2,237 research outputs found

    Early forest fire detection by vision-enabled wireless sensor networks

    Get PDF
    Wireless sensor networks constitute a powerful technology particularly suitable for environmental monitoring. With regard to wildfires, they enable low-cost fine-grained surveillance of hazardous locations like wildland-urban interfaces. This paper presents work developed during the last 4 years targeting a vision-enabled wireless sensor network node for the reliable, early on-site detection of forest fires. The tasks carried out ranged from devising a robust vision algorithm for smoke detection to the design and physical implementation of a power-efficient smart imager tailored to the characteristics of such an algorithm. By integrating this smart imager with a commercial wireless platform, we endowed the resulting system with vision capabilities and radio communication. Numerous tests were arranged in different natural scenarios in order to progressively tune all the parameters involved in the autonomous operation of this prototype node. The last test carried out, involving the prescribed burning of a 95 x 20-m shrub plot, confirmed the high degree of reliability of our approach in terms of both successful early detection and a very low false-alarm rate. Journal compilationMinisterio de Ciencia e Innovación TEC2009-11812, IPT-2011-1625-430000Office of Naval Research (USA) N000141110312Centro para el Desarrollo Tecnológico e Industrial IPC-2011100

    A VLSI-oriented and power-efficient approach for dynamic texture recognition applied to smoke detection

    Get PDF
    The recognition of dynamic textures is fundamental in processing image sequences as they are very common in natural scenes. The computation of the optic flow is the most popular method to detect, segment and analyse dynamic textures. For weak dynamic textures, this method is specially adequate. However, for strong dynamic textures, it implies heavy computational load and therefore an important energy consumption. In this paper, we propose a novel approach intented to be implemented by very low-power integrated vision devices. It is based on a simple and flexible computation at the focal plane implemented by power-efficient hardware. The first stages of the processing are dedicated to remove redundant spatial information in order to obtain a simplified representation of the original scene. This simplified representation can be used by subsequent digital processing stages to finally decide about the presence and evolution of a certain dynamic texture in the scene. As an application of the proposed approach, we present the preliminary results of smoke detection for the development of a forest fire detection system based on a wireless vision sensor network.Junta de Andalucía (CICE) 2006-TIC-235

    IoT-Based Fire Safety System Using MQTT Communication Protocol

    Get PDF
    Fire can be made useful for various purposes. However, uncontrollable fire may result in property damage and human death. The major factor of fire deaths is due to excessive smoke inhalation. Therefore, early detection of fire is crucial in fire detection systems. The conventional fire detection system does not come with a false alarm prevention system. Besides, the system is unable to tell the exact location of the fire. In this project, an Internet of Things (IoT) based fire safety system is developed to overcome these problems. The proposed system consists of three major parts which are the detector, processing unit and surveillance. The detector unit is an integration of ESP32, carbon monoxide sensor, ionization smoke detector, buzzer, temperature and humidity sensor. As the processing unit, Raspberry Pi is used to run the Node-RED application, which processes the data and performs monitoring. The communication between the detector and processing unit is based on the Message Queuing Telemetry Transport (MQTT) protocol. A surveillance unit is where a camera is installed to monitor the condition of the surrounding. The response of the system is based upon the sensor’s values or the user’s response.  Once the fire breakout is confirmed, the system will immediately sound the alarm, and Global Positioning System (GPS) coordinates and floor plan of the accommodation will send to the nearby fire station. The floor plan is developed to track the exact location of the fire. Experiments are carried out on the proposed fire safety system, and encouraging results are produced

    Development in building fire detection and evacuation system-a comprehensive review

    Get PDF
    Fire is both beneficial to man and his environment as well as destructive and deadly among all the natural disasters. A fire Accident occurs very rarely, but once it crops up its consequences will be devastating. The early detection of fire will help to avoid further consequences and saves the life of people. During the fire accidents, it is also important to guide people within the building to exit safely. Because of this, the paper gives a review of literature related to recent advancements in building fire detection and emergency evacuation system. It is intended to provide details about fire simulation tools with features, suitable hardware, communication methods, and effective user interface

    Computer Vision Application for Early Stage Smoke Detection on Ships

    Get PDF
    Nowadays, ship’s engine room is fire protected by automatic fire fighting systems, usually controlled from a place located outside the engine room. In order to activate the water mist extinguishing system automatically, at least two different fire detectors have to be activated. One of these detectors is a flame detector that is not hampered by various air flows caused by ventilation or draft and is rapidly activated and the other is smoke detector which is hampered by these flows causing its activation to be delayed. As a consequence, the automatic water mist extinguishing system is also delayed, allowing for fire expansion and its transfer to surrounding rooms. In addition to reliability of the ship’s fire detection system as one of the crucial safety features for the ship, cargo, crew and passengers, using a systematic approach in this research the emphasis is placed on the application of new methods in smoke detection such as the computer image processing and analysis, in order to achieve this goal. This paper describes the research carried out on board ship using the existing marine CCTV systems in early stages of smoke detection inside ship’s engine room, which could be seen as a significant contribution to accelerated suppression of unwanted consequences

    Multi-modal video analysis for early fire detection

    Get PDF
    In dit proefschrift worden verschillende aspecten van een intelligent videogebaseerd branddetectiesysteem onderzocht. In een eerste luik ligt de nadruk op de multimodale verwerking van visuele, infrarood en time-of-flight videobeelden, die de louter visuele detectie verbetert. Om de verwerkingskost zo minimaal mogelijk te houden, met het oog op real-time detectie, is er voor elk van het type sensoren een set ’low-cost’ brandkarakteristieken geselecteerd die vuur en vlammen uniek beschrijven. Door het samenvoegen van de verschillende typen informatie kunnen het aantal gemiste detecties en valse alarmen worden gereduceerd, wat resulteert in een significante verbetering van videogebaseerde branddetectie. Om de multimodale detectieresultaten te kunnen combineren, dienen de multimodale beelden wel geregistreerd (~gealigneerd) te zijn. Het tweede luik van dit proefschrift focust zich hoofdzakelijk op dit samenvoegen van multimodale data en behandelt een nieuwe silhouet gebaseerde registratiemethode. In het derde en tevens laatste luik van dit proefschrift worden methodes voorgesteld om videogebaseerde brandanalyse, en in een latere fase ook brandmodellering, uit te voeren. Elk van de voorgestelde technieken voor multimodale detectie en multi-view lokalisatie zijn uitvoerig getest in de praktijk. Zo werden onder andere succesvolle testen uitgevoerd voor de vroegtijdige detectie van wagenbranden in ondergrondse parkeergarages

    A vision-based monitoring system for very early automatic detection of forest fires

    Get PDF
    Trabajo presentado a la "I International Conference on Modelling, Monitoring and Management of Forest Fires" celebrada en Toledo del 17 al 19 de Septiembre de 2008.International Conference on Modelling, Monitoring and Management of Forest Fires I This paper describes a system capable of detecting smoke at the very beginning of a forest fire with a precise spatial resolution. The system is based on a wireless vision sensor network. Each sensor monitors a small area of vegetation by running on-site a tailored vision algorithm to detect the presence of smoke. This algorithm examines chromaticity changes and spatio-temporal patterns in the scene that are characteristic of the smoke dynamics at early stages of propagation. Processing takes place at the sensor nodes and, if that is the case, an alarm signal is transmitted through the network along with a reference to the location of the triggered zone - without requiring complex GIS systems. This method improves the spatial resolution on the surveilled area and reduces the rate of false alarms. An energy efficient implementation of the sensor/processor devices is crucial as it determines the autonomy of the network nodes. At this point, we have developed an ad hoc vision algorithm, adapted to the nature of the problem, to be integrated into a single-chip sensor/processor. As a first step to validate the feasibility of the system, we applied the algorithm to smoke sequences recorded with commercial cameras at real-world scenarios that simulate the working conditions of the network nodes. The results obtained point to a very high reliability and robustness in the detection process.This work is funded by Junta de Andalucía (CICE) through project 2006-TIC-2352.Peer Reviewe
    corecore