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ENHANCED LASSO RECOVERY ON GRAPH

Xavier Bresson∗, Thomas Laurent†, James von Brecht‡

∗ Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne
† Department of Mathematics, Loyola Marymount University
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ABSTRACT
This work aims at recovering signals that are sparse on

graphs. Compressed sensing offers techniques for signal

recovery from a few linear measurements and graph Fourier
analysis provides a signal representation on graph. In this

paper, we leverage these two frameworks to introduce a

new Lasso recovery algorithm on graphs. More precisely, we

present a non-convex, non-smooth algorithm that outperforms

the standard convex Lasso technique. We carry out numerical

experiments on three benchmark graph datasets.

Index Terms— Graph spectral analysis, Fourier basis,

Lasso, �1 relaxation, sparse recovery, non-convex optimiza-

tion

1. SPARSE REPRESENTATION ON GRAPHS

The goal of this work is to reconstruct signals on graphs that

are supposed to be sparse in the graph Fourier representation.

In this context, we will deal here with two main concepts,

graph and sparsity, which have gathered a lot of attention in

the recent years with the emergence of Compressed Sensing

and Big Data. Let us introduce briefly these two concepts in

the rest of this section.

Graph/network is a powerful tool to represent complex

high-dimensional datasets, in the sense that a graph struc-

tures data with respect to their similarities. Graphs have be-

come increasingly more considered in applications such as

search engines, social networks, airline routes, 3D geomet-

ric shapes, human brain connectivity, etc. Mathematics of-

fer strong theoretical tools to analyze graphs with Harmonic

Analysis and Spectral Graph Theory. An essential graph anal-

ysis tool is the graph Laplacian operator, which is the discrete

approximation of the continuum Laplace-Beltrami operator

for smooth manifolds. It is known that the eigenvectors of the

Laplace-Beltrami operator provide a local parametrization of

the manifold [1]. Equivalently, the eigenvectors of the graph

Laplacian, also called graph Fourier modes, provides a repre-

sentation of the graph. Given a graph with (V,E,W ), V , E
and W being respectively the set of n nodes, the set of edges

and the similarity/adjacency matrix, then the (unnormalized)

graph Laplacian operator is defined as L = D−W , where D

is the diagonal degree matrix s.t. Dii =
∑

j Wij . L is sym-

metric and positive-semidefinite, i.e. its eigenvalues λi, ∀i are

nonnegative. The graph Fourier modes are given by the eigen-

vectors {ui}ni=1 of L and can be represented by the orthogo-

nal matrix U = (u1, ..., un) ∈ R
n×n s.t. U�U = I . The

graph Fourier basis U acts as a basis to represent, analyze and

process signals on graph. For example, one can represent a

function f : V → R on graph as f(i) =
∑n

l=1 f̂l ·ul(i) where

f̂l = 〈f, ul〉 =
∑n

i=1 f(i) · ul(i) is its Fourier transform. In

this paper, we consider three well-known graphs. First, the

synthetic LFR graph, which was introduced in [2] to study

community graphs. Here, the number of nodes is chosen to be

n = 1, 000, the number of communities is 10 and the degree

of community overlapping is μ = 0.4. Second, we consider

a coarse version (for computational speedup) of the bench-

mark MNIST dataset of NYU [3] with n = 1, 176 nodes and

the number of classes is 10. Last, we use a coarse version

of the well-known 20newsgroups dataset of CMU [4] with

n = 1, 432 nodes and the number of classes is 20. All three

dataset graphs are illustrated on Figure 1 with their graph

Laplacian spectrum.

(a) LFR (b) MNIST (c) 20NEWS

(d) LFR (e) MNIST (f) 20NEWS

Fig. 1. Graph and spectrum of LFR, MNIST, 20NEWS.

Sparse recovery is currently one of the most studied topics

in signal processing. The main goal is to reconstruct signals

that are supposed to be sparse in some basis representation.
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For example, in medical imaging, one of the objectives of

sparsity is to speed up MRI acquisition by reconstructing an

image in the Fourier basis given a small number of Fourier

samples. This problem can be generalized to find the solution

of a underestimated linear system of equations, which is gen-

erally ill-posed, with the constraint that the solution is sparse.

Finding the solution of this problem is however impractica-

ble because it is a NP-hard combinatorial problem. But Can-

des, Romberg, Tao and Donoho showed in [5, 6] that using

an �1 relaxation and under some conditions on the linear op-

erator, known as the Restricted Isometry Property (RIP), and

the measurements, known as incoherence property, there ex-

ists a tight convex relaxation of the NP-hard problem, that is

easily tractable. However, it has recently been observed that

the �1 relaxation technique can be improved with reweighed

�1 [7], �p, p < 1 [8], difference of convex functions �1-�2 [9]

and smoothed �1/�2 ratio [10]. These recent works suggest

that non-convex relaxations may outperform the original �1
sparse recovery. In this work, we follow this line of research

and we introduce a new non-convex algorithm for sparse re-

covery on graph. Specifically, our goal is to improve Lasso

problems on graph.

2. ENHANCED SPARSITY

Starting from the standard �1 problem for sparse recovery

min
x
‖x‖1 s.t. Ux = f0,

where x is a sparse signal to be recovered, U is the graph

Fourier basis, and f0 are the given measurements, we propose

the following enhanced recovery model

min
x
‖x‖1 s.t. Ux = f0, ‖x‖2 = 1.

The new additional constraint, i.e. the �2 unit sphere, is a non-

convex set that is here essential for enhancing sparse recovery.

Basically, it forces the solution to be at the intersection of the

�1-ball and the �2-sphere, which are precisely the locations

of sparse points in the Euclidean domain, see Figure 2. Ob-

serve now that the new constrained �1 optimization problem

is equivalent to

min
x

‖x‖1
‖x‖2 s.t. Ux = f0 (1)

The equivalence comes from the fact that the ratio �1/�2 is a

zero-homogenous function, i.e. F (αx) = F (x), α > 0. This

means that the solution x� is the same as αx�, ∀α. Particu-

larly, for the specific value of α such that x� belongs to the

unit sphere ‖x�‖2 = 1. Figure 2 compares geometrically the

standard �1 and the new ratio model �1/�2. At a first glance,

both models promote sparsity and the new model does not

appear to bring anything new but a more complex problem.

However, this figure acts as a simple illustration and one must

remember that the recovery performance depends also on the

incoherence property about the number of observed measure-

ments. In this context, the major motivation to go beyond

convexity with the recent works [7–9] is to precisely improve

sparse recovery with a smaller number of measurements than

the standard approach. We will see that the newly proposed

model holds this property.

(a) �1 (b) �1/�2

Fig. 2. Standard �1 and �1/�2.

3. OPTIMIZATION

We consider a different version of (1) that is robust to noise:

min
x

‖x‖1
‖x‖2 +

λ

2
‖Ux− f0‖22 (2)

Problem (2) is a non-smooth and non-convex optimization

problem. The �1/non-smooth part of the problem can be

handled quite efficiently with techniques introduced in Com-

pressed Sensing such as Alternating Direction Method of

Multipliers (ADMM) [11] or Uzawa-type Primal-Dual tech-

nique [12]. However, the non-convex part is more challeng-

ing. For general non-convex problems, it is difficult to design

an algorithm that is fast, accurate, robust and also guaran-

teed to converge, or at least that satisfies the monotonicity

property. Monotonicity means that the energy is guaranteed

to decrease at each iteration, although the problem is non-

convex. In this situation, most non-convex algorithms only

find solutions that are critical points or local minimizers, and

rarely global minimizers.

3.1. Proximal Forward-Backard Splitting Algorithm

We develop in this section an algorithm for the ratio opti-

mization problem (2). A related numerical scheme was in-

troduced in [13] in the different context of data clustering.

Let T (x) = ‖x‖1, B(x) = ‖x‖2, E(x) = T (x)/B(x) and

F (x) = λ
2 ‖Ux− f0‖22 such that we want to solve

min
x

T (x)

B(x)
+ F (x).

Let us consider a semi-implicit gradient flow for this problem:

xk+1 − xk

τk
= −∂T (xk+1) ·B(xk)− T (xk) · ∂B(xk)

B2(xk)

−∂F (xk+1),
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where ∂ stands for the subdifferentials of T and B (which is

not unique for �1 but is for �2) and τk is the time step. This

provides the optimality condition

xk+1 − (xk + τk
Ek

Bk
∂B(xk)) +

τk

Bk
∂T k+1

+τk∂F k+1 � 0, (3)

where the notations T k = T (xk) and Bk = B(xk) are used.

This leads to a two-step iterative scheme:

(1) yk = xk + ck0∂B(xk) and

(2) xk+1 = argmin
x

ck1T (x) +
τk

2
F (x) +

1

2
‖x− yk‖22

= prox
ck1T+ τk

2 F
(yk),

where ck0 = τkEk/Bk and ck1 = τk/Bk. The second

step is the proximal operator [12, 14] of the convex function

ck1T + τk

2 F . Overall, we have designed a proximal forward-

backward splitting algorithm to solve (2) as the solution is

given by

xk+1 = prox
ck1T+ τk

2 F
(xk + ck0∂B(xk)). (4)

In the next section, we will show that the proposed iterative

algorithm is (almost) monotonic, i.e. its energy is guaranteed

to decrease at each iteration.

3.2. Monotonicity

We show the following quasi-monotonicity result:

Bk+1

Bk
(Ek − Ek+1) + (F k − F k+1) ≥ ‖xk − xk+1‖22

τk
(5)

Proof. Define the convex functions

Gk(x) = ck0B(x) + τkF (x), (6)

Fk(x) = ck1T (x) + τkF k, (7)

and observe that Gk(xk) = Fk(xk) for latter use. We remind

the general definition of the subdifferential ∂E of a convex

function E :

E(x1) ≥ E(x2) + 〈x1 − x2, y2〉, ∀y2 ∈ ∂E(x2). (8)

We plug x1 = xk+1, x2 = xk and E = G in (8):

Gk(xk+1) ≥ Gk(xk) + 〈xk+1 − xk, ∂Gk(xk)〉 (9)

If we now observe that the first step of the algorithm is yk =
xk + vk with vk = ck0∂B(xk) = ∂Gk(xk) then (9) becomes

Gk(xk+1) ≥ Gk(xk) + 〈xk+1 − xk, vk〉. (10)

Let us now plug x1 = xk, x2 = xk+1 and E = F in (8):

Fk(xk) ≥ Fk(xk+1) + 〈xk − xk+1, ∂Fk(xk+1)〉. (11)

Notice that the optimality condition (3) reads xk+1 − yk +
∂Fk(xk+1) � 0 and thus yk − xk+1 ∈ ∂Fk(xk+1). This

implies that (11) may be written as

Fk(xk) ≥ Fk(xk+1) + 〈xk − xk+1, yk − xk+1〉
≥ Fk(xk+1) + ‖xk − xk+1‖22

+〈xk − xk+1, vk〉 (12)

Adding (10) and (12) and using the fact that Gk(xk) =
Fk(xk) we have

Gk(xk+1) ≥ Fk(xk+1) + ‖xk − xk+1‖22 (13)

Using the definition (6) and (7), this inequality can be rewrit-

ten as (5), which is the desired result. �

Notes. Observe that close to the steady-state solution, we have

Bk+1/Bk → 1 for k →∞ and the quasi-monotonicity tends

to a monotonicity property. Second, see that if we had access

to the quantity Bk+1 (or a good estimation) then we would

set τk = Bk

Bk+1 τ0 and this would imply

Ek
Tot − Ek+1

Tot ≥ ‖xk − xk+1‖22/τk,

where ETot = E + F , and thus unconditional monotonicity

for any τ0.

4. APPLICATIONS

4.1. Enhanced Lasso on Graphs

The Algorithm. The standard Lasso problem on graph is

minx ‖x‖1 + λ
2 ‖Ux − f0‖22 where U is the sensing matrix,

here the graph Fourier modes. Function f0 is the signal mea-

sured on the graph. It is generated as f0 = U(x0 + n) where

x0 is a pure sparse signal with 5% of non-zero entries uni-

formly chosen between [−1, 1] and n is the noise, a Gaussian

distribution with standard deviation σ = 0.1. The goal is to

recover the sparse signal x0. We recall that the proposed en-

hanced Lasso problem on graph is minx
‖x‖1

‖x‖2
+ λ

2 ‖Ux−f0‖22.

We use the proximal forward-backward splitting algorithm in-

troduced in Section 3.1 to solve it. That is, Step 1: yk =

xk+ τkEk

Bk ∂‖x‖2|xk = xk+ τkEk

Bk
xk

‖xk‖2
, and Step 2: xk+1 =

argminx F (x) + G(x) where F (x) = ‖x‖1 and G(x) =
Ekλ
2 ‖Ux−f0‖22+ Ek

2τk ‖x−yk‖22. We may write this problem

as a saddle-point problem minx maxp〈p, x〉 − F �(p) +G(x)
where F � is the barrier function of the �∞ unit ball such that

F �(p) =

{
0 if |p| ≤ 1,
+∞ otherwise,

Note that G(x) is uniformly convex so that we can apply the

accelerated primal-dual algorithm of [14]. The algorithm con-
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sists in iterating the following steps:

pn+1 = proxσnF�(pn + σnx̄n) (14)

xn+1 = proxηnG(x
n − ηnpn+1) (15)

θn+1 = 1/
√
1 + 2γηn, τn+1 = θn+1ηn,

σn+1 = σn/θn+1 (16)

x̄n+1 = xn+1 + θn+1(xn+1 − xn) (17)

The scheme converges quickly, with order O(1/n2), provided

that σ0 = η0 = 1. The first inner proximal problem has an

analytical solution

proxσnF�(z) = z/max{1, |z|},

and the second inner proximal problem has also a closed-form

solution

proxηnG(z) =
z + EkληnU∗f0 + Ekηnyk/τk

1 + Ekληn + Ekηn/τk
.

As the two proximal operators are fast to solve, so it is for

the general algorithm. In fact, solving the non-convex ra-
tio problem (2) for sparse recovery can be seen as solving
the standard Lasso problem with the addition of a convex
quadratic term ‖x − yk‖22 and updating yk each time the
monotonicity condition (5) is satisfied. We summarize the

algorithm here.

Algorithm. Initialize x0 = U∗f0, σn=0 = ηn=0 = 1, γ = 1,

and iterate k until convergence

(1) τk = Bk

(2) yk = xk + Ek xk

‖xk‖2

(3) Inner loop: iterate n until the monotonicity condition,

Bn/Bk(Ek − En) + (F k − Fn) ≥ ‖xk − xn‖22/τk, is

satisfied:

(3i) pn+1 = (pn + σnx̄n)/max{1, |pn + σnx̄n|}
(3ii) xn+1 = xn−ηnpn+1+EkληnU∗f0+Ekηnyk/τk

1+Ekληn+Ekηn/τk

(3iii) θn+1 = 1/
√
1 + 2γηn, τn+1 = θn+1ηn,

σn+1 = σn/θn+1

(3iv) x̄n+1 = xn+1 + θn+1(xn+1 − xn)
(4) xk = xn+1

Note: the time step τk = Bk was chosen experimentally, and

is the subject of future study.

Numerical Experiments. We compare standard Lasso and

enhanced Lasso on graphs. We test on the LFR, MNIST and

20NEWS graphs. The value of the parameter λ that balances

the sparsity term and the fidelity term is chosen to minimize

the recovery error defined as ‖x − x0‖2/‖x‖2 for all models

and all graphs. The results are reported on Table 1 and Fig-

ure 3. Overall, the proposed enhanced Lasso model performs

better than the standard one, but it is 2-3 times slower.

Standard Lasso Proposed Lasso

LFR 0.419 0.309
MNIST 0.417 0.302

20NEWS 0.481 0.325

Table 1. Accuracy for standard Lasso vs proposed Lasso on

three graphs.

(a) LFR, �1 (b) MNIST, �1 (c) 20NEWS, �1

(d) LFR, �1/�2 (e) MNIST, �1/�2 (f) 20NEWS, �1/�2

Fig. 3. Standard Lasso vs Proposed Lasso on three graphs.

4.2. Enhanced Lasso-Inpaiting on Graphs

The Algorithm. In this section, we add a layer of difficulty

by removing a set of observed measurements in f0. In other

words, we do not observe the whole function f0 but only a

portion of it. This problem is equivalent to a Lasso-Inpainting

problem. For this, a diagonal selector matrix R is added to the

linear operator U such that

Rii =

{
1 if i ∈ Ωobs,
0 otherwise,

Ωobs being the set of observed measurements, and Rii = 0
otherwise. The formulation is thus minx ‖x‖1 + λ

2 ‖RUx −
f0‖22. The enhanced Lasso-Inpainting is naturally

min
x

‖x‖1
‖x‖2 +

λ

2
‖RUx− f0‖22.

We apply the same technique as in Section 4.1 to compute

a solution to the problem. The only change is the solution

of the inner proximal problem proxηnG(z) = U∗(Ub/K)

where b = z + EkληnRU∗f0 + Ekηnyk/τk and K =
I + EkληnR+ Ekηn/τk, which is also fast to compute.

Numerical Experiments. We compare standard Lasso-

Inpainting and enhanced Lasso-Inpainting on graphs. We

test on the LFR, MNIST and 20NEWS graphs. We remove

40% of measurements of f0 with R. The value of the param-

eter λ is again chosen to minimize the recovery error defined

as ‖x− x0‖2/‖x‖2 for all models and all graphs. The results

are reported on Table 2 and Figure 4. Overall, the proposed

enhanced Lasso-Inpainting model also performs better than

the standard one, but it is 2-3 times slower.
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Standard Lasso-Inp Proposed Lasso-Inp

LFR 0.667 0.540
MNIST 0.509 0.362

20NEWS 0.516 0.468

Table 2. Accuracy for standard Lasso-Inpainting vs proposed

Lasso-Inpainting on three graphs.

5. CONCLUSION

A new sparse recovery algorithm for Lasso-type problems

on graph has been introduced. Numerical experiments have

shown improvements over the standard �1 algorithms. This

result leverages the recent idea to go beyond �1 convexity and

explore non-convex, non-smooth techniques to find better

sparse solutions. In this context, the closest works to ours are

(i) the difference of convex (DC) functions [9] and (ii) the

smoothed �1/�2 technique [10]. We would like to explore in

a future work the relationship between our model and these

models. Particularly, a direct application of Dinkelbach tech-

nique [15] reveals that minimizing the ratio is equivalent to

minimize the DC model �1 − α�2 with α being the minimum

value of the ratio �1/�2. As a result, an interesting question

is whether this α value, which is automatically learned with

the proposed algorithm, can provide satisfying solutions for

a range of sparse problems. Eventually, we would like to

compare our exact �1/�2 ratio technique, which has a weak

monotonicity property, with the smoothed ratio technique

of [10], which has a strong monotonicity feature.

Acknowledgements. Thomas Laurent is supported by NSF

grant DMS-1414396.

(a) LFR, �1 (b) MNIST, �1 (c) 20NEWS, �1

(d) LFR, �1/�2 (e) MNIST, �1/�2 (f) 20NEWS, �1/�2

Fig. 4. Standard Lasso-Inpainting vs Proposed Lasso-

Inpainting on three graphs.
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