNRs: 16 spikes are found

(instead of 30) for the simulation of Fig. 10(b) where SNR = 10 dB. This behavior is relevant because

March 18, 2015 DRAFT

TECHNICAL REPORT 23

for noisy data, the spikes of smallest amplitudes are drowned in the noise. One cannot expect to detect

them.

3) Further empirical observations: Fig. 11 is a typical display of the approximate ℓ0-curves yielded by

CSBR and ℓ0-PD. The ℓ0-PD curve is structurally continuous and concave whereas for the CSBR curve,

there are two kinds of breakpoints depicted with black and white circles. The former are “continuous”

breakpoints. This occurs when no single replacement is done during the call to SBR (SBR(Sinit;λj)

returns Sj = Sinit; see Tab. II). Otherwise, a discontinuity breakpoint (white circle) appears. In Fig. 11,

the CSBR and ℓ0-PD curves almost coincide for large λ’s, where only continuous breakpoints can be

observed. For low λ’s, the ℓ0-PD curve lays below the CSBR curve, and discontinuity breakpoints appear

in the latter curve.

Fig. 12 provides some insight on the CSBR and ℓ0-PD iterations for a sparse deconvolution problem

with ‖x⋆‖0 = 17 and SNR = 20 dB. In the CSBR subfigures, the horizontal axis represents the number

of single replacements: 60 replacements are being performed from the initial empty support during the

successive calls to SBR. For ℓ0-PD, the horizontal axis shows the iteration number. At most two new

supports are being included in the list of candidate subsets at each iteration. The number of effective

single replacements is therefore increased by 0, 1 or 2. During the first 25 iterations, ℓ0-PD mainly

operates atom selections similar to CSBR. The explored subsets are thus of increasing cardinality and

λ is decreasing (Figs. 12(c,d)). From iterations 25 to 40, the very sparse solutions previously found

(k ≤ 20) are improved as a series of atom de-selections is performed. They are being improved again

around iteration 80. On the contrary, the sparsest solutions are never improved with CSBR, which works

for decreasing λ’s (Figs. 12(a,b)). For ℓ0-PD, the early stopping parameter λstop may have a strong

influence on the improvement of the sparsest solutions and the overall computation time. This point will

be further discussed below.

C. Extensive comparisons

The proposed algorithms are compared with popular nonconvex algorithms for both problems intro-

duced in subsection V-A with various parameter settings: problem dimension (m,n), ratio m/n, signal-to-

noise ratio, cardinality of x⋆, and width σ of the Gaussian impulse response for the deconvolution problem.

The settings are listed on Table V for 10 scenarii. Because the proposed algorithms are orthogonal greedy

algorithms, they are better suited to problems in which the level of sparsity is moderate to high. We

therefore restrict ourselves to the case where k = ‖x⋆‖0 ≤ 30.

March 18, 2015 DRAFT

TECHNICAL REPORT 24

(a) CSBR (b) CSBR

(c) ℓ0-PD (d) ℓ0-PD

Fig. 12. Series of single replacements performed by CSBR and ℓ0-PD. (a) CSBR: cardinality of the current support found

after each single replacement. (b) Breakpoints λj found by CSBR, represented in log-scale. SBR is executed for each λj , and

the number of single replacements for fixed λj matches the length of the horizontal steps in the figure. (c) ℓ0-PD: cardinality

of the supports appended to the regularization path during the iterations. At each iteration, 0, 1 or 2 supports are included.

Vertical steps appear whenever two supports are simultaneously included. (d) ℓ0-PD: representation in log-scale of the current

interval (λj+1, λj) (grey color). When the grey bars reach the bottom of the image, the lower bound equals λj+1 = 0.

1) Competing algorithms: We focus on the comparison with algorithms based on nonconvex penalties.

It is indeed increasingly acknowledged that the BPDN estimates are less accurate than sparse approxima-

tion estimates based on nonconvex penalties. We do not consider forward greedy algorithms either; we

already showed that SBR is (unsurprisingly) more efficient than the simpler OMP and OLS algorithms [3].

Among the popular nonconvex algorithms, we consider:

1) Iterative Reweighted Least Squares (IRLS) for ℓq minimization, q < 1 [52];

2) Iterative Reweighted ℓ1 (IRℓ1) coupled with the penalty log(|xi|+ ε) [20], [23], [53];

March 18, 2015 DRAFT

TECHNICAL REPORT 25

TABLE V

SETTINGS RELATED TO EACH SCENARIO: k IS THE SPARSITY. f CONTROLS THE DICTIONARY SIZE:

m = f mDEF, n = f nDEF WITH nDEF ≈ mDEF = 300. BY DEFAULT, f = 1. THE UNDERSAMPLING PARAMETER ∆

EQUALS 1 BY DEFAULT (mDEF ≥ nDEF). IT IS INCREASED TO GENERATE PROBLEMS WITH OVERCOMPLETE DICTIONARIES

(m ≈ n/∆). THE GAUSSIAN IMPULSE RESPONSE WIDTH IS SET TO σ = f σDEF WITH σDEF = 3 OR 8.

Scenario Type SNR k f ∆ m n σ

A Deconv. 25 30 1 1 300 282 3

B Deconv. 10 10 1 1 300 252 8

C Deconv. 25 10 3 1 900 756 24

D Deconv. 25 30 6 1 1800 1692 18

E Jumps 25 10 1 1 300 300 ∅

F Jumps 25 30 1 1 300 300 ∅

G Jumps 10 10 1 1 300 300 ∅

H Deconv. +∞ 10 3 2 450 756 24

I Deconv. +∞ 30 3 2 450 756 24

J Deconv. +∞ 10 1 4 75 252 8

3) ℓ0 penalized least squares for cyclic descent (L0LS-CD) [54];

4) Smoothed ℓ0 (SL0) [43], [55].

We resort to a penalized least-square implementation for all algorithms, the only algorithm directly

working with the ℓ0 penalty being L0LS-CD. We do not consider simpler thresholding algorithms (Iterative

Hard Thresholding, CoSaMP, Subspace Pursuit) proposed in the context of compressive sensing since we

found that SBR behaves much better than these algorithms for ill-conditioned dictionaries [3]. We found

that L0LS-CD is more efficient than thresholding algorithms. Moreover, the cyclic descent approach is

becoming very popular in the recent sparse approximation literature [44], [56] although its speed of

convergence is sensitive to the quality of the initial solution. Here, we use the BPDN initial solution

argmin
x
{‖y−Ax‖22+µ‖x‖1} where µ is set to half of the maximum tested λ-value (more details will

be given hereafter). This simple ad hoc setting allows us to get a rough initial solution that is nonzero

and very sparse within a fast computation time.

The three other considered algorithms work with sparsity measures depending on an arbitrary parameter.

Regarding IRLS, we set q = 0.5 or 0.1 as suggested in [52]. We chose to run IRLS twice, with q = 0.5

and then q = 0.1 (with the previous output at q = 0.5 as initial solution) so that IRLS is less sensitive to

local solutions at q = 0.1. SL0 is a GNC-like algorithm working for increasingly non-convex penalties

March 18, 2015 DRAFT

TECHNICAL REPORT 26

(i.e., Gaussian functions of decreasing widths). For simplicity reasons, we set the lowest width relative

to the knowledge of the smallest nonzero amplitude of the ground truth solution x⋆. The basic SL0

implementation is dedicated to noise-free problems [43]. There exist several adaptations in the noisy

setting [55], [57] including the precursory work [58]. We chose the efficient implementation of [57] in

which the original pseudo-inverse calculations are replaced by a quasi-Newton strategy using limited

memory BFGS updates. Finally, the IRℓ1 implementation depends on both the choice of parameter ε

(which controls the degree of nonconvexity) and the ℓ1 solver. We have tested two ℓ1 solvers: the in-

crowd algorithm [59] together with an empirical setting of ε > 0, and ℓ1 homotopy in the limit case

ε → 0, following [53]. We found that ℓ1 homotopy is faster than in-crowd, mainly because the Matlab

implementation of in-crowd (provided by the authors) makes calls to the quadprog built-in function,

which is computationally expensive for large dimension problems.

2) Numerical protocol: Because the competing algorithms work for a single λ value, we need to define

a grid, denoted by {λG
i , i = 1, . . . , Nλ}, for comparison purposes. Such grid is defined in logscale for

each of the 10 scenarii (k,A,SNR) defined in Table V. The number of grid points is Nλ = 11. For

a given scenario, T = 30 trials are being performed in which k-sparse vectors x⋆(t) and noise vector

n(t) are randomly drawn. This leads us to simulate T observation vectors y(t) = Ax⋆(t) + n(t) with

t ∈ {1, . . . , T}. Specifically, the location of the nonzero amplitudes in x⋆(t) are uniformly distributed and

the amplitude values are drawn according to an i.i.d. Gaussian distribution. For each trial t, all competing

algorithms need to be run Nλ times with y(t) and λG
i as inputs whereas CSBR and ℓ0-PD are run only

once since they deliver estimates for a continuum of values of λ. Their solution for each λG
i directly

deduces from their set of output supports and the knowledge of both breakpoints surrounding λG
i .

The algorithms are first evaluated in the optimization viewpoint: the related criteria are their capacity to

reach a low value of J (x;λ) and the corresponding CPU time. In this viewpoint, the proposed methods

might be somehow favored since they are more directly designed with the criterion J (x;λ) in mind.

On the other hand, J (x;λ) appears to be a natural indicator because solving either ℓ0-minimization

problem (1), (2) or (3) is the ultimate goal of any sparse approximation method. As detailed below,

some post-processing will be applied to the outputs of algorithms that do not rely on the ℓ0-norm so that

they are not strongly disadvantaged. Practically, we store the value of J (x;λG
i) found for each trial and

each λG
i . Averaging this value over the trials t yields a table TabJ(a, λG

i) where a denotes a candidate

algorithm. Similarly, the CPU time is averaged over the trials t, leading to another table TabCPU(a, λG
i).

Each table is represented separately as a 2D plot with a specific color for each algorithm: see, e.g.,

Fig. 13. CSBR and ℓ0-PD are represented with continuous curves because J (x;λ) is computed for a

March 18, 2015 DRAFT

TECHNICAL REPORT 27

minx J (x;λ) CPU Time (seconds) minx J (x;λ) CPU Time (seconds)

(A) (A) (B) (B)

(C) (C) (D) (D)

Fig. 13. Comparison of algorithms for the noisy deconvolution problem, i.e., for the first scenarii reported on Table V. For each

scenario, the algorithms are being evaluated in terms of J -value and of CPU time for Nλ = 11 values λG
i . Evaluations are

averaged over 30 trials. The overall and mean (normalization by Nλ = 11) CPU times related to CSBR (respectively, ℓ0-PD)

are shown as two parallel horizontal lines.

continuum of λ’s, and the CPU time is computed only once.

The algorithms are also evaluated in terms of support recovery accuracy. For this purpose, let us first

define the “support error” as the minimum over i of the distance

|S⋆(t)\S(t, a, λG
i)|+ |S(t, a, λ

G
i)\S

⋆(t)| (16)

between the support S⋆(t) of the unknown sparse vector x⋆(t) and the support S(t, a, λG
i) of the

sparse reconstruction at λG
i with algorithm a. (16) takes into account both numbers of false negatives

|S⋆(t)\S(t, a, λG
i)| and of false positives |S(t, a, λG

i)\S
⋆(t)|. Denoting by S(t, a, λG

opt) ← S(t, a, λG
i)

the solution support that is the closest to S⋆(t) according to (16), we further consider the number of true

positives in S(t, a, λG
opt), defined as |S⋆(t) ∩ S(t, a, λG

opt)|. We will thus report:

• the support error;

• the corresponding number of true positives;

March 18, 2015 DRAFT

TECHNICAL REPORT 28

• the corresponding model order |S(t, a, λG
opt)|.

Averaging these measures over T trials yields the support error score SE(a), the true positive score TP(a)

and the model order, denoted by Order(a). The numbers of false positives (FP) and of true/false negatives

can be directly deduced, e.g., FP(a) = Order(a) − TP(a).

The underlying idea in this analysis is that when SE is small (respectively, TP is high), the algorithms

are likely to perform well provided that λ is appropriately chosen. However, in practical applications,

only one estimate is selected using a suitable model selection criterion. We therefore provide additional

evaluations of the MDLc estimate accuracy. For CSBR and ℓ0-PD, all output supports are considered

to compute the MDLc estimate as described in subsection V-B. For other algorithms, it is equal to one

of the sparse reconstructions obtained at λG
i for i ∈ {1, . . . , Nλ}. The same three measures as above

are computed for the MDLc estimate and averaged over T trials. They are denoted by MDLc-SE(a),

MDLc-TP(a) and MDLc-Order(a).

3) Technical adaptations for comparison purposes: Because IRLS and SL0 do not deliver sparse

vectors in the strict sense, it is necessary to sparsify their outputs before computing their SE(a) score.

This is done by running one iteration of cyclic descent (L0LS-CD): most small nonzero amplitudes are

then thresholded to 0. Regarding the values of J (x;λ), a post-processing is performed for algorithms

that do not rely on the ℓ0-norm. This post-processing can be interpreted as a local descent of J (x;λ).

It consists in: (i) running one iteration of cyclic descent (L0LS-CD); (ii) computing the squared error

related to the output support. L0LS-CD is indeed a local descent algorithm dedicated to J (x;λ) but the

convergence towards a least-square minimizer is not reached in one iteration.

4) Analysis in the optimization viewpoint: CSBR and ℓ0-PD are always among the most accurate

to minimize the cost function, as illustrated on Figs. 13, 14 and 15. We can clearly distinguish two

groups of algorithms on these figures: IRLS, L0LS-CD and SL0 one the one hand, and the OLS-based

algorithms (SBR, CSBR, ℓ0-PD) and IRℓ1 on the other hand, which are the most accurate. We cannot

clearly discriminate the accuracy of SBR and CSBR: one may behave slightly better than the other

depending on the scenarii. On the contrary, SBR and CSBR are often outperformed by ℓ0-PD. The

obvious advantage of CSBR and ℓ0-PD over SBR and IRℓ1 is that they are ℓ0-homotopy algorithms, i.e.,

a set of solutions are delivered for many sparsity levels, and the corresponding λ-values are adaptively

found. On the contrary, the SBR output is related to a single λ whose tuning may be tricky. Another

advantage over IRℓ1 is that the structure of forward-backward algorithms is simpler, as no call to any ℓ1

solver is required. Moreover, the number of parameters to tune is lower: there is a single (early) stopping

parameter λstop.

March 18, 2015 DRAFT

TECHNICAL REPORT 29

minx J (x;λ) CPU Time (seconds) minx J (x;λ) CPU Time (seconds)

(E) (E) (F) (F)

(G) (G)

Fig. 14. Comparison of algorithms for the jump detection problem for the scenarii E, F and G of Table V.

The price to pay for a better performance is an increase of the computation burden. On Figs. 13, 14

and 15, two lines are drawn for CSBR (respectively, for ℓ0-PD). They are horizontal because the algorithm

is run only once per trial, so there is a single computation time measurement. The first line corresponds

to the overall computation time, i.e., from the start to the termination of CSBR / ℓ0-PD. This time is

often more expensive than for other algorithms. However, the latter times refer to a single execution for

some λG
i value. If one wants to recover sparse solutions for many λG

i ’s, they must be cumulated. This

is the reason why we have drawn a second line for CSBR and ℓ0-PD corresponding to a normalization

(by Nλ = 11) of the overall computation time. In this viewpoint, the CPU time of CSBR and ℓ0-PD are

very reasonable.

The computation time depends on many factors among which the implementation of algorithms

(including the memory storage) and the chosen stopping rules. We have followed an homogeneous

implementation of algorithms to make the CPU time comparisons meaningful. We have defined two

sets of stopping rules depending on the problem dimension. The default parameters apply to medium

size problems (m = 300). They are relaxed for problems of larger dimension (m > 500) to avoid huge

March 18, 2015 DRAFT

TECHNICAL REPORT 30

TABLE VI

JUMP DETECTION PROBLEM IN THE NOISY SETTING. THE ALGORITHMS ARE EVALUATED IN TERMS OF SUPPORT ERROR

(SE) AND NUMBER OF TRUE POSITIVES (TP). THE NUMBER OF JUMPS THAT ARE FOUND IS REPORTED (ORDER) TOGETHER

WITH THE “TRUE ORDER” CORRESPONDING TO THE GROUND TRUTH k. THE SCORES RELATED TO THE MDLC ESTIMATE

ARE INDICATED SIMILARLY.

Scenario E ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

SE 1.6 1.6 1.6 5.3 4.0 1.5 1.8

TP 8.6 8.7 8.6 5.2 7.8 8.7 8.7

Order (true: 10) 8.8 9.0 8.9 5.7 9.6 8.9 9.1

MDLc-SE 4.7 4.3 4.1 22.7 5.6 4.1 3.5

MDLc-TP 8.7 8.8 8.8 6.9 8.6 8.8 8.8

MDLc-Order 12.2 11.9 11.6 26.6 12.7 11.7 11.0

Scenario F ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

SE 11.1 11.9 11.8 22.5 11.6 10.9 11.6

TP 21.2 20.6 20.7 9.2 20.3 20.8 20.7

Order (true: 30) 23.6 23.2 23.2 10.9 22.2 22.5 23.1

MDLc-SE 13.7 13.4 13.4 39.2 14.0 13.1 13.3

MDLc-TP 21.8 21.8 21.4 12.9 21.6 22.1 21.5

MDLc-Order 27.3 27.0 26.3 35.0 27.2 27.2 26.4

Scenario G ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

SE 7.3 7.5 7.5 8.9 10.3 7.2 7.5

TP 4.0 3.6 3.6 3.1 2.9 3.9 4.0

Order (true: 10) 5.23 4.73 4.73 5.17 6.07 4.97 5.57

MDLc-SE 11.4 10.7 10.9 11.7 15.1 11.2 10.7

MDLc-TP 4.2 4.2 4.2 3.0 3.9 4.2 4.4

MDLc-Order 9.8 9.1 9.3 7.6 12.8 9.6 9.5

computational costs. The stopping rule of CSBR and ℓ0-PD is always λ ≤ λstop = αλG
1 with α = 1

for CSBR and 0.5 (medium size) or 0.8 (large size) for ℓ0-PD. For L0LS-CD, the maximum number

of cyclic descents (update of every amplitude xi) is set to 60 or 10 depending on the dimension. For

SL0, we have followed the default setting of [43] for the rate of deformation of the nonconvex penalty.

The number of BFGS iterations done in the local minimization steps for each penalty is set to L = 40

or 5. It is set to 5L for the last penalty which is the most nonconvex. Regarding IRLS and IRLℓ1, we

keep the same settings whatever the dimension since the computation times remain reasonable for large

dimensions. Finally, SBR does not require any arbitrary stopping rule. The problems of large dimensions

correspond to scenarii C and D. We observe on Fig. 13 that the comparison (trade-off performance vs

March 18, 2015 DRAFT

TECHNICAL REPORT 31

(H) (I) (J)

Fig. 15. Comparison of algorithms for the noise-free deconvolution problem, i.e., for the scenarii H, I and J of Table V. Some

markers do not appear for low λ’s (L0LS-CD, SL0) in the left figures because they do not lay in the zoom-in window (their

performance is poor).

computation time) is now clearly in favor of CSBR and ℓ0-PD. IRℓ1 remains very competitive although

the average numerical cost becomes larger.

5) Analysis in the support recovery viewpoint: The support recovery performance is only shown for

the scenarii E to J (Tabs. VI and VII). For noisy deconvolution problems, these results are omitted

because the support error is often quite large and the true positive scores are low whatever the algorithm,

especially for scenarii B to D. Specifically, the least support error always exceeds 20, 10, 10 and 32 for

the scenarii A to D (k = 30, 10, 10 and 30, respectively). For such difficult problems, one can hardly

discriminate algorithms based on simple binary tests such as the true positive rate. More sophisticated

localization tests are non binary and would take into account the distance between the location of the true

spikes and their wrong estimates [60]. It is noticeable, though, that the MDLc estimator delivers subsets

of realistic cardinality for scenarii A to D (e.g., the subsets found with CSBR are of cardinalities 33,

9, 15 and 38, the true cardinalities being 30, 10, 10 and 30). The model orders are also quite accurate

for the noisy jump detection problem (Tab. VI) whereas the true support is often partially detected by

March 18, 2015 DRAFT

TECHNICAL REPORT 32

TABLE VII

SPARSE DECONVOLUTION PROBLEM IN THE NOISE-FREE SETTING: EXACT SUPPORT RECOVERY.

Scenario H ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

SE 2.5 3.6 4.8 11.4 13.0 0.8 6.1

TP 8.3 8.2 6.8 0.4 0.1 9.5 9.4

Order (true: 10) 9.1 10.0 8.3 2.2 3.2 9.8 14.9

MDLc-SE 3.6 3.8 5.8 168.5 343.8 1.1 9.0

MDLc-TP 8.6 8.6 7.9 3.3 6.6 9.5 9.6

MDLc-Order 10.8 11.0 11.6 153.5 347.0 10.1 18.2

Scenario I ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

SE 0.9 1.3 2.1 36.7 48.5 3.8 9.4

TP 29.4 29.3 29.1 0.7 0.8 28.0 27.7

Order (true: 30) 29.7 29.8 30.2 8.2 20.1 29.8 34.8

MDLc-SE 3.8 3.5 3.7 686.0 444.9 9.5 114.3

MDLc-TP 29.5 29.4 29.2 28.6 17.5 28.5 26.4

MDLc-Order 32.8 32.3 32.1 437.0 449.8 36.5 137.2

Scenario J ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

SE 0.3 3.5 5.3 10.3 10.4 2.4 4.3

TP 9.8 7.3 5.8 0.6 2.6 8.8 9.2

Order (true: 10) 9.8 8.1 6.9 1.4 5.6 10.0 12.7

MDLc-SE 2.6 7.7 12.4 176.2 78.6 7.2 69.0

MDLc-TP 9.7 8.9 8.0 8.6 3.0 8.9 4.1

MDLc-Order 12.0 15.5 18.5 73.0 74.6 14.9 67.2

several of the considered algorithms. Here, CSBR and ℓ0-PD are among the best algorithms in terms of

support error.

The results of Tab. VII and Fig. 15 correspond to the deconvolution problem in noise-free case. The

data y are undersampled so that the dictionary A is overcomplete. The undersampling rate ∆ ≈ m/n is

set to 2 in scenarii H and I and 4 in scenario J. Again, CSBR and ℓ0-PD are among the best (SE, TP,

MDLc-order) especially for the most difficult problem J.

6) Overcomplete dictionaries with noise: We now provide arguments indicating that the proposed

algorithms are competitive as well for noisy problems with overcomplete dictionaries. The detailed

experiments commented below are not reported for space reasons.

We have first considered the noisy deconvolution problem with ∆ = 2 or 4 leading to overcomplete

dictionaries, the other parameters being set as in scenarii A to D. Although the data approximation is

March 18, 2015 DRAFT

TECHNICAL REPORT 33

qualitatively good for CSBR and ℓ0-PD, the SE and TP scores are very weak. It is hard to discriminate the

performance of algorithms because these measures are very weak for all considered algorithms. Moreover,

the values of J (λ) found for most algorithms are often similar.

We have also considered an adaptive spline approximation problem generalizing the jump detection

problem to the approximation of a signal using piecewise polynomials of degree P = 1 or 2 [3]. The jump

detection problem can indeed be thought of as the approximation with a piecewise constant signal (P = 0).

The generalized version [3] is inspired from the regression spline modeling in [61]. Now, the dictionary

atoms are related to the detection of the locations of jumps, changes of slopes and changes of curvatures

in the signal y (subdictionaries A0, A1 and A2). The dictionary then takes the form A← [A0,A1] or

A← [A0,A1,A2] where each sub-dictionary Ap (p ≤ P) is formed of shifted versions of the one-sided

power function i 7→ [max(i, 0)]p. The size of the full dictionary A is approximately m × (P + 1)m.

Hence, it becomes overcomplete as soon as P ≥ 1. We have shown [3] that SBR is competitive when

P = 1 or 2. We have carried out new tests confirming that CSBR and ℓ0-PD are more efficient than their

competitors in terms of values of J (λ). However, the rate of true positives is low for P ≥ 1 since the

location of the change of slopes and of curvatures can hardly be exactly recovered from noisy data.

VI. SOFTWARE

The Matlab implementation of the proposed CSBR and ℓ0-PD algorithms is available at www.cran.

univ-lorraine.fr/perso/charles.soussen/software.html including programs showing how to call these func-

tions.

VII. CONCLUSION

The choice of a relevant sparse approximation algorithm relies on a trade-off between the desired

performance and the computation time one is ready to spend. The proposed algorithms are relatively

expensive but very well suited to inverse problems inducing highly correlated dictionaries. A reason is

that they have the capacity to escape from local minimizers of J (x;λ) = ‖y−Ax‖22 +λ‖x‖0 [3]. This

behavior is in contrast with other classical sparse algorithms.

We have shown the usefulness and efficiency of the two SBR extensions when the level of sparsity

is moderate to high, i.e., k/min(m,n) is lower than 0.1. They remain competitive when k/min(m,n)

ranges between 0.1 and 0.2, and their performance gradually degrade for weaker levels of sparsity, which

is an expected behavior for such greedy type algorithms. For a single λ, CSBR is as efficient as SBR,

and ℓ0-PD improves the SBR and CSBR performance within a larger computation cost. The main benefit

March 18, 2015 DRAFT

TECHNICAL REPORT 34

over SBR is that sparse solutions are provided for a continuum of λ-values, enabling the utilization of

any classical order selection method. We found that the MDL criterion yields very accurate estimates of

the cardinality ‖x‖0.

Our perspectives include the proposal of forward-backward search algorithms that will be faster than

SBR and potentially more efficient. In the standard version of SBR, CSBR and ℓ0-PD, a single replacement

refers to the insertion or removal of a dictionary element. The cost of an iteration is essentially related to

the n linear system resolutions done to test single replacements for all dictionary atoms. The proposed

algorithms obviously remain valid when working with a larger neighborhood, e.g., when testing the

replacement of two atoms simultaneously, but their complexity becomes huge. To avoid such numerical

explosion, one may rather choose not to carry out all the replacement tests, but only some tests that are

likely to be effective. Extensions of OMP and OLS were recently proposed in this spirit [36] and deserve

consideration for proposing efficient forward-backward algorithms.

APPENDIX A

PROPERTIES OF THE ℓ0 REGULARIZATION PATHS

In this appendix, we prove that the ℓ0-penalized path S⋆P (see Definition 2) is piecewise constant

(Theorem 1) and is a subset of the ℓ0-constrained regularization path S⋆C (Theorem 2). We will denote

the ℓ0-curve by λ 7→ J ⋆(λ) = minS{Ĵ (S;λ)}. Let us recall that this function is concave and affine on

each interval (λ⋆
i+1, λ

⋆
i), with i ∈ {0, . . . , I} (Definition 1). Moreover, λ⋆

I+1 = 0 and λ⋆
0 = +∞.

A. Proof of Theorem 1

We prove Theorem 1 together with the following lemma, which is informative about the content of

S⋆P(λ) for the breakpoints λ = λ⋆
i .

Lemma 2 Let i ∈ {1, . . . , I − 1}. Then, for all λ ∈ (λ⋆
i+1, λ

⋆
i), S

⋆
P(λ) ⊂ S

⋆
P(λ

⋆
i+1) ∩ S

⋆
P(λ

⋆
i).

For the first and last intervals, we have:

• For all λ ∈ (0, λ⋆
I), S

⋆
P(λ) ⊂ S

⋆
P(λ

⋆
I).

• For all λ ∈ (λ⋆
1,+∞), S⋆P(λ) = {∅} ⊂ S

⋆
P(λ

⋆
1).

Proof of Theorem 1: By definition, the ℓ0-curve is the concave envelope of the (finite) set of lines

S for all possible subsets S. Because it is affine on the i-th interval (λ⋆
i+1, λ

⋆
i), J

⋆(λ) coincides with

Ĵ (Si;λ) = E(Si) + λ|Si|, where Si is some optimal subset for all λ ∈ (λ⋆
i+1, λ

⋆
i).

March 18, 2015 DRAFT

TECHNICAL REPORT 35

Let λ ∈ (λ⋆
i+1, λ

⋆
i) and S ∈ S⋆P(λ). Then, Ĵ (S;λ) = Ĵ (Si;λ). It follows that both lines S and

Si necessarily coincide; otherwise, they would intersect at λ, and line S would lay below Si on either

interval (λ⋆
i+1, λ) or (λ, λ⋆

i), which contradicts the definition of Si. We conclude that S ∈ S⋆P(λ
′) for all

λ′ ∈ (λ⋆
i+1, λ

⋆
i).

We have shown that the content of S⋆P(λ) does not depend on λ when λ ∈ (λ⋆
i+1, λ

⋆
i).

Proof of Lemma 2: The first result S⋆P(λ) ⊂ S
⋆
P(λ

⋆
i+1) ∩ S

⋆
P(λ

⋆
i) is obtained by slightly adapting

the proof of Theorem 1: replace (λ⋆
i+1, λ

⋆
i) by the closed interval [λ⋆

i+1, λ
⋆
i], and set λ′ to both endpoints

of this interval.

The second and third results are obtained similarly, by considering the intervals (0, λ⋆
I] and [λ⋆

1,+∞),

and setting λ′ ← λ⋆
I and λ′ ← λ⋆

1, respectively. It is obvious that S⋆P(λ) reduces to the empty support

for λ > λ⋆
1 since the ℓ0-curve is constant for λ > λ⋆

1.

B. Proof of Theorem 2

The first result is straightforward: for any λ and for S ∈ S⋆P(λ), we have S ∈ S⋆C(|S|). Otherwise,

there would exist S′ with |S′| ≤ |S| and E(S′) < E(S). Then, Ĵ (S′;λ) < Ĵ (S;λ) would contradict

S ∈ S⋆P(λ).

To prove the second result, let us first show that for any i, ∃ki : ∀λ ∈ (λ⋆
i+1, λ

⋆
i), S

⋆
P(λ) ⊂ S

⋆
C(ki).

Let S ∈ S⋆P(λ) for some λ ∈ (λ⋆
i+1, λ

⋆
i). Theorem 1 implies that S ∈ S⋆P(λ) for any λ ∈ (λ⋆

i+1, λ
⋆
i).

Therefore, J ⋆(λ) = Ĵ (S;λ) for λ ∈ (λ⋆
i+1, λ

⋆
i), and the slope of line S, i.e., |S|, is constant whatever

S ∈ S⋆P(λ) and λ ∈ (λ⋆
i+1, λ

⋆
i). Let us denote this constant by ki = |S|. According to the first paragraph

of the proof, S ∈ S⋆P(λ) implies that S ∈ S⋆C(ki).

Let us prove the reverse inclusion S⋆C(ki) ⊂ S
⋆
P(λ). Let λ ∈ (λ⋆

i+1, λ
⋆
i) and S ∈ S⋆C(ki). First, we

have |S| ≤ ki. Second, for any S′ ∈ S⋆P(λ), we have |S′| = ki by definition of ki. We also have

that E(S′) = E(S) because S⋆P(λ) ⊂ S
⋆
C(ki). Finally, Ĵ (S′;λ) ≥ Ĵ (S;λ). S′ ∈ S⋆P(λ) implies that

S ∈ S⋆P(λ). This concludes the proof of the second result.

REFERENCES

[1] B. K. Natarajan, “Sparse approximate solutions to linear systems”, SIAM J. Comput., vol. 24, no. 2, pp. 227–234, Apr.

1995.

[2] M. Nikolova, “Description of the minimizers of least squares regularized with ℓ0 norm. Uniqueness of the global minimizer”,

SIAM J. Imaging Sci., vol. 6, no. 2, pp. 904–937, May 2013.

[3] C. Soussen, J. Idier, D. Brie, and J. Duan, “From Bernoulli-Gaussian deconvolution to sparse signal restoration”, IEEE

Trans. Signal Process., vol. 59, no. 10, pp. 4572–4584, Oct. 2011.

March 18, 2015 DRAFT

TECHNICAL REPORT 36

[4] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems”, Proc. IEEE, invited

paper (Special Issue “Applications of sparse representation and compressive sensing”), vol. 98, no. 5, pp. 948–958, June

2010.

[5] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries”, IEEE Trans. Signal Process., vol. 41, no.

12, pp. 3397–3415, Dec. 1993.

[6] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with

applications to wavelet decomposition”, in Proc. 27th Asilomar Conf. on Signals, Systems and Computers, Nov. 1993,

vol. 1, pp. 40–44.

[7] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods and their application to non-linear system

identification”, Int. J. Control, vol. 50, no. 5, pp. 1873–1896, Nov. 1989.

[8] A. J. Miller, Subset selection in regression, Chapman and Hall, London, UK, 2nd edition, Apr. 2002.

[9] S. F. Cotter, J. Adler, B. D. Rao, and K. Kreutz-Delgado, “Forward sequential algorithms for best basis selection”, IEE

Proc. Vision, Image and Signal Processing, vol. 146, no. 5, pp. 235–244, Oct. 1999.

[10] L. Rebollo-Neira and D. Lowe, “Optimized orthogonal matching pursuit approach”, IEEE Signal Process. Lett., vol. 9,

no. 4, pp. 137–140, Apr. 2002.

[11] T. Blumensath and M. E. Davies, “Iterative thresholding for sparse approximations”, J. Fourier Anal. Appl., vol. 14, no.

5, pp. 629–654, Dec. 2008.

[12] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction”, IEEE Trans. Inf. Theory,

vol. 55, no. 5, pp. 2230–2249, May 2009.

[13] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples”, Appl. Comp.

Harmonic Anal., vol. 26, no. 3, pp. 301–321, May 2009.

[14] C. Herzet and A. Drémeau, “Bayesian pursuit algorithms”, Research Report, INRIA Rennes Bretagne Atlantique - Télécom

ParisTech, Rennes, France, Jan. 2014.

[15] M. A. Efroymson, “Multiple regression analysis”, in Mathematical Methods for Digital Computers, A. Ralston and H. S.

Wilf, Eds., vol. 1, pp. 191–203. Wiley, New York, 1960.

[16] K. N. Berk, “Forward and backward stepping in variable selection”, J. Statist. Comput. Simul., vol. 10, no. 3-4, pp.

177–185, Apr. 1980.

[17] T. Zhang, “Adaptive forward-backward greedy algorithm for learning sparse representations”, IEEE Trans. Inf. Theory,

vol. 57, no. 7, pp. 4689–4708, July 2011.

[18] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to

compressed sensing and other inverse problems”, IEEE J. Sel. Top. Signal Process., vol. 1, no. 4, pp. 586–597, Dec. 2007.

[19] M. Zibulevsky and M. Elad, “ℓ1 − ℓ2 optimization in signal and image processing”, IEEE Sig. Proc. Mag., vol. 27, no.

3, pp. 76–88, May 2010.

[20] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted ℓ1 minimization”, J. Fourier Anal. Appl.,

vol. 14, no. 5-6, pp. 877–905, Dec. 2008.

[21] G. Gasso, A. Rakotomamonjy, and S. Canu, “Recovering sparse signals with a certain family of nonconvex penalties and

DC programming”, IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4686–4698, Dec. 2009.

[22] N. Mourad and J. P. Reilly, “Minimizing nonconvex functions for sparse vector reconstruction”, IEEE Trans. Signal

Process., vol. 58, no. 7, pp. 3485–3496, July 2010.

March 18, 2015 DRAFT

TECHNICAL REPORT 37

[23] D. P. Wipf and S. Nagarajan, “Iterative reweighted ℓ1 and ℓ2 methods for finding sparse solutions”, IEEE J. Sel. Top.

Signal Process. (Special issue on Compressive Sensing), vol. 4, no. 2, pp. 317–329, Apr. 2010.

[24] A. Gholami and S. M. Hosseini, “A general framework for sparsity-based denoising and inversion”, IEEE Trans. Signal

Process., vol. 59, no. 11, pp. 5202–5211, Nov. 2011.

[25] I. Ramı́rez and G. Sapiro, “Universal regularizers for robust sparse coding and modeling”, IEEE Trans. Image Process.,

vol. 21, no. 9, pp. 3850–3864, Sept. 2012.

[26] H. A. Le Thi, B. T. Nguyen Thi, and H. M. Le, “Sparse signal recovery by difference of convex functions algorithms”,

in Intelligent Information and Database Systems, A. Selamat, N. T. Nguyen, and H. Haron, Eds., Berlin, 2013, vol. 7803

of Lecture Notes in Computer Science, pp. 387–397, Springer Verlag.

[27] I. Selesnick and I. Bayram, “Sparse signal estimation by maximally sparse convex optimization”, IEEE Trans. Signal

Process., vol. 62, no. 5, pp. 1078–1092, Mar. 2014.

[28] D. L. Donoho and Y. Tsaig, “Fast solution of ℓ1-norm minimization problems when the solution may be sparse”, IEEE

Trans. Inf. Theory, vol. 54, no. 11, pp. 4789–4812, Nov. 2008.

[29] M. R. Osborne, B. Presnell, and B. A. Turlach, “A new approach to variable selection in least squares problems”, IMA

Journal of Numerical Analysis, vol. 20, no. 3, pp. 389–403, 2000.

[30] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression”, Ann. Statist., vol. 32, no. 2, pp. 407–499,

Apr. 2004.

[31] I. Das and J. E. Dennis, “A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation

in multicriteria optimization problems”, Structural optimization, vol. 14, no. 1, pp. 63–69, Aug. 2007.

[32] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for engineering”, Structural and

Multidisciplinary Optimization, vol. 26, no. 6, pp. 369–395, Apr. 2004.

[33] E. van den Berg and M. P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions”, SIAM J. Sci. Comput.,

vol. 31, no. 2, pp. 890–912, Nov. 2008.

[34] P. M. T. Broersen, “Subset regression with stepwise directed search”, J. R. Statist. Soc. C, vol. 35, no. 2, pp. 168–177,

1986.

[35] D. Haugland, “A bidirectional greedy heuristic for the subspace selection problem”, in Engineering stochastic local search

algorithms. Designing, implementing and analyzing effective heuristics, T. Stützle, M. Birattari, and H. H. Hoos, Eds.,

Berlin, Germany, Sept. 2007, vol. 4638 of Lect. Notes Comput. Sci., pp. 162–176, Springer Verlag.

[36] S. Chatterjee, D. Sundman, M. Vehkaperä, and M. Skoglund, “Projection-based and look-ahead strategies for atom

selection”, IEEE Trans. Signal Process., vol. 60, no. 2, pp. 634–647, Feb. 2012.

[37] J. Duan, C. Soussen, D. Brie, and J. Idier, “A continuation approach to estimate a solution path of mixed L2-L0 minimization

problems”, in Signal Processing with Adaptive Sparse Structured Representations (SPARS workshop), Saint-Malo, France,

Apr. 2009, pp. 1–6.

[38] S. Kwon, J. Wang, and B. Shim, “Multipath matching pursuit”, IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2986–3001,

May 2014.

[39] S. Maymon and Y. Eldar, “The Viterbi algorithm for subset selection”, IEEE Signal Process. Lett., vol. 22, no. 5, pp.

524–528, May 2015.

[40] E. Wasserstrom, “Numerical solutions by the continuation method”, SIAM Rev., vol. 15, no. 1, pp. 89–119, Jan. 1973.

[41] D. M. Malioutov, M. Çetin, and A. S. Willsky, “Homotopy continuation for sparse signal representation”, in Proc. IEEE

ICASSP, Philadephia, PA, Mar. 2005, vol. V, pp. 733–736.

March 18, 2015 DRAFT

TECHNICAL REPORT 38

[42] J. Trzasko and A. Manduca, “Highly undersampled magnetic resonance image reconstruction via homotopic ℓ0-

minimization”, IEEE Trans. Medical Imaging, vol. 8, no. 1, pp. 106–121, Jan. 2009.

[43] G. H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for overcomplete sparse decomposition based on

smoothed ℓ0 norm”, IEEE Trans. Signal Process., vol. 57, no. 1, pp. 289–301, Jan. 2009.

[44] R. Mazumder, J. H. Friedman, and T. Hastie, “SparseNet: Coordinate descent with nonconvex penalties”, J. Acoust. Soc.

Amer., vol. 106, no. 495, pp. 1125–1138, Sept. 2011.

[45] D. L. Donoho, V. Stodden, and Y. Tsaig, “About SparseLab”, Tech. Rep., Stanford University, Mar. 2007.

[46] P. Stoica and Y. Selén, “Model-order selection: a review of information criterion rules”, IEEE Sig. Proc. Mag., vol. 21,

no. 4, pp. 36–47, July 2004.

[47] Y. Wang, “Model selection”, in Handbook of Computational Statistics, J. E. Gentle, W. Härdle, and Y. Mori, Eds., Berlin,

Aug. 2004, vol. 1, pp. 437–466, Springer-Verlag.

[48] G. Wahba, “Practical approximate solutions to linear operator equations when the data are noisy”, SIAM J. Num. Anal.,

vol. 14, no. 4, pp. 651–667, 1977.

[49] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as a method for choosing a good ridge parameter”,

Technometrics, vol. 21, no. 2, pp. 215–223, May 1979.

[50] C. D. Austin, R. L. Moses, J. N. Ash, and E. Ertin, “On the relation between sparse reconstruction and parameter estimation

with model order selection”, IEEE J. Sel. Top. Signal Process., vol. 4, no. 3, pp. 298–309, June 2010.

[51] F. de Ridder, R. Pintelon, J. Schoukens, and D. P. Gillikin, “Modified AIC and MDL model selection criteria for short

data records”, IEEE Trans. Instrum. and Meas., vol. 54, no. 1, pp. 144–150, Feb. 2005.

[52] M.-J. Lai, Y. Xu, and W. Yin, “Improved iteratively reweighted least squares for unconstrained smoothed ℓq minimization”,

SIAM J. Num. Anal., vol. 51, no. 2, pp. 927–957, Mar. 2013.

[53] H. Zou, “The adaptive Lasso and its oracle properties”, J. Acoust. Soc. Amer., vol. 101, no. 476, pp. 1418–1429, Dec.

2006.

[54] A. J. Seneviratne and V. Solo, “Sparse coloured system identification with guaranteed stability”, in IEEE Conference on

Decision and Control, Honolulu, HI, Dec. 2012, pp. 2826–2831.

[55] A. Eftekhari, M. Babaie-Zadeh, C. Jutten, and H. A. Moghaddam, “Robust-sl0 for stable sparse representation in noisy

settings”, in Proc. IEEE ICASSP, Taipei, Taiwan, Apr. 2009, pp. 3433–3436.

[56] G. Marjanovic and V. Solo, “lq sparsity penalized linear regression with cyclic descent”, IEEE Trans. Signal Process.,

vol. 62, no. 6, pp. 1464–1475, Mar. 2014.

[57] X. Ye, W.-P. Zhu, A. Zhang, and J. Yan, “Sparse channel estimation of mimo-ofdm systems with unconstrained smoothed

l0-norm-regularized least squares compressed sensing”, EURASIP J. Wireless Comm. and Networking, vol. 2013, no. 282,

pp. 1–13, Dec. 2013.

[58] N. Saito, “Superresolution of noisy band-limited data by data adaptive regularization and its application to seismic trace

inversion”, in Proc. IEEE ICASSP, Albuquerque, NM, Apr. 1990, pp. 1237–1240.

[59] P. R. Gill, A. Wang, and A. Molnar, “The in-crowd algorithm for fast basis pursuit denoising”, IEEE Trans. Signal

Process., vol. 59, no. 10, pp. 4595–4605, Oct. 2011.

[60] M. C. van Rossum, “A novel spike distance”, Neural Computation, vol. 13, no. 4, pp. 751–763, Apr. 2001.

[61] J. H. Friedman, “Multivariate adaptive regression splines”, Ann. Statist., vol. 19, no. 1, pp. 1–67, Mar. 1991.

March 18, 2015 DRAFT

