50 research outputs found

    Smartphone Household Wireless Electroencephalogram Hat

    Get PDF
    Rudimentary brain machine interface has existed for the gaming industry. Here, we propose a wireless, real-time, and smartphone-based electroencephalogram (EEG) system for homecare applications. The system uses high-density dry electrodes and compressive sensing strategies to overcome conflicting requirements between spatial electrode density, temporal resolution, and spatiotemporal throughput rate. Spatial sparseness is addressed by close proximity between active electrodes and desired source locations and using an adaptive selection of N active among 10N passive electrodes to form m-organized random linear combinations of readouts, m≩N≩10N. Temporal sparseness is addressed via parallel frame differences in hardware. During the design phase, we took tethered laboratory EEG dataset and applied fuzzy logic to compute (a) spatiotemporal average of larger magnitude EEG data centers in 0.3 second intervals and (b) inside brainwave sources by Independent Component Analysis blind deconvolution without knowing the impulse response function. Our main contributions are the fidelity of quality wireless EEG data compared to original tethered data and the speed of compressive image recovery. We have compared our recovery of ill-posed inverse data against results using Block Sparse Code. Future work includes development of strategies to filter unwanted artifact from high-density EEGs (i.e., facial muscle-related events and wireless environmental electromagnetic interferences)

    Cybersecurity in implantable medical devices

    Get PDF
    MenciÃģn Internacional en el título de doctorImplantable Medical Devices (IMDs) are electronic devices implanted within the body to treat a medical condition, monitor the state or improve the functioning of some body part, or just to provide the patient with a capability that he did not possess before [86]. Current examples of IMDs include pacemakers and defibrillators to monitor and treat cardiac conditions; neurostimulators for deep brain stimulation in cases such as epilepsy or Parkinson; drug delivery systems in the form of infusion pumps; and a variety of biosensors to acquire and process different biosignals. Some of the newest IMDs have started to incorporate numerous communication and networking functions—usually known as “telemetry”—, as well as increasingly more sophisticated computing capabilities. This has provided implants with more intelligence and patients with more autonomy, as medical personnel can access data and reconfigure the implant remotely (i.e., without the patient being physically present in medical facilities). Apart from a significant cost reduction, telemetry and computing capabilities also allow healthcare providers to constantly monitor the patient’s condition and to develop new diagnostic techniques based on an Intra Body Network (IBN) of medical devices [25, 26, 201]. Evolving from a mere electromechanical IMD to one with more advanced computing and communication capabilities has many benefits but also entails numerous security and privacy risks for the patient. The majority of such risks are relatively well known in classical computing scenarios, though in many respects their repercussions are far more critical in the case of implants. Attacks against an IMD can put at risk the safety of the patient who carries it, with fatal consequences in certain cases. Causing an intentional malfunction of an implant can lead to death and, as recognized by the U.S. Food and Drug Administration (FDA), such deliberate attacks could be far more difficult to detect than accidental ones [61]. Furthermore, these devices store and transmit very sensitive medical information that requires protection, as dictated by European (e.g., Directive 95/46/ECC) and U.S. (e.g., CFR 164.312) Directives [94, 204]. The wireless communication capabilities present in many modern IMDs are a major source of security risks, particularly while the patient is in open (i.e., non-medical) environments. To begin with, the implant becomes no longer “invisible”, as its presence could be remotely detected [48]. Furthermore, it facilitates the access to transmitted data by eavesdroppers who simply listen to the (insecure) channel [83]. This could result in a major privacy breach, as IMDs store sensitive information such as vital signals, diagnosed conditions, therapies, and a variety of personal data (e.g., birth date, name, and other medically relevant identifiers). A vulnerable communication channel also makes it easier to attack the implant in ways similar to those used against more common computing devices [118, 129, 156], i.e., by forging, altering, or replying previously captured messages [82]. This could potentially allow an adversary to monitor and modify the implant without necessarily being close to the victim [164]. In this regard, the concerns of former U.S. vice-president Dick Cheney constitute an excellent example: he had his Implantable Cardioverter Defibrillator (ICD) replaced by another without WiFi capability [219]. While there are still no known real-world incidents, several attacks on IMDs have been successfully demonstrated in the lab [83, 133, 143]. These attacks have shown how an adversary can disable or reprogram therapies on an ICD with wireless connectivity, and even inducing a shock state to the patient [65]. Other attacks deplete the battery and render the device inoperative [91], which often implies that the patient must undergo a surgical procedure to have the IMD replaced. Moreover, in the case of cardiac implants, they have a switch that can be turned off merely by applying a magnetic field [149]. The existence of this mechanism is motivated by the need to shield ICDs to electromagnetic fields, for instance when the patient undergoes cardiac surgery using electrocautery devices [47]. However, this could be easily exploited by an attacker, since activating such a primitive mechanism does not require any kind of authentication. In order to prevent attacks, it is imperative that the new generation of IMDs will be equipped with strong mechanisms guaranteeing basic security properties such as confidentiality, integrity, and availability. For example, mutual authentication between the IMD and medical personnel is essential, as both parties must be confident that the other end is who claims to be. In the case of the IMD, only commands coming from authenticated parties should be considered, while medical personnel should not trust any message claiming to come from the IMD unless sufficient guarantees are given. Preserving the confidentiality of the information stored in and transmitted by the IMD is another mandatory aspect. The device must implement appropriate security policies that restrict what entities can reconfigure the IMD or get access to the information stored in it, ensuring that only authorized operations are executed. Similarly, security mechanisms have to be implemented to protect the content of messages exchanged through an insecure wireless channel. Integrity protection is equally important to ensure that information has not been modified in transit. For example, if the information sent by the implant to the Programmer is altered, the doctor might make a wrong decision. Conversely, if a command sent to the implant is forged, modified, or simply contains errors, its execution could result in a compromise of the patient’s physical integrity. Technical security mechanisms should be incorporated in the design phase and complemented with appropriate legal and administrative measures. Current legislation is rather permissive in this regard, allowing the use of implants like ICDs that do not incorporate any security mechanisms. Regulatory authorities like the FDA in the U.S or the EMA (European Medicines Agency) in Europe should promote metrics and frameworks for assessing the security of IMDs. These assessments should be mandatory by law, requiring an adequate security level for an implant before approving its use. Moreover, both the security measures supported on each IMD and the security assessment results should be made public. Prudent engineering practices well known in the safety and security domains should be followed in the design of IMDs. If hardware errors are detected, it often entails a replacement of the implant, with the associated risks linked to a surgery. One of the main sources of failure when treating or monitoring a patient is precisely malfunctions of the device itself. These failures are known as “recalls” or “advisories”, and it is estimated that they affect around 2.6% of patients carrying an implant. Furthermore, the software running on the device should strictly support the functionalities required to perform the medical and operational tasks for what it was designed, and no more [66, 134, 213]. In Chapter 1, we present a survey of security and privacy issues in IMDs, discuss the most relevant mechanisms proposed to address these challenges, and analyze their suitability, advantages, and main drawbacks. In Chapter 2, we show how the use of highly compressed electrocardiogram (ECG) signals (only 24 coefficients of Hadamard Transform) is enough to unequivocally identify individuals with a high performance (classification accuracy of 97% and with identification system errors in the order of 10−2). In Chapter 3 we introduce a new Continuous Authentication scheme that, contrarily to previous works in this area, considers ECG signals as continuous data streams. The proposed ECG-based CA system is intended for real-time applications and is able to offer an accuracy up to 96%, with an almost perfect system performance (kappa statistic > 80%). In Chapter 4, we propose a distance bounding protocol to manage access control of IMDs: ACIMD. ACIMD combines two features namely identity verification (authentication) and proximity verification (distance checking). The authentication mechanism we developed conforms to the ISO/IEC 9798-2 standard and is performed using the whole ECG signal of a device holder, which is hardly replicable by a distant attacker. We evaluate the performance of ACIMD using ECG signals of 199 individuals over 24 hours, considering three adversary strategies. Results show that an accuracy of 87.07% in authentication can be achieved. Finally, in Chapter 5 we extract some conclusions and summarize the published works (i.e., scientific journals with high impact factor and prestigious international conferences).Los Dispositivos MÃĐdicos Implantables (DMIs) son dispositivos electrÃģnicos implantados dentro del cuerpo para tratar una enfermedad, controlar el estado o mejorar el funcionamiento de alguna parte del cuerpo, o simplemente para proporcionar al paciente una capacidad que no poseía antes [86]. Ejemplos actuales de DMI incluyen marcapasos y desfibriladores para monitorear y tratar afecciones cardíacas; neuroestimuladores para la estimulaciÃģn cerebral profunda en casos como la epilepsia o el Parkinson; sistemas de administraciÃģn de fÃĄrmacos en forma de bombas de infusiÃģn; y una variedad de biosensores para adquirir y procesar diferentes bioseÃąales. Los DMIs mÃĄs modernos han comenzado a incorporar numerosas funciones de comunicaciÃģn y redes (generalmente conocidas como telemetría) así como capacidades de computaciÃģn cada vez mÃĄs sofisticadas. Esto ha propiciado implantes con mayor inteligencia y pacientes con mÃĄs autonomía, ya que el personal mÃĐdico puede acceder a los datos y reconfigurar el implante de forma remota (es decir, sin que el paciente estÃĐ físicamente presente en las instalaciones mÃĐdicas). Aparte de una importante reducciÃģn de costos, las capacidades de telemetría y cÃģmputo tambiÃĐn permiten a los profesionales de la atenciÃģn mÃĐdica monitorear constantemente la condiciÃģn del paciente y desarrollar nuevas tÃĐcnicas de diagnÃģstico basadas en una Intra Body Network (IBN) de dispositivos mÃĐdicos [25, 26, 201]. Evolucionar desde un DMI electromecÃĄnico a uno con capacidades de cÃģmputo y de comunicaciÃģn mÃĄs avanzadas tiene muchos beneficios pero tambiÃĐn conlleva numerosos riesgos de seguridad y privacidad para el paciente. La mayoría de estos riesgos son relativamente bien conocidos en los escenarios clÃĄsicos de comunicaciones entre dispositivos, aunque en muchos aspectos sus repercusiones son mucho mÃĄs críticas en el caso de los implantes. Los ataques contra un DMI pueden poner en riesgo la seguridad del paciente que lo porta, con consecuencias fatales en ciertos casos. Causar un mal funcionamiento intencionado en un implante puede causar la muerte y, tal como lo reconoce la Food and Drug Administration (FDA) de EE.UU, tales ataques deliberados podrían ser mucho mÃĄs difíciles de detectar que los ataques accidentales [61]. AdemÃĄs, estos dispositivos almacenan y transmiten informaciÃģn mÃĐdica muy delicada que requiere se protegida, segÚn lo dictado por las directivas europeas (por ejemplo, la Directiva 95/46/ECC) y estadunidenses (por ejemplo, la Directiva CFR 164.312) [94, 204]. Si bien todavía no se conocen incidentes reales, se han demostrado con ÃĐxito varios ataques contra DMIs en el laboratorio [83, 133, 143]. Estos ataques han demostrado cÃģmo un adversario puede desactivar o reprogramar terapias en un marcapasos con conectividad inalÃĄmbrica e incluso inducir un estado de shock al paciente [65]. Otros ataques agotan la batería y dejan al dispositivo inoperativo [91], lo que a menudo implica que el paciente deba someterse a un procedimiento quirÚrgico para reemplazar la batería del DMI. AdemÃĄs, en el caso de los implantes cardíacos, tienen un interruptor cuya posiciÃģn de desconexiÃģn se consigue simplemente aplicando un campo magnÃĐtico intenso [149]. La existencia de este mecanismo estÃĄ motivada por la necesidad de proteger a los DMIs frete a posibles campos electromagnÃĐticos, por ejemplo, cuando el paciente se somete a una cirugía cardíaca usando dispositivos de electrocauterizaciÃģn [47]. Sin embargo, esto podría ser explotado fÃĄcilmente por un atacante, ya que la activaciÃģn de dicho mecanismo primitivo no requiere ningÚn tipo de autenticaciÃģn. Garantizar la confidencialidad de la informaciÃģn almacenada y transmitida por el DMI es otro aspecto obligatorio. El dispositivo debe implementar políticas de seguridad apropiadas que restrinjan quÃĐ entidades pueden reconfigurar el DMI o acceder a la informaciÃģn almacenada en ÃĐl, asegurando que sÃģlo se ejecuten las operaciones autorizadas. De la misma manera, mecanismos de seguridad deben ser implementados para proteger el contenido de los mensajes intercambiados a travÃĐs de un canal inalÃĄmbrico no seguro. La protecciÃģn de la integridad es igualmente importante para garantizar que la informaciÃģn no se haya modificado durante el trÃĄnsito. Por ejemplo, si la informaciÃģn enviada por el implante al programador se altera, el mÃĐdico podría tomar una decisiÃģn equivocada. Por el contrario, si un comando enviado al implante se falsifica, modifica o simplemente contiene errores, su ejecuciÃģn podría comprometer la integridad física del paciente. Los mecanismos de seguridad deberían incorporarse en la fase de diseÃąo y complementarse con medidas legales y administrativas apropiadas. La legislaciÃģn actual es bastante permisiva a este respecto, lo que permite el uso de implantes como marcapasos que no incorporen ningÚn mecanismo de seguridad. Las autoridades reguladoras como la FDA en los Estados Unidos o la EMA (Agencia Europea de Medicamentos) en Europa deberían promover mÃĐtricas y marcos para evaluar la seguridad de los DMIs. Estas evaluaciones deberían ser obligatorias por ley, requiriendo un nivel de seguridad adecuado para un implante antes de aprobar su uso. AdemÃĄs, tanto las medidas de seguridad implementadas en cada DMI como los resultados de la evaluaciÃģn de su seguridad deberían hacerse pÚblicos. Buenas prÃĄcticas de ingeniería en los dominios de la protecciÃģn y la seguridad deberían seguirse en el diseÃąo de los DMIs. Si se detectan errores de hardware, a menudo esto implica un reemplazo del implante, con los riesgos asociados y vinculados a una cirugía. Una de las principales fuentes de fallo al tratar o monitorear a un paciente es precisamente el mal funcionamiento del dispositivo. Estos fallos se conocen como “retiradas”, y se estima que afectan a aproximadamente el 2,6 % de los pacientes que llevan un implante. AdemÃĄs, el software que se ejecuta en el dispositivo debe soportar estrictamente las funcionalidades requeridas para realizar las tareas mÃĐdicas y operativas para las que fue diseÃąado, y no mÃĄs [66, 134, 213]. En el Capítulo 1, presentamos un estado de la cuestiÃģn sobre cuestiones de seguridad y privacidad en DMIs, discutimos los mecanismos mÃĄs relevantes propuestos para abordar estos desafíos y analizamos su idoneidad, ventajas y principales inconvenientes. En el Capítulo 2, mostramos cÃģmo el uso de seÃąales electrocardiogrÃĄficas (ECGs) altamente comprimidas (sÃģlo 24 coeficientes de la Transformada Hadamard) es suficiente para identificar inequívocamente individuos con un alto rendimiento (precisiÃģn de clasificaciÃģn del 97% y errores del sistema de identificaciÃģn del orden de 10−2). En el Capítulo 3 presentamos un nuevo esquema de AutenticaciÃģn Continua (AC) que, contrariamente a los trabajos previos en esta ÃĄrea, considera las seÃąales ECG como flujos de datos continuos. El sistema propuesto de AC basado en seÃąales cardíacas estÃĄ diseÃąado para aplicaciones en tiempo real y puede ofrecer una precisiÃģn de hasta el 96%, con un rendimiento del sistema casi perfecto (estadístico kappa > 80 %). En el Capítulo 4, proponemos un protocolo de verificaciÃģn de la distancia para gestionar el control de acceso al DMI: ACIMD. ACIMD combina dos características, verificaciÃģn de identidad (autenticaciÃģn) y verificaciÃģn de la proximidad (comprobaciÃģn de la distancia). El mecanismo de autenticaciÃģn es compatible con el estÃĄndar ISO/IEC 9798-2 y se realiza utilizando la seÃąal ECG con todas sus ondas, lo cual es difícilmente replicable por un atacante que se encuentre distante. Hemos evaluado el rendimiento de ACIMD usando seÃąales ECG de 199 individuos durante 24 horas, y hemos considerando tres estrategias posibles para el adversario. Los resultados muestran que se puede lograr una precisiÃģn del 87.07% en la au tenticaciÃģn. Finalmente, en el Capítulo 5 extraemos algunas conclusiones y resumimos los trabajos publicados (es decir, revistas científicas con alto factor de impacto y conferencias internacionales prestigiosas).Programa Oficial de Doctorado en Ciencia y Tecnología InformÃĄticaPresidente: Arturo Ribagorda Garnacho.- Secretario: Jorge Blasco Alís.- Vocal: JesÚs García LÃģpez de Lacall

    MÃķgliche gesundheitliche Auswirkungen verschiedener Frequenzbereiche elektromagnetischer Felder (HF-EMF). Endbericht zum TA-Projekt

    Get PDF
    Hochfrequente elektromagnetische Felder (HF-EMF) bilden die Grundlage aller digitalen, drahtlosen Kommunikation im gesamten Ãķffentlichen Raum und in den privaten Haushalten. In den kommenden Jahren ist mit einer weiteren Zunahme von EMF-Quellen verschiedener Frequenzbereiche zu rechnen. Hauptgrund hierfÞr ist die rasant fortschreitende Digitalisierung nahezu aller Arbeits-, Lebens- und Wirtschaftsbereiche, die zugleich eng mit mobil zu nutzenden Technologien verbunden ist. Vor diesem Hintergrund stellt der vorliegende Bericht den aktuellen Wissensstand zu mÃķglichen gesundheitlichen Risiken elektromagnetischer Felder – insbesondere des Mobilfunks – dar. Dazu wurde die neuere internationale wissenschaftliche Literatur umfassend gesichtet und die Ergebnisse aktueller nationaler und internationaler Forschungsprojekten daraufhin analysiert, ob relevante neue Erkenntnisse vorliegen, die die Diskussionen zu mÃķglichen gesundheitlichen Risiken der HF-EMF substanziell verÃĪndern kÃķnnten. Ein weiterer Schwerpunkt lag auf ForschungsbemÞhungen, die einen substanziellen Beitrag zur verbesserten Risikobewertung der Exposition von jungen Menschen leisten wollen. DarÞber hinaus diskutiert der Bericht relevante Aspekte der EMF-Risikogovernance (z.B. Öffentlichkeitsbeteiligung, Interessenkonflikte, Risikoinformation und -kommunikation) und beschreibt Optionen, wie im Kontext des EMF-Diskurses Barrieren fÞr eine offene wechselseitige Kommunikation von Akteursgruppen – insbesondere zwischen Wissenschaft, Zivilgesellschaft und Politik – abgebaut werden kÃķnnen

    Characterization of Physiological Biomarkers in Long-Term Kratom (Mitragyna speciosa Korth.) Users: A Preliminary Study

    Get PDF
    Doctor of Philosophy (Physiology), 2022A neurophysiological outcome associated with long-term kratom chewing in traditional use context is still unknown. Thus, the primary aim of this study was to investigate biomarkers of neurological response to the long-term kratom chewing. The fifty-two participants (controls; n=24 and long-term kratom users (LKU) who chewed kratom leaves; n = 28) were recruited with background-matched control group. Neurophysiological parameters with the proposed EEG (Theta/alpha ratio (TAR) and power function variance (PVFA), and all domains of ultra-short heart rate variability (HRV) heart rate variability were assessed during resting-state. Cognitive performance (Working memory) and kratom dependence score rating were also examined. All the proposed features were compared between the controls and long-term kratom chewers and determined in the relevant factors (age, duration, and daily quantity of kratom use). The statistically significant proposed features were proved by 1) path analysis for evaluating the causal relationship, and 2) the recognized machine-learning algorithms (Random Forest, Support vector machine, k Nearest neighbor, and Logistic regression) for binary classification. The results showed that only the proposed EEG feature (TAR) was significantly increased, compared to the control in the same age range of 50 years. The increased TAR and decreased PVF in the alpha band (PVFA) were direct effects of kratom leaves use and were significantly observed in LKU with a very high dose use. In addition, PVFA was a negative correlation with Kratom dependence. The results were also confirmed by the support vector machine achieved the highest performance to classify LKU with different doses of Kratom consuming by using the combination features TAR (both electrodes and average) and PVF in the alpha band. These preliminary results first highlighted the sensitive EEG biomarkers to characterize the LKU with a large effect size. These findings may lead to effective machine learning approaches based on EEG biomarkers for screening excessive Kratom users that might eventually develop Kratom dependence.1. Graduate School Dissertation Funding for Thesis and Revenue Budget Fund 2. Educational Institutions Scholarship for Outstanding GPAāđƒāļ™āļ›āļąāļˆāļˆāļļāļšāļąāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļœāļĨāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļāļēāļĢāļšāļĢāļīāđ‚āļ āļ„āļžāļ·āļŠāļāļĢāļ°āļ—āđˆāļ­āļĄāļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļ™āļēāļ™āļ—āļēāļ‡āļŠāļĢāļĩāļĢāļ§āļīāļ—āļĒāļē āļĢāļ°āļšāļšāļ›āļĢāļ°āļŠāļēāļ—āļ—āļĩāđˆāļĒāļąāļ‡āđ„āļĄāđˆāļ—āļĢāļēāļšāđ€āļ›āđ‡ āļ™āļ—āļĩāđˆāđāļ™āđˆāļŠāļąāļ” āļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļĩāđ‰āļˆāļķāļ‡āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļŦāļēāļ•āļąāļ§āļšāđˆāļ‡āļŠāļĩāđ‰āļ—āļēāļ‡āļŠāļĩāļ§āļ āļēāļž āļ‚āļ­āļ‡āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļˆāļēāļāļ­āļēāļŠāļēāļŠāļĄāļąāļ„āļĢāļˆāđāļēāļ™āļ§āļ™ 52 āļ„āļ™ āļ›āļĢāļ°āļāļ­āļšāđ„āļ›āļ”āđ‰āļ§āļĒ āļœāļđāđ‰āđƒāļŠāđ‰āļāļĢāļ°āļ—āđˆāļ­āļĄāđ€āļ›āđ‡ āļ™āļĢāļ°āļĒāļ° āđ€āļ§āļĨāļēāļ™āļēāļ™āļˆāđāļēāļ™āļ§āļ™ 28 āļ„āļ™ āđāļĨāļ°āļāļĨāļļāđˆāļĄāļ„āļ§āļšāļ„āļļāļĄāļˆāđāļēāļ™āļ§āļ™ 24 āļ„āļ™ āļ—āđāļēāļāļēāļĢāļšāļąāļ™āļ—āļķāļāļŠāļąāļāļāļēāļ“ 1) āļ„āļĨāļ·āđˆāļ™āđ„āļŸāļŸāđ‰āļēāļŠāļĄāļ­āļ‡ āļ”āđ‰āļ§āļĒāļ­āļļāļ›āļāļĢāļ“āđŒāļžāļāļžāļēāļ­āļĒāđˆāļēāļ‡āļ‡āđˆāļēāļĒāđ€āļžāļ·āđˆāļ­āļŠāļāļąāļ”āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ„āļĨāļ·āđˆāļ™āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ˜āļĩāļ•āđ‰āļē/āļ­āļąāļĨāļŸāđˆ āļē āđāļĨāļ°āļ„āļ§āļēāļĄāđāļ›āļĢāļ›āļĢāļ§āļ™āļ‚āļ­āļ‡ āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ„āļĨāļ·āđˆāļ™āļ„āļ§āļēāļĄāļ–āļĩāđˆ āđāļĨāļ° 2) āļ„āļĨāļ·āđˆāļ™āđ„āļŸāļŸāđ‰āļēāļŦāļąāļ§āđƒāļˆāđ€āļžāļ·āđˆāļ­āļŠāļāļąāļ”āļ„āļ§āļēāļĄāđāļ›āļĢāļ›āļĢāļ§āļ™āļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāđ€āļ•āđ‰āļ™āļ‚āļ­āļ‡āļŦāļąāļ§āđƒāļˆ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļĒāļąāļ‡āļ—āđāļēāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđ€āļŠāļīāļ‡āļ›āļĢāļ°āļŠāļēāļ—āļžāļĪāļ•āļīāļāļĢāļĢāļĄ āđ€āļŠāđˆāļ™ āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āļ—āļēāļ‡āļ”āđ‰āļēāļ™āļāļēāļĢāļĢāļđāđ‰āļ„āļīāļ”(āļ„āļ§āļēāļĄāļˆāđāļēāđ€āļžāļ·āđˆāļ­ āđƒāļŠāđ‰āļ‡āļēāļ™) āđāļĨāļ° āļ­āļēāļāļēāļĢāļ•āļīāļ”āļāļĢāļ°āļ—āđˆāļ­āļĄ āļˆāļēāļāļ™āļąāđ‰āļ™āļ—āđāļēāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļ—āļēāļ‡āļŠāļ–āļīāļ•āļīāđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļœāļđāđ‰āđ€āļ„āļĩāđ‰āļĒāļ§āļžāļ·āļŠāļāļĢāļ°āļ—āđˆāļ­āļĄ āđāļĨāļ°āļāļĨāļļāđˆāļĄāļ„āļ§āļšāļ„āļļāļĄ āđāļĨāļ°āļĻāļķāļāļĐāļēāđƒāļ™āļ”āđ‰āļēāļ™āļ›āļąāļˆāļˆāļąāļĒāļ•āđˆāļēāļ‡āđ† (āļ­āļēāļĒāļļ āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļ—āļĩāđˆāļšāļĢāļīāđ‚āļ āļ„ āđāļĨāļ° āļ›āļĢāļīāļĄāļēāļ“āļšāļĢāļīāđ‚āļ āļ„āļžāļ·āļŠ āļāļĢāļ°āļ—āđˆāļ­āļĄāļ•āđˆāļ­āļ§āļąāļ™) āļ•āļąāļ§āļŠāļĩāđ‰āļ§āļąāļ”āļ—āļĩāđˆāļĄāļĩāļ™āļąāļĒāļŠāđāļēāļ„āļąāļāļ—āļēāļ‡āļŠāļ–āļīāļ•āļīāļˆāļ°āļ–āļđāļāļ™āđāļēāđ„āļ›āļ—āļ”āļŠāļ­āļšāļ”āđ‰āļ§āļĒ 1) āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļŠāđ‰āļ™āļ—āļēāļ‡āđ€āļžāļ·āđˆāļ­ āļ”āļđāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāđ€āļŠāļīāļ‡āđ€āļŦāļ•āļļāļœāļĨāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ•āļąāļ§āļŠāļĩāđ‰āļ§āļąāļ”āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļāļąāļšāļ›āļąāļˆāļˆāļąāļĒāļ•āđˆāļēāļ‡āđ† āđāļĨāļ° āļ•āļąāļ§āļŠāļĩāđ‰āļ§āļąāļ”āļ—āļēāļ‡āļ›āļĢāļ°āļŠāļēāļ— āļžāļĪāļ•āļīāļāļĢāļĢāļĄ āđāļĨāļ° 2) āļāļēāļĢāļˆāđāļēāđāļ™āļāļāļĨāļļāđˆāļĄāđāļšāļšāđ„āļšāļ™āļēāļĢāļĩāļ”āđ‰āļ§āļĒāđāļĄāļŠāļŠāļĩāļ™āđ€āļĨāļīāļĢāđŒāļ™āļ™āļīāđˆāļ‡āļ—āļąāļ§āđ„āļ› āđˆ āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļē āļ•āļąāļ§āļŠāļĩāđ‰āļ§āļąāļ”āļ—āļēāļ‡āļ„āļĨāļ·āđˆāļ™āđ„āļŸāļŸāđ‰āļēāļŠāļĄāļ­āļ‡āđ€āļ—āđˆāļēāļ™āļąāđ‰āļ™āļ—āļĩāđˆāļžāļšāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāđāļēāļ„āļąāļāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļāļĨāļļāđˆāļĄ āđ‚āļ”āļĒāļĢāļ°āļ”āļąāļš āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ„āļĨāļ·āđˆāļ™āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ˜āļĩāļ•āđ‰āļē/āļ­āļąāļĨāļŸāđˆ āļēāđ€āļžāļīāđˆ āļĄāļ‚āļķāđ‰āļ™āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāđāļēāļ„āļąāļāđƒāļ™āļāļĨāļļāđˆāļĄāļœāļđāđ‰āļšāļĢāļīāđ‚āļ āļ„āļžāļ·āļŠāļāļĢāļ°āļ—āđˆāļ­āļĄāđ€āļ—āļĩāļĒāļšāļāļĨāļąāļš āļāļĨāļļāđˆāļĄāļ„āļ§āļšāļ„āļļāļĄāđ€āļĄāļ·āđˆāļ­āļžāļīāļˆāļēāļĢāļ“āļēāđƒāļ™āļŠāđˆāļ§āļ‡āļ­āļēāļĒāļļ> 50 āļ›āļĩ āđāļĨāļ°āđ€āļžāļīāđˆ āļĄāļ‚āļķāđ‰āļ™āļ­āļĒāđˆāļēāļ‡āđ€āļŦāđ‡āļ™āđ„āļ”āđ‰āļŠāļąāļ”āđƒāļ™āļāļĨāļļāđˆāļĄāļšāļĢāļīāđ‚āļ āļ„āļžāļ·āļŠāļāļĢāļ°āļ—āđˆāļ­āļĄ āđƒāļ™āļ›āļĢāļī āļĄāļēāļ“āļĄāļēāļ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļ„āļ§āļēāļĄāđāļ›āļĢāļ›āļĢāļ§āļ™āļ‚āļ­āļ‡āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ„āļĨāļ·āđˆāļ™āļ„āļ§āļēāļĄāļ–āļĩāđˆāļ‚āļ­āļ‡āļ­āļąāļĨāļŸāđˆ āļēāļĒāļąāļ‡āļĨāļ”āļĨāļ‡āđƒāļ™āļāļĨāļļāđˆāļĄ āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ­āļĩāļāļ”āđ‰āļ§āļĒ āđāļĨāļ°āļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļ„āļ°āđāļ™āļ™āļ—āļĩāđˆāļ—āđāļēāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ­āļēāļāļēāļĢāļ•āļīāļ”āļāļĢāļ°āļ—āđˆāļ­āļĄ āļœāļĨāļāļēāļĢ āđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđ€āļ›āđ‡ āļ™āļœāļĨāđ‚āļ”āļĒāļ•āļĢāļ‡āļˆāļēāļāļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāđƒāļŠāđ‰āļžāļ·āļŠāļāļĢāļ°āļ—āđˆāļ­āļĄāļ§āļąāļ”āļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđ€āļŠāđ‰āļ™āļ—āļēāļ‡ āļ­āļĩāļāļ—āļąāđ‰āļ‡āļāļēāļĢāļĢāļ§āļĄāļ„āļļāļ“āļĨāļąāļāļĐāļ“āļ°āļ‚āļ­āļ‡āļ•āļąāļ§āļŠāļĩāđ‰āļ§āļąāļ”āļ—āļēāļ‡āļ„āļĨāļ·āđˆāļ™āļŠāļĄāļ­āļ‡āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļĒāļąāļ‡āļŠāļēāļĄāļēāļĢāļ–āđƒāļŠāđ‰āļˆāđāļēāđāļ™āļāļāļĨāļļāđˆāļĄāļœāļđāđ‰āļ—āļĩāđˆāļšāļĢāļīāđ‚āļ āļ„ āđƒāļ™āļ‚āļ™āļēāļ”āļ•āđˆāļēāļ‡āļāļąāļ™āđ‚āļ”āļĒāđƒāļŠāđ‰āļ­āļąāļĨāļāļ­āļĢāļķāļ—āļķāļĄāļ‚āļ­āļ‡āļ‹āļąāļžāļžāļ­āļĢāđŒāļ•āđ€āļ§āļāđ€āļ•āļ­āļĢāđŒāđāļĄāļŠāļŠāļĩāļ™āđƒāļ™āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļāļēāļĢāļĻāļķāļāļĐāļē āđ€āļšāļ·āđ‰āļ­āļ‡āļ•āđ‰āļ™āļ™āļĩāđ‰āđāļŠāļ”āļ‡āļ–āļķāļ‡āļ„āļ§āļēāļĄāđ„āļ§āļ‚āļ­āļ‡āļ•āļąāļ§āļŠāļĩāđ‰āļ§āļąāļ”āļŠāļĩāļ§āļ āļēāļžāļ”āđ‰āļ§āļĒāļ„āļĨāļ·āđˆāļ™āđ„āļŸāļŸāđ‰āļēāļŠāļĄāļ­āļ‡āđāļĨāļ°āđƒāļ™āļ­āļ™āļēāļ„āļ•āļ­āļēāļˆāļĄāļĩāļ„āļ§āļēāļĄ āđ€āļ›āđ‡ āļ™āđ„āļ›āđ„āļ”āđ‰āļ—āļĩāđˆāļˆāļ°āđƒāļŠāđ‰āđāļĄāļŠāļŠāļĩāļ™āđ€āļĨāļīāļĢāđŒāļ™āļīāđˆ āļ‡āļˆāđāļēāđāļ™āļāļœāļđāđ‰āļšāļĢāļīāđ‚āļ āļ„āļžāļ·āļŠāļāļĢāļ°āļ—āđˆāļ­āļĄāđ€āļāļīāļ™āļ‚āļ™āļēāļ”āļ—āļĩāđˆāļ­āļēāļˆāļˆāļ°āļžāļąāļ’āļ™āļēāđ„āļ›āļŠāļđāđˆāļ­āļēāļāļēāļĢāļ•āļīāļ” āļāļĢāļ°āļ—āđˆāļ­āļĄāđ‚āļ”āļĒāļ”āđ‰āļ§āļĒāļ„āļļāļ“āļĨāļąāļāļĐāļ“āļ°āļ‚āļ­āļ‡āļ„āļĨāļ·āđˆāļ™āđ„āļŸāļŸāđ‰āļēāļŠāļĄāļ­āļ‡āļ”āļąāļ‡āļāļĨāđˆāļē

    2018 - The Twenty-third Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-third Annual Symposium of Student Scholars, held on April 19, 2018. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1020/thumbnail.jp

    Use of Smart Technology Tools for Supporting Public Health Surveillance: From Development of a Mobile Health Platform to Application in Stress Prediction

    Get PDF
    BACKGROUND Traditional public health data collection methods are typically based on self-reported data and may be subject to limitations such as biases, delays between collection and reporting, costs, and logistics. These may affect the quality of collected information and the ability of public health agencies to monitor and improve the health of populations. An alternative may be the use of personal, off-the-shelf smart devices (e.g., smartphones and smartwatches) as additional data collection tools. These devices can collect passive, continuous, real-time and objective health-related data, mitigating some of the limitations of self-reported information. The novel data types can then be used to further study and predict a condition in a population through advanced analytics. In this context, this thesis’ goal is to investigate new ways to support public health through the use of consumer-level smart technologies as complementary survey, monitoring and analyses tools, with a focus on perceived stress. To this end, a mobile health platform (MHP) that collects data from devices connected to Apple Health was developed and tested in a pilot study collecting self-reported and objective stress-related information, and a number of Machine Learning (ML) models were developed based on these data to monitor and predict the stress levels of participants. METHODS The mobile platform was created for iOS using the XCode software, allowing users to self-report their stress levels based on the stress subscale of the Depression, Anxiety and Stress Scale (DASS-21) as well as a single-item LIKERT-based scale. The platform also collects objective data from sensors that integrate with Apple Health, one of the most popular mobile health data repositories. A pilot study with 45 participants was conducted that uses the platform to collects stress self-reports and variables associated with stress from Apple Health, including heart rate, heart rate variability, ECG, sleep, blood pressure, weight, temperature, and steps. To this end, participants were given an iPhone with the platform installed as well as an Apple Watch, Withings Sleep, Withings Thermos, Withings BPM Connect, Withings Body+, and an Empatica E4 (the only device that does not connect to Apple Health but included due to its wide use in research). Participants were instructed to take device measurements and self-report stress levels 6 times per day for 14 days. Several experiments were conducted involving the development of ML models to predict stress based on the data, using Random Forests and Support Vector Machines. In each experiment, different subsets of the data from the full sample of 45 participants were used. 3 approaches to model development were followed: a) creating generalized models with all data; b) a hybrid approach using 80% of participants to train and 20% to test the model c) creating individualized user-specific models for each participant. In addition, statistical analyses of the data – specifically Spearman correlation and repeated measures ANOVA – were conducted. RESULTS Statistical analyses did not find significant differences between groups and only weak significant correlations. Among the Machine Learning models, the approach of using generalized models performed well, with f1-macro scores above 60% for several of the samples and features investigated. User-specific models also showed promise, with 82% achieving accuracies higher than 60% (the bottom limit of the state-of-the-art). While the hybrid approach had lower f1-macro scores, suggesting the models could not predict the two classes well, the accuracy of several of these models was in line with the state-of-the-art. Apple Watch sleep features, as well as weight, blood pressure, and temperature, were shown to be important in building the models. DISCUSSION AND CONCLUSION ML-based models built with data collected from the MHP in real-life conditions were able to predict stress with results often in line with state-of-the- art, showing that smart technology data can be a promising tool to support public health surveillance. In particular, the approaches of creating models for each participant or one generalized model were successful, although more validation is needed in future studies (e.g., with more purposeful sampling) for increased generalizability and validity on the use of these technologies in the real-world. The hybrid approach had good accuracy but lower f1-scores, indicating results could potentially be improved (e.g., possibly with less missing or noisy data, collected in more controlled conditions). For feature selection, important features included sleep data as well as weight, blood pressure and temperature from mobile and wearable devices. In summary, this study indicates that a platform such as the MHP, collecting data from smart technologies, could potentially be a novel tool to complement population-level public health data collection. The predictive stress modelling might be used to monitor stress levels in a population and provide personalized interventions. Although more validation may be needed, this work represents a step in this direction

    Workload-aware systems and interfaces for cognitive augmentation

    Get PDF
    In today's society, our cognition is constantly influenced by information intake, attention switching, and task interruptions. This increases the difficulty of a given task, adding to the existing workload and leading to compromised cognitive performances. The human body expresses the use of cognitive resources through physiological responses when confronted with a plethora of cognitive workload. This temporarily mobilizes additional resources to deal with the workload at the cost of accelerated mental exhaustion. We predict that recent developments in physiological sensing will increasingly create user interfaces that are aware of the user’s cognitive capacities, hence able to intervene when high or low states of cognitive workload are detected. In this thesis, we initially focus on determining opportune moments for cognitive assistance. Subsequently, we investigate suitable feedback modalities in a user-centric design process which are desirable for cognitive assistance. We present design requirements for how cognitive augmentation can be achieved using interfaces that sense cognitive workload. We then investigate different physiological sensing modalities to enable suitable real-time assessments of cognitive workload. We provide empirical evidence that the human brain is sensitive to fluctuations in cognitive resting states, hence making cognitive effort measurable. Firstly, we show that electroencephalography is a reliable modality to assess the mental workload generated during the user interface operation. Secondly, we use eye tracking to evaluate changes in eye movements and pupil dilation to quantify different workload states. The combination of machine learning and physiological sensing resulted in suitable real-time assessments of cognitive workload. The use of physiological sensing enables us to derive when cognitive augmentation is suitable. Based on our inquiries, we present applications that regulate cognitive workload in home and work settings. We deployed an assistive system in a field study to investigate the validity of our derived design requirements. Finding that workload is mitigated, we investigated how cognitive workload can be visualized to the user. We present an implementation of a biofeedback visualization that helps to improve the understanding of brain activity. A final study shows how cognitive workload measurements can be used to predict the efficiency of information intake through reading interfaces. Here, we conclude with use cases and applications which benefit from cognitive augmentation. This thesis investigates how assistive systems can be designed to implicitly sense and utilize cognitive workload for input and output. To do so, we measure cognitive workload in real-time by collecting behavioral and physiological data from users and analyze this data to support users through assistive systems that adapt their interface according to the currently measured workload. Our overall goal is to extend new and existing context-aware applications by the factor cognitive workload. We envision Workload-Aware Systems and Workload-Aware Interfaces as an extension in the context-aware paradigm. To this end, we conducted eight research inquiries during this thesis to investigate how to design and create workload-aware systems. Finally, we present our vision of future workload-aware systems and workload-aware interfaces. Due to the scarce availability of open physiological data sets, reference implementations, and methods, previous context-aware systems were limited in their ability to utilize cognitive workload for user interaction. Together with the collected data sets, we expect this thesis to pave the way for methodical and technical tools that integrate workload-awareness as a factor for context-aware systems.TagtÃĪglich werden unsere kognitiven FÃĪhigkeiten durch die Verarbeitung von unzÃĪhligen Informationen in Anspruch genommen. Dies kann die Schwierigkeit einer Aufgabe durch mehr oder weniger Arbeitslast beeinflussen. Der menschliche KÃķrper drÞckt die Nutzung kognitiver Ressourcen durch physiologische Reaktionen aus, wenn dieser mit kognitiver Arbeitsbelastung konfrontiert oder Þberfordert wird. Dadurch werden weitere Ressourcen mobilisiert, um die Arbeitsbelastung vorÞbergehend zu bewÃĪltigen. Wir prognostizieren, dass die derzeitige Entwicklung physiologischer Messverfahren kognitive Leistungsmessungen stets mÃķglich machen wird, um die kognitive Arbeitslast des Nutzers jederzeit zu messen. Diese sind in der Lage, einzugreifen wenn eine zu hohe oder zu niedrige kognitive Belastung erkannt wird. Wir konzentrieren uns zunÃĪchst auf die Erkennung passender Momente fÞr kognitive UnterstÞtzung welche sich der gegenwÃĪrtigen kognitiven Arbeitslast bewusst sind. Anschließend untersuchen wir in einem nutzerzentrierten Designprozess geeignete Feedbackmechanismen, die zur kognitiven Assistenz beitragen. Wir prÃĪsentieren Designanforderungen, welche zeigen wie Schnittstellen eine kognitive Augmentierung durch die Messung kognitiver Arbeitslast erreichen kÃķnnen. Anschließend untersuchen wir verschiedene physiologische MessmodalitÃĪten, welche Bewertungen der kognitiven Arbeitsbelastung in Realzeit ermÃķglichen. ZunÃĪchst validieren wir empirisch, dass das menschliche Gehirn auf kognitive Arbeitslast reagiert. Es zeigt sich, dass die Ableitung der kognitiven Arbeitsbelastung Þber Elektroenzephalographie eine geeignete Methode ist, um den kognitiven Anspruch neuartiger Assistenzsysteme zu evaluieren. Anschließend verwenden wir Eye-Tracking, um VerÃĪnderungen in den Augenbewegungen und dem Durchmesser der Pupille unter verschiedenen IntensitÃĪten kognitiver Arbeitslast zu bewerten. Das Anwenden von maschinellem Lernen fÞhrt zu zuverlÃĪssigen Echtzeit-Bewertungen kognitiver Arbeitsbelastung. Auf der Grundlage der bisherigen Forschungsarbeiten stellen wir Anwendungen vor, welche die Kognition im hÃĪuslichen und beruflichen Umfeld unterstÞtzen. Die physiologischen Messungen stellen fest, wann eine kognitive Augmentierung sich als gÞnstig erweist. In einer Feldstudie setzen wir ein Assistenzsystem ein, um die erhobenen Designanforderungen zur Reduktion kognitiver Arbeitslast zu validieren. Unsere Ergebnisse zeigen, dass die Arbeitsbelastung durch den Einsatz von Assistenzsystemen reduziert wird. Im Anschluss untersuchen wir, wie kognitive Arbeitsbelastung visualisiert werden kann. Wir stellen eine Implementierung einer Biofeedback-Visualisierung vor, die das NutzerverstÃĪndnis zum Verlauf und zur Entstehung von kognitiver Arbeitslast unterstÞtzt. Eine abschließende Studie zeigt, wie Messungen kognitiver Arbeitslast zur Vorhersage der aktuellen Leseeffizienz benutzt werden kÃķnnen. Wir schließen hierbei mit einer Reihe von Applikationen ab, welche sich kognitive Arbeitslast als Eingabe zunutze machen. Die vorliegende wissenschaftliche Arbeit befasst sich mit dem Design von Assistenzsystemen, welche die kognitive Arbeitslast der Nutzer implizit erfasst und diese bei der DurchfÞhrung alltÃĪglicher Aufgaben unterstÞtzt. Dabei werden physiologische Daten erfasst, um RÞckschlÞsse in Realzeit auf die derzeitige kognitive Arbeitsbelastung zu erlauben. Anschließend werden diese Daten analysiert, um dem Nutzer strategisch zu assistieren. Das Ziel dieser Arbeit ist die Erweiterung neuartiger und bestehender kontextbewusster Benutzerschnittstellen um den Faktor kognitive Arbeitslast. Daher werden in dieser Arbeit arbeitslastbewusste Systeme und arbeitslastbewusste Benutzerschnittstellen als eine zusÃĪtzliche Dimension innerhalb des Paradigmas kontextbewusster Systeme prÃĪsentiert. Wir stellen acht Forschungsstudien vor, um die Designanforderungen und die Implementierung von kognitiv arbeitslastbewussten Systemen zu untersuchen. Schließlich stellen wir unsere Vision von zukÞnftigen kognitiven arbeitslastbewussten Systemen und Benutzerschnittstellen vor. Durch die knappe VerfÞgbarkeit Ãķffentlich zugÃĪnglicher DatensÃĪtze, Referenzimplementierungen, und Methoden, waren Kontextbewusste Systeme in der Auswertung kognitiver Arbeitslast bezÞglich der Nutzerinteraktion limitiert. ErgÃĪnzt durch die in dieser Arbeit gesammelten DatensÃĪtze erwarten wir, dass diese Arbeit den Weg fÞr methodische und technische Werkzeuge ebnet, welche kognitive Arbeitslast als Faktor in das Kontextbewusstsein von Computersystemen integriert

    The Largest Unethical Medical Experiment in Human History

    Get PDF
    This monograph describes the largest unethical medical experiment in human history: the implementation and operation of non-ionizing non-visible EMF radiation (hereafter called wireless radiation) infrastructure for communications, surveillance, weaponry, and other applications. It is unethical because it violates the key ethical medical experiment requirement for “informed consent” by the overwhelming majority of the participants. The monograph provides background on unethical medical research/experimentation, and frames the implementation of wireless radiation within that context. The monograph then identifies a wide spectrum of adverse effects of wireless radiation as reported in the premier biomedical literature for over seven decades. Even though many of these reported adverse effects are extremely severe, the true extent of their severity has been grossly underestimated. Most of the reported laboratory experiments that produced these effects are not reflective of the real-life environment in which wireless radiation operates. Many experiments do not include pulsing and modulation of the carrier signal, and most do not account for synergistic effects of other toxic stimuli acting in concert with the wireless radiation. These two additions greatly exacerbate the severity of the adverse effects from wireless radiation, and their neglect in current (and past) experimentation results in substantial under-estimation of the breadth and severity of adverse effects to be expected in a real-life situation. This lack of credible safety testing, combined with depriving the public of the opportunity to provide informed consent, contextualizes the wireless radiation infrastructure operation as an unethical medical experiment

    Designing performance systems for audience inclusion

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 154-168).We define the concept of the Hyperaudience and a unique approach towards designing real-time interactive performance systems: the design of these systems encourages audience participation and augments the experience of audience members through interconnected networks. In doing so, it embraces concepts found in ubiquitous computing, affective computing, interactive arts, music, theatrical tradition, and pervasive gaming. In addition, five new systems are demonstrated to develop a framework for thinking about audience participation and orchestrating social co-presence in and beyond the performance space. Finally, the principles and challenges that shaped the design of these five systems are defined by measuring, comparing, and evaluating their expressiveness and communicability.by Akito Van Troyer.S.M
    corecore