
Workload-Aware Systems and Interfaces for
Cognitive Augmentation

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von

Thomas-Andreas Kosch
M.Sc. Software Engineering

München, den 28. Januar 2020





Erstgutachter: Prof. Dr. Albrecht Schmidt
Zweitgutachter: Prof. Dr. Fabio Paternò
Drittgutachter: Prof. Dr. Jonathan Lazar

Tag der mündlichen Prüfung: 11.05.2020

iii



iv



Abstract

Abstract

In today’s society, our cognition is constantly influenced by information intake, attention
switching, and task interruptions. This increases the difficulty of a given task, adding to the
existing workload and leading to compromised cognitive performances. The human body
expresses the use of cognitive resources through physiological responses when confronted
with a plethora of cognitive workload. This temporarily mobilizes additional resources to
deal with the workload at the cost of accelerated mental exhaustion.

We predict that recent developments in physiological sensing will increasingly create user
interfaces that are aware of the user’s cognitive capacities, hence able to intervene when
high or low states of cognitive workload are detected. In this thesis, we initially focus on
determining opportune moments for cognitive assistance. Subsequently, we investigate suit-
able feedback modalities in a user-centric design process which are desirable for cognitive
assistance. We present design requirements for how cognitive augmentation can be achieved
using interfaces that sense cognitive workload.

We then investigate different physiological sensing modalities to enable suitable real-time
assessments of cognitive workload. We provide empirical evidence that the human brain is
sensitive to fluctuations in cognitive resting states, hence making cognitive effort measurable.
Firstly, we show that electroencephalography is a reliable modality to assess the mental
workload generated during the user interface operation. Secondly, we use eye tracking to
evaluate changes in eye movements and pupil dilation to quantify different workload states.
The combination of machine learning and physiological sensing resulted in suitable real-
time assessments of cognitive workload. The use of physiological sensing enables us to
derive when cognitive augmentation is suitable.

Based on our inquiries, we present applications that regulate cognitive workload in home
and work settings. We deployed an assistive system in a field study to investigate the valid-
ity of our derived design requirements. Finding that workload is mitigated, we investigated
how cognitive workload can be visualized to the user. We present an implementation of a
biofeedback visualization that helps to improve the understanding of brain activity. A final
study shows how cognitive workload measurements can be used to predict the efficiency of
information intake through reading interfaces. Here, we conclude with use cases and appli-
cations which benefit from cognitive augmentation.

This thesis investigates how assistive systems can be designed to implicitly sense and uti-
lize cognitive workload for input and output. To do so, we measure cognitive workload in
real-time by collecting behavioral and physiological data from users and analyze this data
to support users through assistive systems that adapt their interface according to the cur-
rently measured workload. Our overall goal is to extend new and existing context-aware
applications by the factor cognitive workload. We envision Workload-Aware Systems and
Workload-Aware Interfaces as an extension in the context-aware paradigm. To this end, we
conducted eight research inquiries during this thesis to investigate how to design and create
workload-aware systems.
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Finally, we present our vision of future workload-aware systems and workload-aware inter-
faces. Due to the scarce availability of open physiological data sets, reference implementa-
tions, and methods, previous context-aware systems were limited in their ability to utilize
cognitive workload for user interaction. Together with the collected data sets, we expect this
thesis to pave the way for methodical and technical tools that integrate workload-awareness
as a factor for context-aware systems.
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Zusammenfassung

Zusammenfassung

Tagtäglich werden unsere kognitiven Fähigkeiten durch die Verarbeitung von unzähligen
Informationen in Anspruch genommen. Dies kann die Schwierigkeit einer Aufgabe durch
mehr oder weniger Arbeitslast beeinflussen. Der menschliche Körper drückt die Nutzung
kognitiver Ressourcen durch physiologische Reaktionen aus, wenn dieser mit kognitiver
Arbeitsbelastung konfrontiert oder überfordert wird. Dadurch werden weitere Ressourcen
mobilisiert, um die Arbeitsbelastung vorübergehend zu bewältigen.

Wir prognostizieren, dass die derzeitige Entwicklung physiologischer Messverfahren ko-
gnitive Leistungsmessungen stets möglich machen wird, um die kognitive Arbeitslast des
Nutzers jederzeit zu messen. Diese sind in der Lage, einzugreifen wenn eine zu hohe oder
zu niedrige kognitive Belastung erkannt wird. Wir konzentrieren uns zunächst auf die Er-
kennung passender Momente für kognitive Unterstützung welche sich der gegenwärtigen
kognitiven Arbeitslast bewusst sind. Anschließend untersuchen wir in einem nutzerzentrier-
ten Designprozess geeignete Feedbackmechanismen, die zur kognitiven Assistenz beitra-
gen. Wir präsentieren Designanforderungen, welche zeigen wie Schnittstellen eine kognitive
Augmentierung durch die Messung kognitiver Arbeitslast erreichen können.

Anschließend untersuchen wir verschiedene physiologische Messmodalitäten, welche Be-
wertungen der kognitiven Arbeitsbelastung in Realzeit ermöglichen. Zunächst validieren wir
empirisch, dass das menschliche Gehirn auf kognitive Arbeitslast reagiert. Es zeigt sich, dass
die Ableitung der kognitiven Arbeitsbelastung über Elektroenzephalographie eine geeigne-
te Methode ist, um den kognitiven Anspruch neuartiger Assistenzsysteme zu evaluieren.
Anschließend verwenden wir Eye-Tracking, um Veränderungen in den Augenbewegungen
und dem Durchmesser der Pupille unter verschiedenen Intensitäten kognitiver Arbeitslast
zu bewerten. Das Anwenden von maschinellem Lernen führt zu zuverlässigen Echtzeit-
Bewertungen kognitiver Arbeitsbelastung. Auf der Grundlage der bisherigen Forschungs-
arbeiten stellen wir Anwendungen vor, welche die Kognition im häuslichen und beruflichen
Umfeld unterstützen. Die physiologischen Messungen stellen fest, wann eine kognitive Aug-
mentierung sich als günstig erweist.

In einer Feldstudie setzen wir ein Assistenzsystem ein, um die erhobenen Designanforde-
rungen zur Reduktion kognitiver Arbeitslast zu validieren. Unsere Ergebnisse zeigen, dass
die Arbeitsbelastung durch den Einsatz von Assistenzsystemen reduziert wird. Im Anschluss
untersuchen wir, wie kognitive Arbeitsbelastung visualisiert werden kann. Wir stellen eine
Implementierung einer Biofeedback-Visualisierung vor, die das Nutzerverständnis zum Ver-
lauf und zur Entstehung von kognitiver Arbeitslast unterstützt. Eine abschließende Studie
zeigt, wie Messungen kognitiver Arbeitslast zur Vorhersage der aktuellen Leseeffizienz be-
nutzt werden können. Wir schließen hierbei mit einer Reihe von Applikationen ab, welche
sich kognitive Arbeitslast als Eingabe zunutze machen.

Die vorliegende wissenschaftliche Arbeit befasst sich mit dem Design von Assistenzsyste-
men, welche die kognitive Arbeitslast der Nutzer implizit erfasst und diese bei der Durch-
führung alltäglicher Aufgaben unterstützt. Dabei werden physiologische Daten erfasst, um
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Rückschlüsse in Realzeit auf die derzeitige kognitive Arbeitsbelastung zu erlauben. An-
schließend werden diese Daten analysiert, um dem Nutzer strategisch zu assistieren. Das
Ziel dieser Arbeit ist die Erweiterung neuartiger und bestehender kontextbewusster Benut-
zerschnittstellen um den Faktor kognitive Arbeitslast. Daher werden in dieser Arbeit arbeits-
lastbewusste Systeme und arbeitslastbewusste Benutzerschnittstellen als eine zusätzliche Di-
mension innerhalb des Paradigmas kontextbewusster Systeme präsentiert. Wir stellen acht
Forschungsstudien vor, um die Designanforderungen und die Implementierung von kognitiv
arbeitslastbewussten Systemen zu untersuchen.

Schließlich stellen wir unsere Vision von zukünftigen kognitiven arbeitslastbewussten Syste-
men und Benutzerschnittstellen vor. Durch die knappe Verfügbarkeit öffentlich zugänglicher
Datensätze, Referenzimplementierungen, und Methoden, waren Kontextbewusste Systeme
in der Auswertung kognitiver Arbeitslast bezüglich der Nutzerinteraktion limitiert. Ergänzt
durch die in dieser Arbeit gesammelten Datensätze erwarten wir, dass diese Arbeit den Weg
für methodische und technische Werkzeuge ebnet, welche kognitive Arbeitslast als Faktor in
das Kontextbewusstsein von Computersystemen integriert.

viii



ACKNOWLEDGMENTS

The last years were a challenging journey which I was happy to take. I had the opportunity
to meet many interesting and joyful people throughout my studies that shaped me as a person
I am today. First and foremost, I thank Albrecht Schmidt for warmly welcoming me to his
group and showing me the privileged world of academia. I thank you for the freedom, your
constant support that went beyond work, and the inspiration I received from you throughout
my research projects. Meeting you and your group was a fortunate event I will never forget.
I also thank Fabio Paternò and Jonathan Lazar who took their time to serve as external
supervisors for this thesis. Further thanks go to Anja Mebus, our executive Christmas card
overseer, for always having open ears whenever I stumbled through her door. Not to for-
get, our “King” Rainer Fink for his inexhaustible technical engagement and his efforts for
providing us with desk and an internet connection when we arrived from planet Stuttgart.
Franziska Schwamb, Christa Feulner, and Doris Steiner who were always there for me
whenever bureaucracy was around the corner. Murielle Naud-Barthelmeß for hunting my
students for timesheets. Another thanks go to Benjamin Jillich, Manuel Jerger, Patrick
Hilsbos, Michael Hilsbos, and Deborah Mash for providing me a research internship at
Neuromore. I learned a lot from you while I was working in Miami. Mariam Hassib for
supervising my master thesis while doing “rolling” eye tracking and brain research with me.

I also owe my gratitude to Tilman Dingler for benignly stripping me away from the industry
world and introducing me to the free-spirited world of academia. Markus Funk and Stefan
Schneegaß for sharing their offices with me. Together with their drones and Nerf guns. Bas-
tian Pfleging for sharing his train commuting experience. Pascal Knierim, BMBF friend
and professional van driver, for showing our amazing projects throughout Germany while
withstanding my taste in music. I will never forget your snowboard lessons and our mutual,
but joyful, last-minute paper writing sessions. Jakob Karolus, non-baked milk protein re-
fuser, and cocktail adorer, for being a friend who always had my back. Matthias Hoppe,
Swabian carpet, banana lover, and ramen soulmate, for the drone projects we have done
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Chapter1
Introduction

Cogito, ergo sum.

René Descartes

The world has undergone a substantial change in using computing systems for information
intake. Since the beginning of mankind, the speed at which information is delivered and
consumed has increased dramatically and keeps accelerating with the increasing availability
of past information platforms and the proliferation of modern media. Local transfer sys-
tems such as speaking and writing have evolved into a global information network with the
advent of the World Wide Web. Thus, extensive knowledge has become available for the
public through different modalities. Buckminster coined this as the knowledge doubling
curve [126].

The distribution of information has started to form a society that obtains their knowledge
from other sharing peers. The amount of available information is expected to rise further
with ubiquitous tools that proliferate into our daily routine. The consistent availability of
information requires constant attention and strains the cognitive demand of users. Various
stimuli compete for the attention of people and it is up to the user which ones are eligible to
be processed, requiring strategies to decide on how much of the available cognitive resources
should be spent on specific information channels. Miksch and Schulz elaborate this aspect
in their work Disconnect to Reconnect, where they found that the reduced use of digital
technologies is associated with improvements in performance, self-control, well-being, and
maintenance of real-life relationships [268].

Additionally, information has become more accessible with the proliferation of mobile ubiq-
uitous computing devices. This includes smartphones, smartwatches, notebooks, and smart
eye-wear technologies. These devices contain rich capabilities to provide output in mobile
scenarios. This enforced a shift on how humans process information, since content can be
consumed on-the-go or in any other stationary setting. For example, popular applications
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include reading (e.g., Kindle), auditory skimming (e.g., Blinkist), language learning (e.g.,
Duolingo), or activity on social media platforms (e.g., Instagram).

However, with the establishment and an increasing number of apps that compete for cogni-
tive resources, full attention cannot be paid to multiple stimuli that demand the same percep-
tion channels [327]. This results in mental fatigue, difficulties with concentration, or decline
in attention. This ongoing trend is expected to continue with an increasing number of de-
vices, which negatively impacts the operation of user interfaces in short and long-term usage.
Cognitive overload due to complicated user interface operations or extended multitasking as
well as cognitive underload because of boredom is the result. While user interfaces in per-
sonal home environments can be disposed of, safety and time-critical environments depend
on reliable operators that require few cognitive resources for operation. The Hawaii False
Missile Incident in 2018 [17], in which a false missile alert was issued due to a series of
operation errors, shows the need for interfaces that are aware of the user’s cognitive states to
avoid far-reaching interaction mistakes.

Since cognitive resources change throughout the day, users find themselves at times where
they can accomplish challenging tasks as well as times where they are unable to concentrate.
Systems that implicitly assess cognitive states already exist in driving contexts where they
evaluate eye movements to infer the driver’s fatigue level. However, these are restricted to
specific application scenarios. Mobile and stationary applications do not take the current task
difficulty and the user’s cognitive demand into account, and therefore, rely on explicit user
actions (e.g., user intervention) or trigger interruptions (e.g., notifications) at times where
users are focused, thus interrupting the workflow.

This thesis investigates how ubiquitous technologies can be used to sense the current level
of cognitive demand of users while they interact with user interfaces. Users seldom express
their mental demands explicitly, hence implicit detection methods for cognitive workload
provide the potential for continuous monitoring instead of selective sampling. Ubiquitous
technologies become equipped with rich sensing techniques that can determine cognitive and
physical states. Human bodies emit physiological signals that mediate mental states, such
as stress level or current level of physical activity. Advances in physiological sensing enable
the quantification of the concurrent cognitive workload levels. Therefore, this thesis focuses
on how systems achieve awareness about the user’s perceived workload and explore appli-
cations that provide cognitive augmentation. This includes the design of assistive technolo-
gies that mitigate or foster cognitive workload (i.e., investigating how to assist), evaluation
of physiological sensing modalities that provide real-time metrics for cognitive workload
(i.e., creating methods when to assist), and the presentation of applications that benefit from
these insights (i.e., in which application scenarios to assist). This workload-awareness is
envisioned as an extension of the context-aware computing paradigm and enables the devel-
opment of novel application scenarios.

Workload-awareness allows applications to match the user’s current available cognitive re-
sources with the complexity of the presentation of a user interface. By estimating their avail-
able cognitive resources, opportune moments for cognitive augmentation can be selected
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1 Introduction

and matched with the preferred exhibited mental demand. By matching task requirements
and cognition, peak performance levels are achieved while avoiding frustration and bore-
dom. The scheduling of tasks towards a currently perceived or expected cognitive workload
level can be arranged by modifying the schedule, adapting the presentation of the current
task to the cognitive context, provide visualizations that inform the course of cognitive de-
mand throughout the day, and enable designers to evaluate their user interfaces regarding the
placed cognitive demand.

To build workload-aware systems that use physiological sensing as a marker for cognitive
effort, we initially focus on the phenomena of cognitive capabilities and effective percep-
tion of information. At its core lies the theory of cognition, a crucial factor for perceiving,
processing, memorizing, and responding to information. This thesis presents a series of stud-
ies that investigate the design requirements of systems that utilize cognitive workload and
leverage physiological sensing to detect cognitive workload as a strategic metric for user
interface adaptations and evaluation. We explore physiological characteristics in combina-
tion with machine learning techniques to reliably detect changes in cognitive demand across
individuals. To complement, we provide use cases and implementations that quantify and
use workload in real-time.

We develop tools that can be applied by researchers and engineers to create workload-aware
interfaces that take the cognitive context into account. Therefore, we present algorithms and
methods to detect the current level of mental demand, which includes workload-awareness
as an additional variable within context-aware computing. We create and evaluate concrete
workload-aware systems: the concepts developed in this thesis include the use of an in-situ
Augmented Reality (AR) interface that supports persons with cognitive impairments during
daily tasks, visualizations that include direct representation of how the brain is affected by
cognitive processing, and the assessment of text reading efficiency. Taking cognitive capac-
ities into account, interface designers receive novel tools to engage with users, implicitly
evaluate interfaces, and control the information flow.

1.1 Vision: Workload-Aware Interfaces

Sensing cognitive workload has become relevant in different scenarios, such as workplaces
or in educational settings, to provide self-reflection or content-based adaptation. This re-
quires ubiquitous methods to record and analyze user actions. Since we are integrating
technologies in our daily lives, clothes, environments, or even our bodies, seamless physio-
logical data collection and analysis can be carried out. We believe that such technologies can
support people relative to workload measurements. In the following, we outline our vision
of workload-aware systems that facilitate user interaction throughout the day.

The goal of technology is to integrate seamlessly into the environment and support
users [381]. Thus, the more devices know about physical and physiological constraints or
states, the better they can provide contextual assistance. A fully integrated piece of tech-
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nology knows when to approach users and how to provide adaptive support with a suitable
adaptivity level to lower or increase cognitive workload. This process includes multiple
steps. First, user states have to be detected. Physical and physiological data is collected
and analyzed in real-time to estimate the current level of cognitive workload. Second, the
user needs to be approached at the right time to avoid a mismatch between user expectancy
and system. The final step copes with the content modification that assesses environmental
factors suitable for displaying the newly adapted content. Reinforcement-based assessment
algorithms determine if an improvement in physical and physiological measures has taken
place. If not, the agent can modify spatial and temporal factors to optimize the user experi-
ence. Repeating this process enables the agent to optimize workload-related parameters for
the individual user. We define workload-aware systems in the following:

Definition Workload-Aware System

Workload-Aware systems provide interfaces that enable implicit and explicit sensing
of cognitive workload. Workload-aware interfaces integrate cognitive workload as
a dimension into the paradigm of context-aware computing which can be taken into
account for user interface evaluation, workload reflection, or the creation of adaptive
user interfaces.

A workload-aware system needs information about the users’ current actions as well as tasks
that have to be accomplished to fulfill the definition. Cognitive default states (i.e., resting
or engaged states) need to be monitored across time to detect deviations. Furthermore, the
system must be aware of its environment to provide support at the right place and at the
right time. The idea of context-aware computing is to use several extrinsic and intrinsic
factors to provide support for users just-in-time. Workload-aware systems focus on cognitive
workload to augment the user’s mental processing. Those systems can sense highs and lows
in cognitive workload throughout the day and can enhance cognition. Systems that are aware
of the users’ current workload throughout the day can support and enhance the cognitive
capabilities in various ways:

User Interface Adaptation

Being aware of the current cognitive capacities of the user can be used as a parameter to
influence the representation of a task. An adaptive user interface can provide more complex
task representations to engage the user and increase the overall task success rate if sufficient
cognitive capacities are left or untouched. Providing adaptive in-situ assistance during daily
tasks such as cooking and at manual assembly workplaces can provide cognitive alleviation.
Switching assistance modalities in real-time according to the current cognitive workload
enables users to effectively engage and solve tasks in a shorter amount of time. At the
same time, a system can detect boredom, reduce the provided assistance, and increase the
commitment of users’ to the current task.
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Evaluation Tool

Subjective measures, such as questionnaires, interviews, or think-aloud protocols are heavily
employed to gain insights into the usability of user interfaces. For example, questionnaires
have established as a measure for workload where cognitive demand represents a subset
for quantification [161, 297]. However, these methods are prone to subjective perception,
require participants to memorize their experience regarding workload, and do not allow real-
time insights into cognitive processing during an experiment. For example, knowledge about
the current cognitive state allows experimenters and user interface designers to find distract-
ing or unclear elements. A workload-aware system that points this out can be used by the
experimenter afterward to explore difficulties in the User Interface (UI) design in post hoc
interviews.

Reflection

Reflecting states of cognitive workload is the initial step to self-improvement. By making
cognitive states spatially and temporally accessible, users can reflect on their performance
throughout the day to schedule demanding tasks at suitable time slots. Hence, productive
phases can be identified and exploited. On the other hand, tasks that do not require cognitive
attention can be scheduled to time slots where the user is aware of having low cognitive
capacities. For example, a user or a system can decide when it is the best time to whether to
read a complex scientific article or when to wash the dishes. Synchronizing task difficulty
and cognitive workload have the potential to reduce frustration as well as boredom. Instead
of communicating cognitive workload only with the user, it can be shared with other per-
sons and agents. This enables collaborative scenarios, in which multi-agents schedule tasks,
assign tasks automatically to other persons, match collaboration partners, or communicate
the perceived cognitive workload with the environment. This provides other persons and the
environment with the ability to reflect on the cognitive workload of other individuals.

Individual Assistance

Workload-aware systems may become individual assistants who use recent advances in
Artificial Intelligence (AI) to create models from cognitive and behavioral patterns. These
models are beneficial when it comes to schedule tasks and appointments according to the
required cognitive performance. Such devices weave altogether with the required perfor-
mance and upcoming tasks. By sharing these models, others can synchronize their capaci-
ties in workload to optimize the outcomes. The fluctuation of workload depends on multiple
parameters, such as nutrition, quality of sleep, workout routine, personal wellbeing, upcom-
ing daily chores, or incoming information consumption. For example, a meeting can be
scheduled when a set of parameters that influence workload are optimized among all partic-
ipants. Teaching technology how cognitive workload affects the priority of tasks throughout
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the day goes beyond simple context-aware applications. Workload-aware interfaces ubiqui-
tously provide cognitive alleviation by matching chores to cognitive workload and structure
tasks in a way to optimize the overall performance. This has the potential to help users to
be efficient at their tasks, reduce boredom as well as frustration, and increase well-being.
Going one step further, workload-aware interfaces can autonomously assess the difficulty
of a task while being aware of the user’s available cognitive resources. These tasks can
then be matched to the current cognitive fitness to ease its processing, hence providing a
workload-aware task schedule.

Interruption Management

Interruptions in physical as well as virtual environments drain attention and reduce the ca-
pability to remain focus on a task. Workload-aware systems become an interface between a
user and other individuals to communicate the current state of workload. Users may not be
interrupted by notifications or inconvenient office visits. For example, a workload-aware sys-
tem can mediate the current cognitive state using lights or heat on the door handle. Further-
more, senders of messages may be notified that the current message is delayed and should
be forwarded only under important circumstances. Flow states are fostered due to times in
which high focus is required, but also for situations in which interruptions are inappropriate.
For example, disruptions during highly focused conversations between individuals can be
proactively prevented and delayed to a more suitable time slot. Workload-aware systems
can, therefore, serve as a potential protection mechanism for periods that require high focus.

1.2 Research Questions

Three pivotal aspects have to be considered before integrating workload-awareness into
ubiquitous computing technologies: the users and their context, available workload sens-
ing modalities, and the application. Table 1.1 provides an overview of the Research Ques-
tion (RQ) that are addressed within the scope of this thesis.

Overflowing users with information and support-related stimuli may reduce the capability to
process further information. The result can be boredom, frustration, or excessive workload.
Therefore, it is important to understand human cognition and the design requirements of
workload-aware interfaces before augmenting workload. To identify opportune moments
regarding workload assistance, we employ qualitative inquiries to derive design implications
for workload-aware systems (RQ1). Here, we observe and conduct semi-structured inter-
views with tenants as well as the labor of sheltered living facilities. This specific user group
is used to report the need for cognitive assistance during all facets of their daily life. Hence,
it allows us to sketch and weigh a sequence of daily life tasks according to their cognitive
demand, leading to design guidelines for future workload-aware systems. Upon deriving
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RQ Research Questions Chapter

Human Cognition
RQ1 What are the design requirements for systems that provide opportune cognitive augmentation? 3
RQ2 What are suitable in-situ feedback modalities for cognitive support? 4

Sensing Cognitive Workload
RQ3 Does electroencephalography provide measures of cognitive workload for user interface evaluation? 5
RQ4 Do eye gaze metrics enable the classification of cognitive workload states? 6 & 7

Applications
RQ5 Does in-situ feedback provide cognitive support during a cooking task? 8
RQ6 How can complex physiological signals be visualized to be utilized by non-expert users? 9
RQ7 How can RSVP reading parameters be selected based on cognitive workload? 10

Table 1.1: Overview of the investigated research questions. The first part investigated opportune
moments and suitable feedback modalities for workload-aware environments. The second part
looked at physiological modalities for workload quantification. Finally, the third part combines
both concepts and presents workload-aware applications.

these design guidelines, we investigate which output modalities are suitable to communi-
cate assistance using tactile, auditory, and visual feedback (RQ2). This part describes how
cognitive assistance can be provided.

Ubiquitous awareness of cognitive states requires applications that are sensing cognitive
workload to provide relevant insights in real-time. First, we leverage an established method
to estimate the level of cognitive processing using EEG measures (RQ3). Second, we in-
vestigate how eye activity reflects cognitive workload as a contactless alternative to EEG.
We exploit smooth pursuit as specific eye movement which requires participants to lock on
a target and closely follow moving objects. Furthermore, we investigate how daily math
tasks influence the fluctuation of the pupil size. Both approaches provide a robust real-time
classification (RQ4). This part investigates sensing modalities that reveal when cognitive
assistance should be delivered.

The application section represents the final part of this thesis. Addressing workload-
awareness as a promising dimension for future context-aware applications, we focus on
applications that aim to amplify or improve the overall user experience. In a user study,
we show how cognitive assistance is provided using in-situ assistance that comprises audi-
tory and visual feedback (RQ5) and investigates how cognitive processes can be visualized
to the individual user. Individuals gain the possibility to review the level of workload during
specific tasks or certain points of time. Furthermore, current brain areas that are responsible
for cognitive processing can be reflected in real-time to raise self-awareness (RQ6). Finally,
we assess EEG as a tool for evaluating information processing parameters that influence the
space and time of Rapid Serial Visual Representation (RSVP) presentations. We show how
EEG can be used as an implicit workload measure from which adaptive systems and user in-
terface designers benefit when designing interfaces that represent textual information (RQ7).
Finally, this part is concerned with use cases which benefit from cognitive augmentation.

9



1.3 Challenges and Contribution

The extensive consumption of information is increasingly proliferating throughout society
through several modalities, such as mobile or wearable devices. At the same time, these
interfaces require our full attention while our time and resources are limited. With workload-
aware systems that are conscious regarding the user’s cognitive capabilities, content can be
mapped suitable to the mental state. Thus, we investigate how technologies can help us to
unload cognitive workload and enable more efficient interaction with the user. Thereby, we
put the focus within this thesis on the following three challenges:

1. Users, although aware of their mental capacities, do not expect the user interface to
react to the current level of workload. With individual cognitive capabilities chang-
ing throughout the day, such systems have to employ cognitive assistance just-in-time
when needed. When succeeding, such assistance can result in higher efficiency and
focus due to mental offloading. However, this process has to be seamless. The cogni-
tive augmentation and “disaugmentation” through computing systems without making
the user aware of it is a pressing challenge. Furthermore, new upcoming tasks can
be scheduled depending on the currently available cognitive capacities. Two decisive
parameters are commonly manipulated within the domain of adaptive user interfaces:
the presentation modality, such as auditory, visual, or tactile feedback, and the respec-
tive representation of the modality such as a tactile pattern or specific auditory alert.
However, how the prior mentioned parameters are adjusted depends (a) on the per-
sonal preferences of the user and (b) on the task the user is currently working on. A
system that chooses sub-optimal values for these parameters may frustrate the user due
to placing additional cognitive workload on it or provoke boredom through excessive
assistance. Finding the sweet spot that provides an engaging user experience is a key
challenge for workload-aware systems.

2. Ubiquitous technologies – which end users can acquire nowadays – become more and
more context-aware. Today computing devices and their accompanying sensors are
gaining computation power while being reduced in their size. As an example, devices
such as fitness trackers support health goals, yet operate without regarding the cogni-
tive state of the user. Technologies that quantify cognitive workload as an additional
dimension provide the possibility to adapt the current user interface, give user interface
designer insights into their design, and enable task scheduling that is mapped between
task difficulty and cognitive capacity. The challenge is to exploit technologies that
extract diurnal measures in real-time that predict the currently perceived workload so
that user interfaces can operate accordingly.

3. Finally, little research has been conducted on manipulating the self-awareness and
reflection of cognitive demand throughout the day. Stationary, mobile, and wear-
able technologies can sense user activities and behavior constantly and may reflect
cognitive states to the user. This, combined with a recording of conducted activities
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Context
Content-Awareness

Feedback Opportunities

Feedback

Perception
Modalities

Measures
Cognitive Workload

Methods
Physiological Pipeline

Applications

Cognitive Augmentation

Evaluation
System Assessment

Human Cognition Physiological Sensing

Support

Presentation
Reading Optimization

Figure 1.1: Overview of the contributions and challenges tackled during the course of this the-
sis. Design implications and the efficiency of feedback modalities are investigated in the Human
Cognition section. We then apply AI-based Physiological Sensing to objectively measure cog-
nitive workload. Finally, Applications are sketched which benefit from workload-awareness.

throughout the day, allows users to optimize their schedule to match their availability
of cognitive resources to a suitable task. Moreover, recent advances in deep learning
pave the way for automatic scheduling of tasks depending on the required cognitive
demand. Smart assistants can assess that information to provide implicit assistance in
task scheduling for cognitive assistance.

In this thesis, we tackle the aforementioned challenges by applying theories of cognitive
psychology and physiological sensing on technology to provide cognitive assistance. This
includes working memory theories, the utilization of ubiquitous sensing, constant availabil-
ity of physiological data, and applying recent advances in AI. More specifically, we set the
goal of

1. objective real-time quantification of mental workload to identify the need for cogni-
tive assistance during the use of technology as an additional dimension within the
paradigm of context-aware computing.

2. deciding and identifying opportune moments that require technologies to deliver con-
tent that is tailored to the users’ remaining mental capacities.

3. visualizing cognitive demand with the intent to provide user reflection or deeper in-
sights for user interface designers that cope with the creation of mentally gentle or
demanding UIs.
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This thesis focuses on end-user evaluations; in particular workload augmentation and the
application layer within the domain of Human-Computer Interaction (HCI), cognitive psy-
chology, and AI including Machine Learning (ML) as well as Deep Learning (DL). A
human-centered approach is selected by conducting qualitative inquiries a well as lab and
in-situ studies, and feedback for future workload-aware systems is collected and evaluated
within technological and algorithmic probes. Table 1.2 provides a summary of the conducted
research inquiries while Figure 1.1 illustrates the structure of the thesis. The following sci-
entific contributions address the aforementioned goals:

Design Requirements for Workload-Aware Interfaces

The design requirements and modalities for technologies that adapt during opportune mo-
ments were evaluated in a field study. Through qualitative inquiries, design guidelines were
derived to match the expectation of the users. Specifically, households that accommodate
people with cognitive impairments that require cognitive assistance were targeted [233].
Supervised cooking emerged as an important communal activity where cognitive assistance
is frequently required but not always available due to shortages of specially trained staff. If
not mentally supported, tenants tend to make mistakes that may cause injuries or leave their
current task “as it is” including the risk of unexpected consequences (e.g., leaving the cook-
top on). Our methodology employed observations to create an initial question catalog which
was refined in an iterative process. Next, semi-structured interviews were conducted with
caretakers of the sheltered living facility to establish design implications for workload-aware
interfaces that support tenants during the cooking process. Regarding the preferred feedback
modalities of computerized assistance, an additional study revealed significant preferences
for auditory and visual feedback during opportune moments for assistance.

Using Physiological Sensing to Assess Cognitive Workload

We build upon previous theories of cognitive psychology and the field of HCI to quantify
the demand of user interfaces on end-users. An objective real-time assessment of cognitive
workload is important since questionnaires or think-aloud protocols, the traditional way of
workload assessment, are prone to subjective perception, interfere with the experimental
workflow, and require participants to remember their experience. We exploit physiological
sensing as an alternative to traditional workload measures for two reasons: First, UI designer
and experimenter receive in-situ feedback about their novel system while participants use
it. Secondly, users benefit from self-reflection and UI adaptations that prevent boredom or
frustration due to UI difficulty adjustments. In this thesis, we evaluate the concepts of eye
tracking [223, 226] and EEG [221] as direct workload measurements that can be employed
in real-time.

Identifying Opportune Moments for Cognitive Assistance

Based on in-situ observations, we identified how user interfaces can adapt to the current
cognitive state by evaluating visual, auditory, and tactile feedback. First, we reviewed the
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Research Inquiries
Inquiry Description Chapter

H
um

an
C

og
ni

tio
n

We investigated the design implications of cog-
nitive assistance through qualitative inquiries in
a sheltered living facility and derive five design
implications for the design of workload-aware
systems.

Chapter 3

To evaluate the impact of different stimuli on
cognitive workload, we performed a study with
three different output modalities to communi-
cate errors in an assembly scenario.

Chapter 4

We present the use of EEG features to assess the
workload induced by two different instruction
modalities in a manual assembly scenario and
present a EEG-based evaluation pipeline.

Chapter 5

Se
ns

in
g

C
og

ni
tiv

e
W

or
kl

oa
d

We exploit the performance of smooth pursuit
eye movements as an indicator of cognitive
workload. Furthermore, we explore the clas-
sification performance for potential workload-
aware systems.

Chapter 6

Changes in the pupil diameter during different
cognitive workload states. We evaluate the per-
formance of cognitive workload classification
in an adaptive math task scenario.

Chapter 7

We evaluate an assistive system based on the
previous Chaptersthrough a long-term study in
a sheltered living facility.

Chapter 8

A
pp

lic
at

io
ns

We present the implementation of a brain visu-
alization that displays dipoles from which elec-
trical activity is generated. We show how this
approach can be combined with a neurofeed-
back loop.

Chapter 9

We present a study which investigates the influ-
ence of different RSVP reading parameters on
information and knowledge acquisition. We de-
rive a predictive model that utilizes EEG that
forecasts the suitable reading parameters.

Chapter 10

Table 1.2: Research inquiries developed within the scope of this thesis. Each research imple-
mentation is described in detail in a dedicated Chapter or section within this thesis.
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aforementioned modalities in a user study [228] and found a preference for visual and au-
ditory feedback. We thus implemented a system using the preferred stimuli in an in-situ
study to determine the feasibility of providing adaptive assistance suited to the current level
of cognitive demand [231].

Tools and Frameworks for Building Workload-Aware Systems

Tools and frameworks are essential for the development of context-aware systems. Such
tools can support the proliferation of a new dimension in the paradigm of context-aware
computing. We present visualizations that support user interface designers to understand
how their interfaces affected cognitive processes on a cortical level. Additionally, users can
self reflect on their past performance [225]. In this context, we publish the tools and source
code we have implemented. This is complemented by the collected data sets that can be used
to innovate or extend existing research.

1.4 Ethics

All studies reported in this thesis were conducted in accordance with the declaration of
Helsinki [12]. Furthermore, we followed the aspects of the Ethical, Legal and Social Im-
plications (ELSI) [276]. This includes the submission of a detailed study plan to individual
project partners that were involved in the related study. Within the context of studies that re-
quire proactive involvement and acquisition of participants, consent for data collection was
given according to the General Data Protection Regulation (GDPR). Personal data, such
as demographic data, photos, and videos, were stored securely to prevent access by third
parties. No data was collected by any probes before the agreement of the involved users.
The studies conducted in Chapter 3, 4, and 8 included tenants with cognitive impairments
from a sheltered living facility. Thereby, the study procedure followed an additional exami-
nation process of the German Federal Ministry of Education and Research (BMBF)1 and the
Gemeinnützige Werkstätten und Wohnheime GmbH (GWW).

1.4.1 Consent

Written and informed consent was received, when possible, by the participants themselves.
Participants were informed about their rights and compensation within the study. To ensure
proper consent from participants with cognitive impairments, we submitted our study plan to
the BMBF and the corresponding living facility GWW. Upon gaining approval from both in-
stitutions, the tenants of the sheltered living facility were informed about the course of study
and were asked for their potential participation. This was achieved by asking participants
directly for consent. If this was not possible due to the level of cognitive impairment, the

1 www.bmbf.de/en/index.html - last access 2020-01-28
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1 Introduction

associated legal guardians were asked to provide written consent for the participant. Regard-
less of the aforementioned procedure, participants were always informed about the course
of study, collected data, and their rights to abort the study or request a deletion of their data.

1.4.2 Physiological, Behavioral, and Task-Related Data

During our research, we collected a rich amount of individual physiological, behavioral,
and task-related data from participants. This was required to feed the data into ML and
DL algorithms that learn or derive patterns. However, participants might behave differently
during an experiment to hide their regular behavior due to privacy concerns. We designed
our experimental procedure transparently by showing what can be inferred from physiolog-
ical, behavioral, and task-related data. Furthermore, participants were introduced into the
anonymization process to provide evidence about the intractability of their identity. When
employing systems in the wild, a “Privacy by Design” [236] paradigm was employed to
ensure privacy in protected places.

1.4.3 User-Awareness

When technology tracks mental states, as well as behavioral data in private settings, the chal-
lenge of workload-aware interfaces, is to provide seamless interaction while communicating
with the user how certain decisions were made. Users may be unaware of certain triggers
that cause an unexpected system behavior based on their cognitive state or behavior.

1.5 Research Context

This thesis presents work that was carried out in the context of different scientific institutes
and research partners for four years. The presented research was carried out over two years
in the Human-Computer Interaction and Cognitive Systems group at the Institute for Visu-
alization and Interactive Systems in Stuttgart as well as in the Human-Centered Ubiquitous
Media group at the Ludwig Maximilian University of Munich. Both groups are supervised
by Prof. Dr. Albrecht Schmidt. Several publications resulted in a variety of collaborations.

1.5.1 Project KoBeLU

The major part of this thesis was conducted in the context of the project Context-Aware
Learning Environment (KoBeLU) (Grant No. 16SV7599K) funded by the BMBF within the
project call “Erfahrbares Lernen”. Including the Ludwig Maximilian University of Munich,
eight project partners (AUDI AG, MAHLE GmbH, International Center for Ethics in Re-
search (IZEW), GWW. Offenburg University of Applied Sciences (HSO), Stiefel Eurocart
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GmbH, User Interface Design UID) took part in the project. KoBeLU aimed to develop and
evaluate assistive systems within the learning contexts. Specifically, the influence of in-situ
assistance was subject to studies for different stakeholders in various learning environments.
By integrating assistive technologies, this 3-year project (Aug. 2016 - Nov. 2019) researched
the degree of cognitive assistance that is provided in real-time. The collaboration between re-
search and application resulted in conjoint publications [135, 218, 224, 228, 231, 233, 281].

1.5.2 Project be-greifen

Within the project call “Erfahrbares Lernen”, collaborations were done with the project “be-
greifen” (Grant No. 16SV7527). This is reflected in several publications with the research
associate Pascal Knierim [204, 205, 206, 207, 208, 209, 222, 229]. The work there was
related to cognitive assistance using Head-Mounted Displays (HMDs).

1.5.3 Project AMPLIFY

Several projects were supported by the European Union’s Horizon 2020 Programme under
the ERCEA AMPLIFY (Grant No. 683008). This is reflected in publications with the re-
search associates Jakob Karolus [189, 190, 246] and Matthias Hoppe [172, 173, 174, 175,
392]

1.5.4 University Collaborations

Starting in 2017, the workshop series Designing Assistive Environments for Manufacturing
(DAEM) was launched at the conference PETRA in cooperation with the Ostwestfalen-
Lippe University of Applied Sciences. The workshop is centered around the development
and evaluation of assistive technologies in manufacturing environments. This includes the
evaluation of technologies that support and foster the cognitive abilities of workers, resulting
in a design space for industrial assistive computing [59]. To date, the workshop was renewed
for a fourth iteration in the year 2020.

Furthermore, this thesis presents work concerning people with cognitive impairments. Since
this represents a marginalized group, traditional qualitative methods are difficult to apply. To
overcome this, we consulted the expert Erin Brady for this research project as she provides
the necessary research qualifications. The conducted project is concerned about the behavior
of persons with cognitive impairments during communal activities, particularly cooking.
This enabled us to derive design implications for assistive kitchen technologies that provide
mental assistance for people with cognitive impairments [233] and point out the potential
abuse of assistive technologies in working environments [232].
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1.6 Thesis Outline

This thesis comprises eleven chapters and is divided into six parts. The structure of this
thesis closely follows the depiction of Table 1.2. The first part denotes background knowl-
edge and differentiates existing work from the novel contributions presented in this thesis.
The second part provides a series of studies that investigate the design requirements and im-
plications of workload-aware systems. The third part introduces studies about physiological
sensing modalities that enable in-situ measures of workload states. The fourth part presents
how the aforementioned studies provide cognitive assistance and enable users to reflect on
workload states. Finally, the fifth part concludes with guidelines and provides an outlook for
workload-aware systems in the domain of computational interaction. The sixth and last part
includes the bibliography and listings.

1.6.1 Part I: Introduction and Foundations

Chapter 1 – Introduction

The first Chapter describes the motivation and vision for workload-aware interfaces, presents
use cases, states the context in which this thesis was conducted, states collaborations, and
summarizes challenges as well as opportunities which were faced throughout our research.

Chapter 2 – Background and Foundations

The second Chapter introduces key concepts of human cognition and the concept of cog-
nitive workload. We present state-of-the-art measures that facilitate explicit and implicit
measures for cognitive workload. This is followed by the presentation of recent develop-
ments of ubiquitous assistive technologies that support workers and persons with cognitive
impairments. Ethical considerations are discussed since sensor-dependent systems need to
be viewed critically from a data collection perspective.

1.6.2 Part II: Human Cognition

Chapter 3 – Opportune Cognitive Augmentation

Detecting suitable situations for cognitive augmentation is crucial to avoid context-aware
mismatches. Therefore, we first focus on the disclosure of opportune moments for cognitive
assistance. We assess the characteristics of diurnal chores that benefit from cognitive support
in a case study with persons with cognitive impairments.
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Chapter 4 – Feedback Modalities
In this chapter, we evaluate the efficiency of feedback modalities after detecting situations
that require assistance. We conducted a lab study that compared different visual, auditory,
and tactile feedback patterns.

1.6.3 Part III: Sensing Cognitive Workload

Chapter 5 – Mobile Electroencephalography
Cortical activity provides markers for cognitive demand and exhaustion in real-time. In a lab
study, we evaluated the cognitive demand of two different user interfaces by analyzing EEG
data. We found that EEG is a reliable complementary measure for cognitive workload and
proposes an evaluation pipeline that supports researchers and designers in their assessment
of user interfaces regarding the placed mental demand. Machine learning techniques are
applied to show potential real-time adaptations of future workload-aware visualizations.

Chapter 6 – Smooth Pursuits
Human eye gaze behavior is affected under different levels of cognitive workload. We inves-
tigate changes in smooth pursuit eye movements under different levels of cognitive workload.
Applying machine learning techniques reveals a reliable distinction for different cognitive
workload levels for interpersonal and intrapersonal classification.

Chapter 7 – Pupil Dilation
The pupil is an eye component that is heavily affected by changes in cognitive demand. We
show how differences in pupil dilation can be utilized to build reliable on-the-fly workload-
aware systems, and how eye-tracking data can be used for the physiological prototyping of
workload-aware systems.

1.6.4 Part IV: Applications

Chapter 8 – Design Pipeline Evaluation
We evaluate the results and the design pipeline from Chapter 5 in a case study at a sheltered
living facility. Using an exemplary assistive system that incorporates the aforementioned
results, tenants with cognitive impairments reacted favorably to the provided cognitive aug-
mentation and were unusually independent throughout the task.

Chapter 9 – Reflection
Communicating changes in cognitive demand help to understand how diurnal tasks can be
mapped to available resources that vary throughout the day. We propose the implementation
of a real-time visualization which we evaluate in the context of a neurofeedback loop.
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Chapter 10 – Workload-Aware Reading Interfaces

This chapter describes the concept of an application scenario for workload-aware adaptive
reading scenarios. By evaluating EEG, we propose strategies to adjust RSVP reading param-
eters depending on the current level of perceived workload. We propose predictive models
that adjust the reading speed regarding the cortical activity.

1.6.5 Part V: Conclusion

Chapter 11 – Conclusion and Future Work

In this chapter, we summarize and conclude the findings of this thesis and revisit the research
questions stated in the beginning. We reflect on the presented research approach, discuss
future work, and present implications for workload-aware systems.
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Chapter2
Background and Foundations

My problem is that I have been
persecuted by an integer. For seven
years this number has followed me
around, has intruded in my most private
data, and has assaulted me from the
pages of our most public journals.

George A. Miller

The research presented in this work is based on the field of ubiquitous computing, assistive
technologies, and physiological sensing. To create and design workload-aware interfaces, we
apply theoretical concepts from psychology, cognitive load theory, and current practices of
employing sensing modalities in assistive technologies. This includes ethical considerations
that arise with interfaces that can sense physiological states ubiquitously. Here, we provide
readers with the necessary knowledge that deepens the foundations and selected methods for
the studies presented in the upcoming chapters.

2.1 Ubiquitous Computing

The term Ubiquitous Computing describes the era in which computers started to "weave
themselves into the fabric of everyday life until they are indistinguishable from it" [381].
This included a deviation from the many-to-one relationship, where many persons relied
on the use of one computer. With the introduction of the MITS Altair 8800 personal com-
puter in the year 1975, computers became available for broad masses of people. In the
following years, computers became smaller and their capabilities in sensing capabilities and
computational power increased. Nowadays, the distribution of computers has changed into
a many-to-one relationship, where many computational units are owned or operated by a
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single person. These can sometimes be not distinguishable as they are seamlessly integrated
into the environment: adaptive light switches, slide doors, or voice assistants are just a few
examples of technologies that facilitate our life [382].

These technologies accomplish tasks for us which would usually drain our cognitive atten-
tion. They provide mental alleviation and allow us to schedule cognitive resources to other
tasks that require human action. However, in emergency cases, ubiquitous devices might
compete for our attention to take action, so we should be made aware of our cognitive states
to provide selective assistance. In the following, we summarize previous research on cogni-
tive workload theory.

2.1.1 Perception of Workload

Workload, regardless of mental or physical nature, is an important component throughout
the perception of diurnal activities. The body-mind interaction is believed to be affected
when strained or relaxed over a certain time span [265]. Hence, the workload is ubiquitously
present and often associated with the accomplishment of daily tasks. Reducing workload to
support users in daily tasks is an established way to increase a person’s overall life quality.
For example, robots and machines reduce physical workload by overtaking tasks that are
dangerous or exhaustive for humans.

Cognitive workload is one type of workload that exhausts mental resources and that is at-
tributed to individual properties. Past research aimed to reduce cognitive workload that arises
through everyday tasks, such as digital calendars, task scheduling apps, or notification man-
agement systems [344]. Providing too much cognitive support might lead to boredom or loss
of important information that comes along with a context-aware mismatch. No presence of
cognitive support might lead to frustration due to failing in accomplishing the present task.
Both aspects are detrimental for the user in terms of performance, user experience, and task
performance which might elicit dangerous situations [139]. Finding the “sweet spot” for
mental demand is necessary to keep the user in flow states, where flow states are an essential
part of maintaining the users’ engagement and task efficiency [84, 85]. We elaborate on the
term cognitive workload and the relevant semantics for this thesis in the following.

2.2 Cognitive Workload

We process information by perceiving events in our environments. In this case, cognitive
workload describes any information processing load placed on cognitive mechanisms. It is
often associated with the level of measurable effort that is mobilized to accomplish a task.
Even more often, cognitive workload is falsely used interchangeably with the terms stress,
fatigue, or physical workload [158]. In the following section, we provide an overview of the
semantics of the term cognitive workload and its theories which are deemed relevant for the
scope of this thesis.
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2 Background and Foundations

2.2.1 Working Memory

As humans perceive information in their environment, they are obliged to store relevant
“chunks of information” in their short-term memory for further processing. This temporary
storage, known as working memory [14], utilizes the five senses sight, touch, taste, smell,
and hearing, to encode information. It is assumed that cognitively demanding tasks can
only be efficiently accomplished with a sufficient amount of working memory. Thereby, the
number of objects that can be stored simultaneously is limited to seven plus or minus two
chunks [83]. Without sufficient capabilities to store information temporarily, cognitively
demanding tasks might be completed with less efficiency. How large the capacity of work-
ing memory is and how it can be quantified is highly disputed in the field of Psychology.
In common parlance, it is said that “seven chunks plus/minus two” can be memorized by
an individual. Miller argues how this number might have emerged as the status quo in re-
search [270]. Further research has been conducted in this regard, indicating that the number
seven is the limiting factor that should be considered as critical when relying on temporary
storage [325]. Thereby, large inconsistencies in a set of observed events provide a better
memory performance.

2.2.2 Cognitive Workload Theory

Previous work has inquired into different theories on how cognitive workload and mental
models work. The term “cognitive workload theory” has been designed to optimize knowl-
edge intake and boost learning performance during information processing. It is assumed
that working memory is limited in dealing with the perception through our five senses.
Thereby the processing of visual, auditory, or tactile information is limited by the number
of “chunks” an individual can remember and mentally process at the same time. The overall
aim of cognitive workload theories is to provide guidelines that minimize the demands upon
working memory [355]. In the context of HCI, designers could reduce the number of visual
chunks a user has to remember (e.g., menu items), or utilize the Gestalt laws [162] to group
similar chunks as means to reduce the effort for item searching. John Sweller [353] pre-
sented a cognitive workload theory which divides workload, learning, and problem-solving
into three components: Intrinsic Workload, Germane Workload, and Extraneous Workload,
that describe factors that contribute to the demand for working memory.

Intrinsic Workload describes the inherent complexity of a task. Intrinsic Workload is not
trivial to manipulate since the intrinsic task complexity is associated with the necessary indi-
vidual cognitive demand to process and act upon specific information. If possible, Intrinsic
Workload should be kept at a minimum to avoid unnecessary internal processing of users.
However, this is considered difficult because the task itself needs to be modified to manipu-
late the complexity [398].

Germane Workload represents the effort to process patterns within a task. Realizing schemes
that help to solve a task may increase task engagement and foster learning. Hence, maxi-
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mizing the share of Germane Workload is emphasized as a crucial factor when designing
engaging user interfaces.

Extraneous Workload is manipulated by the task representation that can be perceived with
human senses. For instance, a well-designed visualization enhances the interpretation of
data far better than bad design. Relative to the other workload types, Extraneous Workload is
trivial to manipulate since the task representation can be exchanged through the appearance
of the problem (e.g., visually or auditory). Extraneous Workload should be minimized to
avoid unnecessary allocations of cognitive resources required to resolve the intrinsic task
complexity. Figure 2.1 illustrates the components of Sweller’s cognitive workload theory.

Cognitive
Workload

Germane WorkloadIntrinsic Workload
Extraneous
Workload

Construction
Scheme

Natural Task
Complexity

Visualization
Complexity

Figure 2.1: Graphical representation of the cognitive workload theory by Sweller [353]. Intrin-
sic, germane, and extraneous workload represent form the overall experienced mental demand.
While intrinsic and germane workload cannot be easily changed due to the inherent task com-
plexity and tools provided to the user, extraneous workload can be manipulated by the task
representation.

2.2.3 Cognitive Workload Assessments

The assessment of the cognitive workload that is placed by user interfaces is a factor that
has been viewed as crucial by designers. Different measures, ranging from direct subjec-
tive assessments to implicit physiological measures, have been employed to sense cognitive
workload. Although being far from exhaustive, the following section informs about current
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2 Background and Foundations

(a) (b) (c)

Figure 2.2: Example of questionnaires which measure cognitive workload. (a): NASA Task
Load Index, (b): Rating Scale of Mental Effort, and (c): Driver Activity Load Index.

practices of workload measures that have gained popularity in HCI research. These focus
primarily on self-rated measures, brain-sensing, eye tracking, and physiological measure-
ment modalities.

Self-Rated Measures

Asking users in-situ or post hoc about their cognitive strains during interaction is a common
way to evaluate user interfaces. Subjective inquiries benefit from being an uncomplicated
measurement that can be used without the need for complicated hardware or foreknowledge.
Popular questionnaires which are used among researchers are, for example, the NASA Task
Load Index (NASA-TLX) [159, 161], Rating Scale of Mental Effort (RSME) [385, 401], or
Driver Activity Load Index (DALI) [296] (see Figure 2.2). Questionnaires reign among the
most used measures for cognitive workload since they are easy to employ and be applied
during or after experiments. However, they face critical trade-offs: They are susceptible to
the subjective perception of participants, they place additional cognitive workload on the
participants by requiring them to remember their experience, and they lack concrete real-
time assessments.

Electroencephalography

The human brain is the information and control unit of a human being. Thereby, approx-
imately 100 billion neurons underlie human cognition [165]. Electrical activity in several
brain regions can be measured by placing electrodes on the scalp. Neurons communicate by
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(a) (b)

Figure 2.3: Different EEG setups. (a): Affordable off-the-shelf solutions can be achieved us-
ing the OpenBCI with a customized 3D printed headset. (b): More expensive devices enable
integrated impedance checks and a dense electrode placement with up to 64 electrodes.

exchanging electrical activity using neurotransmitters, a chemical transferred between neu-
rons. In this work, we focus on measuring this electrical activity via an EEG headset. EEG
is commonly leveraged in clinical application and yields a non-invasive method to estimate
cortical activity [261, 278, 390]. Electrical potentials between 1 µv and 100 µv (microvolts)
are measured by placing conductive electrodes on a scalp. An additional electrode serves
as a reference electrode, which can be placed on the earlobe or scalp [257]. The measured
EEG potentials allow the processing and extraction of different features. Machine learn-
ing has been used on these features to retrieve insights into cognitive processes [251, 252].
This approach allows to discriminate between cognitive states [124, 152, 238] and enables
EEG as a modality for user experience evaluation [123]. For example, changes in electrical
potentials are observed by analyzing frequency bands. Previous work found a drop in fre-
quencies of alpha (8 - 12 Hz) and an increase of theta (4 - 8 Hz) [199, 221] when subjects
have to raise mental capacities. An alternative approach is the assessment of Event-Related
Potentials (ERPs) to infer mental workload [46, 320]. To complement this, real-time brain
visualizations enable deeper insights into sequences of neuronal activity [225].

However, EEG measurements are prone to noise. Head movements, muscle contractions,
eye movements, and even eye blinks cause changes in the electrical field on the scalp. Re-
searchers are concerned about this and invest great effort to reduce the number of measure-
ment artifacts [86, 125, 216, 279]. Since artifacts cannot be completely avoided, the use
of EEG often requires a controlled environment comprising minimal body movements of
the user. Such conditions are often impractical for end-users due to their high experimental
control. However, recent technical advances ameliorate these disadvantages [274] that allow
artifact corrections for EEG during mobile settings [36]. The barrier EEG in real-world set-
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tings has been lowered by making EEG headsets accessible to the consumer market. These
are usually priced between $2491 and $16002. More affordable open source solutions can
be acquired within the OpenEEG Project3 (see Figure 2.3).

Frequencies

Different oscillations in EEG signals are attributed to several semantics of cognitive states.
The six bandwidths delta (1 Hertz (Hz) - 3 Hz), theta (4 Hz - 7 Hz), alpha (8 Hz - 12
Hz), lower beta (13 Hz - 20 Hz), upper beta (21 Hz - 30 Hz), gamma (31 Hz - 100 Hz)
power are usually investigated when analyzing frequencies. Changes in alpha and theta
frequencies are correlated with the mental demand placed on working memory as well as
increase or decrease in task engagement [146]. The alpha power is associated with changes
in brain resting states. If the brain is resting, a modulation of alpha waves is achieved which
decreases when users perform tasks that require their memory. Theta oscillations correlate
with changes in task engagement at the frontal anterior cingulate cortex [55]. Thereby, an
increase in theta power is associated with higher task engagement while lower theta power is
an indicator of low task engagement. Since it is unknown if correlations between the demand
of working memory (i.e., alpha power) and task engagement (i.e., theta power) might elicit
flow states, researchers use the theta-alpha ratio as a coherent metric for cognitive demand.

Event-Related Potentials

ERPs are specific amplitudes that characteristically appear after users perceive a stimulus.
Different types of amplitudes can be measured depending on the type of provided stimulus.
For example, if a stimulus does not match the expectation of a user, a negative peak after
approximately 400ms is measured in the EEG signal. Another example is the processing
of stimuli that require the users’ attention which typically resemble a positive peak after
300ms [47]. Smaller ERP amplitudes are expected when users pay less attention to a specific
stimulus. Tasks that require large amounts of working memory are more difficult to process,
thus resulting in smaller ERP amplitudes. Hence, ERPs can be measured to assess the mental
vigilance towards auditory cues [147] or to detect vocabulary gaps [339, 340].

Eye Tracking

Eye tracking is a method to follow the gaze of a person. The gaze trail, a sequence of
gazed objects, or the pupil diameter can be measured without great effort. Eye tracking
has become an interesting topic for the HCI community since it provided the possibility to
computationally link attention and objects of interest with visual perception. The Mind-Eye
Hypothesis states that gazed objects are an indicator of visual attention [183]. This is not
necessarily true: objects can be gazed without paying visual attention to them. However, eye

1 www.choosemuse.com - last access 2020-01-28
2 www.futurehealth.org/bm_at1.htm - last access 2020-01-28
3 www.openeeg.sourceforge.net - last access 2020-01-28
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(a) (b)

Figure 2.4: (a): Stationary eye tracker which emits infrared light. This light reflects on the
cornea which is captured by the device to estimate the gaze points. (b): Head-worn mobile eye
tracker. An infrared camera captures the reflection of infrared light and maps the gaze to a world
camera.

tracking represents an interesting tool to learn about human attention, focus, cognition, and
potential modality for advanced user inputs [101].

Eye trackers are available in stationary and mobile settings. Stationary eye trackers are
traditionally mounted below a display and emit infrared light which is reflected on the eye
(see Figure 2.4a). This reflection, known as corneal reflection, is captured by the eye tracker
to estimate the gaze point on the screen [308]. Additional variables that can be captured
include the pupil diameter, gaze point differences between the left or the right eye, and
environmental lighting conditions. In contrast, mobile eye trackers resemble goggle-like
devices that are worn by users (see Figure 2.4b). Instead of putting the eye tracker below
a monitor, the infrared emitter can be worn like glasses. Similar to stationary eye tracking,
the corneal reflection is captured and the gaze is mapped to the currently perceived view.
Mobile eye tracking is not limited to a physical screen and can be used to track the eye gaze
throughout mobile scenarios, where the eye gaze is mapped on a recorded video feed [51].
Alternative approaches to mobile eye-tracking include the evaluation of Electrooculography
(EOG). EOG describes electrical activity which is created by muscle contractions through
eye movements. EOG goggles employ electrodes that have contact with the skin and serve
as a measurement unit for eye-based activity [52]. The current eye gaze and movement
directions can be evaluated by analyzing the emitted electrical activity. The incorporation
of mobile eye-tracking has recently taken place in AR [369] or Virtual Reality (VR) [106]
applications and is likely to become a popular usability tool.

We elaborate on well-known eye movements and metrics in the following. Although being
far from exhaustive, we focus on metrics that are relevant for the understanding of this thesis,
where a comprehensive review is provided by Duchowski [103]. Fixations are pauses over
regions which attract the attention of users [326]. Thereby, the visual gaze remains over the

28



2 Background and Foundations

region for the duration of the fixation. Saccades describe rapid eye movements between fix-
ations [326]. Saccades are very fast and are considered to be among the fastest movements
a human body can produce. Smooth Pursuits are smooth eye movements that occur when
closely following a moving target on a screen [374]. Calibrating an eye tracker, which is a
challenging procedure that disrupts the user experience, is not necessary to detect smooth
pursuits. On the contrary, smooth pursuits can be used to calibrate eye trackers [194]. Fi-
nally, the Pupil Diameter can be measured as an indicator for cognitive workload [304, 149].
However, pupil dilation is easily affected by external noise factors such as changing lighting
conditions. Therefore, careful interpretations have to be derived when using pupil dilation
as a measure for cognitive states.

Other Physiological Measures for Cognitive Workload

Alternative measures to sense cognitive workload have emerged besides the use of ques-
tionnaires EEG and eye tracking. Functional Near-Infrared Spectroscopy (fNIRS) is
a non-invasive modality that uses near-infrared range light between 650 nm and 1000 nm
to measure concentration changes in Oxygenated Hemoglobin (HbO) and Deoxygenated
Hemoglobin (HbR) in the brain [375]. The concentration levels can be estimated by placing
light emitters on the scalp that measure the returning light from an infrared round trip [170].
This method is popular for Brain-Computer Interface (BCI) applications since fNIRS is
easy to set up and process [277]. However, fNIRS is known to have significant latencies
since it takes between five to ten seconds until changes in oxygen are visible in the blood-
stream [255]. Another non-invasive measure for brain activity is Functional Magnetic
Resonance Imaging (fMRI). fMRI uses magnetic resonance imaging to analyze blood
flow levels [110]. In contrast to the presented non-invasive methods, invasive methods re-
quire electrodes to be placed below the scalp. Methods, such as Electrocorticography
(ECoG), require electrodes to be placed below the skull to capture electrical signals [243].
Heart Rate (HR) measures the heartbeat where changes in HR and Heart Rate Variabil-
ity (HRV) are frequently used as an assessment for stress and cognitive workload [313].
Electromyography (EMG) measures electrical activity emitted from muscle contractions
by body movements. Changes in muscular micro-movements are an indicator of cognitive
workload [69]. Electrodermal Activity (EDA) describes the activity of sweat glands as
an indicator of stress and workload [41, 227]. Cognitive workload can have an impact on
haptic interaction, such as touch or pen input. Changes in force or interaction patterns
can be measured when users experience cognitive workload [394]. Cognitive workload is
also known to influence Speech regarding lexical density [195], tempo [71], pauses [196],
or voice pitch [378]. Body Temperature changes have been correlated with cognitive
load [331]. Finally, direct measures of cortisol levels have been used to measure cogni-
tive workload [74]. However, cortisol levels require laboratory analysis and are not suitable
for real-time analysis.
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2.3 Assistive Technologies and Systems

Assistive technologies started as devices that aided persons with disabilities, such as voice
recognition systems, braille, hearing aids, wheelchairs, or screen readers. This basic idea
of using technologies to enhance human capabilities has attained popularity for the general
population. Such assistive systems have become popular tools in home and work settings.
Speakers, phones, and TVs have been enriched by technologies that enable them to com-
municate with users and provide information just-in-time. Assistive systems evolved from
the need for explicit interaction (e.g., mobile phones) to devices which require subtle inter-
action (e.g., speech recognition). Cognitive assistance through in-situ feedback enables the
ubiquitous availability of information that has to be memorized for a short amount of time.
In particular, assistive systems have proliferated for two stakeholders: people working at
production lines with frequently changing assembly batches, and therefore constant changes
in assembly instructions, have cognitively benefited from visual in-situ assistance [129].
Furthermore, persons with cognitive impairments have shown positive effects by the use of
assistive systems in home and work environments [136]. We summarize relevant research
about the role of assistive systems for both user groups, focusing on lowering cognitive
effort, fostering collaboration among peers, and providing assistance that is necessary to
accomplish daily tasks. Thereby, we use the term assistive technology and assistive sys-
tem synonymously to describe a technical artifact that supports individuals physically and
mentally regardless of the presence of a cognitive impairment.

2.3.1 Assistive Systems at Workplaces

Small batch sizes are pivotal to the proliferation of assistive technologies at production lines
due to the individual demand for goods. Instead of producing the same part over and over
again, workers at production lines have to memorize variations of assembly instructions.
The constant memorization of assembly instructions strains the working memory [127, 221]
which eventually results in a larger number of errors and a decrease in manufacturing qual-
ity. Especially new workers that have to learn novel variations of assembly instructions are
confronted with a steep learning curve. This has detrimental consequences for the assembly
process: production times, error rates, and cognitive workload temporarily increase as new
assembly instructions have to be memorized.

Several assistive systems exist to reduce assembly errors and task completion times by keep-
ing the cognitive effort low. McCalla et al. [264] presented PHelpS, a system that can convey
tasks to other colleagues who are willing to help. PHelpS consists of a repository that al-
gorithmically matches colleagues that are suitable and eager to provide support. Klinker et
al. [108] incorporated AR into a welding gun, using projection-based and HMD-based AR
to support workers during their welding tasks. Another approach for assistive computing
was presented by Gulevich et al. [155]. Their project TeleAdvisor uses a camera-projector-
system to provide learners with real-time instructions in a TV setup scenario. Gauglitz et

30



2 Background and Foundations

al. [141] presented the use of a hand-held device for mobile AR assistance. AR instruc-
tions can be annotated to operate a Boeing 737. Funk et al. [133] presented motionEAP, a
camera-projection system to assist with in-situ projections. Several studies found that in-situ
projections provide a higher assembly efficiency and cognitive alleviation when projections
are adapted to the current assembly performance [129, 134]. However, how to adapt to the
individual perception and skill set remains an open question.

2.3.2 Assistance for Persons with Cognitive Impairments

Past work has recognized the potential of mental augmentation for persons with cognitive
impairments. Today, approximately 20% of the world’s population lives with some level
of cognitive impairment [290]. This trend is expected to increase with an aging society.
Sheltered work and living organizations, as well as researchers, have recognized this and
begun to evaluate the efficiency of assistive systems.

Levine et al. [244] conducted an early review of how persons with cognitive impairments
perceive several assistive systems. They present a model for the use of assistive technologies
for people with different disabilities. Comprehensive literature reviews which present past
work about the usability of assistive systems for persons with cognitive impairments have
been presented in the past [338], showing that mental support through assistive technologies
is considered as a cognitive prosthesis for persons with cognitive impairments. Funk and
Schmidt [127] exploited the potential of several assistive systems for cognitive assistance
at workplaces. A series of studies revealed that assistive systems contributed to lower task
completion times, fewer errors, and enhanced engagement during an assembly at production
lines [136, 137, 215].

Different types of cognitive impairments raise individual requirements for assistive tech-
nologies. For example, dementia-related impairments such as Alzheimer’s or Parkinson’s
disease require prospective aids that amplify memory [31]. Using such memory aids helps
affected persons to concentrate on the current task or remember important actions that lead
to their accomplishment. This has to be implemented carefully: novel technologies are less
frequently adopted by individuals with cognitive impairments and are more likely to be aban-
doned when direct advantages or rewards are not immediately visible [212, 337]. Assistive
systems are often considered as complicated and likely to cause difficulties in the process
of their adoption [90]. Hence, assistive systems should be designed in a user-centered de-
sign process that involves the relevant stakeholders accordingly. The type of cognitive im-
pairments that were present in our studies were trisomy 21, autism, dementia, and general
impairments that were legally defined as cognitive disabilities. Such impairments can, for
example, influence how information is processed and retained, hence hindering independent
living.

31



2.3.3 Ethical Considerations

Ethical issues mays arise with the collection and use of personal data through the mundane
attunement of users, as the use of assistive systems is considered an authorization to implic-
itly use personal data. With this, ethics regarding participatory HCI research that includes
persons with cognitive impairments has emerged as a relevant aspect [167]. Recent research
in philosophy, as well as ethics, discussed the consequences of systems that can ubiqui-
tously collect data and adjust their services [379, 380]. Research ethics follow the principles
of “autonomy”, “justice”, “benevolence”, and “non-maleficence”, which are cornerstones
of ethical theorizing [24]. We highlight the relevant ethical considerations empowerment,
autonomy, informed consent, privacy, and social interaction in the following that have been
considered in the previous research.

Empowerment is considered as an intuitive aspect for assistive computing: through assistive
systems, people are physically and cognitively supported to live autonomously and accom-
plish tasks with less or without cognitive effort. This is achieved by technology compen-
sating for certain forms of physical or cognitive demand. For instance, an assistive system
could function as an externalized memory for a person with a memory weakness. The assis-
tive system is assumed to work as cognitive support. But from a philosophical point of view,
this raises interesting questions about the boundaries of the mind and also the ethical con-
sideration of whether assistive systems could be paternalizing their users by nudging them
into certain behavioral patterns [75].

There are further reasons to be hesitant about subscribing to empowerment. For instance,
the underlying concept of cognitive disabilities presupposes a biomedical understanding of
support, according to which a person has a situational or permanent impairment that is phys-
ically or cognitively compensated by assistive technologies [39, 157]. For persons with
cognitive impairments, such a model tends to overlook the role of social environments in
shaping or perpetuating disabilities, as well as the different forms of discrimination persons
with cognitive impairments are confronted with. That notwithstanding, while there might
be clear limits to how much empowerment might be achieved through assistive systems,
its benefits for helping people with cognitive impairments in leading better lives cannot be
denied.

Autonomy describes the capacity of a person to exhibit self-governance [57]. What that
means is that if a person acts, the acting is motivated by personal reasons. An autonomous
action might be contrasted with cases where a person is either coerced or manipulated to
act in a certain way. The necessary conditions for being autonomous are much debated
in the relevant philosophical literature [9, 56], nevertheless it is fair to assume that, to be
autonomous, one must possess a certain set of psychological capacities such as the ability to
self-reflect. This includes that a person’s beliefs and intentions must be coherent and stable
over time. In addition to that, an agent must possess higher-order evaluative judgments on
what matters to them [9, 120]. For instance, if someone is persuaded by a fitness app to
go for a run, the relevant action being autonomous hinges on whether running is an activity
that the person value. In the context of assistive systems, autonomy as an ethical criterion is
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supposed to ensure that the person and not the technology exhibits control [56]. There are
some challenges for using autonomy as an ethical criterion within the context of people with
cognitive impairments [89]. The conditions for autonomy are mentally and physically highly
demanding, increasing the importance of autonomy as an ethical principle. For example,
even if a person does not meet the requirements for full-fledged autonomy, they might still
have certain beliefs, desires, and values that express what matters to them. Therefore, one
ethical criterion for the development of assistive systems or technologies has been that these
do not interfere with the basic values and desires of their users.

The problem of cognitive demand also applies to informed consent and privacy [115, 269].
Assistive systems can collect fine-grained data on a person and, therefore, might infringe
upon their privacy. Whereas strict guidelines have been established, governing the collec-
tion and storage of personal data, it is still a problem to sensitize users to issues related
to informational privacy [280]. One factor is the high degree of abstraction regarding pri-
vacy issues, where many users find it difficult to grasp the content of informed consent and
terms of service documents or to appreciate their relevance [44, 368]. While many decisions
concerning welfare are deferred to caretakers, we still consider it as crucial that a person
with cognitive impairments has authority over their interests [319]. Thus, we are currently
experimenting with developing easy to understand, informed consent documents in regards
to privacy issues that make use of simple language and are accompanied by informational
videos. Admittedly, this is still an area where a lot of empirical testing is required [19, 370].

We need to consider how assistive systems affect the social aspects of the lives of persons
with cognitive impairments. While assistive systems have the potential to improve the life
quality for persons with cognitive impairments, they should foster social and communal
activities [37, 77, 93], which eventually results in better care work through freeing other
resources of caretakers. Consequently, it is one of the critical ethical aims to ensure that not
merely the technology, but also the social settings of the care- and tenant-relationship are
designed in a way which promotes the welfare of users.
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Chapter3
Opportune Cognitive Augmentation

Today we serve technology. We need to
reverse the machine-centered point of
view and turn it into a person-centered
point of view: Technology should serve
us.

Donald A. Norman

Cognitive workload, although different from the individual constitution and individual
amount of required cognitive resources, is ubiquitously present when persons work on
chores. The relationship between exerted cognitive resources and the detection of the need
for cognitive assistance is an important factor that has to be considered when designing
workload-aware interfaces. This poses the following question, assuming that effective work-
load measures are integrated into the environment: when is the right time to intervene with
cognitive assistance?

The vision of workload-aware user interfaces requires careful investigations of design re-
quirements and implications for the respective user group. Persons with cognitive impair-
ments, who are living in sheltered living facilities, are a user group that requires cognitive as-
sistance to achieve basic life skills. Such cognitive impairments include trisomy 21, autism,
dementia, and general impairments that are legally defined as cognitive disabilities. As per-
sons with cognitive impairments receive “handcrafted” ubiquitous assistance (e.g. through
family members or trained labor) during daily chores, their barrier to express the need for
cognitive assistance is lowered. This supports the social intention to support persons with
cognitive impairments by researching workload-aware assistive technologies since the need
for cognitive assistance is expressed early to family members or caretakers. This chapter
focuses on persons with cognitive impairments to explicitly detect when manual mental aug-
mentation through a supervising person is desired: these cues are potential entry points for
workload-aware systems. Cognitive impairments can impact someone’s ability to complete
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traditional activities of daily living, such as cooking, bathing, or acquiring groceries [299].
Numerous government and volunteer-driven organizations exist to provide specialized train-
ing to people with cognitive impairments as they learn these independent living skills. As
average lifespans increase, the number of people affected temporarily or permanently by
cognitive impairment will continue to rise [94], and this training will be in higher demand.
The world report on disability [290] approximately assesses 20% of the human population a
cognitive impairment where the numbers are expected to rise.

In continental Europe, one venue for learning independent living skills are sheltered living
facilities, which are housing communities where tenants with cognitive impairments live
together with supervision from at least one caretaker. In these facilities, 20 to 30 people share
living quarters and are coordinated in learning daily living skills by expert staff members and
teams of volunteers. The ultimate goal of a sheltered living facility is to teach the inhabitants
to live independently with other tenants who help and support each other. The organization
supports tenants in moving to a shared apartment, where four to six people help each other
without any caretaker supervision. Consequently, the facilities provide training in both the
acquisition of life skills and the social organization of a community of tenants.

Communal cooking is one activity that integrates both of these aspects of living in sheltered
housing facilities. Tenants learn to complete their kitchen duties to benefit other members
of the community. In sheltered housing, instructors provide the group with specialized su-
pervision on safe cooking methods and techniques to cook collaboratively. However, due to
worker shortages in this field, individual instructions are rarely possible. Further, assistance
in cooking may still be needed by tenants who have recently transitioned to an independent
living facility.

Contextualized assistance (e.g., delivered through displays [136], augmented reality [128],
or context-aware support systems [358]) has shown to be effective in helping people with
cognitive impairments perform chores independently. While the workload from caretakers
may be alleviated when using digital assistants in communal cooking activities, support and
learning can be provided independently from the sheltered living facility. In this chapter,
we describe current training practices in sheltered living facilities. Furthermore, we explore
potential challenges and benefits of providing communal contextual instruction and support
for the development of independent living skills. Using contextual observation of communal
cooking sessions in sheltered living facilities, we conduct supplementary interviews with
staff members and volunteers. We chart the opportunities, trade-offs, and constraints in-
volved in the design of assistive systems for communal kitchens for persons with cognitive
impairments. In this chapter, we report a qualitative inquiry of current communal cooking
practices in sheltered establishments. Based on the qualitative inquiries, we describe four
themes regarding the design opportunities and constraints in a communal kitchen for per-
sons with cognitive impairments. Finally, we conclude with five implications for assistive
technologies supporting cooking in sheltered housing. The research question we answer is:

→ RQ1: What are the design requirements for systems that provide opportune cognitive
augmentation?
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This section is based on the following publication:

• Thomas Kosch, Paweł W. Woźniak, Erin Brady, and Albrecht Schmidt. Smart
Kitchens for People with Cognitive Impairments: A Qualitative Study of De-
sign Requirements. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, CHI’18, pages 271:1–271:12, New York, NY,
USA, 2018. ACM

3.1 Related Work

The work presented in this chapter bases on the use of assistive technologies by persons
with cognitive impairments as outlined in Section 2.3.2. This section provides an overview
of technologies supporting persons with cognitive impairments during everyday tasks and
describes current research which aims to provide contextual assistance in kitchens.

3.1.1 Accessibility through Assistive Systems

Assistive technologies have proliferated into the home environments of people with mental
and physical disabilities. Users of assistive technologies are ubiquitously surrounded by
technologies that monitor them. This includes smartphones, tablets, ambient computers, or
wearable devices, all of which have become increasingly popular. Assistive technologies
intend to provide mental assistance for persons with cognitive impairments. Past research
has investigated the design of assistive technologies for persons with cognitive impairments
and elderly people that provide mental assistance, and to this end, reduce the complexity of
the underlying system.

Bouchard et al. [40] developed a plan recognition framework in smart homes for people suf-
fering from dementia. Using microsensors, the framework analyses previous actions to pre-
dict the original intention of the person. Pollack et al. [307] define three goals for assistive
technologies when used by older people with cognitive impairments: providing assurance
for elderly, use technologies to compensate for impairment, assess the users’ status. Fur-
thermore, three different types of assistive systems are defined: assurance, compensation,
and assessment systems. Since smart environments need to be equipped with microsensors
to measure contextual parameters of their surroundings [245], ethical implications for assis-
tance systems in home environments were to be defined [349]. Assistive technologies pro-
vide several benefits, such as workload reduction, socialization, or care delivery. However,
the use of such technology has ethical ramifications and considerations (see Section 2.3.3
for a comprehensive elaboration). To enable independent living for the people with cogni-
tive impairments, a smart home system leveraging several sensors, such as infrared motion
sensors, microphone arrays, and accelerometers, was used to sense contextual data [8]. The
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collected data was used to train artificial intelligence, which provides adaptive assistance
whenever required. However, challenges such as preserving privacy [81, 82] and acceptance
by senior users [48, 92] have to be considered. Mihailidis et al. [267] present the concept
of an assistive system that supports older adults with dementia during regular daily routine
tasks. Specifically, this includes a study where washing hands were trained via an audio-
based system.

Within workplaces in industrial areas, augmented reality was used to provide cognitive alle-
viation for workers with cognitive impairments in workplaces [67] and assembly lines [128].
They found that by projecting in-situ information about the current assembly step, increased
efficiency concerning time and number of errors would be achieved, and concluded that
assistive systems at workplaces foster learning by skill transfer while releasing cognitive re-
sources at the same time [127, 136]. Gamification can be incorporated into assistive systems
to maintain or increase motivation [212, 213, 214].

Research has also concerned notifying persons about events, such as warning of dangers or
sending reminders. In previous research, we [217, 228] investigated how events of inter-
est can be communicated efficiently with persons with cognitive impairments within work-
places. By comparing visual, auditory, and tactile feedback, their findings show that visual
in-situ cues are perceived efficiently. A survey exploring how notifications in smart homes
can be communicated was carried out by Voit et al. [377]. Leveraging an online survey, they
investigated suitable devices and locations displaying notifications. Their results showed that
smart home-related notifications should be received by mobile devices which would be eas-
ily perceivable when worn on the body. Wiehr et al. [387] define how the increasing number
of notifications raises challenges regarding the design, implementation, and psychological
factors of users.

3.1.2 Assistive Technologies in Kitchens

Cooking represents an important communal and social activity for people with cognitive
impairments. Cooking entails a starting point (e.g., starting to prepare the ingredients), a
structured or unstructured processing pipeline (e.g., cooking using a fixed or unstructured
procedure), and an endpoint that facilitates the cooking result (i.e., the cooked meal). Previ-
ous research has researched smart kitchens extensively as it revealed challenges and oppor-
tunities that are generalized to other assistive technologies.

Thereby, smart kitchens have been the focus of Blasco et al. [34]. They developed and as-
sessed smart kitchens for older adults and evaluated the simulation of specific situations,
such as making dinner or washing up. Besides assisting in kitchens, calorie and nutrition-
aware contextual cooking plans can be provided [72, 73]. By displaying information
about nutrition during cooking, healthier ingredients can be chosen by cooks. Hashimoto et
al. [163] designed algorithms for smart kitchens, which recognize the users’ cooking actions
and food material. Since recipes play an important role in cooking, Schneider et al. [341]
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developed a semantic cookbook. The semantic cookbook is a system enabling different par-
ties to share their recipes among their smart kitchens to display it on an output device. As
most handwritten recipes are passed down by previous generations, digital recordings can
ensure the continued existence of recipes and can be easily shared. Cooking can also rep-
resent a method for social communication and interaction. Therefore, Terrenghi et al. [360]
present the "Living Cookbook". In their work, cooking experiences are recorded to edu-
cate others, practice cooking techniques, or share cooking experiences. An evaluation of
the "Living Cookbook" shows that its use increased motivation and improved social com-
munication. Hooper et al. [171] investigates how the new material can be learned within
instrumentalized environments to support task-based learning. During their research, the
efficiency and design space of learning new languages within regular cooking tasks were
evaluated. Bonanni et al. [38] evaluate several augmented kitchen interfaces regarding their
usability. Their studies focus on usability as well as interfaces that are not demanding in
terms of attention and cognitive workload. Miyawaki et al. [272] prototyped a kitchen for
people with higher brain dysfunction. Olivier et al. [288] presents a lab-based replication of
a smart kitchen, where designers can evaluate novel solutions. Also, Scheible et al. [334]
show how social and emotional components can be incorporated into the cooking process.

3.1.3 Collaborative Accessibility

People with disabilities often co-construct accessibility in spaces alongside the other dis-
abled or able-bodied peers who inhabit them [42]. This process of co-construction involves
a large amount of collaboration among individuals as they stage environments to be more
accessible; divide tasks and responsibilities based on ability, and intervene or request assis-
tance for tasks that are not accessible.

Branham and Kane [42] described the collaborative accessibility practices of blind and
sighted domestic partners in their home settings. Within these close partnerships, partners
can set up plans for managing household tasks, object placement, and requests for assis-
tance. However, this collaboration to make accessible environments can be less successful
in work settings, where an intimate understanding of the disability is not possessed by a
person with a disability or co-workers [43]; or in public spaces where accessibility cannot
be co-constructed in advance [388].

The study of this collaboration work has been rare among people with cognitive impair-
ments. In our observations in this study, we examined the collaboration between individual
tenants with cognitive impairments and the neurotypical1 instructors who supervised them;
however, we also discuss opportunities for collaboration between multiple tenants with cog-
nitive impairments without supervision.

1 We use the term “neurotypical” here to describe individuals without any measurable level of cognitive im-
pairment. This term is often used to differentiate people with a neurological disorder, like individuals on the
Autism spectrum or with cognitive impairments, from individuals without a neurological disorder.
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Overall, previous work has investigated effort into the development, design, and evaluation
of assistive systems. However, the design space of smart kitchens for people with cognitive
impairments has not been considered yet in related research. Through the execution of qual-
itative contextual inquiries with caretakers and observations of tenants in sheltered living
organizations for people with cognitive disabilities, we close this gap by charting the design
space for assistive technologies in smart kitchens for users with cognitive impairments.

3.2 Methods

Sheltered living facilities offer people with cognitive impairments assistance with learning
everyday tasks, including cooking. The main goal is to teach elementary skills in a me-
thodical way that can be reapplied in independent living environments. When tenants make
progress in applying their skills without caretaker intervention in the facility, they can move
to live more independently in houses shared with a small number of other people with cog-
nitive impairments. The research for this project was conducted in collaboration with a
sheltered living organization in Germany which operates both a sheltered living facility and
independent houses for tenants who have completed their training.

3.2.1 Context: Communal Kitchens

The kitchen in the sheltered living facility and independent living homes use regular com-
ponents necessary to cook a meal, such as an oven, stove, tabletop, and refrigerator. The
kitchen from the sheltered living facility is shown in Figure 3.1.

Within the sheltered housing, tenants and caretakers cook dinner every weekday evening. If
enough inhabitants stay at the sheltered housing during weekends, both lunch and dinner are
cooked. The way supervision is provided depends on whether the inhabitants are living in
sheltered facilities or residing in their own independent homes.

Major supervision during cooking is mostly provided by a caretaker within the sheltered
housing. A sheltered living facility comprises 20 to 30 inhabitants depending on its size.
Groups of four to six inhabitants cook together with at least two caretakers who explain
the course of cooking in the beginning, distribute tasks, and make sure that the participants
avoid serious injuries. Currently, no standardized assistive technology supporting caretakers
is enrolled in such facilities. Dangerous tasks, such as operating the oven, are only performed
by caretakers.

Minor supervision is necessary for persons with cognitive impairments living in independent
housing. This independent place is managed by the sheltered living organization but spa-
tially separated from the sheltered living facility. Such independent living places comprise
between four and six inhabitants living together. This principle enables maintaining social
settings where people can help each other. For cooking, the same rules apply for sheltered
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Figure 3.1: A kitchen in a sheltered living facility, used by the tenants with cognitive impair-
ments and the caretakers. Tenants overtake practiced tasks which include cutting ingredients or
laying the table. Dangerous tasks, such as the operation of the oven or stove, are accomplished
by the caretakers.

housing. However, only a single caretaker is present to avoid possible injuries and provide
advice on demand. The caretaker also assesses the social setting, cognitive development,
and skill progress of the inhabitants.

3.2.2 Data Collection

Data for this study was collected through two observation sessions of communal cooking in a
sheltered living facility and an independent living facility in Germany and was supplemented
by semi-structured interviews with staff members from those organizations. The tenants who
participated in the cooking sessions ranged between 30 and 49 years old. Ethical approval for
all components of the study was given by the sheltered living organization and the German
Federal Ministry of Education and Research according to institutional guidelines.

We chose to conduct observations rather than interspersing interview questions throughout
the task as in a contextual inquiry, due to the level of cognitive impairment among our par-
ticipants and the time-based nature of the cooking tasks being taught. Cognitive impairment
impacts executive functioning, like task planning and memory. Interruptions during a time-
based task make it more difficult for a person with a cognitive impairment to hold onto
their original intention, and less likely to return to the task after being distracted [362]. At
the direction of the caretakers at the facility, we limited interaction with the tenants dur-
ing the cooking tasks and used follow-up interviews with staff members to supplement our
understanding of the observed data. The contextual inquiry was thus carried out with the
caretakers, which have been observed and interviewed during this study [33]. Participants
were monetary compensated through funding from a joint project.
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3.2.3 Observations

We conducted two observations in communal kitchens as tenants prepared meals. We ob-
served communal cooking processes among four to eight participants - the number of tenants
in the kitchen at one time varied as they arrived and left the kitchen at their discretion, but
a total of twelve participants were observed between the two sessions. Two rounds of ob-
servation were performed — one of a supervised cooking session in the sheltered living
facility, and one of a unsupervised cooking session in an independent household managed
by the same organization. Each observation session lasted at least one hour. A caretaker
was present in each kitchen at all times during our observations but did not intervene in the
cooking activities in the unsupervised session.

In the supervised cooking session, ten participants we observed were born with a cognitive
impairment limiting their ability to understand and process information. In addition to this,
two other participants were affected by light motoric impairments. All participants we ob-
served in the unsupervised cooking session were affected by a cognitive impairment limiting
their ability to understand and process information. None of the participants were affected
by sensory impairments or dementia.

Our observations were documented through notes and photographs. We took pictures of the
cooking environments before the tenants began cooking to limit task disruptions. During the
observation, two researchers took detailed field notes on the session. Observations focused
on how the cooking process was organized and the interactions between the tenants. In the
observation of the structured cooking session, we also observed how the caretakers provided
instruction to the tenants and how they directed their attention. We noted how physical
artifacts in the kitchens were used, arranged and assigned by the tenants. In each of the
two observations, we remained in the kitchen for the entire duration of the cooking process,
from before the tenants started arriving in the kitchen to when they left the room after having
eaten. We have not interacted with the tenants directly as we wanted to avert confusion and
avoid disruptions during the regular cooking procedure.

3.2.4 Interviews

After the observations, we constructed specific semi-structured interview protocols for the
caretakers to clarify and refine our understanding of the data collected during the cooking
sessions. This enabled us to obtain information that could not be disclosed in the presence of
the tenants and have the full attention of the caretaker. Table 3.1 summarizes the participants’
role and working experience. The primary focus of these interviews was to better understand
the work processes and roles assigned involved in the structured cooking sessions, such as
the reasons for distributing particular tasks, rules for using appliances, and methods for
distributing the workload among tenants. We were also able to inquire further about the role
of cooking in the community of tenants in both structured and unstructured settings.
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Participant Role Age Experience

P1 Housing officer 33 15 years
P2 Sheltered caretaker 49 30 years
P3 Sheltered caretaker 20 0.5 years
P4 Independent caretaker 46 6 years

Table 3.1: Demographic data and working experience of the interviewed participants.

The interviews comprised one interview with the housing officer of a sheltered living institu-
tion (a person whose full-time job is to manage the facilities), two interviews with volunteer
caretakers working at a sheltered housing facility, and one caretaker responsible for an inde-
pendent group of persons living together. Overall, 5:45 hours of recordings were collected.
The mean age ranged from 20 to 49 years (M = 37, SD = 13.29) and working experience of
caretakers ranged from six months to 30 years (M = 12.88, SD = 12.87). P1, who is a hous-
ing officer and responsible for multiple living facilities, provided us with most data about
the observed cooking processes as well as general information. The interviews from P2, P3,
and P4 were largely used to gain new insights and to confirm the statements provided by the
housing officer.

3.2.5 Data Analysis

We conducted a qualitative analysis of our observation notes and interview transcripts to
understand the constraints and opportunities for communal cooking experiences for tenants.
We used a team consisting of two coders working with the Atlas.ti software package. We
conducted an initial open coding of 25% of the data by both researchers. Afterward, a
coding tree was established through iterative meetings. We then coded the rest of the data
with the agreed-upon set of codes. A final meeting was conducted where we grouped codes
to establish the four emergent themes: work organization, community, supervision, and
practicalities.

3.3 Findings

In this section, we present four themes that emerged from the analysis of our data set. We
present each theme and our understanding of the constraints, tradeoffs, and opportunities in-
volved. The presented quotes have been transcribed from their original German into English.

3.3.1 Work Organization

Cooking was seen as a key activity in the learning process required for gaining a higher
degree of independence. In our observations, both tenants and supervisors gave heavy at-
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tention and concern to how tasks were divided within the cooking group. Much of this task
division within the supervised cooking session was done by the supervisors in advance, and
tasks were created both for the tenants cooking that day and for the supervisor on duty. The
supervisors communicated clearly which tasks were intended to be performed by tenants and
which were reserved for supervisors:

"Tasks are usually divided between tenants and supervisors. The parts were
carried out until completed; nobody stops suddenly within their task." (P1)

One supervisor showed us how a weekly cooking plan helped organize the communal activ-
ities in the group. The cooking duties were distributed every week within a weekly meeting
where supervisors and tenants took part. The cooking responsibilities were discussed ver-
bally. Tenants were informed about their responsibilities by the assigned supervisors.

These plans served as a valuable organization and accountability tools on tenants’ journey to
greater domestic independence. One officer explained that managing schedules and making
sure all tenants were involved in cooking served not only practical purposes but also worked
as a means of assuring participation in this important activity of daily living on days when
tenants were not intrinsically motivated:

"Many tenants do not feel like they want to cook. . . A cooking plan is created,
which forces everyone to cook regularly. Usually, we find out whether there are
any important appointments before a cooking schedule is created." (P1)

The supervisors assumed responsibility for developing these plans, leveraging their knowl-
edge of tenants’ current ability levels and other commitments to make the plans maximally
effective in the limited time available.

Coordination in the kitchen was necessary, as the kitchens constituted the only common
rooms in the facilities we visited. We observed tenants constantly entering and exiting the
kitchens. Some tenants who were not involved in cooking tasks that day came to socialize
or observe the cooking tenants. Other tenants who were assigned to specific cooking duties
might leave their task briefly, and return to them after a short walk. The diverse patterns of
the tenants within the kitchen at any time meant that supervisors had to engage in constant
monitoring of task completion to ensure that coordination was occurring.

The division of labor among stakeholders was emphasized not only in terms of which tenants
performed which kitchen duties, but also concerning assigning paid personnel and volunteers
to supervision:

"There is a duty roster for interns and employees. This plan specifies, how
many supervisors have to be there during cooking." (P2)

External factors also affected the way kitchen work was organized. For example, drinks
provided by an external supplier arrived on a fixed schedule that also needed to be included
in the kitchen plans:
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"Drinks are delivered every week on Wednesday. The group buys groceries
by themselves every Tuesday and Friday. On Wednesday, we buy groceries to-
gether. Usually, one supervisor is associated with each tenant." (P1)

These considerations show a considerable amount of coordination that is required for the su-
pervisors and tenants in the supervised cooking environments. While the meta-level schedul-
ing work was performed solely by the supervisors, individual cooking sessions and support-
ive tasks were more collaborative efforts between volunteers and tenants.

Overall, we observed the multiple aspects of the division of labor, time management, and
logistics, all of which significantly affected the way the cooking was enacted.

3.3.2 Community

The social dynamics of the sheltered living community were important to both tenants and to
the supervisors, who saw these social relationships as valuable learning experiences. Aspects
of communication and collaboration between tenants and supervisors were often observed
and mentioned in our data set. Tenants interacted with each other while cooking and the
supervisors reported that due to social expectations, tenants did not eat alone and instead
joined communal activities:

"Nobody would cook together and then decide to eat alone in his room."
(P1)

Tenants who were not assigned cooking tasks enjoyed observing the cooking tenants per-
forming their duties and would choose to join the kitchen and monitor the cooks as they
worked through their tasks.

While the tenants did not initiate social activities outside of the facility, the supervisors often
planned these events as an important training experience for gaining independence:

"We go to the cinema or do other activities on weekends. But this depends
on the initiative of the supervisors." (P1)

These independence-building activities helped to foster community among the tenants and
supervisors, and could be useful in preparing tenants to navigate social relationships in the
more independent housing options.

Despite this emergent community among the tenants and supervisors, there was potential
for conflicts to occur connected with the execution of the kitchen work. Supervisors, in
particular, were concerned about these potential conflicts and helping the tenants resolve
these conflicts amicably. One supervisor reflected on how some tenants were particularly
concerned about the alignment of cutlery on the kitchen table, indicating that tenants with
different levels of ability might experience frustration with each other:
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"How exactly cutlery is placed depends on the person. Some execute their
tasks very accurately, while others do their tasks in a rudimentary way. We often
experience conflicts between inhabitants because of that." (P1)

Similarly, another supervisor was concerned about how critique could be communicated
gently, and how it affected tenants differently:

"Some have problems accepting critique and answer with statements like
"This has been always been done this way." (P2)

These interpersonal disagreements are likely to arise in more independent kitchens as well,
so supervisors desired more effective ways to resolve these conflicts.

Within the community of tenants, different tenants assumed unique roles in the cooking
process. This often was at odds with the goals of the supervisors, who wanted tenants to
participate in cooking equally as part of their rehabilitation. Instead, more motivated tenants
often tried to monopolize the cooking positions:

"Our tenants are very motivated to shop for the ingredients. However, the
motivation regarding cooking is different per person. Surprisingly, it is always
the same persons who volunteer for kitchen service." (P3)

Some tenants were not intrinsically motivated to do the complex work required in the
kitchen. In these instances, social factors were often mentioned by supervisors as key to
increasing their motivation. Enabling tenants to express approval of each other’s actions and
their role in the community was seen as extremely valuable to the group dynamics:

"Approval of other tenants is important; much more important than approval
from the supervisors." (P2)

3.3.3 Supervision

The nature of the supervision provided to the tenants was a unique aspect of work in a
sheltered housing facility. Supervisors explained that maintaining engagement and limit-
ing frustration for tenants was one of the most important purposes of their work and one
of the primary goals of the more structured cooking sessions. They conducted this supervi-
sion work both pre-emptively (while doing Work Organization, as described above) and by
being available to help or intervene during the tasks themselves:

"We sort from the beginning inhabitants for specific tasks; for example if it
is clear that a particular person should not cut hard things instead of vegetables
and salad. They call for help if something is too difficult for them. We have to
avoid frustration and confusion if inhabitants are not able to do their task." (P1)
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Tenants were able to request help if needed, and the amount of supervision needed varied
from tenant to tenant. In general, there was a high emphasis on tenant independence, and the
details in the instructions provided to the tenants were left sparse to allow them to develop
skills on their own. In their role as supervisors, the staff was most concerned that a given
individual would be able to generally complete kitchen actions and that they pay attention to
learning precise techniques to a sufficient degree:

"Most people can cut. We do not complain if something is cut too thick or
thin. The most important thing is that it is cut and can be cooked." (P1)

Guidance from supervisors was primarily required when tenants made mistakes or grew
confused. When this occurred, both supervisors and other tenants stepped into a supervisory
role to help the tenants understand the issues with their work. Feedback from all members
of the group was often provided. Tenants who intervened were often concerned about the
process implications of an error (e.g., if a mistake would impact the overall meal) or high-
lighted safety concerns when they noticed unsafe behavior. For supervisors, helping the
tenant understand what went wrong in the task execution was the key educational aspect:

"This [intervention] is very individual. It always depends on the mistake
they make. Some do what we tell them and they do not get confused while doing
their kitchen tasks and accept the critique." (P2)

Certain complex aspects of cooking required constant verification from the supervisors and
fewer opportunities for independence. For these tasks, the supervisors often overstepped
their role as supervisors to join the cooking process directly. For example, the spice cupboard
required careful instruction and often the supervisors would administer spices without any
help:

"Managing spices is an interesting question: Who dispenses the spices? Our
experience shows that adding spices is a fine-motor task requiring experience to
not, for instance, over salt a meal. Spicing is mostly done by supervisors." (P1)

However, some tenants had stronger fine motor skills than others and performed spicing in
the supervised session with direct instructor supervision.

This intervention was in part based on tenants’ skill limitations and was an integrated part
of the supervision. Supervisors needed to bear in mind the specific tenants’ perception of
the cooking experience in each session, and be aware of stimuli that the tenants could not
always process:

"I do not think that persons with cognitive impairments are able to determine
when a meal is cooked or not." (P1)
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Finally, supervisors recognized that more instructions could be provided to the tenants and
they could benefit from more attention to improve their long-term educational outcomes
within the kitchens. However, the number of personnel available for communal cooking was
limited:

"It is a communal kitchen. They have their room, but in principle, they
should be able to cook for themselves. The process of learning how to cook
independently in one’s own house should be learned here." (P1)

3.3.4 Practicalities

Our last theme addresses the practical concerns involved in cooking activities. A core con-
cern is maintaining the safety of the tenants, who may enter the facility with little knowledge
about safe cooking procedures. As many kitchen tools are potentially dangerous and elec-
trical appliances were in use, supervisors were especially careful to monitor tenants as they
performed potentially dangerous actions, but had to make crucial tradeoffs between safety
concerns and independence:

"Knives, blender, everything that can cause potential injuries is dangerous.
We try to avoid every chance where injuries could happen. But this is not right
since they will not learn how to cut or blend. . . however, they have to learn how
to cut or blend [to cook independently]. Therefore, negative experiences are
necessary to learn what causes injuries. But our primary goal is to avoid these
injuries as much as we can." (P1)

Thus, the staff made risk assessments to determine if the use of particular skills outweighed
their danger. Further, some supervisors mentioned that they prioritized the use of devices
that offered a greater degree of safety, such as the microwave oven:

"The microwave offers comfort and security. Food is just put in and the
microwave tells them when the food is ready." (P1)

Some tenants were aware of the safety risks of certain tools, and would monitor each other
and repeatedly provide feedback when they observed safety violations.

Another facet of the cooking experience that we observed was making sure that the process
was hygienic. Hygiene rules were imposed on the facilities by legal regulations, and needed
to be followed and enforced strictly by the staff:

"We provide a hygienic plan. The housekeeping management organizes hy-
giene schooling. Furthermore, hygiene is taught to the tenants over time, for
instance, how to wash hands, disinfect them, and how to wear gloves. Addition-
ally, supervisors know the hygiene-related habits of tenants. This means that the
individual hygiene is very diverse." (P1)
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The medical condition of the tenants also affected the cooking experience. Distributing
medicine was an integrated part of the communal cooking process, and the supervisors dis-
tributed pre-mixed dosages of pills in color-coded containers. The choice of the menu was
also affected by health concerns:

"We serve salad as a side dish because of health reasons to ensure enough
vitamins in meals. If we ask what they want to eat, they would prefer sausages,
fried chicken, or fries all the time." (P1)

Lastly, participants were aware that cooking was connected with other activities, such as
setting the table, and different tenants would perform these tasks in parallel with the cooking
tasks. While these activities required less help, supervisors still monitored if they were
completed and coordinated:

"The tenants doing kitchen service needs to set up the table accordingly;
including drinks and cutlery." (P1)

3.4 Implications for Design

We present the lessons learned in the form of implications for design. These implications
present an overview of the design space of assistive systems for cooking in sheltered living
facilities. The implications can be used by future designers to assure that possible solutions
for the cooking benefit the users with cognitive impairments. These implications are de-
rived from the themes presented above. Although these implications are derived for persons
with cognitive deficiencies, we believe that these could be generalized to implement smart
kitchens for elderly populations, who often begin to experience cognitive decline through
the aging process [34, 66, 82], as well as assistance systems integrated into other household
environments.

3.4.1 Support Clear Task Division

From our inquiries, we learned that tasks have to be intelligently distributed and communi-
cated among tenants. The goal of the tasks was communicated verbally since most of the
tenants were not able to read or write. During our studies, we found that continuous sup-
port was needed. Supervisors were reminding tenants from time to time about their current
task and kept them motivated. Furthermore, the quality of their work was evaluated and
criticized by both supervisors and other tenants when necessary, as we observed in the su-
pervision theme. As a consequence, future smart kitchens should communicate recipes and
tasks; explicitly providing feedback on the component tasks that make up the cooking pro-
cess. Furthermore, attention and motivation should be fostered by highlighting the current
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task to be performed repeatedly. Division of labor should be explicitly supported, giving
the supervisor freedom in orchestrating the cooking experience based on their awareness of
tenants’ diverse capabilities, and should help them maintain an overview of all the activities
in the kitchen.

3.4.2 Embrace the Group Experience

Our analysis revealed that maintaining social ties between supervisors and cohabitants was
an important factor on each tenant’s route to greater independence. In the community theme,
we observed how cooking represented an important social activity, where tenants worked to-
gether to achieve a communal goal. Managing social activities and minimizing opportunities
for conflicts within the group was regarded as a key role for supervisors. Furthermore, some
tenants were not motivated to cook, since it required extra effort and paying attention to ad-
ditional constraints as shown in the practicalities theme, but were more motivated by their
role in the larger community of the kitchen. Our research suggests that adaptive motivating
elements should be integrated to maintain and augment the social experience of cooking
together. For example, showing visible achievement metrics or cheering cartoon figures as a
token of appreciation for completing a task may foster social interaction. Further, assistance
systems should support conflict resolution by accounting for the tenants’ unique abilities and
personalities.

3.4.3 Prioritize High-Safety Instructions

Safety during cooking was the main concern for supervisors. As persons with cognitive
impairments perceive pain differently, the risk of severe injuries is higher than among neu-
rotypical populations [50]. In the practicalities and supervision themes, we observed how
instruction always prioritized safety features for tasks that posed a possible danger. Conse-
quently, smart kitchen systems for tenants should only feature displays in safe areas, where
the probability of getting injured is minimized. As dangerous tasks, such as operating the
stove, cannot be fully avoided, the system should communicate safety hazards to avoid se-
vere injuries. As we observed, some of the tenants had issues retaining focus; drifting in
and out of the kitchen space during the completion of a single task. Future systems should
clearly show dangers that have a temporal aspect, for instance, communicating that a hot
plate cannot be touched until it has cooled down to a safe temperature.

3.4.4 Enable Customization for Different Abilities

In our work, we observed users with cognitive impairments with a diverse set of abilities
and impairments. In the practicalities theme, we observed that some users were able to
occupy themselves with dispensing spices, measuring water, or performing tasks that re-
quired fine motor skills; while these tasks were inaccessible to others. While supervisors
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strived to find an optimal division of the tasks, managing multiple parallel activities and the
complex learning curves of multiple tenants was a very complex task as shown in the super-
vision theme. Future systems can not only aid in finding optimal ways to divide the tasks
involved in preparing a meal but also adjust the difficulty of the task to support the learning
process of a given tenant. It is important to note that the information provided should foster
individual abilities, therefore the system should monitor the learning process and adaptively
increase or decrease assistance. Furthermore, once tasks are complete, instant individualized
rewards should be available to maintain management and support communication with the
supervisor.

3.4.5 Provide Opportunities for Explicit Communication

The community theme showed how users often required confirmation from their peer group
or superiors when performing cooking duties. Further, in the work organization and practi-
calities themes, we observed how the logistics of food preparation and constant movement in
the kitchen affected attention and communication between the supervisors and tenants. Con-
sequently, we see opportunities for fostering reporting to supervisors and increased aware-
ness of when tasks are finished or in progress. Future assistance systems for kitchens for
persons with cognitive impairments should explicitly encourage users to communicate with
the supervisor and show the group when tasks are completed. This, however, needs to be
done in ways that do not provide distractions that may affect cooking performance.

3.5 Discussion

The considerations we present above focus on designing for assistance in kitchens within
sheltered living facilities. In contrast, here we brainstorm future directions for assistive
technologies that assist persons with cognitive impairments in unsupervised, independent,
or group-based cooking sessions.

3.5.1 Accessible Assignment of Complex Tasks

One of the primary roles of the instructors in the kitchens was dividing tasks among the
tenants, monitoring ongoing preparations, and coordinating their work to create a full meal.
We see this coordination work as an important space where intelligent technologies could
supplement or replace the trained instructors in the future, both to address the staffing short-
ages that limit the use of sheltered living facilities and to enable individuals with cognitive
impairments to train in these skills from their own homes or the homes of family members.

The instructors created long-term plans for cooking tasks which pushed tenants to continue
building their cooking skills and to complete cooking tasks even when they were not intrin-
sically motivated to cook at that particular time. Intelligent systems which assign cooking
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tasks must balance these complex needs by generating tasks that are incrementally more
difficult over time, and by sensing and responding to users’ current level of ability and mo-
tivation in a given cooking session. These ability levels may change dramatically between
sessions, especially among individuals with cognitive impairments caused by brain injury
or aging, and an automated system must be able to flexibly adapt after observing a users’
competencies or difficulties in the kitchen.

Intelligent systems may also be useful for home environments, where a person with cognitive
impairment may wish to cook collaboratively with neurotypical family members. Family
members of people with cognitive impairments can be inadvertent perpetuates of disability
stigma against their loved ones, viewing them as less capable and giving them simplistic
tasks and responsibilities [99]. These systems could engage in task division between the
family members by identifying tasks that are appropriately complex for both the persons
with cognitive impairments and neurotypical participants, reducing biases around cognitive
impairment and allowing the person with cognitive impairment to maintain their role within
the family structure.

3.5.2 Examining Collaborative Accessibility

Prior work has found that norms in environments where people with disabilities are the ma-
jority (e.g., the National Federation of the Blind’s annual conference) differ from norms
in environments where people with disabilities are the minority [107]. In the independent
housing areas of the sheltered living facilities we studied, all members of the cooking pro-
cess have cognitive impairments, raising critical questions about how technologies can be
designed to facilitate collaborative work without impacting the disability-specific norms of
the tenants.

In the supervised observations, tenants turned to the instructing caregiver to ask questions or
get feedback. This reliance on the instructor may make it difficult for tenants to develop truly
independent skills in a supervised setting. As a result, the instructors gradually reduce their
involvement until the tenants can demonstrate a level of independence that qualifies them
for independent housing. However, the ’independent’ housing is anything but independent –
tenants are surrounded by other residents with cognitive impairments who they can turn to for
support or instruction. Designing for these collaborative domestic settings is rarely studied
in accessibility literature or is looked at between disabled and able-bodied partners rather
than among members of a single disabled community. Future study of cooking practices
among individuals with cognitive impairments can contribute greatly to our understanding
of the co-construction of accessibility.

We recognize the importance of including representative users in accessibility research, as
argued by [343], and strove to accurately represent the cooking practices of the tenants with
cognitive impairments we observed. However, due to the level of cognitive impairment
among the tenants, and the facility’s desire to minimize researchers’ direct intervention

54



3 Opportune Cognitive Augmentation

into the cooking process, we could not perform a typical contextual inquiry with the ten-
ants. Instead, we combined our observations with interview data from the facility staff, who
may have their own biases in their interpretations of the tenants’ actions and interactions
[99]. While other HCI work studying users with cognitive impairments also relies on care-
giver stakeholders as informants (e.g., [90]), we see this as a major limitation of our current
work. As we continue this thread of research, we intend to develop new methods to facilitate
working directly with tenants with cognitive impairments, perhaps drawing from prior work
which leverages participatory design methods [122].

3.5.3 Study Limitations

Our contextual observations and evaluation were affected by other constraints. The study
and data collection were conducted focusing on West European living standards. The shel-
tered living facility model is unique to this context. Compared to other locations, different
living habits regarding persons with cognitive impairments may be present. Additionally,
both of our observations were conducted in different sections of the same sheltered living
organization, whereas cooking procedures in other facilities may be executed differently.
Communication of complex or novel information can confuse, while simplified visualiza-
tions may neglect to foster cognitive abilities and should be considered in a follow-up study.

3.6 Study Conclusion

We investigated the design space of smart kitchens for persons with cognitive impairments
living in sheltered housing facilities. Within qualitative contextual inquiries, we obtained
data by observing persons with cognitive impairments during a cooking session. Further-
more, interviews were conducted to explore current design gaps of assistive technologies
in-depth. We derived the four relevant themes work organization, community, supervision,
and practicalities, which emerge as important factors, through a thematic analysis of the
interviews. We conclude with five design implications which should be considered when
designing smart kitchens for persons with cognitive impairments: clear communication of
tasks, fostering the group experience, prioritizing safety, providing rewards, and enabling
contextual adaptivity.

3.7 Chapter Summary

In this chapter, we conducted a qualitative inquiry to reveal opportune moments and poten-
tial interventions for cognitive assistance through workload-aware interfaces. Through the
combination of observations and interviews with caretakers of a sheltered living facility, we
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derived four themes as well as five design implications for the design of assistive technolo-
gies that augment cognitive capabilities. Persons with cognitive impairments were studied as
a target group since they express the need for cognitive assistance explicitly to their supervi-
sors. In a first step to understanding how tenants with cognitive impairments process and act
using the available information, we conducted an observation to gather information during a
communal cooking session. Using the results from the observations, we created a question
catalog that addressed aspects of cognitive augmentation through assistive technologies.

Our findings show how persons with cognitive impairments collaborate during cooking with
other tenants as well as the supervisor. We find that social collaborations, especially the
social ties between tenant and supervisor, play an important role. For example, caretakers
repeatedly reminded the tenants to be careful during dangerous or mentally demanding tasks.
Situations that may cause injuries are therefore one particular moment that has the potential
to benefit from cognitive assistance. We further found that communal settings require a clear
task division. It is difficult for persons with cognitive impairments to manage task division
by themselves without clear instructions from a caretaker. Assistive technologies can use
this circumstance to deliver in-situ cognitive assistance. Our interviews revealed that the
caretakers were compelled by the vision of constant cognitive augmentation. Although de-
livered through ambient visualizations, assistive technologies should be attentive during the
whole cooking procedure and deliver assistance whenever needed. Hence, RQ1 is answered
by the presentation of the associated design implications and the aforementioned situations
that benefit from cognitive assistance.
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Chapter4
Feedback Modalities

For every user action, there should be
an interface feedback. For frequent and
minor actions, the response can be
modest, whereas, for infrequent and
major actions, the response should be
more substantial.

Ben Shneiderman

So far we have investigated user-centric characteristics when encountering situations in a
cooking scenario that require cognitive assistance. This resulted in five design implications
for workload-aware assistive systems. While these results deepen our understanding to rec-
ognize opportune moments for cognitive assistance, the feedback modalities of such systems
have to be designed carefully. Cognitively exerting tasks tend to demand the full attention,
alertness, and vigilance of a person. Unsuitable feedback modalities may break the attention
span and effort that was put into the task. Hence, it can take between ten to 15 minutes
before users can return to their original task after being disrupted [177]. Contrary, feedback
modalities that demand the attention span frequently have a detrimental effect on the user’s
task performance. In this chapter, we compare modalities that utilize the visual, auditory,
or tactile sensory channel to deliver feedback. For example, visual and auditory feedback
can be employed in collaborative work settings while tactile feedback can be used to notify
users while preserving privacy. Hence, feedback modalities may be perceived differently by
each individual and for each environmental situation. The previous chapter investigated ten-
ants from sheltered living facilities as a target user group for systems that provide cognitive
assistance. The roles, as well as social ties between tenants with cognitive impairments and
the supervising caretakers, have been investigated to receive insights for the future design of
workload-aware interfaces. Thereby, the tenants have shown affinities with technologies that
foster communication (e.g., instant messaging or phone calls) throughout their tasks (e.g.,
cooking).
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Figure 4.1: A participant is wearing an augmented glove providing tactile error feedback during
assembly tasks.

The “United Nations Convention on the Rights of Persons with Disabilities” [1] describes
how to ensure and protect fundamental rights of people with disabilities. This comprises the
inclusion in daily life tasks, such as work and public leisure activities. Sheltered working
has emerged to include persons with cognitive impairments in working life. Sheltered work
organizations employ workers with cognitive impairments in a supervised work setting. This
establishes social ties with peers and provides an income for personal use. Procedural as-
sembly tasks, such as manual assembly at production lines, are common tasks conducted
by persons with cognitive impairments. The assembly instructions can be broken down into
a small task complexity to fit the mental capacities of workers with cognitive impairments.
Traditionally, workers with cognitive impairments rely on a human instructor who supports
them during assembly tasks. The instructor is often responsible for multiple workers which
makes it difficult to supervise and control each assembly step of each worker for errors.

The use of assistive systems to provide assembly instructions has proved to reduce the num-
ber of assembly errors while decreasing the overall assembly time [136]. Since errors can not
be completely avoided, assistive systems can detect assembly errors and provide appropriate
feedback. However, error feedback is perceived different on an individual level. The type of
intrusiveness, demand for attention, and privacy aspects are factors that have to be consid-
ered [131]. Previous approaches conclude that a combination of haptic and visual feedback
is a suitable way of presenting error messages through assistive technologies. As these re-
sults were collected with participants that were not affected by cognitive impairments, it is
unclear if which error feedback is suitable for workers with cognitive impairments. In this
chapter, we close this gap by presenting a study with 16 workers with cognitive impairments
comparing the three most common modalities for providing error feedback, including tac-
tile, auditory, and visual feedback (see Figure 4.1). We present the results of a user study
that investigates the aforementioned feedback modalities and we provide implications when
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designing feedback modalities in working environments. This chapter sets the boundaries of
communication modalities for workload-aware interfaces:

→ RQ2: What are suitable in-situ feedback modalities for cognitive support?

This section is based on the following publication:

• Thomas Kosch, Romina Kettner, Markus Funk, and Albrecht Schmidt. Com-
paring Tactile, Auditory, and Visual Assembly Error-Feedback for Workers
with Cognitive Impairments. In Proceedings of the 18th International ACM
SIGACCESS Conference on Computers and Accessibility, ASSETS ’16, pages
53–60, New York, NY, USA, 2016. ACM

4.1 Related Work

The related work presented in this section includes past evaluations of feedback modalities
and developments in assistive technologies for workplaces.

4.1.1 Feedback Modalities

Different feedback modalities have been used for providing information in different sce-
narios. The most important categories are tactile, auditory, and visual feedback. Tactile
feedback is for example used by Bial et al. [32] by using a glove that is equipped with vi-
brating motors. Results show that tactile feedback can be used for navigation tasks. They use
the tactile feedback to provide information for motorcyclists during driving tasks. Consid-
ering auditory feedback, Rauterberg and Styger [314] proposed adding additional auditory
feedback to traditional visual feedback for assembly tasks. Visual and auditory feedback
has been provided at the same time while managing computer-numeric-controlled centers.
Their study suggests that combining auditory and visual feedback leads to a more positive
mood and improves the participant’s performance. The multimodal representation of feed-
back could lead to a high mental demand for participants with cognitive impairments. Plain
visual feedback is for example used by Funk et al. [128] when comparing different visual
approaches for providing feedback for workers with cognitive impairments at manual assem-
bly workplaces. In their study, they compare video-based, pictorial and contour instructions.
The results of the study suggest that visual contour instructions are perceived well among all
Performance Index (PI) groups of workers with cognitive impairments. Moreover, Cuvo et
al. [87] use textual feedback while instructing persons with mild cognitive impairments. In
their study, they found that performance feedback is crucial.
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Other fields already experimented with combinations of haptic, auditory, and visual feed-
back. Akamatsu et al. [4] compared the three feedback types in a mouse pointing task. Their
study revealed interesting design implications although no difference in Task Completion
Time (TCT) was found. Furthermore, Richard et al. [316] and Petzold et al. [301] compared
the three feedback types when manipulating objects and assembling in virtual environments.
Visual feedback was delivered on a screen, auditory feedback was provided by headphones
and tactile feedback was triggered using pneumatic micro-cylinders, which applied pressure
on the fingertips in a glove. Richard et al. found that both haptic and auditory feedback
improve the workers’ performance in manipulating virtual objects while Petzold et al. found
that the performance is increased using additional haptic feedback.

4.1.2 Assistive Systems for Workplaces

In 1991, Pierre Wellner [383] suggested using a camera-projector system to provide addi-
tional digital information for regular physical objects. In his prototype, Wellner combined
a digital and a physical workspace for enabling to use the best features of both spaces in
one physical workspace. Later Pinhanez [306] was using a camera-projector system com-
bined with a mirror for turning arbitrary surfaces into digital displays. Using Pinhanez’s
system, nearly every surface can become a display that shows information. Since then, sys-
tems using camera projector systems were deployed in different scenarios to provide cogni-
tive assistance. For example, Rüther et al. [323] provide assistance in sterile environments,
Löchtefeld et al. [249] augment a shopping scenario, and Butz et al. [62] used it to support
searching tasks. In 2008, Bannat et al. [16] used a similar setup for providing assembly in-
structions at manual assembly workplaces. Their system uses a camera to detect the position
of picking bins and a projector, to provide pictorial instruction for the assembly process.
Similarly, Büttner et al. [60] uses in-situ projection at manual assembly workplaces by pro-
viding pictorial instructions. They found that using in-situ projection is faster and leads to
fewer errors compared to displaying instructions on smart glasses [58]. Further, Korn et
al. [210, 215] used in-situ projection in combination with gamification approaches for mo-
tivating and instructing workers with cognitive impairments during assembly tasks. Their
study with workers with cognitive impairments revealed great potential for using gamifica-
tion and in-situ instructions for instructing and motivating workers at assembly workplaces.
However, they did not find a statistically significant difference. Further, a comprehensive
summary of assistive systems for supporting workers at the workplace is provided by Korn
et al. [211].

Recently, Funk et al. [136] used in-situ projection to provide instructions during assembly
tasks at the workplace. Their results show that with increasing complexity, using in-situ
instructions is leading to significantly fewer assembly errors and a significantly faster as-
sembly time compared to pictorial instructions. In their system, they were providing red
error feedback that illuminates the current picking bin when picking the wrong part. How-
ever, no scientific analysis of the error feedback was conducted. Therefore, Funk et al. [131]
further investigated the effects of haptic error feedback, auditory error feedback, and visual
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(a) (b) (c)

Figure 4.2: (a): The system uses a projector and a directed speaker for providing visual and
auditory error feedback. Further, a Kinect v2 observes the picking of items from bins. (b): Red
light providing visual error feedback. In case of an error, the whole working area is highlighted.
(c): A glove equipped with vibration motors is further used to provide tactile error feedback.

error feedback by conducting a study with students. Their results reveal that a combination
of haptic and visual feedback might be the best way to communicate errors while performing
assembly tasks. However, this was only tested with students in a lab study.

Previous work suggested the use of haptic feedback for communicating errors during assem-
bly tasks. This is considered a privacy-presuming way of communicating errors at work-
places [131, 301]. We argue that assistive systems will have a great impact on manual pro-
duction lines and envision the inclusion of people with cognitive impairments in the work
life [26, 329]. Thus, we are interested in how concepts of error feedback influence the effi-
ciency of workers with cognitive impairments. Further, we investigate which error feedback
modalities are preferred by the workers themselves.

4.2 System

To incorporate the use of tactile, auditory, and visual error feedback in an assistive system for
workplaces, we extended the system presented by Funk et al. [136]. The system consists of
modular components that are designed for providing different modalities of error feedback.
The main system, which tracks assembly steps and provides feedback to the assembly area,
is constructed out of multiple aluminum profiles. The profiles can be used to mount different
hardware on top of the workplace. The system uses a top-mounted Kinect v2 1 to detect
picking steps. Therefore, the system can distinguish between correct and incorrect picks.

We placed the system on a table and placed a height-adjustable chair in front of it. Therefore
the workers can work while sitting at a comfortable height. The system is constructed in a
way that the assembly area is 70cm wide and 49cm high. This is enough space for placing
instructions and assembling Lego Duplo constructions. The system further features 2× 4

1 https://developer.microsoft.com/en-us/windows/kinect - last access 2020-01-28
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picking bins which are filled with Lego Duplo bricks. Each picking bin is filled with one
type of Lego Duplo bricks that is unique in either color or shape. In the middle of the
system, there is a Lego Duplo plate firmly taped to the work area (see Figure 4.2b). The
system triggers an error when either a picking error was made, or an assembly error was
made by the participants. Picking errors are detected automatically by the Kinect v2 if the
user places his or her hand in a wrong bin. For detecting assembly errors, the system uses
a wizard of oz approach where a study assistant observes the assembly process and uses a
wireless presenter for triggering an error. In the case of an assembly error or picking error, an
error message is triggered. Depending on the condition, our system is capable of presenting
error feedback using the following three modalities:

Visual error feedback is provided using a projector (see Figure 4.2a), which is mounted at
the top of the assistive system. If an error occurs, a red light illuminates the whole work area
(see Figure 4.2b). While previous approaches only highlight the incorrect picking bin or the
incorrect assembly position if an error was made, we decided to illuminate the entire work
area. Therefore, the error message is harder to miss.

Auditory error feedback is provided using the Holosonics Audio Spotlight 24i2 (AS24i)
speaker. The speaker uses ultrasonic waves to prevent the sound from diffusing. Therefore,
it is only noticeable by the person sitting at the workplace and therefore retains the user’s
privacy. As an error sound, we are using a deep error tone exactly as used by Funk et
al. [131]. In case an error is made, the error sound is played by the speaker (see Figure 4.2a).

Tactile error feedback is provided using a glove equipped with two vibration motors (see
Figure 4.2c). We decided to choose standard safety gloves, which are mostly used by workers
while performing assembly tasks. The motors are placed on the index finger and the ring
finger. Our glove uses an ESP8266 microcontroller and a battery to receive the error trigger
messages via WiFi. In comparison to Funk et al. [131], our glove can, therefore, be used
without using a wire connected to a computer. This wireless feature makes the gloveless
obstructive while performing assembly tasks. In case an error is made, the glove uses an
alternating vibration pattern that activates each motor twice directly after each other for 0.3
seconds each. This results in a vibration time of 1.2 seconds per error. A summary of the
design and duration of every error feedback modality can be found in Table 4.1.

Stimulus Feedback Design Duration in ms

Visual Projecting red light 2500
Auditory Playing deep error sound 2000
Haptic Vibration in worker gloves 1200

Table 4.1: Feedback design and duration of each stimulus used in the study. The duration is
depicted in milliseconds (ms).

2 www.holosonics.com/15-products - last access 2020-01-28
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(a) (b) (c)

Figure 4.3: The assembly tasks used in the study. We used three different assembly tasks with
equal complexity. The images depict the final step of the pictorial instructions.

4.3 Evaluation

We conducted a user study with workers with cognitive impairments to evaluate the use-
fulness and impact of different error feedback modalities. This section describes the user
setup for the study, explains the procedure, and reports the results of the quantitative mea-
sures. Ethical approval for this study was given by the employee organization of our partner
sheltered work organization and by the German Federal Ministry for Economic Affairs and
Energy.

4.3.1 Design

To find the most suitable error feedback modality for communicating errors to workers with
cognitive impairments, we designed our experiment following a repeated measures design
with the used error feedback modality as the only independent variable. As dependent vari-
ables, we measure the TCT, the number of assembly errors, and the number of picking
errors. We counterbalanced the order of the feedback modalities according to the Balanced
Latin Square. Additionally, we collect qualitative feedback through semi-structured inter-
views and observations. We decided not to use a baseline condition that measures the time
and errors without any error feedback as related approaches showed that error feedback is
beneficial for workers with cognitive impairments. They usually ask their socio-educational
instructors for feedback about the assembly [128, 136].

4.3.2 Apparatus

For our experiment, we use the system providing tactile, auditory, and visual error feedback
described in the previous section. We configured it that only one feedback modality is active
per condition. As previous work suggested, using Lego Duplo tasks provides a good abstrac-
tion of assembly tasks, which enables changing the complexity of tasks without changing the
task itself [132, 136, 357]. Therefore we decided to use a Lego Duplo assembly task. As
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we designed the experiment to have three conditions, we created three unique Lego Duplo
assembly tasks consisting of 24 bricks per task3. The tasks are mainly inspired by the tasks
that were used by Funk et al. [136]. Therefore, we used their 24 bricks task, increased their
twelve bricks task by twelve more bricks, and used their 48 brick task and stopped at 24
bricks. The instructions in their final assembly state are depicted in Figure 4.3. We printed
the instructions on a single-sided A4 sheet of paper in a way that one assembly step is printed
on one sheet of paper. The upper left corner of the instruction depicts the brick that has to be
picked from one of the eight picking bins. The assembly position is depicted in a way that
the brick to assemble is shown in its final position. Further, a red arrow highlights the as-
sembly position that it can be found immediately. Further, the instructions were designed in
a way that the same brick does not have to be picked twice directly after the first occurrence.

4.3.3 Procedure

In preparation for the study, we asked for written consent from either the participants or
their legal guardians before the study. As the study was conducted in our laboratory, which
was a new environment for every participant, we initially made all participants familiar with
our laboratory environment. Accompanied by their regular socio-educational instructors,
we initially explained the assistive system and the three modalities that are used in the study.
At first, we informed the participants that their participation in this study is voluntary. We
told them that they should inform us whenever they felt unwell or uncomfortable, as we
would immediately abort the study in this case. Afterward, we explained the intention of
the study and why the tasks they perform are relevant. After explaining the course of the
study, we made the participants familiar with the paper assembly instructions, i.e. which
part to pick and where to assemble it. Once the participants felt confident using the paper
assembly instructions, we introduced the error feedback modality for the current condition
and explained what we count as an error and what the system will do if an error occurs.
As the participants felt that they understood both error feedback and the paper assembly
instructions, we began with the study and started measuring the TCT. During the study,
three researchers were present at the scene. The first researcher triggered the assembly error
feedback in case an assembly error was made as a Wizard of Oz (WoZ). Picking errors were
detected using a Kinect v2, which triggered the error feedback automatically. The second
researcher was measuring the TCT and counted the picking errors and assembly errors that
were made for each condition. The third researcher was observing the worker reacting to the
error feedback and taking subjective notes based on the observation. The error feedback was
displayed immediately while performing the assembly when an assembly or picking error
was triggered. After the assembly was completed, we asked the participant for their opinion
about the used error feedback. Then we repeated the procedure for the other two remaining
conditions. At the end of the third condition, we asked each participant for a subjective

3 We provide the created assembly instructions to other researchers for reproducing the study:
www.github.com/hcum/comparing-tactile-auditory-and-visual-assembly-error-feedback
- last access 2020-01-28
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4 Feedback Modalities

rating which error feedback was perceived the best by her or him and we asked them why
they preferred or disliked the feedback.

4.3.4 Participants

We invited 16 participants for our user study. The participants were aged from 34 to 53
years (M=40.33, SD=6.36) and were employees of a sheltered work organization working
in manual manufacturing. All participants worked on manual assembly tasks daily. None of
the participants were familiar with our system, the used task, or the error feedback modal-
ities used in our study. We invited the participants according to their PI in a way that they
represent the population of the sheltered work organization. Therefore, we used the PI of the
sheltered work organization to categorize their capabilities. The PI is a percentage ranging
from 0% to 100%, which indicates how capable a worker with cognitive impairments is of
performing a work task. Inspired by previous work [128, 136], we divided the population to
belong to one of three PI groups: 5-15%, 20-35% and above 40%. Accordingly, we invited
5 participants belonging to each of the three PI groups. The study took approximately 40
minutes per participant. Participants were monetary compensated through funding from a
joint project.

4.3.5 Results

During our study, four participants belonging to the 5-15% PI group aborted the study as
they did not want to wear the glove anymore. Therefore, we excluded these 4 participants
from the quantitative evaluation.

We statistically compared the TCT, the number of assembly errors, and the number of pick-
ing errors, between the error feedback modalities using one-way repeated measures Analysis
of Variance (ANOVA). Mauchly’s test showed that the sphericity assumption was violated
for the number of assembly errors (χ2(2) = 6.852, p = .033) and the number of picking errors
(χ2(2) = 9.201, p = .010). Therefore, we used the Greenhouse-Geisser correction to adjust
the degrees of freedom (ε = .668 for the number of assembly errors and ε = .624 for the
number of picking errors). Further, we used a Bonferroni correction for all the posthoc tests.

Considering the TCT, the participants assembled the Lego Duplo construction fastest using
the visual error feedback (M = 434.42 sec, SD =185.27 sec), followed by the auditory error
feedback (M = 445.08 sec, SD = 197.40 sec), and the tactile error feedback (M = 575.42 sec,
SD =276.71 sec). As the Shapiro-Wilk test did not show a non-normal distribution, we
use a parametric one-way ANOVA. The one-way repeated measures ANOVA showed a
statistically significant difference in the TCT between the feedback modalities F(2,22) =

4.634, p = .021. The posthoc tests reveal a significant difference between the visual and
tactile feedback. The effect size estimate shows a large effect (η2 = .296). Figure 4.4a shows
a graphical overview of the results.
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Figure 4.4: (a): An overview of the average Task Completion Time to assemble the Lego
Duplo construction using the different error feedback modalities. (b): The average number of
errors that were made using the different error feedback modalities for both assembly errors and
picking errors. The error bars depict the standard error. The brackets indicate significant results.

Analyzing the number of assembly errors that were made by the participants using the dif-
ferent error feedback modalities, the visual error feedback resulted in the fewest assembly
errors (M = 2.67, SD = 3.09), followed by the auditory error feedback (M = 3.08, SD =

3.77), and the tactile error feedback (M = 3.5, SD = 3.5). As a Shapiro-Wilk test showed a
non-normal distribution for all three modalities (all p < .05), we use a non-parametric Fried-
man test. Accordingly, the Friedman test did not reveal a significant difference between the
error feedback modalities (p > .05). The results are depicted in Figure 4.4b.

For the number of picking errors that were made using the different error feedback modal-
ities, the visual error feedback (M = 2.17, SD = 1.85) and the auditory error feedback (M
= 2.17, SD = 1.89) lead to the same number of picking errors. Using the tactile error feed-
back, the participants made the most picking errors (M = 3.0, SD = 3.46). As a Shapiro-
Wilk test showed a non-normal distribution for all three modalities (all p < .05), we use a
non-parametric Friedman test. However, the Friedman test could not reveal a significant
difference (p > .05). The results are depicted in Figure 4.4b.

4.4 Qualitative Observation

Considering the qualitative observational feedback that was collected during the user study,
two researchers continuously observed the participants during the study. The first researcher
observed the interaction of the participants with different error feedback modalities and
asked questions after the condition was finished in a semi-structured way. The second re-
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searcher was performing an observational study for subjectively analyzing the effect of the
different error feedback modalities on the participants.

When asked about the Lego Duplo task itself, a participant stated that “with an increasing
number of steps the task gets more complicated” (P1). Another participant pointed out that
the used task has several error sources as “[he] had difficulties in distinguishing between the
two different types of green bricks” (P2). During the study, we subjectively observed that ten
of our twelve participants had difficulties to recognize bricks, whereas most of them stated
that they did not have problems differentiating between the different colors.

We also asked the participants about how easy it was to perceive the different feedback
modalities. One participant liked the visual feedback as it is “directly in the field of view”
(P2), others said that the visual feedback is “easy to see” (P4). The participants were unsure
about the tactile feedback as “the vibration is rather unpleasant during the work task” (P2)
and “[it] distracted me in my workflow” (P4). Some participants (P3, P8) also did not feel
or pay attention to the tactile stimulus. Further, four participants had to abort the study
after the tactile feedback condition. Two of these participants stated that they did not feel
well wearing a glove, the other two were uncomfortable or scared of the tactile vibration.
Considering the auditory feedback a participant stated that the “sound was very easy to
perceive” (P2). On the other hand, three participants (P3, P8, P14) stated that they were
distracted by the auditory error feedback as it “scared [them] when it triggered”.

Considering the privacy implications of the different error feedback modalities, some par-
ticipants stated that auditory feedback would be “not that good because others can hear
when [I] made an error” (P2, P13). On the other hand considering the visual error feedback
many participants told us that “[they] don’t care if others could see that they made an error”
(P2, P4, P5, P12, P14). When we asked why the participants responded that “usually the
supervisors are watching the work steps as quality control and are telling us when an error
occurred”. (P4) One participant was concerned that his supervisor would not be able to see
anymore when an error was made as only he could perceive the tactile feedback (P16).

One participant (P7) stated after the study that he perceived working with the system using
any error feedback as very easy as he could completely relax and rely on the system because
it would tell him when he makes an error. Two other participants stated that they “could
imagine using the visual feedback daily” (P4, P5).

At the end of the semi-structured interview, we asked the participants to rank the feedback
modalities according to which modality they liked best and to also consider which error
feedback they would use daily. One of our 12 participants who finished the study did not
want to rank the error feedback modalities. The results reveal that participants’ subjective
impression of the visual error feedback was best (5× first, 4× second, and 2× third) followed
by the auditory feedback (4× first, 4× second, and 3× third). The tactile feedback was
perceived as the worst (2× first, 3× second, and 6× third). The results are also depicted in
Figure 4.5.

In addition to the interviews, five participants made comments on their performance or for-
mulated their thoughts during the assembly task. In most cases, these participants showed a
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Figure 4.5: The subjective ranking of the feedback modalities ranked by the participants.

higher TCT than other participants. Another four participants needed to be guided verbally
during their tasks and reacted positively to the verbal help.

4.5 Discussion and Implications

The results of our study reveal that both the number of assembly errors and the number
of picking errors are not significantly different between the error feedback modalities. We
argue, that the number of errors is not different between the error feedback modalities as
the error feedback occurs after the participant made the error. Thus, we could not measure
that the used feedback modality is influencing the participant in the way they are working,
e.g. paying more attention to a correct picking or a correct assembly of the Lego Duplo
construction or being insecure and making more errors due to an error feedback modality.
However, the TCT is statistically different between tactile error feedback and visual error
feedback. We assume that this difference in the TCT is caused by a faster error recovery
after an error was made. The visual error feedback was perceived significantly faster than
the error feedback provided by the tactile glove.

The qualitative observations and the answers we got from the participants through semi-
structured interviews after using the different error feedback modalities tend towards using
visual error feedback. Although some participants did not care about using error feedback
that preserves their privacy at the workplace, auditory error feedback was perceived as dis-
tracting. Considering the tactile feedback using the vibrating glove, some participants were
able to perceive the tactile feedback while others did not react to the tactile feedback at all.
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While using privacy presuming error feedback mechanisms might be a good decision in
general [131], the implications for using these error feedback mechanisms for workers are
different. Through interviews, we found that errors that are made at the assembly workplace
are considered non-private information, which is acceptable to communicate to supervisors.
Compared to related work [131], which analyzed the error feedback for workers with no
disabilities, the design implications are different as error privacy has a higher priority.

4.6 Study Conclusion

We compared visual, auditory, and tactile error-feedback for workers with cognitive im-
pairments at manual assembly workplaces. In a user study, we obtained data from twelve
participants to estimate the best feedback modality in terms of task completion time, mea-
sured errors, and qualitative feedback. We found a significant difference between visual and
tactile error feedback regarding the task completion time, but could not find a significant
effect between picking errors and assembly errors between each error feedback modality.
We did not observe that altering the error feedback modality had an impact on the way the
participants worked on assembly tasks. Therefore, the number of assembly errors through-
out all error feedback modalities were not significantly different. However, we measured a
significantly faster task completion time using visual error feedback compared to using tac-
tile error feedback. Using visual error feedback, the participants were able to recover faster
from errors than using tactile error feedback.

4.7 Chapter Summary

In this chapter, we investigated the efficiency of visual, auditory, and tactile feedback modal-
ities during a Lego Duplo assembly task. Awareness about the current assembly and work
context enables us to tailor feedback modalities for collaborative (i.e., using visual or au-
ditory feedback) or privacy-protective settings (i.e., using tactile feedback). The presented
study investigated the task completion time, number of errors, and user acceptance by using
the three feedback modalities. We find a strong preference for visual feedback regarding
acceptance and assembly efficiency followed by auditory and tactile feedback (RQ2). The
study shows that the employed feedback modality plays an important role that has to be
adjusted to the contextual and individual needs. While tactile feedback showed the lowest
preference and performance, it was more preferred when focusing on privacy-related aspects.
This trade-off between efficiency and privacy has to be considered during the development
of workload-aware systems and interfaces.
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Chapter5
Mobile Electroencephalography

Humans read minds. We constantly try
to understand what our fellow humans
are thinking and feeling – and how they
are going to act.

Hank Greely

In Chapter 3 and Chapter 4 we outlined the design requirements of workload-aware inter-
faces. Our results show that, regardless of the current chore, people seek assistance when
their short-term memory is demanded frequently. The qualitative inquiry presented in Chap-
ter 3 revealed that cognitive offloading is desired during repetitive tasks that are subject to
small changes. This requires us to update the learned task while avoiding careless mistakes
from the old execution pattern, and incorporate respective changes in task execution rou-
tines. Manual assembly at production lines is an example of such routine work. Modern
manufacturing processes are increasingly defined by smaller lot sizes of bespoke designs.
Gone are the days that require workers to act purely on rote learning. Instead, novel as-
sembly instructions must frequently be committed to memory as soon as new designs and
components enter into the production pipeline [127]. Thus, assembly is increasingly defined
by its cognitive instead of physical demands. Manual assembly places workload on cognitive
processes that underlie executive working memory [15, 144]. Given that cognitive workload
impacts the individual task performance [113, 169], it follows that profit margins may suffer
as a result of reduced production throughput and error-prone manufacturing.

Assembly instruction systems have been introduced to ameliorate this. Such assistance con-
sists of instructions on printed paper, external displays, or in-situ instructions projected di-
rectly on the assembly workplace. Such systems are designed to simultaneously reduce
cognitive demand while optimizing performance. Indeed, previous research has suggested
that design manipulations of the visual representation and modality of assembly instructions
can have a significant influence on self-reported measures of cognitive workload [127, 217].
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(a) (b)

Figure 5.1: (a) Paper-based and (b) projected in-situ instructions at a manual assembly work-
place. An EEG headset measures the level of working memory. This provides objective insights
about the working memory load that is placed during manual assembly.

Strong arguments have been made for the use of in-situ instructions that can be integrated
“just-in-time” [61, 134]. Furthermore, visual in-situ instructions are attributed to a signifi-
cant increase in production efficiency [138, 228].

Novel user interfaces – for instance, assistive instruction systems – are often evaluated for
their improvements regarding the performance or subjective workload to justify their imple-
mentation over the status quo. Performance is typically assessed in terms of error rate and
assembly completion time, while cognitive workload is often assessed using self-rated mea-
sures or semi-structured interviews [129]. Commonly used self-rated measures include the
NASA-TLX [161] or the simpler RSME [45, 402]. However, these metrics are susceptible
to individual differences in subjective reporting. For instance, extroverted confident individ-
uals might be less likely to indicate workload to the same degree as introspective modest
individuals [187]. Furthermore, novel assistive systems and visualizations might introduce a
novelty effect. This means, that participants provide self-reported scores that are influenced
by the excitement over a new technology [384]. Additionally, subjective reports can only be
performed after test completion and rely on cognitive processes, namely working memory.
Such methods are limited in their objective and real-time assessment of cognitive workload
when evaluating assistive technologies.

Therefore, physiological methods are increasingly employed as a means to estimate mental
states, such as cognitive workload [156, 223, 226]. For example, BCIs [7, 367] have been
used successfully to assess the complexity of presented information in a variety of scenar-
ios [7, 225] (see Figure 5.1). A BCI records brain activity in real-time and computationally
derives estimates of a targeted mental state to either provide feedback about the physiological
state of the user or enable device control through neuronal activity. Increasingly, advances in
brain-recording technology and neuroscience findings contribute towards a vision of ubiq-
uitous BCI deployment in everyday places of work and play [53, 198, 371]. In the current
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context, a BCI for cognitive workload sensing could be used in collaborative work settings
by allocating tasks to workers who are less fatigued [121, 129] or provide adaptive assistance
whenever necessary [130]. However, for this future to be realized, it is necessary to ensure
that recorded estimates are robust and valid for its given setting.

BCIs may record brain activity via EEG, which has been preferred for its lightweight and
mobile hardware, high temporal resolution, and non-invasive nature [152]. EEG measures
neuronal signals from scalp electrodes, relative to a reference electrode [118, 148]. Previous
research has utilized EEG as a measure for cognitive workload to evaluate task difficulties in
real-time [145, 146, 350]. To some extent, it is possible to rely on EEG to classify cognitive
workload in real-time, particularly those that involve working memory processes [152]. This
makes EEG to a viable alternative or complementary metric for mental workload measures.

In this chapter, we present a method to assess cognitive workload using mobile electroen-
cephalography. EEG facilitates the measurement of cortical activity which represents mark-
ers for cognitive effort [145, 146]. We present a study that compares two assistive systems
for manual assembly which have shown significant differences in subjective perception. This
is complemented by the presentation of a design pipeline that suggests the use of EEG as
a complementary measure alongside subjective assessments. Henceforth, the evaluation of
EEG cognitive workload measures yields the potential for real-time adjustments of user in-
terfaces. We seek to answer the following research question:

→ RQ3: Does electroencephalography provide measures of cognitive workload for user
interface evaluation?

This section is based on the following publications:

• Thomas Kosch, Markus Funk, Albrecht Schmidt, and Lewis L. Chuang. Iden-
tifying Cognitive Assistance with Mobile Electroencephalography: A Case
Study with In-Situ Projections for Manual Assembly. Proc. ACM Hum.-
Comput. Interact., 2(EICS):11:1–11:20, June 2018

• Thomas Kosch and Lewis L. Chuang. Investigating the Impact of Assistive
Technologies on Working Memory Load in Manual Assembly through Elec-
troencephalography. Human Neuroscience Archive, (114)

5.1 Background

Previous research has investigated effort in examining EEG data while subjects perform
specific tasks. This section summarizes relevant research regarding the use of EEG as a
non-invasive method to quantify cognition and presents assistive systems that adapt to the
measured brain activity.
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5.1.1 Quantifying Cognition using EEG

Much research has been performed to define and quantify cognitive workload. Sweller et al.
[353, 354] defined three key components of cognitive workload comprising intrinsic, ger-
mane, and extraneous cognitive workload. Intrinsic workload describes the inherent com-
plexity of the task itself, and can therefore not be manipulated by external sources. Germane
workload describes the cognitive effort subjects need to comprehend and process new infor-
mation. Extraneous workload describes the cognitive demand to understand and process the
visual representation of the underlying information. Experiments often evaluate extraneous
workload by influencing the visualization of information. Intrinsic and germane workload is
not easy to manipulate since they are task-related or depend on individual mental capabili-
ties.

More precisely, cognitive workload defines the mental effort being used in working mem-
ory, which is responsible for fast information processing and limited within its capacities
[15]. Gevins et al. [146] invested effort to quantify the occurrence and amount of working
memory using EEG. They found a decrease in alpha frequencies and an increase in theta
frequencies during cognitively demanding tasks. Jensen et al. [181] replicated their results
using a memory demanding task. Scharinger et al. [330] also showed a variety of other tasks
that correlate with increased working memory. However, working memory strongly depends
on individual attributes, such as age or neuronal health state [199].

Machine learning became popular to classify mental states using EEG data [253, 251, 252]
and has been used to estimate workload in different contexts [273]. Lee et al. [238] collected
EEG data of participants to classify cognitive demanding tasks according to their difficulty.
Participants were asked to do different cognitive tasks, including mental rotation and mental
arithmetic. Instead of using previously recorded data associated with similar tasks [6, 192],
data was collected from scratch. Using machine learning, a classification accuracy of 92.4%
was achieved. However, the experiment has not focused on classifying working memory
itself. An approach to classifying working memory was undertaken by Grimes et al. [152].
Participants performed a N-back task, which is a popular task to demand short-term mem-
ory [266, 291]. Their study included four different difficulties, where their results yielded a
classification accuracy of 99% for binary classification and an accuracy of 88% for classifi-
cation between four classes of difficulty. Nonetheless, a medical EEG headset was utilized
for their experiment, which is hard to deploy on the fly. Furthermore, an artificial task was
used to measure the level of working memory instead of using a real-world scenario.

5.1.2 Evaluating and Adapting User Interfaces

Besides using EEG for quantifying and classifying working memory researchers have em-
ployed this measurement to enable the development of cognition-aware systems. Zander et
al. [397] investigated how passive brain activity measurements can be leveraged to handle
take-over tasks during autonomous driving. Prinzel et al. [237] researched how task alloca-
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(a) (b) (c)

Figure 5.2: (a): Snippet from the used Lego Duplo paper instruction. The next brick can be
seen in the upper left corner. A red arrow denotes the final assembly position of the brick. (b):
Highlighted box using in-situ projections. (c): Projection of the target position of a selected
brick.

tion can be carried out efficiently using EEG-related metrics. Finally, El-Komy et al. [109]
used physiological sensing devices in an assembly environment comprising additional artifi-
cial tasks to measure the workers’ stress levels. However, only results from the emotion and
arousal scores retrieved by the integrated BCI interface were reported.

To the best of our knowledge, no prior work concerning the evaluation of EEG to derive
cognitive workload during manual assembly and with different instruction systems has been
done. In this work, we close this gap by utilizing standardized manual assembly tasks with
two different instruction systems. We record and compare EEG data in a repeated mea-
sure experimental design to evaluate EEG as a valid assessment tool for cognitive workload
induced by assistive technologies during manual assembly.

5.2 Assembly Instruction Systems

We identified two different instruction systems from related research, which are different
regarding subjective perception [134]. Within both instruction systems, Lego Duplo bricks
are assembled. This task resembles a full replacement for a real assembly task and enables
to change the complexity of the task without changing the task itself [134, 228].

5.2.1 Assembly Instruction Visualizations

Informed by related work, two instruction visualizations are identified which differ in over-
all interpretation complexity [134]. We have chosen paper instructions, as they represent
the current state of the art when it comes to transferring assembly instructions in manual
assembly lines [132]. This is compared to projected in-situ instructions, where assembly
instructions are projected in the workplace. We have chosen these two assembly instruction
modalities as subjective measures suggest an alleviation of workload for in-situ projected
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instructions compared to printed paper instructions [134, 138]. In the following paragraphs,
we describe both instruction systems used in the study in detail.

Paper Instructions

We printed single-sided instructions on an A4 sheet of paper. Each work step was printed
on a single page, such that the position and size of every step were the same. The paper
instructions were put together in the correct order using a folder and positioned to the left or
right of the users, depending on their handedness. The folded assembly instruction remained
the same position relative to the user’s position. The instruction shows a brick on the upper
left corner which is required to select for completing the current work step. Marked by an
arrow, the assembly instruction shows the final position of the brick (see Figure 5.2a).

In-Situ Instructions

We compare the presented paper instructions with in-situ projections displaying assembly
instructions. We use a similar system as shown by Funk et al. [137]. A projector mounted
above the work table displays the next assembly step on the workspace. A Kinect v21 val-
idates each work step of the Lego Duplo construction. This includes the verification of
correct item selections from bins by observing the hand movements of the participant (see
Figure 5.2b) and assembly steps by comparing the (see Figure 5.2c). The next work step is
displayed when the current work step is performed correctly. The system is waiting until the
current work step is carried out correctly and does not proceed if the user makes an error.

5.3 Manipulating Cognitive Workload

We manipulate working memory to assess the validity of our setup. We use a visual N-back
task [266] with two levels of task difficulty (N= 0 and N= 2) to induce cognitive workload,
namely executive working memory. In the N-back task a series of numbers is presented
(i.e., numbers). Each symbol appears in a fixed position. Upon symbol representation,
participants have to decide if the current symbol is equal to the symbol shown N steps ago.
Participants have to keep a sequence of N symbols constantly in their memory, decide if a
match occurred, and then update the sequence in their memory.

For example, the 0-back task requires participants to compare each displayed symbol with
the first one seen in the series. Since the currently displayed number matches with the first
one in the series during the 0-back task, no memory updates are required. However, the task
difficulty can be manipulated by changing N [145, 152, 291]. For N= 2, participants have
to memorize the last two symbols in the series while paying attention to matches when the
currently displayed symbol is the same as shown two items ago. Table 5.1 shows an example
of the N-back.

1 https://developer.microsoft.com/en-us/windows/kinect - last access 2020-01-28
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Displayed number 5 8 3 4 3 9 1

Press button (0-back task) 5 8 3 4 3 9 1
Press button (1-back task) 5 8 3 4 3 9
Press button (2-back task) 5 8 3 4 3
Press button (3-back task) 5 8 3 4

Table 5.1: Example of the N-back task task. Participants have to confirm by a button press, that
the currently displayed number matches with the number seen N numbers ago.

The motoric requirements remain constant across difficulty levels during the N-back task.
This enables comparisons between different difficulties as working memory load is measured
while excluding reactions from external stimuli.

A smartphone app2 is used to display a single matching N-back task. Throughout the exper-
iment, we use a Nexus 5X3 with a screen size of 5.2 inches to run the N-back trials. The
displayed symbols ranged between 0 and 9, which appeared in random order. Each number
is displayed in the center of the smartphone screen for one second. Afterward, the screen
remains blank for 2.5 seconds before the next number appears. Participants have to press a
button on the screen if a match occurs.

5.4 EEG as Indicator for Workload

In the following study, we assess the validity of our setup by conducting two N-back tasks
with different complexities as described before. Afterwards, we conduct two assembly tasks
per participant, each with the two previously mentioned assembly instruction systems. The
overall hypothesis is that in-situ projections induce less cognitive workload than printed
paper instructions. This leads to the following hypotheses:

• H1: Projected in-situ instructions will induce higher alpha power, relative to printed
instructions.

• H2: Projected in-situ instructions will produce lower scores of subjective workload,
relative to printed instructions.

• H3: Projected in-situ instructions will produce fewer item selection errors, relative to
printed instructions.

• H4: Projected in-situ instructions will produce fewer assembly errors, relative to
printed instructions.

2 www.play.google.com/store/apps/details?id=cz.wie.p.nback - last access 2020-01-28
3 www.gsmarena.com/lg_nexus_5x-7556.php - last access 2020-01-28
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(a) (b)

Figure 5.3: (a): The Emotiv Epoc wireless EEG headset featuring 16 electrodes including two
reference electrodes. (b): Electrode placement layout of the 14 measurement electrodes [386].

• H5: Projected in-situ instructions will produce faster completion times, relative to
printed instructions.

5.4.1 Methodology and Measures

We used the Emotiv Epoc as brain-sensing device during the whole experiment (see Fig-
ure 5.3a and Figure 5.3b). Since the alpha band varies between participants, we conducted
an eyes opened and eyes closed task to estimate the individual alpha band [20]. The overall
duration of this trial was one minute. The participants started with their eyes opened and
were verbally instructed to close their eyes after 30 seconds to provoke a sudden increase in
alpha power [20]. The participants kept their eyes closed for another 30 seconds. We use
this peak as a reference point for extracting alpha power for later analysis. Furthermore, we
took ±2 Hz around the peak frequency as a measure for the alpha band.

We continue then with the N-back task to verify the validity of our setup and accuracy of
our EEG measures. Participants start with a 0-back task to be induced with low workload,
followed by a 2-back task to be induced with high workload. The 2-back induces sufficient
complexity to make the differences in working memory between resting and N-back task vis-
ible in EEG data [47]. A NASA-TLX questionnaire is filled out after each N-back condition
to collect subjectively perceived workload.

We begin with the assembly task afterward. Inspired by several reference tasks proposed
by previous research [132], we use a Lego Duplo task to evaluate the paper and projected
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in-situ instructions in terms of measured workload. We prepared two different assembly
instructions, where each of them is modeled as paper instruction and projection as shown
in Figure 5.2. For the assembly tasks, we used a repeated-measures experimental design
with the instruction visualization as a single factor including the levels paper and in-situ.
We counterbalanced the order of conditions according to the balanced Latin square. As
identified in the previous work [35, 59, 134, 328], we measure the number of errors and
the task completion time per trial. The number of errors was divided into item selection
and assembly errors. An item selection error is counted whenever participants put their
hands into a box where incorrect bricks reside. An assembly error is counted when a brick
is assembled in a wrong position. To reduce the number of head movements, we seated
the participants before the assembly experiment at a comfortable distance to the assembly
setup, so that boxes and the assembly plate can be reached with minimal effort. Participants
filled out a NASA-TLX questionnaire after each trial to provide their subjectively perceived
workload during the last assembly condition. Ultimately, we asked the participants verbally
about their preference between both assembly instruction systems and noted their answers
for later analysis.

5.4.2 Procedure

Participants signed a consent form and provided their demographics after we explained the
course of research to them. We put the BCI on the participant’s head and ensured good
connectivity between the scalp and all electrodes. We explained to the participants what
EEG signals and noisy artifacts are. We asked participants to keep their head as still as
possible and to avoid unnecessary eye blinks.

Participants started with a one-minute baseline resting task. Participants kept their eyes open
for 30 seconds. After the first 30 seconds elapsed, participants were instructed to close their
eyes for another 30 seconds. The study continued with two N-back tasks, each comprising 20
numbers. The total runtime of each N-back was one minute and ten seconds. The experiment
started with the 0-back task. Participants had to press the match button every time they saw
a number since the currently displayed numbers refer to the same number. Participants
continued with the 2-back task. The participants had to press the match button whenever the
currently displayed number was equal to the number shown two numbers back. We recorded
EEG data during all tasks. Participants were asked to fill out a NASA-TLX questionnaire
after each N-back task.

After the verification procedure, participants started with the assembly procedure. They
began with either paper instructions or projected in-situ instructions based on the order of the
balanced Latin square. Additionally, we shuffled the order of the Lego Duplo instructions
itself between the conditions. During the assembly, we recorded raw EEG data, counted
the number of errors separated into item selection or assembly errors, and the time used
for assembly. During all conditions, participants were instructed to keep their head still
and avoid unnecessary eye blinks. After every assembly, participants were asked to fill out
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a NASA-TLX questionnaire to assess the perceived the workload during the usage of the
given instruction system. Qualitative comments about the preference of users regarding the
instruction systems were collected in the end.

5.4.3 Data Processing

We apply the following data processing procedure: Data is filtered using a spatio-spectral
decomposition method [279] with filter thresholds between 0.5 Hz and 20 Hz to remove
unwanted frequencies caused by eye blinks or head movements. We average all 14 channels
by calculating the element-wise mean of the signals. We remove the first and last four
seconds of the signal to avoid unwanted artifacts caused by the beginning and end of the
trial [238]. We divide the signal into one-second slices with an overlap of half a second.
Instead of extracting the alpha band between 8 Hz and 12 Hz, we determine the maximum
peak during the eyes opened and eyes closed task for each individual [117, 199]. The power
spectra around the maximum peak (±2 Hz) is averaged and used as individual alpha power.

5.4.4 Results

We recruited twelve participants over our university mailing lists (8 male, 4 female). All
participants were students and had a normal or corrected-to-normal vision. None of the
participants were affected by neurological disorders. The mean age was 23 years (SD =

2.22). Participants were compensated with 10 Euro for their participation.

Executive Working Memory Load and EEG

We identified alpha desynchronization as features that corresponded with an increased load
in executive working memory. The alpha band is known to vary across individuals [100].
Therefore, we determined an individual alpha frequency (IAF) bandwidth for each partic-
ipant based on their peak frequency value given their baseline EEG. We defined ±2 Hz
around the peak frequency as the individual alpha band. Overall, the mean IAF band ranged
between 6.5 Hz and 10.5 Hz (SD = 2.14).

The mean power of the IAF power for each participant was submitted to a two-tailed paired-
samples t-test for the factor executive working memory load consisting of the 0-back and
2-back task. A Shapiro-Wilk test confirmed that the data was normally distributed. The
results reveal a significant difference, t(11) = 5.90, p < 0.001, d = 1.70, between the 0-back
and 2-back task. Figure 5.4a shows the direct comparison of alpha activation between both
conditions. To summarize, our chosen EEG feature was sensitive to load in an executive
working memory task, namely, there was less power in the IAF band when there was a
higher load in this task. Thus, we report a large effect size in support of H1.
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(a) (b)

Figure 5.4: (a): IAF power for working memory load, i.e., 0-back, and 2-back. The IAF power
is higher for lower working memory load. The error bars depict the standard error of the sample
mean. (b): Participant-wise comparison of IAF power when using in-situ projections and paper
instructions. Except p9 and p11, the use of in-situ instructions results in higher IAF power
compared to paper instructions. The error bars depict the standard error of the sample mean.

Assembly Performance and Alpha Power

The IAF power of each participant was submitted to a two-tailed paired-samples t-test for
the factor haptic assembly instructions consisting of paper and in-situ instructions after a
Shapiro-Wilk test confirmed that the data was normally distributed. The results reveal a
significant difference, t(11) = 3.86, p = 0.003, d = 1.12. Figure 5.4b shows the mean alpha
activation per condition and participant. Similar to our findings with the executive working
memory load, we find that IAF power is generally lower for paper instructions compared to
when participants experienced projected in-situ instructions instead—note that this was not
true for p9 and p11 at the individual level. Thus, we report a large effect size in support of
H2. More importantly, we show that the IAF power responds for lower executive working
memory load as it does for our projected in-situ instructions.

Additionally, we statistically compare the number of errors made by the participants during
assembly as well as the time they required to finish the assembly between the different condi-
tions. We classify errors into item selection errors and assembly errors. Overall, participants
did in average 2.25 (SD = 2.301) item selection errors during the paper instruction condition
and 0.083 (SD = 0.289) errors during the in-situ condition. 0.917 (SD = 1.379) assembly er-
rors were performed when using paper instructions and 0.25 (SD = 0.452) during the in-situ
condition. A Shapiro-Wilk test did not show a normal distribution for the item selection and
assembly errors. Thus, we have conducted a Wilcoxon signed-rank test. A significant differ-
ence was found for the number of item selection errors, p = 0.009. However, no significant
difference was found for the number of assembly errors, p = 0.188. Figure 5.5a compares
the number of item selection and assembly errors between both instruction systems.
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Figure 5.5: (a): Mean item selection and assembly errors. The error bars indicate the standard
error. Brackets indicate significant differences. (b): Mean raw NASA-TLX scores per condition.
The error bars depict the standard error. Brackets indicate significant differences.

The task completion time averages to 217.08 seconds (SD = 40.31) for paper instructions and
124 seconds (SD = 13) for projected in-situ instructions. The task completion time shows
a significant effect between both conditions regarding task completion time, t(11) = −8.82,
p = 0.001, d = −2.55.

Qualitative Assessment

We statistically analyze the subjectively perceived workload using the collected NASA-TLX
questionnaires. We average the scores received from the six Likert scales per condition to
calculate the mean raw NASA-TLX scores. The averaged NASA-TLX score amounts to
13.83 (SD = 7.34) for the 0-back task, 48.92 (SD = 19.01) for the 2-back task, 33.92 (SD =

13) for the assembly task using paper instructions, and 24.17 (SD = 14.26) during assembly
using projected in-situ projections.

A Shapiro-Wilk test confirmed that the data is normally distributed. A t-test shows a statisti-
cal difference in NASA-TLX scores between the 0-back and 2-back condition, t(11) =−6.41,
p = 0.001, d = −1.85. Therefore, more workload was subjectively perceived in the 2-back
task than in the 0-back task. A significant difference between paper and in-situ instructions,
t(11) = −3.86, p = 0.003, d = −1.12, was found. Therefore, lower alpha activation was
measured during the in-situ conditions compared to the printed paper instruction conditions.
Figure 5.5b shows the mean NASA-TLX scores.

Additionally, we collected comments from the participants by asking for their preference
regarding the assembly in the instruction system. Most participants provided us with positive
feedback. For example, one participant mentioned that "[. . . ] projected instructions were
easier and faster to understand than paper instructions. The light was good guidance."
(P1, similar to P2, P3, P7). Another participant mentioned that "[he] felt that I was faster
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using projections since I did not have to flip the paper. Having both hands free enhanced
the overall assembly." (P5). Finally, one participant mentioned that "It was easier to follow
the light than to follow the paper instructions itself. However, I felt like a robot during
assembly." (P4).

However, some participants stated that "[. . . ] the higher assembly speed using projections
was stressful. Paper instructions provided a short relieve in workload when flipping the
page." (P9 similar as P11, P12) or that they were "[. . . ] unused to it, but [I] could familiarize
with it after some time." (P3, similar to P6, P9).

It is interesting to note that P9 and P11 perceived the assembly as stressful due to its fast
pace. Both participants also show less alpha activation during the projected in-situ condition
than in the paper condition (see Figure 5.4b). Instructions were provided immediately by
the in-situ instruction system, which was perceived as stressful two participants (P9, P11).
Paper instructions provided cognitive alleviation when flipping the page to mentally prepare
for the next work step. Previous research also supports a positive correlation between stress
and cognitive workload [283, 342]. The discomfort of the provided assembly instruction
system can also be elicited from our results.

5.4.5 Assessing Cognitive Workload in Real-Time

Our results show a significant difference in alpha activation between paper and projected in-
situ instructions. Using the collected data, we analyze the real-time applicability of EEG for
cognitive workload assessment. We achieved this by calculating the alpha fluctuation over
time for both conditions.

Similar to the previous analysis steps, we preprocess the data using the spatio-spectral de-
composition method [279] with filter thresholds between 0.5 Hz and 20 Hz and calculate
the mean of all channels. We remove the first and last four seconds of the signal to remove
unwanted response artifacts. We calculate the individual alpha band per participant and av-
eraged the alpha power overall participants for both conditions. Figure 5.6 shows the alpha
fluctuation for both conditions.

For the paper instruction, there is an increase followed by a decrease of alpha activation over
time for the paper instructions. Workload starts to differentiate with time when information
from paper instructions have to be held continuously in the short-term memory. This could
be a reason for the decrease of alpha power with time.

Projected in-situ instructions show a decrease followed by an increase in alpha power. We
assume, that the novelty of the system for the participants is responsible for the decrease in
alpha power at the beginning of the condition. Alpha power increases when the participants
become familiar with the system and less information has to be kept in the short-term mem-
ory. A Shapiro-Wilk test showed a non-normal distribution. A Wilcoxon signed-rank test
resulted in a statistical difference between both conditions, p = 0.001.
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Figure 5.6: Mean IAF power fluctuation of all participants across time. Alpha power increases
when using projected in-situ instructions and decreases for paper instructions. The shadowed
area describes the standard deviation of each data point per participant.

5.5 Discussion

We evaluate the viability of a commercially available EEG device for estimating the mental
workload of two different instruction systems to augment a manual assembly task. We dis-
cuss the validity of our hypotheses and present a framework to evaluate interactive assistive
technologies based on EEG measures.

5.5.1 Validating the EEG Setup prior to the Experiment

To validate the correctness of our EEG setup and measures, we manipulated the difficulty
of a N-back task to vary working memory load and investigated its impact on EEG mea-
surements. Specifically, we focused on alpha power in an individually determined frequency
bandwidth, proximal to 10 Hz. Previous research has consistently demonstrated lower alpha
power in participants who experience high working memory load compared to low working
memory load [146]. Thus, we expected lower alpha power during the 2-back task compared
to a 0-back task. Indeed, we found lower alpha power for higher task difficulty and higher
alpha power for lower task difficulty during the N-back conditions. In other words, partic-
ipants experienced less cognitive workload during the 0-back task compared to the 2-back
task. This supports the applicability of using commercial devices to infer cognitive workload
and converges with the results found in previous work [238, 152].
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Before evaluating novel interactive assistive systems using EEG, our findings suggest to con-
duct an eyes opened and eyes closed task to elicit the individual’s alpha peak. Afterward, a
N-back task with N = 0 and N > 1 should be conducted to infer the validity of EEG measures
in terms of lower alpha activation for higher task complexities. The individual alpha peak
is elicited when participants close their eyes [199] enabling an individual IAF analysis for
upcoming EEG trials.

5.5.2 Evaluating Assembly Instruction Systems

Statistical comparisons of alpha power confirmed that projected in-situ instructions gener-
ated significantly higher alpha power than the use of printed paper instructions. In other
words, the projected in-situ instructions induced less cognitive workload. Thus, H1 is statis-
tically supported. This finding that is based on EEG measurements agrees with the subjective
self-reporting measures based on NASA-TLX questionnaires [129]. A significant difference
in subjectively perceived workload was found between paper and projected in-situ instruc-
tions (H2). In general, our results support the idea that the alpha-band frequency power of
EEG measurements is a valid metric for estimating the levels of cognitive workload induced
by a specific instruction system or visualization. Altogether, this agrees with the motivation
of in-situ projections, which is to reduce cognitive load by providing situated information at
the appropriate times.

Regarding assembly performance, we can partially confirm the outcomes of previous re-
search [134]. We found a significant difference in the number of item selection errors. We
confirm that fewer item selection errors were observed using projected in-situ instructions
compared to printed paper instructions (H3). However, no significant difference between
both instructions systems was found on assembly errors. Therefore, we cannot confirm H4.
Assembling with projected in-situ instructions takes significantly less time than printed pa-
per instructions. This agrees with previous research [134] and supports our final hypothesis
(H5).

Our results encourage to measure and evaluate EEG to assess the mental demand of assis-
tive technologies in manual assembly processes. However, the experiment has taken place
under controlled conditions in lab environments where participants were restricted to a re-
duced number of eye blinks and head movements. We recommend the evaluation of EEG
to evaluate assistive technologies in controlled environments before they will be deployed
in real-world scenarios or for further scientific research inferring the mental demand during
usage. This way, novelty biases can be detected by comparing correlations between EEG
measures and self-rated assessments. System architects benefit from these evaluation steps
as the objectively measured workload can be considered into the design pipeline.
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Figure 5.7: Experimental protocol which enables system designers to evaluate mental demand-
ing elements in their user interface design on a cognitive level.

5.5.3 EEG as Real-Time Evaluation Tool

Additionally, we investigated the applicability of EEG as a real-time evaluation tool for de-
tecting working memory. Previous research used medical EEG systems to derive the current
level of executive working memory in real-time [29, 263, 275]. We show that differences in
cognitive workload are measurable for two different instruction visualization systems using
a mobile consumer EEG headset.

Figure 5.6 shows, how the level of alpha power changes with time during assembly. The
alpha power for paper instructions decreases with time as the current bin for an item selection
has to be recalled with every assembly step. Furthermore, the final position of the brick has
to be recognized and placed correctly according to the paper instruction.

Projected in-situ instructions show the opposite effect. After a decrease in alpha power,
which could be attributed to a lack of familiarity with the system, an increase in alpha power
is observed. This can be due to the alleviation of working memory load since projected in-
structions eliminate the need to maintain a set of manual assembly instructions in working
memory. Projected instructions are updated by each step of manual assembly and at the ap-
propriate time steps. Thus, unlike with the use of paper instructions, it is no longer necessary
to maintain and recall instructions from working memory.

The stability in alpha fluctuation for both instruction systems support the use of commercial
EEG devices for real-time workload estimation. This agrees with the subjective perception of
workload through NASA-TLX questionnaires and verbal feedback provided by the partici-
pants. A real-time system for estimating cognitive load could benefit use-case scenarios such
as in evaluating user interfaces, assessment of workload in safety-critical tasks, or real-time
adaptation of user interfaces suited to the current level of cognitive workload. By detecting
constant low or high alpha fluctuations the provided assistance can be adjusted depending on
the measured workload levels. Therefore, we present an experimental protocol that evaluates
the cognitive demand assistive systems require during runtime (see Figure 5.7). Designers
can use this protocol as an assessment template to find distracting or cognitive demanding
user interface elements.

Novel engineered assistive technologies can benefit from real-time insights into the mental
resources by an operator. This enables user interface designers to test visualization adapta-
tions for different measures of cognitive workload. However, the question of how to provide
user interface adaptation for different levels of cognitive workload remains and depends
highly on the use case scenario in which assistive technologies are deployed.
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5.5.4 Other EEG Metrics for Evaluating Mental Workload

We relied on an established EEG metric (i.e., alpha power) to confirm previous claims that
projected in-situ instructions can reduce working memory. Frequency domain measures of
cognitive load are well-established and proved to be viable [144, 145]. However, frequency-
based measures often lack the discrimination of functional interpretations, afforded by time-
domain measures. Event-related potentials (ERPs) [305] refer to the time-domain waveform
that is contingent upon the occurrence of a critical event such as the presentation of a stimu-
lus.

Unlike frequency domain measures, the time-varying EEG activity of subsequent voltage
deflections can be individually attributed to functional mechanisms that underlie information
processing. For example, an early negative deflection in the ERP waveform around 100–
200 ms is often associated with stimulus detection while a later positive deflection between
250–600 ms is associated with stimulus recognition and working memory updating [292].
This allows for stronger functional discriminability in the type of cognitive work that is
experienced by the user, compared to the all-encompassing term ’mental workload’. Signal
processing and classification approaches have been proposed to utilize ERP features for
mental workload classification [47, 191].

The use of ERPs for estimating mental workload is limited by the fact that ERPs are event-
related. This means that ERPs can only be extracted if the event that triggers them is known
beforehand. These are typically the items presented in N-back tasks. Unfortunately, not
all interfaces that are of interest will consist of a N-back component. One approach is to
introduce task-irrelevant probes for ERPs, such as an environmentally sound. More re-
cent research has shown that involuntary ERPs to task-irrelevant stimuli vary in their am-
plitudes depending on the cognitive demands of the primary task that they are engaged in
[54, 271, 332]. Application cases include estimating the workload of users playing Tetris
across different difficulty levels for estimating the immersion of users in high-fidelity driv-
ing simulators.

5.6 Study Limitations

The study was affected by certain limitations. The study was conducted in a controlled
laboratory setting, whereby participants were instructed to blink as little as possible and
to avoid unnecessary head movements to minimize artifacts in the EEG signal. Users are
unlikely to abide by such instructions in mobile real-world settings. Nonetheless, we point
out that the manual assembly task is one that involves substantial activity. Therefore, our
EEG recordings were likely to have contained a significant degree of motoric noise and
continued to be robust for our current estimation of cognitive load. Cortical activity related
to the planning of motor actions can also result in lower frequency power in a bandwidth
that overlaps with alpha (i.e., mu-power: 8 Hz to 12 Hz [300]). Therefore, the current results
could have been affected by motor planning during item selection and placement within the
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assembly task, rather than cognitive load per se. Nonetheless, we assume that our results are
valid for cognitive load and not a motoric activity, given that we validated our EEG measure
with a corresponding N-back task. Furthermore, we extracted the individual alpha band,
which is not necessarily located in the mu frequency range.

5.7 Study Conclusion

In this study, we investigated if EEG is a suitable measurement modality for cognitive work-
load. In a case study leveraging an assembly scenario, we find that projected in-situ instruc-
tions reduce cognitive workload compared to traditional paper instructions. We employed
a commercial EEG headset to derive direct measurements of neural activity that varied by
working memory load in a N-back task, namely alpha power [199]. This same measurement
(i.e., alpha power) was larger for projected in-situ instructions than the traditional approach
of paper instructions, demonstrating that cognitive load was lower when a projected in-situ
system was employed. To date, only subjective questionnaire estimates have been collected.
The current work demonstrates the viability of using a commercial EEG device for evalu-
ation purposes, even in a setting that involves a large amount of user activity (i.e., manual
assembly). The collected data set is hosted on Github4.

5.8 Chapter Conclusion

In this chapter, we investigated if EEG represents a suitable real-time metric for cognitive
workload. We analyzed alpha oscillations to quantify the current demand of working mem-
ory load, a cognitive component that describes the available capacities of the short-term
memory. Contrary to post hoc assessments, EEG provides a real-time measure for cognitive
effort. Using a manual assembly experiment as a case study, we found that cortical activity
is a reliable indicator to measure the cognitive demand placed by user interfaces. Based
on our results, we provide an evaluation pipeline that suggests the use of EEG for user in-
terface evaluation. Reflecting on our results, we conclude that EEG is a suitable real-time
measure for cognitive workload that answers according to the research question (RQ3). The
presented pipeline (see Section 5.5.3) provides an initial cornerstone for the real-time evalu-
ation and intervention of EEG-based workload-aware interfaces. Therefore, we envision the
use and development of novel pipelines with existing or alternative physiological modalities
that build on the presented approach.

4 www.github.com/hcum/identifying-cognitive-assistance - last access 2020-01-28
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Chapter6
Smooth Pursuits

The eyes are the mirror of the soul and
reflect everything that seems to be
hidden; and like a mirror, they also
reflect the person looking into them.

Paulo Coelho

The previous chapter investigated the feasibility of EEG signals as a measure for cognitive
workload. The analysis of cortical activity has proved useful to detect changes in cognitive
demand in real-time. Thereby, EEG provides the capability to derive the mental demand
directly from the brain. However, EEG relies on a correct setup of the headset that has to
be kept steady to avoid noise in the signal. Other factors, such as head movements and eye
movements, may influence the signal as well. Therefore, alternative modalities have been
juxtaposed to overcome the limitations that EEG measures pose.

As such, eye tracking has emerged as both inferences for cognitive states as well as an in-
teraction modality. Eye gaze-based interactive systems hold a lot of promise for cognition-
aware interaction [53]. The human eye represents the central organ which enables visual
processing. Complemented by previous research, eye gaze as an input for interactive sys-
tems has been extensively explored [102]. One specific eye movements, namely smooth
pursuit eye movements, have been utilized as an alternative eye movement input modality
for interactive systems [176, 374]. In contrast to EEG, smooth pursuit has the advantage
to be a contactless measure. Eye movements can be recorded using a remote eye tracker,
neglecting the need for hardware that has to be attached to the user. Furthermore, smooth
pursuit eye movements cannot be pretended since they require locking onto a moving tar-
get [372]. This robustness against false positives is another benefit of using smooth pursuit
eye movement as an interaction technique.

Research has shown that the behavior of the eye is strongly affected by psychologi-
cal [311, 335] and psychophysiological states of the human body [347, 400]. One such state
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Figure 6.1: Smooth pursuit recordings under different levels of cognitive workload for three
trajectories. The blue line shows the displayed trajectory, while the orange line visualizes the
gaze path. (A), (B), and (C) show the gaze path during low cognitive workload phases, while
(D), (E), and (F) shows the gaze path during states of high workload.

is cognitive workload, which has a remarkable impact on eye movements [18, 184, 351].
Figure 6.1 shows how cognitive workload affects smooth pursuit eye movements. Driv-
ing in a stressful context or performing multitasking during cognitively demanding tasks
under time pressure are just two examples. Previous measures for cognitive workload facil-
itate questionnaires, such as the NASA-TLX [160, 161] or the Driver Activity Load Index
(DALI) [297], which are often used in HCI to evaluate interfaces. Yet these questionnaires
are prone to the interpretation of the questions by the user and only allow for an assessment
at the end of the task, hence providing rather coarse-grained insights. At the same time,
eye-tracking data can be used to assess cognitive workload [95]. In particular, previous
work showed that under controlled conditions, pupil dilation provides an estimate of cogni-
tive load [302, 304]. However, pupil dilation is highly sensitive to light conditions, which
change in outdoor environments, and hence cannot easily be applied in many ubiquitous
computing settings.

In this chapter, we propose an approach that exploits smooth pursuit eye movements to as-
sess cognitive workload. We hypothesize that working memory, a component of cognitive
workload, measurably affects smooth pursuit eye movements [14]. Henceforth, we define
smooth pursuit describes eye movements that occur as the eyes closely follow a moving
object. These movements are evaluated in several studies used for user interface element se-
lection [114, 372] or intuitive eye tracker calibration [194, 374]. By conducting a user study,
we found that smooth pursuit can be used for a contactless assessment of cognitive workload
with an accuracy of up to 99.5%. Thereby, the need for body-worn sensors is obviated. This
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chapter reports on a user study that investigates the impact of cognitive workload on smooth
pursuit eye movements. Based on the insights from the user study we build a classifier to ap-
proximate the level of cognitive workload using gaze differences during smooth pursuit eye
movements. We discuss how these findings can be used during the evaluations that require
the assessment of cognitive workload as well as for the design of cognition-aware interactive
systems. This chapter investigates smooth pursuit eye movements as part of the following
research question:

→ RQ4: Do eye gaze metrics enable the classification of cognitive workload states?

This section is based on the following publication:

• Thomas Kosch, Mariam Hassib, Paweł W. Woźniak, Daniel Buschek, and Flo-
rian Alt. Your Eyes Tell: Leveraging Smooth Pursuit for Assessing Cognitive
Workload. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI ’18, pages 436:1–436:13, New York, NY, USA, 2018.
ACM

6.1 Related Work

We present related work concerning existing research on using smooth pursuit eye move-
ments for interaction and the influence of cognitive workload on eye movements.

6.1.1 Interacting with Smooth Pursuit

Using eye gaze as input for ubiquitous interactive systems has been extensively explored.
Duchowski [103, 102] performed a literature survey about current eye-tracking applications
and technologies. Focusing on usability, related research shows how eye tracking technolo-
gies evolved until they became usable in human-computer interaction research [179, 308].
Recent research has addressed the use of eye gaze for selection tasks [284, 345], which can
be used by physiologically impaired individuals to perform input on computers [176]. Text
input via eye input has been researched using dwell time [25, 256], off-screen targets [178],
or eye movements along the y-axis on a display [365]. The usage of such methods was also
evaluated in real-world scenarios [91, 399]. Furthermore, eye movements and eye gestures
can be used to interact with devices.

Recently, smooth pursuit eye movement [176, 374] has been used as an alternative gaze-
based input modality to interactive systems. This interaction technique overcomes the need
for precise calibration and training of the user before interaction and further supports ubiq-
uitous interaction. Several researchers have investigated how smooth pursuits can be used
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intuitively. People cannot pretend to perform smooth pursuit movements since they require
locking onto a moving target [372]. This reduces the likeliness of detecting false positives
during an interaction.

Another approach to leverage smooth pursuit as an input modality has been researched by
Esteves et al. [114]. They used a mobile eye tracker to enable hands-free interaction with
a smartwatch by showing moving dots on the smartwatch display. Results show robustness
against false positives regarding input, no need for calibrating an eye tracker, and efficient
hands-free interaction. Using smooth pursuit to interact with physical real-world devices
also showed promising results. Velloso et al. [372] developed and evaluated an object-
driven system, which can be operated by only performing smooth pursuit. As soon as a
user approaches an object such as a fan or windmill, it begins to present moving targets that
trigger actions as soon as selected by smooth pursuit.

Researchers have also used smooth pursuit to calibrate eye trackers. Pfeuffer et al. [303]
investigated this approach by using animations on a display to implicitly calibrate an eye
tracker. Their results state that a 5-point calibration achieved a higher detection rate and
required less calibration time. They concluded that smooth pursuits calibration provides
better usability and flexibility for eye tracker calibration on small displays.

Vidal et al. [374] proposed different applications for smooth pursuit eye interaction, such
as selection tasks or password authentication. The implemented applications showed a fast
selection and completion time for different tasks. Since smooth pursuit can be performed
with almost every kind of animated trajectory, more recently Khamis et al. [194] inves-
tigated which trajectories are most suitable for smooth pursuit interaction and calibration
when showing text-based content on a display. While showing a question in the top left
corner of a screen, they also showed several answers to the question on the same screen
displayed in different trajectories. Schenk et al. [336] used smooth pursuit as an element
selection mechanism in desktop settings to avoid the Midas touch problem [180]. Similarly,
Lohr and Komogortsev [250] compared smooth pursuit-based input against dwell-based in-
put approaches. A significant faster selection of elements was achieved when using smooth
pursuit at the cost of likely unwanted selections.

6.1.2 Impact of Cognitive Workload on Eye-based Properties

Previous research has shown that the behavior of the eye is strongly affected by the psycho-
logical [311, 335] and psycho-physiological [347, 400] state of the human body. One such
state is cognitive workload, which has a shown impact on eye movements [18, 351].

Researchers found a relation between pupillary responses and cognitive demand [2, 166].
During a task comprising different task complexities, the pupil diameter of participants was
measured as an indicator for cognitive workload. Results show increasing pupil dilation with
increasing task difficulty. Pfleging et al. [304] created a model to estimate cognitive workload
under different lighting conditions based on pupil dilation. The feasibility of measuring
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pupil dilation using a remote eye tracker has been investigated by Klingner et al. [203].
Their findings show a lower accuracy compared to mobile eye trackers due to noise and
head movements. Kruger et al. [235] investigated eye behavior when perceiving a stimulus
with and without subtitles using electroencephalography and pupillary measurements. In
an experiment with two groups, lower cognitive workload was measured within the group
perceiving subtitles than in the group lacking subtitles.

Liang and Lee [247] compared the efficiency of different machine learning algorithms to esti-
mate distractions during driving tasks based on saccadic eye movements. Higher frequencies
of saccadic eye movements have been used as an assessment for cognitive workload. Best
results were achieved using a Support Vector Machine (SVM) for machine learning. How-
ever, their findings address saccadic eye movements only and do not examine the effects of
smooth pursuit eye movements under cognitive workload.

Benedetto et al. [28] investigated the correlation between blink duration and visual and
cognitive workload of a driver operating a car in a simulated environment. Participants
had to perform a Lane Change Test [262] while doing an in-vehicle information system
task [373] at the same time. Their findings show a lower blink duration compared to their
baseline task than in the cognitively demanding task. Ahlstrom and Friedman-Berg [3] also
found a significant correlation between shorter blink durations and cognitive workload.

Stuyven et al. [351] investigated the impact of cognitive workload on saccadic eye move-
ments. Their findings show an increased occurrence of saccadic eye movements when in-
ducing cognitive workload. Tsai et al. [363] investigated how eyes behave under cognitive
workload while performing a paced auditory serial addition task [153], however, their work
did not investigate the impact on smooth pursuit eye movements. Recently, Zagermann et
al. [396] developed a model and showed concepts to derive cognitive workload from eye
behavior, such as saccades, fixations, pupil dilation, and eye blinks. Cognitive workload
influences microsaccadic eye movements [346]. They found that microsaccades occur more
frequently with higher perceived workload during a non-visual task.

The voluntary involvement of smooth pursuit eye movements has been researched by
Barnes [18]. He showed that cognitive processes in smooth pursuit eye movements are
even involved without voluntary participation. Important factors for following moving stim-
uli were attention and awareness, which trigger the process of smooth pursuit on a neuro-
scientific level. Therefore, smooth pursuit eye movements are voluntary up to a certain
degree. In contrast, Collewijn and Tamminga [78] investigated contexts in which smooth
pursuit movements are voluntary. They used different targets and backgrounds to investi-
gate smooth pursuit performances of humans. Contreras et al. [79] researched the eye-target
synchronization performance of people with traumatic brain injury. People suffering from
traumatic brain injuries show a worse performance when performing smooth pursuit in terms
of deviation points apart from a shown moving object on a display.

Previous work has investigated how smooth pursuit can be leveraged for calibration and
interaction. However, to our knowledge, no prior work has proposed to use work to propose
using smooth pursuit eye movements as a measurement to derive cognitive workload. This
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Figure 6.2: Three different trajectories chosen for evaluation: (A) Rectangular trajectory, (B)
Circular trajectory, (C) Sinusoidal trajectory. The size of the moving object in the experiment
was 10 pixels.

opens new opportunities for researchers and practitioners alike. In particular, using smooth
pursuits as a real-time measurement for cognitive workload is valuable in the context of
evaluating interactive systems as well as for developing cognitively adaptive systems.

6.2 Study

To understand the impact of cognitive workload on smooth pursuit eye movements, we de-
signed a lab user study where we induced cognitive workload while participants performed
smooth pursuit eye movements.

6.2.1 Independent Variables

In our experiment on investigating the impact of cognitive workload on eye movements, we
explore the influence of three independent variables when interacting with smooth pursuit
systems: (1) trajectory type [194], (2) speed of the stimulus [193], and (3) task difficulty. In
the following, we describe these three independent variables in detail.

Trajectories

Since smooth pursuit eye movements can be triggered by showing a stimulus moving along
a particular trajectory, we implemented a rectangular, a circular, and a sine wave ani-
mation to produce this effect. We have chosen these trajectories based on previous re-
search [193, 194, 374]. Furthermore, the chosen trajectories may have a physiological effect
paired with the current task difficulty, since the human eye has six muscles responsible for
horizontal and vertical movements as well as eye rotations [241]. Rectangular trajectories
demand muscles on the left and right side of the eye for horizontal movements, while ver-
tical movements demand the upper and lower eye muscles. Circular and sinusoidal eye
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Figure 6.3: Study procedure. First, consent approval and demographic data were collected.
Afterward, a baseline task was conducted followed by a set of six trials, where each trial differs in
trajectory speed and task complexity. This procedure is repeated for every remaining trajectory
type.

movements demand four muscles around the eye. Rectangular trajectories require horizon-
tal or vertical movements only, while circular and sinusoidal include diagonal movements
as well. In the context of leveraging smooth pursuit as interaction modality, the presented
trajectories are used to distinguish between different user inputs. The chosen trajectories are
depicted in Figure 6.2.

Speed of Stimulus

We compare two different speeds at which stimuli are moving based on previous re-
search [193]: 450 px

s (slow1) and 650 px
s (fast2). Displaying slower or faster animations while

experiencing cognitive workload can lead to different performances since eye muscles have
to deal with different strains per speed and trajectory [241]. Furthermore, trajectory speeds
can be used to differentiate user input, since eye movements adapt to different speeds.

Task Difficulty

To induce cognitive workload, we use an auditory delayed digit recall N-back task from
Mehler et al. [266] with an English-spoken number set. The N-back task is a commonly used
task to artificially elicit working memory resources [14], a component of cognitive workload
which strains temporal memory capacities and affects secondary task performances nega-
tively [30, 47, 366].

Throughout the study, we use the N-back task to manipulate cognitive workload by demand-
ing working memory with different difficulty levels [186]. For each trial, participants hear
randomized numbers consisting of ten digits between 0 and 9. Hereby, N corresponds to
the N-last digit. After hearing the number, participants have to say out loud the digit they
heard N digits ago. In our experiment, we use a 1-back, 2-back, and 3-back tasks to induce
cognitive workload. By increasing N, more digits have to be remembered, hence increasing
task difficulty. To collect baseline measures, participants were asked to follow a trajectory

1 This corresponds to 17.14◦ per second at a viewing distance of approximately 50 centimeters
2 This corresponds to 24.76◦ per second at a viewing distance of approximately 50 centimeters
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without performing an N-back task. Similar as in the study presented in Chapter 5, Table 6.1
shows an example of the N-back task.

Heard number 5 8 3 4 3 9 1

Number to say (1-back task) 5 8 3 4 3 9

Number to say (2-back task) 5 8 3 4 3

Number to say (3-back task) 5 8 3 4

Table 6.1: Example of the auditory delayed digit recall N-back task. Participants have to re-
member the N-th number back of a spoken number sequence and say the number out loud.

6.2.2 Apparatus

The study was conducted in a quiet lab with no windows, where lighting conditions were
fixed. The setting was spatially divided into an experimenter area and a participant area.
A separator divided both areas. While the experimenter controlled the experiment using a
laptop, the participant saw an animated trajectory on a 22 inch screen with a resolution of
1680 × 1050 pixels and a refresh rate of 60 Hz. Eye gaze data was collected using a RED250
from SensoMotoric Instruments with a sample rate of 250 Hz. No filter was applied to the
captured gaze data, thus raw gaze data was recorded only. We used a Holosonic Audio
Spotlight 24i directed speaker to provide the auditory delayed digit recall N-back task.

6.2.3 Method and Measures

We used a repeated-measures design with three independent variables as described in the
previous section; namely trajectory (rectangular, circular, sine wave), speed (slow, fast),
and cognitive workload (no task, 1-back task, 2-back task, 3-back task). Each experiment
consisted of three sessions, where animated trajectories were changed for each session. The
animated trajectory consisted of a white dot with a diameter of 10 pixels. The background
was set to gray (RGB: [128,128,128]) to avoid eye exhaustion caused by screen brightness.

Before starting a new session, the eye tracker was calibrated to retrieve gaze points for later
analysis of gaze deviations between baseline and smooth pursuit eye movements. Each ses-
sion began with a 30 second baseline trial, where the animated trajectory used for the session
was shown to participants without inducing cognitive workload. This allowed us to estimate
eye movement differences from the displayed trajectory when no cognitive workload was
present. We chose a slow speed (450 px

s ) to make participants familiar with the displayed
trajectory.

Cognitive workload was induced by providing a task difficulty using the auditory N-back
task described in the prior section while showing the animated trajectory at a certain speed.
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Task difficulty and speed were counterbalanced during a session according to the Latin
square, while each session showed the same trajectory. The order of sessions was coun-
terbalanced participant-wise according to the Latin square. This resulted in seven trials per
session, including the baseline task. Running all three sessions, the experiment comprised 21
trials per participant. Overall, the duration of each trial was 25 to 30 seconds, dependent on
the length of the spoken number for tasks including task difficulty. After completing a trial,
participants were asked to fill out a NASA-TLX questionnaire to assess subjectively per-
ceived cognitive workload. Participants took a 30-second long break afterward. Figure 6.3
shows an illustration of the study procedure.

6.2.4 Participants

We recruited 20 participants (9 female, 11 male), aged between 22 and 34 years (M = 27.5,
SD = 3.13). Before the experiment, each participant signed a consent form and provided
their demographic data. All participants were computer science, students or researchers. All
participants had a normal or corrected-to-normal vision. Participants were recruited through
university mailing lists. They received sweets and five Euro as compensation. The duration
of the study was approximately 30 minutes. We explained the purpose of the study and tasks
to the participants and informed them they could exit the study at any point. Participants
signed informed consent forms and were seated in a comfortable chair, approximately 50
centimeters in front of the display before the experimental setup. Due to technical issues, two
participants were excluded from the analysis, as their gaze data was not recorded properly.

6.3 Results

We analyze our data to compare the impact of trajectory type, speed, and task difficulty on
smooth pursuit eye movements. We report on quantitative results by comparing measured
eye gaze data with the showed trajectory. This is complemented by a subjective analysis
through NASA-TLX questionnaires.

6.3.1 Smooth Pursuit Differences and Cognitive Workload

To evaluate the effect of different task difficulties on smooth pursuit performances, we based
our analysis on pixel differences between coordinates of the displayed trajectory and mea-
sured eye gaze position at the screen. More formally, we calculated the difference between
two coordinates p and q using the Euclidean distance with the formula

D =

√(
pt,x−qt,x

)2
+

(
pt,y−qt,y

)2
(6.1)
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Paired Wilcoxon Signed-Rank Test Significance

Circle Baseline Circle 1-back fast p = .002

Circle Baseline Circle 2-back fast p = .002

Circle Baseline Circle 3-back fast p = .003

Circle Baseline Circle 2-back slow p = .004

Circle Baseline Circle 3-back slow p = .005

Sine Baseline Sine 1-back fast p < .001

Sine Baseline Sine 2-back fast p < .001

Sine Baseline Sine 3-back fast p < .001

Sine Baseline Sine 1-back slow p = .003

Sine Baseline Sine 2-back slow p = .002

Sine Baseline Sine 3-back slow p = .002

Table 6.2: Summary of significant results. Comparisons between other conditions did not result
in significant differences.

where p and q depict a two-dimensional vector comprising the baseline coordinates and mea-
sured gaze coordinates from participants. We introduce the variable t describing the temporal
dependency between eye gaze and displayed stimulus as the used 250 Hz eye tracker might
introduce a temporal offset of four milliseconds, which is below the perceptual threshold for
interaction. Differences were normalized with respect to the maximum gaze deviation from
the shown trajectory. To enable a descriptive analysis, normalized coordinates were averaged
for all participants and conditions. Lowest mean eye gaze deviations (Mpd) were measured
for all slow trajectories, where no cognitive workload was induced (Rectangle: Mpd = 9.14,
SD = 6.75, Circle: Mpd = 9.51, SD = 8.03, Sine: Mpd = 4.37, SD = 1.60). Fast rectangular
trajectories using a 3-back task (Mpd = 13.25, S D = 11.06), fast circular trajectories using
a 2-back task (Mpd = 14.54, SD = 7.14) and fast sinusoidal trajectories using a 3-back task
(Mpd = 9.85, SD = 3.53) led to highest mean eye gaze deviations.

Applying a Shapiro-Wilk test on the mean data set showed a non-normal distribution for
all conditions (all p < .05). A Friedman test showed no significant differences between
various levels of cognitive workload and gaze deviations of smooth pursuit eye movements
for slow rectangles (χ2(3) = 3.000, p = .392). However, a Friedman test found significant
differences within various levels of cognitive workload for fast rectangles (χ2(3) = 11.867,
p = .008), slow circles (χ2(3) = 18.867, p< .001), fast circles (χ2(3) = 29.400, p< .001), slow
sine waves (χ2(3) = 14.667, p = .002) and fast sine waves (χ2(3) = 30.667, p < .001). We
conducted a Wilcoxon signed-rank post hoc test to find significant differences between pairs
of task difficulties including baseline trials and normalized gaze deviations after applying a
Bonferroni correction (significance level set to p < .0083). A summary of significant results
can be depicted from Table 6.2. Further, the Cohen’s d effect size values of the significant
statistical comparisons ranged between d = 0.66 and d = 0.88.
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(a) (b)

Figure 6.4: (a): Scatter plot of the mean gaze deviation per participant and condition. Each
dot represents the mean gaze deviations between the recorded and showed the trajectory of a
participant. The baseline measurements show a constant behavior and do not scatter apart from
the displayed trajectory. Compared to the baseline tasks, circular and sinusoidal trajectories
scatter along the y-axis with increasing task difficulty. (b): Mean NASA-TLX score for different
trajectories, task difficulties, and speeds. Increasing task difficulties led to higher NASA-TLX
scores. The error bars depict the standard error.

To visualize averaged relative differences when performing smooth pursuit eye movements,
all averaged relative eye movement differences per participant and condition were plotted.
This resulted in one data point per participant and per trial, or 21 data points per participant.
The averaged plot is depicted in Figure 6.4a, where the y-axis depicts the gaze deviations
from the shown trajectory in percent. The bottom x-axis is annotated with task difficulties
and the top x-axis describes trajectory velocities. The trajectory type is color-coded.

Gaze deviations obtained from baseline trials do not scatter in contrast to gaze deviations
measured from trials with task difficulty for circular and sinusoidal trajectories. Further-
more, gaze deviations increase between slow and fast trajectories when raising the task diffi-
culty. However, results show important constraints when assessing cognitive workload from
smooth pursuit eye movements. Rectangular trajectories show less eye gaze deviations when
increasing task difficulty compared to baseline trials. Thus, evaluating the presence of cog-
nitive workload using rectangular smooth pursuit eye movements is less accurate compared
to circular and sinusoidal trajectories. Depending on the setting of a smooth pursuit-driven
user interface, rectangular trajectories should be favored when accurate input is required
even when the user is impacted by cognitive workload. Circular and sinusoidal trajectories
show higher gaze deviations under cognitive workload. Circular and sinusoidal trajectories
show clear differences between trials with and without cognitive workload. Such trajectories
may be used to determine the existence of cognitive workload.
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6.3.2 Subjective Analysis of Cognitive Workload

The lowest NASA-TLX scores per trajectory were subjectively perceived by participants
when showing fast rectangles during a 1-back task (M = 6.27, SD = 4.03), slow circles during
a 1-back task (M = 7.13, SD = 3.87), and slow sine waves during a 1-back task (M = 5.78,
SD = 3.41). Per trajectory, the highest NASA-TLX scores were measured when displaying
fast rectangles during a 3-back task (M = 12.29, SD = 3.97), fast circles during a 3-back task
(M = 13.28, SD = 3.68), and fast sine waves during a 3-back task (M = 12.63, SD = 3.42).
A repeated measures ANOVA showed statistically significant differences between different
levels of cognitive workload and NASA-TLX score (F(2,321) = 68.503, p< .001). However,
no statistically significant differences were found for different speeds (F(1,322) = 2.035,
p = .211) and displayed trajectories (F(2,321) = 21.461, p = .722) compared to NASA-TLX
scores. Figure 6.4b illustrates the averaged values from the obtained NASA-TLX scores.

The quantitative analysis shows significant outcomes regarding gaze deviations with differ-
ent stimuli speeds and N-back complexities. To address the impact of different variables
on the individual’s subjective perception, we conducted a statistical analysis to investigate
single NASA-TLX items in correlation to the stimulus speed and N-back difficulty. We com-
pare the single NASA-TLX items grouped by the two different speeds. Our results show a
significant difference for the physical demand (p = .006, Mslow = 5.11, M f ast = 5.69), tem-
poral demand (p = .003, Mslow = 7.29, M f ast = 8.27), and effort (p = .001, Mslow = 9.53,
M f ast = 10.29) scales. However, no significant difference was found in the mental load scale
(p > 0.05).

To show that different N-back difficulties were responsible for higher perceived cognitive
workload, we conducted a Wilcoxon signed-rank test to compare the mental NASA-TLX
items between the different task complexities. We found significant differences between all
three N-back difficulties (all p < .001) for the mental demand scales (MN=1 = 5.84, MN=2 =

10.56, MN=3 = 13.84). Further, we investigate whether the relationship between NASA-TLX
scores and gaze deviations was linear using a Pearson correlation. No correlation was found
(.11 < r < .15, ∀N ∈ {1,2,3}). Thus, it appears that the relationship between the variables is
more complex i.e. non-linear. This shows the need to understand how smooth pursuit affects
subjectively perceived workload.

6.4 Predicting Cognitive Workload

Results from the study showed significantly increased eye movements during cognitive
workload for circular and sinusoidal trajectories. The perception of cognitive workload by
the individual is supported by subjective ratings of participants using NASA-TLX ques-
tionnaires. We train a classifier that predicts cognitive workload from smooth pursuit eye
movements. We investigate the performance of person-dependent and person-independent
classification for the different experimental conditions.
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6 Smooth Pursuits

Binary Pers.-Indep. Multilabel Pers.-Indep. Multilabel Pers.-Dep.
Stimulus Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy F1

Rectangle Slow 75.0% 37.5% 50.0% 42.9% 40.3% 26.9% 40.0% 30.5% 48.6% 52.4%
Rectangle Fast 76.4% 40.1% 52.8% 46.0% 54.2% 44.0% 54.1% 47.2% 69.4% 74.2%
Circle Slow 95.8% 89.6% 91.7% 90.5% 40.3% 26.9% 40.2% 30.9% 69.5% 60.0%
Circle Fast 97.2% 93.0% 94.4% 93.7% 55.6% 45.8% 55.6% 48.5% 85.0% 74.4%
Sine Slow 80.1% 55.6% 64.8% 59.8% 43.1% 30.6% 43.0% 34.5% 79.3% 76.3%
Sine Fast 99.5% 98.9% 99.2% 99.0% 59.7% 51.9% 59.7% 54.4% 88.1% 84.5%

Table 6.3: Accuracy, precision, recall, and F1 scores of the binary and multi-label person-
independent (pers.-indep.) as well as person-dependent (pers.-dep.) classifications. Fast circular
and sinusoidal trajectories yield higher classification performances than slower linear trajecto-
ries.

6.4.1 Attributes, Instances, and Classes

Data preprocessing was necessary before training a predictive model. We removed the first
two seconds per trial to avoid distortions in the signal caused by participants initially search-
ing for the stimulus. We used the collected gaze data and normalized it concerning the
coordinates of the shown trajectory. We then calculate the Euclidean distance (see Equa-
tion 6.1) between each coordinate of the normalized displayed trajectory and the normalized
gaze points recorded from participants. These gaze deviations are defined as the only at-
tribute for the instances we used for classifier training and evaluation later. We smoothed the
data using an averaging running window (length 250 samples) and a hop size of one sample.

The instances used for classifier training and evaluation consisting of a one-dimensional
vector, where the normalized gaze deviations represent the only attribute. We define two
sets of classes with different class labels. The first class has two labels consisting of low
workload, referring to trials where no N-back task was used, or high workload, thus referring
to trials including any N-back task. We investigate binary classification performances using
this class. In contrast, the second class contains the four labels 0-back, 1-back, 2-back, and
3-back, each referring to the measurements of trials using the corresponding N-back task.
Overall, we constructed 378 instances, each containing 6000 gaze values, which were used
for training and evaluation.

6.4.2 Classifier Performance

An SVM with a linear kernel was used to investigate the prediction performance [247, 364,
389]. The previously described instances were used for training and assigned to their ap-
propriate class labels. Within our classifier learning process, we aimed to evaluate the clas-
sification efficiency for binary classification, such as detecting low cognitive workload and
high cognitive workload. Furthermore, we investigated the classifier performance for deter-
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mining different levels of cognitive workload concerning the N-back task difficulty. We used
scikit-learn3 to train different prediction models.

Person-Independent Binary Classification

We performed a person-independent leave-one-person-out classification using two labels;
one assigned to low cognitive workload referring to baseline trials and one assigned to high
cognitive workload referring to trials comprising a 1-back, 2-back, or 3-back task. A leave-
one-person-out classification uses all except one participant for training, while the final par-
ticipant is used for validating the trained model. The leave-one-person-out classification
was carried out for each trajectory and speed separately, where the instances contain the
normalized gaze deviations from the shown trajectory per participant and difficulty. The
leave-one-person-out classification procedure was repeated for every participant4 and the re-
sults were averaged. Table 6.3 shows the accuracies, precisions, recalls, and F1 scores of the
binary classification per trajectory and speed. The classification results favor fast trajectories
in combination with changing directions, such as circular or sinusoidal stimuli.

Person-Independent Multilabel Classification

To investigate the performance of classifying different levels of cognitive workload, the same
leave-one-out validation procedure was conducted for four labels, with each label assigned
to instances with their respective task difficulty. Again, the validation was conducted for
every participant after using the other participants for training. The results are shown in
Table 6.3.

The overall classification efficiency is lower compared to the binary classification accuracy.
Different reasons can be responsible for this. First, we are aware that multiple labels may
lead to a lower efficiency when the difference between values within the N-back conditions
is low. Second, we combine multiple participants who may differ in their smooth pursuit
behavior individually. The generalized data could, therefore, be biased by individual gaze
behavior, which leads to a distorted result. Therefore, we investigate person-dependent train-
ing for cognitive workload classification purposes.

Person-Dependent Multilabel Classification

We analyzed instances within each person to investigate if higher accuracies could be
achieved due to person-dependent properties. Instead of a leave-one-person-out classifi-
cation, we conducted a leave-one-repetition-out classification for each participant, speed,
and trajectory. However, the number of folds had to be set differently, since the animations
iterated a different number of times depending on the trajectory and speed5. Therefore, we

3 www.scikit-learn.org - last access 2020-01-28
4 Overall 18 runs to use every participant for validation
5 Each trajectory started and ended at the same position
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6 Smooth Pursuits

adjusted the number of folds of the leave-one-repetition-out classification per trajectory and
speed.

The number of folds was set to k = 2 for slow rectangles, k = 3 for fast rectangles, k = 5 for
slow circles, k = 7 for fast circles, k = 2 for slow sine waves, k = 3 for fast sine waves. The
data per trajectory and speed and participant was randomly partitioned into k folds, where
k−1 folds were used for training while the last fold was used for evaluation. This procedure
was conducted k times per participant and trajectory with the different N-back difficulties
assigned to the training set. The results were first averaged per participant and then over all
participants. Table 6.3 shows the results of the cross-validation. Person-dependent classifi-
cation of multiple cognitive workload levels shows a higher accuracy for fast smooth pursuit
movements. Especially fast circular and fast sinusoidal trajectories show better performances
compared to rectangular trajectories.

6.5 Discussion

Results from our study show how cognitive workload leads to increased gaze differences of
smooth pursuit eye movements during the presence of cognitive workload. We found that
faster circular and sinusoidal trajectories led to higher gaze deviations, while rectangular
trajectories did not show this effect. We believe, that circular and sinusoidal trajectories
required more effort from users since they had to focus more on their task completion due to
constantly changing directions. This may be a reason for improved classification results for
this kind of trajectories. In contrast, rectangular trajectories can be deployed within smooth
pursuit-based interfaces whenever reliable input, independent from the perceived cognitive
workload, is required. Depending on the use case, a cognition-aware system designer can
decide if reliable input through rectangular trajectories or mental workload estimation by
circular and sinusoidal trajectories is desired.

The speed of the trajectories had a quantitative measurable effect on the overall smooth
pursuit performances. However, as the statistical investigations of single NASA-TLX scales
showed, mental demand was not affected compared to physical and temporal demand as well
as effort by different speeds. Faster speeds cause therefore a different type of physical work-
load than cognitive workload which significantly impacts smooth pursuit eye movements.
Different trajectory speeds are thus not necessarily responsible for inducing cognitive work-
load. By comparing different N-back difficulties about the NASA-TLX scales, we found
a significant difference between all difficulties. This supports, that subjectively perceived
cognitive workload was altered by different N-back complexities and that both variables
manipulate measurable smooth pursuit performances.

The classification results yield higher accuracies for distinguishing between low and high
workload levels than for detailed levels of cognitive workload. Furthermore, binary classifi-
cation can be achieved without the need for person-dependent calibration, while separating
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different levels of cognitive workload requires a person-dependent calibration regarding cog-
nitive workload.

In a real deployment scenario, binary classification can be used to provide additional help
for users when high cognitive workload is classified. This refers to very simple scenarios,
where only the estimation of low and high workload is desired. Such places could be public
places when, for example, interacting with public displays. In contrast to short interactions
in the public, a classifier can be trained for multilevel classifications in private spaces where
long-term interaction is conceivable.

Calibrating a classification model with multiple workload levels in the public can result in a
cumbersome procedure due to external factors impacting the individual cognitive capacities,
such as distracting pedestrians walking by. Our results indicate binary workload classifica-
tion in the public using a pre-trained classification model, while a classification model with
multiple workload levels can be used in private spaces where calibration can be done without
any disruptions.

To employ sensing of cognitive workload, smooth pursuit must be elicited. In contrast to
smooth pursuit-based user interfaces, other environments require explicit or implicit integra-
tion of moving elements. For example, as short waiting times occur as a result of a database
query or as a new task is loaded during a user study, feedback on the system status could be
presented in a way that fosters smooth pursuit movements. For example, this can be elicited
by an animated progress bar. In this way, traditional methods such as the NASA-TLX or
DALI questionnaires can be complemented.

Finally, a suitable workload level must be found. Looking back at the classification results
of the multi-label model, we achieved reasonable accuracies for person-dependent classifi-
cation. A cognition-aware system must be able to find the right difficulty for each user, as
permanent support by a system may lead to boredom or no support leads to frustration for the
user. Keeping the task difficulty at its highest or lowest level might not be favored. However,
for deploying binary classification in public use cases minor support might be helpful com-
pared to private settings, where user expectations on cognition-aware computing systems are
higher.

6.5.1 Limitations

Our study is prone to certain limitations. We collected gaze data under controlled lab con-
ditions and hence, do not know how our results generalize to other situations, where partici-
pants may be distracted for example, by the presence of other people. Still, despite the con-
trolled conditions, participants’ gaze behavior may have been influenced by physiological
wellbeing, such as lack of sleep. Our calculation of gaze difference is based on 30 seconds
of recording. However, there may be situations in which assessing workload with finer gran-
ularity is desirable. Additionally, blink frequency and blink duration were not evaluated
during our studies. Another limiting factor was the study execution in a calm lab. Natural
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distractions in real-world environments could alter our results. Furthermore, we have not in-
vestigated the effect of different eye tracking frame rates in our study. Consequently, before
assessing cognitive workload through smooth pursuit, eye trackers must be tested for their
suitability.

6.6 Use Cases for Workload-Aware Systems

In the following, we present several different use cases to be supported within smooth pursuit
scenarios.

6.6.1 Support in Safety-Critical Environments

Smooth pursuit can be utilized to assess cognitive workload during a monitoring task, such
as air traffic controller surveying airplane flight processes, to support or warn operators for
cognitive exhaustion. Alternatively, workload can be dispatched to a colleague who does
not have to cope with high workload during work. Since objects of interest can be visual-
ized using a small moving circle, smooth pursuit eye movements can be triggered this way.
As a result, accidents, which occur due to mental overload, distractions, or fatigue, can be
avoided. For example, the user interface can be adapted by simplifying displayed content
or dispatching a part of the observation task to another colleague. This use case is trans-
ferable to other applications, where moving objects occur naturally and require permanent
attention of the user. Figure 6.5b shows an example of how smooth pursuit can be used in
such situations.

6.6.2 Adaptation of Pursuit-based Interactive Systems

Prior research has introduced many applications that use smooth pursuit primarily for inter-
action. As we illustrated in our related work section, smooth pursuit interfaces have been
used for smartwatch interaction [114] and interaction with smartphones [248]. Using mobile
devices enables ubiquitous sensing of cognitive workload in outdoor settings, bypassing the
disadvantages of using pupillary measures being prone to lighting conditions. Interacting
with large distant displays [374], where touch and gesture interaction have emerged as state
of the art to communicate input [298, 376] can use smooth pursuit to implicitly measure
mental states.

Our approach enables implicit contactless assessment of cognitive workload while inter-
acting with these devices. Pursuit-based interactive systems benefit from our classifier to
dynamically predict the current cognitive workload level of the user during interaction and
adapt to it accordingly. If high task load is identified during an interaction, the user interface
or task objective can be modified by an easier one. Figure 6.5a shows how the existence of
cognitive workload can be estimated to adapt a public display app.
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Figure 6.5: (a): User working in an air control tower. Moving dots representing airplanes on
the screen can cause smooth pursuit eye movements. (A) The system detects high cognitive
workload from the user and dispatches some observation tasks to a colleague. (B) Alleviated
cognitive workload measured after user interface adaption. (b): User playing a quiz game on
a public display. The system infers that the question is inducing high cognitive workload. The
system is, therefore, observing if this behavior persists and provides a hint to avoid frustration.

6.7 Study Conclusion

The presented study investigated the influence of cognitive workload on smooth pursuit eye
movements using three different trajectories with two different velocities. Using an auditory
delayed digit recall N-back task to induce cognitive workload, a higher deviation of gaze
points from shown trajectories is measured compared to measurements when not inducing
cognitive workload. Based on our results, we create a person-independent classifier for
estimating binary workload and a person-dependent classifier for distinguishing different
levels of cognitive workload. While binary cognitive workload classification can be elicited
in the public using smooth pursuit interfaces, private spaces benefit from person-dependent
classifier calibration to determine different levels of cognitive workload. The collected data
set is available on Github6.

6 www.github.com/hcum/your-eyes-tell - last access 2020-01-28
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6.8 Chapter Conclusion

In this chapter, we investigated the characteristics of eye movements during different levels
of cognitive workload. Eye movements can be recorded using a remote eye tracker which
obviates direct body contact with the user. We show that cognitive workload levels can be
classified using specific smooth pursuit eye movements using machine learning techniques.
Contrary to EEG, no calibration procedure or tedious setup is required. Thus, the real-
time analysis of eye movement holds promise as an additional measurement channel for
workload-aware computing interfaces.

Having such a measurement modality without the need of body-worn devices goes a step
towards real-time mental state estimation in ubiquitous computing environments. User in-
terfaces can then provide intervention mechanisms to relax or help users based on their
current context. Our classifier depends on eye gaze only and fits into several application
scenarios. It can be deployed in real-world scenarios to estimate the presence of cognitive
workload in real-time. Thereby, the assessment can be done without the need for contact
or additional bodyworn sensors, which comes closer to Mark Weiser’s vision of ubiquitous
computing. However, the classification performance varied throughout the displayed trajec-
tories, and for both person-dependent and person-independent cases. Whereas accuracies of
up to 99% can be achieved for binary person-independent classification, person-dependent
classification excels at the classification for different N-back difficulties. Workload-aware
interfaces that are deployed in the public may benefit from cognitive workload estimation
using a binary classification whereas it may be acceptable to calibrate for fine-grained work-
load determination in private spaces. This chapter answers RQ4 with the focus of measur-
able changes in smooth pursuit eye movements, which can be leveraged by workload-aware
systems for cognitive workload classification.
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Chapter7
Pupil Dilation

Sitting in the far horizon
The evergreens across the border
Can you see a different story
With the failure and the glory
The truth is in the eyes of the beholder
The truth is in her eyes when you hold her

Andrew Stockdale

The previous chapter investigated changes in eye movements during different levels of cog-
nitive workload. An N-back task was employed to elicit different levels of cognitive work-
load. Specifically smooth pursuit eye movements were affected and could be successfully
classified between and within persons. However, moving elements are required to elicit
smooth pursuit movements since they cannot be pretended or simulated by humans [372].
Alternative metrics for measuring cognitive workload using eye-based properties have found
relevance in previous research [102, 104] including pupil dilation.

Pupil dilation has attracted attention in the HCI community as a measure for cognitive work-
load (see Figure 7.1) [105]. Demanding the short-term memory frequently over a timespan
causes cognitive effort [10, 11, 164, 166, 185], a mental process which extends the pupil
diameter (see Figure 7.1b). Eye trackers are used to retrieve eye gaze positions which can be
used at the same time to evaluate pupillary data in real-time. Using such a metric as an as-
sessment of cognitive workload can be utilized by applications to provide help and assistance
for users when high cognitive workload is detected. For example, workload-aware systems
can assist in real-time during a cognitively demanding task. Furthermore, the usability of in-
terfaces can be evaluated by conjunctively assessing pupil diameter and eye gaze during user
interaction. Although being sensitive to lighting conditions, the evaluation of pupil dilation
to infer cognitive workload has been examined by various researchers. Benedetto et al. [28]
explored the impact of cognitive workload on pupil dilation and eye blink duration. Since

111



(a) (b)

Figure 7.1: Exemplary impact of cognitive workload on pupil dilation. (a): Measured pupil
diameter under low cognitive workload. (b): Measured pupil diameter under high cognitive
workload.

pupillary measurements are error-prone to lighting conditions, Pfleging et al. [304] pro-
posed a model for classifying cognitive workload of pupil dilation under different lighting
conditions. Kiefer et al. [197] evaluated the pupil diameter under different task difficulties to
assess the perceived task complexity. Gollan et al. [149] examined the assessment of pupil
dilation under cognitive workload in real-time. Hess et al. [166] investigated the impact of
simple mental processes, such as solving one and two-digit multiplications, on the pupil di-
ameter. Zbrodoff and Logan [398] found a correlation between higher pupil extensions and
increasing math exercise complexity. By using multiplication tasks, a higher pupil diameter
was measured when multiplying two-digit numbers than one-digit numbers.

This chapter investigates the performance of a classification model that distinguishes be-
tween two different levels of workload. This includes the assessment of pupil dilation to
create adaptive workload-aware interfaces that adjust the difficulty in real-time. Thereby,
task complexity is set to a suitable difficulty to keep users engaged, thus becoming more dif-
ficult or easier depending on current mental workload measurements. This is complemented
by presenting and evaluating a proof-of-concept application, which sets its task complex-
ity based on pupillary data to prevent mental underload or overload. Hence, this chapter
complements the second part of the research question:

→ RQ4: Do eye gaze metrics enable the classification of cognitive workload states?
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This section is based on the following publication:

• Thomas Kosch, Mariam Hassib, Daniel Buschek, and Albrecht Schmidt. Look
into My Eyes: Using Pupil Dilation to Estimate Mental Workload for Task
Complexity Adaptation. In Extended Abstracts of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI EA ’18, pages LBW617:1–
LBW617:6, New York, NY, USA, 2018. ACM

7.1 Application

To examine the usefulness of adapting task complexity based on pupillary data, we con-
structed a prototype capable of evaluating pupil dilation measurements in real-time.

7.1.1 Recording and Feedback Setup

A mobile eye tracker from Pupil Labs1 is used to receive pupillary data. Data was updated
at 30 Hertz and processed on the attached computer. An external screen is used to display
stimuli. To avoid distractions during the experiment, the setup was divided into two areas
using separators, respectively for the experimenter and participant. The experiment was con-
ducted in a room without windows and constant lighting conditions. The stimulus monitor
had a resolution of 1920×1080 and a screen size of 23 inches.

7.1.2 Classifier

Two baseline trials are conducted in the beginning to obtain ground truth data about pupil
dilation during an easy and a difficult math task, each lasting three minutes. A single com-
plexity was assigned to every trial (easy/difficult). The trained classifier is then used to adap-
tively control the complexity of the displayed multiplications in a third trial. The classifier
aims to estimate low and high cognitive workload based on the data retrieved from the two
baseline tasks. The prototype simulates a cognition-aware system by setting task complexity
to easy if high mental workload is measured. In contrast, task complexity is set to difficult
when low cognitive workload is classified from the previous baseline measurements.

To assess cognitive workload from the users’ pupil dilation, we trained individual support
vector machines (SVMs) with a linear kernel to infer required changes of task difficulty in
real-time. We used the individual pupil dilation as the only feature. We defined two classes,
easy and difficult. The classifier was trained individually for every participant after the two

1 www.pupil-labs.com - last access 2020-01-28
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baseline trials. In the last trial, the previously trained classifier is used to predict cognitive
workload. The task difficulty is set to the opposite task complexity to force cognitive alle-
viation or effort. The person-dependent classifier accuracies ranged between 64% and 99%
(M = 79%, SD = 0.16%) resulting from a k-fold cross-validation with k = 5.

7.2 Study

We conducted a pilot study to evaluate the feasibility of changing task complexity based on
pupil diameter measurements as an indicator for cognitive workload. The study configura-
tion conforms to the previously described prototype.

7.2.1 Cognitive Task

To induce cognitive workload, we use a multiplication math task with two different com-
plexity levels including one-digit and two-digit multiplications. Both complexities lead to
different pupil dilations [10, 11, 398]. To add a time constraint, the multiplication math tasks
were moving centered from the top to the bottom of the screen within five seconds. During
the time limit, participants were asked to type the correct solution on a keyboard number
pad. When the multiplication reached the bottom of the screen, it disappeared and a new
multiplication is displayed at the top of the screen. If the user fails to enter a solution during
the given time frame, an error is counted. If the solution entered during the time is correct,
the multiplication disappears and a new multiplication task is displayed at the top of the
screen. The complexity is divided into easy and difficult. The easy condition uses numbers
ranging from 0− 9, randomly selecting two numbers which have to be multiplied together.
In the difficult condition, two numbers are randomly chosen, where the first number ranges
from 10−19 and the second from 0−9 (see Figure 7.2). Numbers are constantly displayed
in black font on a gray background (RGB: [150,150,150]).

7.2.2 Participants

Six participants (4 male, 2 female) took part in the pilot study, ranging from an age between
22 and 34 years (M = 29.17, SD = 4.41). All participants were computer science, students or
researchers. Participants had a normal or corrected-to-normal vision. The overall duration
of the study was approximately 15 minutes. Before the start of the experiment, participants
signed an informed consent form and provided their demographic data.
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(a) (b)

Figure 7.2: Multiplication math task with equations moving from top to bottom comprising two
different complexities. (a): Easy multiplication containing one-digit numbers. (b): Difficult
multiplication comprising a two-digit number and a one-digit number.

7.2.3 Procedure

First, we explained to the participants the study procedure and familiarized them with the
setting. The mobile eye tracker was then calibrated. The study consisted of three trials;
two baseline multiplication trials (easy/difficult) and one adaptive multiplication trial. The
duration of each task was three minutes. The order of the first two baseline trials was coun-
terbalanced according to the balanced Latin square. The pupillary data from the baseline
tasks was used to derive an SVM classifier capable to distinguish between cognitive work-
load induced by a easy or difficult task. During the adaptive trial, the trained user-dependent
classifier is used to adaptively set the complexity of the multiplication task. The complexity
is set by classifying measured pupil diameter data in five-second intervals. If the classi-
fier estimates a high diameter difference, the task complexity is set to easy to avoid mental
overload. In contrast, the task complexity is set to difficult if the classifier estimates a low
pupil diameter to avoid mental underload. If the classifier determines a complexity change
during a multiplication task, the new task complexity is adjusted to the next appearing mul-
tiplication. After every trial, participants filled a NASA-TLX [161] questionnaire to obtain
subjectively perceived workload during the trials.

7.3 Exploratory Results

Overall, the easy multiplication condition consisted of 618 displayed calculations, the diffi-
cult condition 420 displayed multiplications, and 466 displayed calculations for the adaptive
condition. Least errors were measured during easy multiplication, comprising 571 correct
(92%) and 47 wrong (8%) answers. Most errors were made during difficult trials with 255
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Figure 7.3: (a): Averaged differences of pupil diameter per participant between easy and diffi-
cult task complexities as well as easy and adaptive task complexities. The difference between
the easy and difficult task complexity is higher compared to the adaptive task complexity ex-
cept for two participants (p5, p6). The whisker lines depict the standard error. (b): Averaged
NASA-TLX scores for the different task difficulties. The whisker lines depict the standard error.

correct (61%) and 165 wrong (39%) answers. The adaptive condition placed itself in be-
tween with 313 correct (67%) and 153 wrong (33%) answers.

We investigate individual differences in the pupil dilation measures between the different
task complexities. The differences in the easy and difficult task complexity ranged between
0.05 and 0.87 millimeters. The difference between the easy and adaptive complexity ranged
between 0.05 and 0.85 millimeters. Figure 7.3a shows the difference between the averaged
pupillary measurements per participant. The mean number of complexity switches during
the adaptive condition results in 2.6 complexity changes for a total of 466 multiplication
tasks during the adaptive condition. The mean NASA-TLX score (see Figure 7.3b) reveals
lowest subjectively perceived workload during the easy condition (M = 9.75, SD = 1.45)
and highest workload measurements during the difficult complexity (M = 12.05, SD = 2.15).
The adaptive condition was rated between both baseline trials (M = 11.30, SD = 2.14).

7.4 Discussion

In this study, we explored the impact of adapting the complexity of a cognitive workload
inducing task based on the measurement of pupillary changes.
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7.4.1 Adaptive User Interfaces

Our findings support the use of pupil dilation to detect mental effort. Assessing mental work-
load in real-time to change the task complexity has shown its feasibility when participants
performed adapted math tasks. The adaptive trial shows how computing systems can make
use of the pupil diameter to create engaging user interfaces while avoiding the perception of
high or low mental workload.

7.4.2 Creating User Specific Models

The study shows the viability of individually trained classifiers. Since physiological mea-
surements differ among users, person-dependent measurements cannot be avoided. Limited
to pupillary data, encouraging results were achieved by allocating short training times to
create a user-specific model. This is supported by averaged pupil diameter measurements
and subjective feedback provided through NASA-TLX questionnaires.

7.5 Study and Chapter Conclusion

This chapter investigated the assessment of cognitive workload based on pupillary data to
change the complexity of a task in real-time. In a preliminary study, we trained person-
dependent classifiers through math tasks with different complexities. During an adaptive
trial, task complexity was changed depending on the classification of pupillary data. The
results show the practicability of using pupillary data in controlled environments to evaluate
user interface adaptation mechanics and user interface assessment.

Eye gaze-based properties reflect cognitive states. In this chapter, we investigated the suit-
ability of pupil dilation as an alternative workload measure. A simple classification scheme
revealed reliable discrimination between low and high workload states for difficulty alter-
nations, hence assessing pupil dilation as a suitable measure for cognitive workload (RQ4).
Performance and subjective reports imply that more engagement and less frustration is fos-
tered when alternating between task difficulties. In contrast to smooth pursuit, dilation-based
workload assessments do not require a moving object to be detected. However, while not
being affected by moving objects, the pupil size is sensitive to light conditions. The pre-
sented experiment leveraged a controlled setup to avoid bias through lighting conditions. A
potential solution is the normalization of pupil dilation through in-situ light measurements.
The combination of lighting conditions and pupil dilation can provide a decent estimate for
the currently perceived workload.
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Chapter8
Design Pipeline Evaluation

For people without disabilities,
technology makes things easier. For
people with disabilities, technology
makes things possible.

IBM Training Manual

So far, we have investigated communication guidelines for workload-aware interfaces and
measurement modalities that assess cognitive workload in real-time using physiological
measures. This provides an implicit measure to evaluate interactive systems regarding the
mental demand placed on the user and adaptive systems that benefit from this insight. In
this chapter, we incorporate the results from Chapter 3, 4, and 5 in a field study. To recapit-
ulate, the previous chapters investigated design implications for assistive technologies and
presented an EEG-based approach to evaluate these. Persons with cognitive impairments
were investigated as a target group as they provide explicit cues when cognitive assistance is
needed.

In Chapter 3, cooking was identified as an important communal activity in the context of
sheltered living [233]. The preparation of a meal represents a common task that is achieved
by working together. Hence, social skills are conveyed and the awareness of fulfilling du-
ties is invigorated. Cooking transfers a beneficial skill set for future independent living.
However, uncommon tasks (e.g., operation of novel kitchen devices) are still perceived as
challenging by persons with cognitive impairments. Expert labor collaboratively supervises
the cooking process but is scarce due to a worker shortage in the field. Assistive computing
systems are therefore more commonly employed in sheltered living facilities.

Our previous research in Chapter 4 showed that visual feedback of assistive systems was
favored over auditory and tactile feedback by persons with cognitive impairments [228]. In
an assembly scenario, we evaluated the working memory capacities using EEG and found
that visual in-situ projections decrease working memory strains. In this chapter, we combine
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the concepts of (a) cooking, (b) visual in-situ feedback, and (c) assistive computing for per-
sons with cognitive impairments within a field study in a realistic context. Specifically, we
deployed a projection-based assistive system over two weeks that aims to support a cooking
process.

The chapter reports on a user study that investigates cooking performances between care-
taker assistance and in-situ assistance. We then investigate differences in subjective feed-
back about the individual cooking experience with each feedback modality. Finally, we
discuss how a combination of caretaker assistance and in-situ assistance enables indepen-
dent cooking for people with cognitive impairments. We believe that the presented concepts
translate on other chores and address, therefore, the following research questions:

→ RQ5: Does in-situ feedback provide cognitive support during a cooking task?

This section is based on the following publication:

• Thomas Kosch, Kevin Wennrich, Daniel Topp, Marcel Muntzinger, and Al-
brecht Schmidt. The Digital Cooking Coach: Using Visual and Auditory In-situ
Instructions to Assist Cognitively Impaired During Cooking. In Proceedings of
the 12th ACM International Conference on PErvasive Technologies Related
to Assistive Environments, PETRA ’19, pages 156–163, New York, NY, USA,
2019. ACM

8.1 Related Work

The impact of deploying assistive technologies in real-world scenarios has been investigated
by past research. We summarize relevant work in the following.

8.1.1 Supporting Persons with Cognitive Impairments

Assistive technologies that focus on support for the elderly and persons with cognitive im-
pairments were the subject of previous research. Assistive systems require design implica-
tions and guidelines to coalesce kitchen environments with home environments. For this
purpose, Pollack et al. [307] explored how assistive technologies in home environments can
be designed to support people with cognitive impairments. This includes a taxonomy for
assistive computing systems. Bouchard et al. [40] developed and evaluated a plan recogni-
tion framework for smart homes using microsensors. These sensors made contextual data
available [245] of which people with dementia and caretaker personnel benefited from ac-
tivity recognition provided by the framework. Furthermore, Arcelus et al. [8] used a variety
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of sensors, such as microphone arrays and accelerometers, to collect contextual informa-
tion. The collected data was used to train the artificial intelligence that provided individual
context-aware assistance. Mihailidis et al. [267] found that the integration of training ac-
tivities into daily life tasks, such as washing hands, reduced the development of dementia.
Serious games that simulate regular daily kitchen tasks have shown positive effects on people
with cognitive impairments [258]. Ethical aspects need to be considered before using assis-
tive technologies in real-world environments since, depending on the level of impairment,
individuals are limited in their ability to give consent [349]. However, the integration of
assistive technologies raises ethical considerations regarding individual autonomy in home
environments. This includes privacy concerns [81, 82] and user acceptance [48, 92].

Providing in-situ assistance at industrial workplaces through spatial augmented reality has
shown mental alleviation for people with cognitive impairments [67, 128]. Projecting visual
in-situ information enhanced the overall assembly efficiency regarding the number of errors
and task completion time [136]. Furthermore, fewer cognitive resources were utilized [127].
Motivation can be increased or maintained by incorporating gamification into the working
environment of persons with cognitive impairments [212, 213]. They found that visual and
auditory notifications outperform tactile error alerts concerning usability and understanding.

8.1.2 Assistive Technologies in Smart Kitchens

Integrating assistive technologies in kitchen environments has been the focus of various re-
searchers before. Scheible et al. [334] presented how smart kitchens can be designed to
enhance the overall cooking experience. With the availability of microsensors, a huge num-
ber of contextual data in kitchen environments can be collected. Thereby, Hashimoto et
al. [163] analyzed behavioral data to recognize the current cooking action and prepared food
materials. Blasco et al. [34] developed and evaluated a smart kitchen system for older adults
within real-world scenarios. They found that their participants benefited from cognitive as-
sistance during the cooking sessions. Besides providing support during meal preparation,
smart kitchens can provide contextual nutrition-aware information. Based on this, suited
recipes can be mediated to ensure the intake of important nutritions [73, 72]. Cooking
has become a social activity in which recipes are shared and prepared together. There-
fore, Schneider et al. [341] present the "Semantic Cookbook" which can capture, share, and
exploit cooking experiences semantically. This way recipes can be recorded shared among
other smart kitchens and relatives. Since most recipes are passed down to the next gen-
erations, Terrenghi et al. [360] developed the "Living Cookbook". Cooking experiences
were recorded to practice meal preparation techniques and to teach people who are unfa-
miliar with cooking. Previous research has incorporated language learning tasks into smart
kitchens [171]. Design recommendations were presented for integrating task-based learning
within the meal preparation process. Miyawaki et al. [272] developed cooking support for
people with higher brain dysfunction. The use of their system during rehabilitation train-
ing has shown positive effects. Prototyping new smart kitchen solutions require a robust
testing environment. Olivier et al. [288] presented a prototype setting in which new smart
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kitchen solutions can be evaluated. Several augmented reality-based applications in smart
kitchen environments were evaluated by Bonanni et al. [38]. This included the assessment
of usability, attention, cognitive workload.

Previous work has invested effort into the construction, evaluation, and integration of assis-
tive technologies in home environments. However, the influence of in-situ cooking assis-
tance for persons with cognitive impairments has not been considered yet. To close this gap,
we conducted a field study in a sheltered living facility where people with cognitive impair-
ments cooked either with (a) traditional caretaker assistance or (b) in-situ assistance. We
report on differences in cooking performance and subjective feedback between both cooking
modalities.

8.2 User Study

Related research has informed how accessibility can be ubiquitously integrated into daily
life situations to compensate cognitive impairments. At the same time, assistive technologies
have proliferated into home environments that are available for the wider public. However,
how assistive technologies impact the behavior of persons with cognitive impairments in
sheltered living facilities during cooking has not been explored yet. In the following, we
present a study that compares in-situ assistance and caretaker assistance in terms of cooking
performance as well as subjectively perceived feedback. This chapter and the subsequent
study aims to answer the following two research questions:

• RQ 1: How does in-situ assistance changes the cooking performance, measured by
the overall meal preparation time, compared to caretaker assistance?

• RQ 2: How is in-situ assistance subjectively perceived compared to caretaker assis-
tance?

8.2.1 Evaluation

We extended the system of Funk et al. [136, 129] by functional modules to provide addi-
tional visual and auditory feedback. The main system that tracks cooking steps and provides
feedback to the cooking area consists of multiple aluminum profiles assembled. The profiles
enable to mount different hardware on top of the cooking area by placing the construction on
the cooking area. The system uses a top-mounted Kinect v21 which is mounted 1.35 meters
above the cooking area to detect finished cooking steps. A projector that is mounted 1.50
meters above the working area presents visual cooking instructions [128]. Dedicated audio
speakers, placed next to the cooking area, provided auditory feedback by playing verbally

1 https://developer.microsoft.com/en-us/windows/kinect - last access 2020-01-28

124

https://developer.microsoft.com/en-us/windows/kinect
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Figure 8.1: Study setup with pre-portioned ingredients. Auditory feedback is provided via
external speakers while visual feedback is delivered by projections.

recorded cooking instructions (see Figure 8.1). In the following, we describe the cooking
feedback modalities which were facilitated in the study.

Auditory Instructions

Auditory instructions are the current communication standard for single cooking steps be-
tween tenants and caretakers in sheltered living facilities. Most tenants are not able to read
and rely on the verbal exchange of instructions. To provide a similar experience through
in-situ assistance, we recorded single cooking steps with the voice of a caretaker. External
audio speakers, set to a suitable volume, were integrated into the cooking environment (see
Figure 8.1). Cooking instructions were played back with each start of a cooking step. We
used a Trust 2.0 speaker setup2.

Video Instructions

Video instructions were provided by a projector mounted above the cooking environment.
The videos were short looped clips, where caretakers showed how to accomplish the next
cooking step. The video instructions were projected on a dedicated field right to the cooking

2 www.trust.com/en/product/17595-remo-2-0-speaker-set - last access 2020-01-28
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(a) (b)

Figure 8.2: Visual output modalities of the cooking instruction system. (a): In-situ projections
of video instructions and progress bars were displayed inside the cooking area. The projections
were placed on white sheets to enhance the visibility. (b): In-situ projection of video instructions
and contours which provide visual cues for grasping or placing objects and food.

area (see Figure 8.2a). Upon step completion and validation through the Kinect v2, the next
instruction video was played back. An Acer K330 was used as projector3.

Contour Projections

Contour projections were displayed on or around objects which are of interest during the
current cooking step. This is accomplished by projecting a green light on different cooking
utilities (see Figure 8.2b). Furthermore, a progress bar below the hotplate is projected during
waiting times (e.g., when frying ingredients). Figure 8.2a shows the position of the progress
bar.

8.2.2 Methodology and Measures

We employ a within-subject design study including the independent variable assistance
modality consisting of cooking instruction provided by in-situ assistance and instructions
provided by caretaker assistance. The prepared meal was meatloaf with fried eggs and
bread. We have chosen this recipe because it was unknown among the participants. Thus,
the overall cooking process was unknown to the participants. The runtime of the experiment
was ten days (i.e., two weeks without weekends). Two cooking sessions with two differ-
ent participants were conducted on each day, where one participant cooked with caretaker
assistance and another participant with in-situ assistance. After the first week, the same
participants from the last week were invited on the same weekday again with the contrary
assistance modality, i.e., participants who used to cook with caretaker assistance were ei-
ther assisted by in-situ assistance and participants who were assisted by in-situ assistance
used caretaker assistance instead. By introducing the break of seven days, we reduce the
probability that participants remember the cooking procedure when they cook the same meal
again using the contrary instruction modality. In other words, five participants cooked with

3 www.projectorcentral.com/Acer-K330.htm - last access 2020-01-28
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in-situ assistance and another five with caretaker assistance during the first week. In the
second week, participants that started with in-situ assistance were invited to cook with care-
taker assistance. In contrast, participants who cooked with caretaker assistance in the first
week used in-situ assistance in the second week. Note, that all participants in the second
week were already aware of the recipe and the cooking procedure from the first week. The
required cooking utilities were placed on predefined positions before the experiment. We
ensured a similar positioning of cooking utensils for each session.

We measure the meal preparation time for both assistance modalities to investigate temporal
differences between both assistance modalities. We subtracted constant waiting times, such
as cooking steps that require frying, from the overall task completion time (see Table 8.1).
By this, individual waiting times between caretaker assistance and in-situ assistance are
removed from the analysis. Overall, four cooking steps facilitated waiting times (i.e., heating
oil, frying meatloaf from both sides, and cooking the egg) during one trial. Table 8.1 shows
each cooking step with their accompanied instruction system for in-situ assistance. Finally,
we conducted semi-structured interviews with the participants about personal preferences in
cooking assistance after the experiment.

8.2.3 Procedure

Before the study, we asked for written consent from either the participants or their legal
guardians. We conducted the study in a kitchen within a sheltered living facility. We care-
fully explained the intention of the study to the participants to avoid misunderstandings.
Since the system was unfamiliar to the tenants, we made them familiar with the visual and
auditory instructions. Furthermore, we showed where the feedback cues were generated
to avoid confusion for participants during the study. After being familiar with the system,
participants started with the cooking instruction modality according to the balanced Latin
square. Before the experiment, ingredients were pre-portioned since tenants affected by
motoric disorders could not handle the doses by themselves. The experiment started after
ensuring all safety arrangements.

Visual instructions were presented alongside auditory feedback for each step. A voice
recorded by a caretaker gave instructions on how to perform the current cooking step. Ad-
ditionally, a video was projected to the right of the cooking area. These videos had a length
between two and four seconds that demonstrated how the current cooking step has to be
performed. Furthermore, objects of interest were highlighted by contour projections. A
Kinect v2 detected whether cooking steps were performed successfully. If a cooking step
was conducted correctly, the visual, auditory, and contour instructions proceeded to the next
step. The whole cooking procedure comprised 25 cooking steps including four waiting steps
to fry the ingredients (see Table 8.1). Since waiting times may occur during frying steps,
short cartoons were projected into the video area. This ensured engagement during waiting
times since the participants’ concentration may be affected and reducing the likeliness of
returning to the cooking task [362]. At the same time, a declining progress bar indicates the
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remaining waiting time (see Figure 8.2a). Notes about the interaction between participants
and systems were recorded during the experiment. A caretaker was always present during
the cooking sessions to ensure the safety of participants. Participants were lauded at the end
of the cooking session.

Afterward, participants participated in a semi-structured interview. The participants were
asked about their experience when cooking with caretaker assistance or in-situ assistance.
Furthermore, we asked about suggestions for improvements. The answers were recorded
and noted by the experimenters. Overall, the study took approximately 30 minutes including
meal preparations and post hoc interviews.

8.2.4 Cooking Equipment

A hotplate and a pan are used to heat the ingredients. We use an induction burner as a
hotplate for safety reasons. A spatula and a reacher were used to put and turn ingredients
in the pan. Finally, fried ingredients were placed on a plate right to the cooking area (see
Figure 8.2). The whole cooking procedure uses pre-portioned ingredients including a piece
of meatloaf, salt, eggs, oil, and a piece of bread.

8.3 Results

We analyzed the measures as well as qualitative data collected throughout the study. The
results are presented in the following.

8.3.1 Participants

We recruited ten tenants of a sheltered living facility (6 female, 4 male) aged between 24
and 56 years (M = 40.9, SD = 9.93). The participants had cognitive impairments that limit
their ability to process and understand information. None of the participants were affected
by dementia. Five caretakers (3 female, 2 male) aged between 19 and 34 years (M = 26.8,
SD = 7.05) were involved for the caretaker assistance condition. Their individual work
experience ranged between several months to twelve years. We constantly assigned each
caretaker to two participants. We ensured that the same caretaker was cooking with similar
participants during the caretaker assistance and observed them during in-situ assistance.
Participants were monetary compensated through funding from a joint project.

8.3.2 Cooking Performance

We compare the cooking performance between the conditions caretaker assistance and in-
situ assistance regarding the time participants required to prepare a meal. We process the
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Step No. Cooking Step Audio Video Contour

1 Take pan X X
2 Pan on hotplate X X
3 Start hotplate X X X
4 Set heat X X X
5 Take oil X X
6 Put oil into pan X X
7 Wait until pan is hot X
8 Take reacher X X
9 Take meatloaf X X
10 Put meatloaf into pan X X
11 Wait until meatloaf is fried X
12 Turn meatloaf X X
13 Wait until meatloaf is fried X
14 Put meatloaf on plate X X X
15 Put reacher on table X X
16 Take cup with egg X X
17 Put egg into pan X X
18 Wait until egg is fried X
19 Take spatula X X
20 Put egg on plate X X X
21 Turn hotplate off X X
22 Take bread X X
23 Put bread on plate X X X
24 Put salt on meal X X
25 Completion notice X X

Table 8.1: Single cooking steps with their assigned instruction systems. The steps 7, 11, 13,
and 18 (gray rows) consist of waiting times.

data by subtracting the fixed waiting times from the overall cooking times of in-situ assis-
tance and caretaker assistance (see Table 8.1). In-situ assistance comprised a mean waiting
time of seven minutes and eight seconds while caretaker assistance had a mean waiting time
of eight minutes.

First, we statistically analyze the cooking times between caretaker assistance and in-situ
assistance which were collected during both weeks. A Shapiro-Wilk test did not reveal a
deviation from normality, p > .05. Thus, we submitted the data to a paired samples t-test
and found a significant effect between both assistance modalities, t(9) = 3.628, p = .006, d =
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1.147. Investigating the mean cooking times between both conditions shows longer cooking
times for in-situ assistance (M = 236.3, SD = 46.24) compared to caretaker assistance (M
= 228.9, SD = 77.03). Figure 8.3a shows the aggregated mean times of the first and second
week between both assistance modalities.

Since either five participants cooked with in-situ assistance or caretaker assistance per week,
we separately investigate the cooking times between both conditions for the first and second
week. Note that the participants in the second week were aware of the cooking procedure
since they already prepared the meal in the first week with the contrary assistance modality.
A one-way ANOVA revealed a significant main effect between the cooking times for each
week and instruction modality, F(3,16) = 3.504, p = .04. A Tukey post hoc test revealed
a significant effect between the use of in-situ assistance in the first week and caretaker as-
sistance in the second week, p = .024, d = 2.511. However, we could not find a significant
effect when using caretaker assistance in week one and in-situ assistance in week two. Fur-
thermore, there is no significant effect when using in-situ assistance or caretaker assistance
in the same week. Participants required more time when using in-situ assistance in the
first week (M = 262.8,S D = 34.77) compared to the second week using caretaker assis-
tance (M = 159.4,S D = 46.7). Caretaker assistance required less time in the first week (M
= 206.8, SD = 70.42) compared to in-situ assistance in the second week (M = 209.8, SD
= 42.96). Figure 8.3b shows the separated cooking times of in-situ assistance and caretaker
assistance per week.

(a) (b)

Figure 8.3: Results of the study. (a): Mean cooking times between in-situ assistance and care-
taker assistance for both weeks. Brackets indicate significant differences. (b): Mean cooking
times for in-situ assistance and caretaker assistance for each week. Participants that started
with in-situ assistance had higher cooking times in the second week using caretaker assistance.
Brackets indicate significant differences.
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8.3.3 Subjective Feedback

We collected qualitative comments from the participants about the experience with tradi-
tional caretaker assistance and in-situ assistance. In the presence of the caretakers, we
asked participants if the cooking procedure was pleasant for them. Participants who cooked
with caretaker assistance and in-situ assistance enjoyed cooking. However, one participant
stated that “[. . . ] the videos were not helpful” (P4) while others found that the “[. . . ] videos
were funny” (P9) and that “[. . . ] the contour projections were engaging” (P7).

Furthermore, we asked participants if they found the visual and auditory feedback helpful.
All participants except one (P4) found the projected videos helpful. Four participants stated
that they noticed them when they were stuck in the cooking process (P2, P4, P5, P10). The
sound was perceived by all participants positively except one participant who stated that
“The voice was not helpful, the videos helped me more. ” (P9).

Finally, we asked if the participants could imagine integrating such a system into their daily
communal cooking procedure. All participants except one (P8) agreed with an integration of
the system into their daily life. However, one participant mentioned the importance of social
interaction during cooking activities (P3). One of the participants stated, that the system
“[. . . ] provided more safety when cooking alone” (P2). One participant preferred to cook
with a caretaker instead of the system (P8).

8.3.4 Qualitative Observation

We observed the interaction between the tenant and the assistive system in the kitchen. We
noted, that all participants were able to perform most of the cooking steps by listening to the
voice. Video instructions, which were displayed in every cooking step, were perceived when
the voice instruction was not understood. The tenants are used to voice-driven instructions
since cooking instructions are communicated verbally during the cooking process. A similar
observation was found in the perception of the progress bar, which was noticed after they
were hinted by the experimenter or caretaker. Four participants required help to understand
the system before conducting the first cooking steps. Afterward, the cooking process was
guided by the system without interruptions.

8.4 Discussion

We evaluated an assistive cooking system in a sheltered living facility. In the following, we
discuss the results of our study.

131



8.4.1 Cooking Performance and Learning Effect

Overall, we measured longer meal preparation times using in-situ assistance compared to
caretaker assistance. However, we find that the cooking times with caretaker assistance
in the second week improves significantly when in-situ assistance was employed in the
first week. Since cooking instructions are usually conveyed verbally, the visual feedback
generated by in-situ assistance might complement the cognitive processing of instructions.
Therefore, a combination of visual and auditory cooking instructions could result initially
in a longer cooking procedure, but can also contribute to an improvement in understanding
the cooking process. Furthermore, a learning effect can eventuate as a result of using in-situ
instructions. We could not observe this effect when starting with caretaker assistance in
the first week and continuing with in-situ assistance in the second week. This assures the
hypothesis that visual feedback can be used as a complementary feedback modality to help
tenants to remember or understand complex cooking instructions.

8.4.2 Feedback Modalities

From our observations, we find that most participants could handle simple cooking instruc-
tions using auditory feedback. Video and contour projections were considered during wait-
ing times or more complex steps, such as turning ingredients in the pan. These results con-
form with the results of the Chapter 3, where auditory instructions are preferred to convey
and process information. However, most participants considered video and contour instruc-
tions useful to understand details although not always needed. We believe that video and
contour instructions supplement auditory feedback for rather complex cooking instructions.

8.4.3 Subjective Perception

We asked caretakers and the tenants about their perception of cooking with assistive tech-
nologies. The responses were positive by both caretakers and tenants. Participants stated
that visual and auditory feedback complement each other in terms of understanding the cur-
rent cooking step. Since tenants are usually not able to cook without caretaker assistance,
most of the participants enjoyed their autonomy during the cooking process using in-situ
assistance. This indicates that suitable feedback content is a critical factor to consider when
conducting further research on assistive technologies in private and sheltered living facilities.

8.5 Study Conclusion

We presented a study which compares caretaker assistance and in-situ assistance during
several cooking sessions for tenants with cognitive impairments. We found that in-situ as-
sistance requires more meal preparation time in the first week compared to caretaker assis-
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tance. However, the cooking performance of caretaker assistance improves fundamentally
when the cooking procedure was conducted with in-situ assistance beforehand. Through
semi-structured interviews, we find that the visual and auditory feedback provided by in-situ
assistance is well accepted among tenants. We believe that such assistive technologies can
be used in the future to compensate for cognitive impairments. Learning how to accomplish
daily life tasks by assistive technologies goes a step towards independent living for tenants
with cognitive impairments.

We are aware that our research is prone to several limitations. We did not consider the in-
dividual cognitive impairment per participant. Before the study, we ensured that the level
of cognitive impairment was similar for each participant. However, assessments to estimate
the individual level of cognitive impairment are conducted irregularly. As mental abilities
develop further, the assessment may become irrelevant regarding individual impairment.
Furthermore, we did not consider the individual level and type of cognitive impairment in
our study design. Thus, the results may not be generalizable to people that are affected by
other cognitive impairments, such as dementia or motoric disorders. For safety reasons, a
caretaker was always present during the study regardless of the cooking assistance modal-
ity. Thus, we did not investigate how individual behavior may change when a caretaker is
not present. Therefore, it is not clear how people with cognitive impairment interact with
assistive technologies in their home environments when caretakers are not nearby. To foster
research in this area, we host a reference implementation of the presented workload-aware
assistive system on Github4.

8.6 Chapter Conclusion

This chapter presented a case study in which visual in-situ projections were used to guide
persons with cognitive impairments through a cooking process. The design of the assistive
system followed a user-centric development approach: after recognizing opportune moments
for in-situ assistance through qualitative inquiries, we evaluated suitable feedback modalities
that were considered during the implementation of an in-situ assistance system. To answer
RQ5, we conducted a long-term study over two weeks in a sheltered living facility. The
study revealed that no improvements in task completion time and error rate were immedi-
ately visible. A potential reason could be the unfamiliarity with the system itself, whereas
tenants are used to cooking with their respective caretakers. In contrast, in-situ support was
positively perceived and well rated by the participants. Since all participants completed the
cooking sessions, we believe that user-tailored assistive technologies will foster autonomy
for people with cognitive impairments.

4 www.github.com/hcum/kobelu - last access 2020-01-28
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Chapter9
Reflection

In order to improve the mind, we ought
less to learn than to contemplate.

René Descartes

EEG has shown to be a feasible tool for workload quantification. In chapter 5, we have
conducted a study to develop a pipeline that uses EEG as a physiological real-time measure
that evaluates the workload placed on users by the respective interface. Such a pipeline
enables the development of neurofeedback loops that utilize cognitive workload for feedback
mechanisms. However, the brain is a sensitive organ that is highly unexplored. The raw EEG
signals are difficult for novice users to interpret and process.

In contrast, BCIs are a category of physiological sensors that are currently coping with these
challenges to make their way into the consumer market. Traditionally, they have been used in
the medical field to help patients with severe disabilities to gain more control over their lives.
EEG signals from the brain, gathered through electrodes placed on or inside the scalp, can be
interpreted to allow patients to move a wheelchair, a cursor [356, 391] or provide feedback to
the user in what is called a neurofeedback loop. Neurofeedback training involves interpret-
ing brain signals in real-time and providing the user with feedback about their state through
different stimuli, for example, using VR environments. VR in combination with BCIs have
been researched and used in several applications ranging from treating brain damage [318],
substance abuse [239] to mindfulness training [5]. Hence, such BCI applications abstract
the complexity of EEG and enable users to utilize brain signals for implicit and explicit
interaction purposes. Using new, light-weight, and less complex consumer BCI devices cou-
pled with a VR system allows us to create adaptive virtual environments that can change
according to the measured brain signals to increase or decrease activation in certain parts of
the brain. This can especially help people with neuropsychiatric diseases (e.g. depression)
and their doctors to investigate brain activation in real-time during VR-based neurofeedback
sessions. The desire to investigate the impact of VR scenes on the brain is high but be-
comes complicated because of the linearly increasing output of an EEG over time. Whereas
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the measured brain activity at certain electrodes is what drives the neurofeedback system,
the origin of the electrical sources of activation inside the brain is also required to analyze
which parts of the brain are affected by the VR scene. The low-resolution electromagnetic
tomography algorithm (LORETA) solves this problem for a sufficient number of electrodes
in a three-dimensional space [294].

In this chapter, we present a simple and understandable real-time visualization of the men-
tioned LORETA algorithm. A simulation is executed to show the correctness of the im-
plementation. A study is conducted to show that changes regarding brain activation can be
observed in real-time. This is complemented by an evaluation using a VR-based neurofeed-
back loop that reveals the affected brain areas. This chapter showcases the potential that EEG
holds for neurofeedback platforms for future UI adaption systems. Therefore, we investigate
the following research question:

→ RQ6: How can complex physiological signals be visualized to be utilized by non-
expert users?

This section is based on the following publication:

• Thomas Kosch, Mariam Hassib, and Albrecht Schmidt. The Brain Matters:
A 3D Real-Time Visualization to Examine Brain Source Activation Leverag-
ing Neurofeedback. In Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’16, pages 1570–
1576, New York, NY, USA, 2016. ACM

9.1 Related Work

Visualizations of brain data to interpret neuronal activity is an important tool for researchers.
In this context, research has been conducted that can be broadly summarized into two cate-
gories: (1) the impact of virtual reality on the brain in medical treatments and (2) currently
existing brain data visualizations.

Baumgartner et al. [23] have shown that neurophysiological changes can be found when us-
ing VR. Increased brain activity at the parietal and frontal lobe could be found. The EEG
analysis of the displayed VR scene was carried out using LORETA. However, the output can-
not be inspected in real-time and the implementation is not interactive. Grealy et al. [151]
performed a 4-week intervention program for treating patients with traumatic brain injuries
using VR. Significant cognitive increases could be noticed in terms of speech, visual learn-
ing and reaction times. Improvements were quantitatively measurable, but the affected brain
parts by this training could not be observed at all. Hoffman [168] used functional magnetic
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resonance imaging (fMRI) to investigate perceived pain when treating burn damages in com-
bination with and without VR. The fMRI has shown that distraction delivered by VR helps to
reduce the amount of brain activity in pain-related brain areas. The brain scans presented in
the study still lack real-time capabilities to investigate the augmentation and impact of brain
activation throughout a VR session. A three-dimensional visualization is presented by the
project Glass Brain from the company Neuroscape1. It enables the visualization of source
localization in real-time with interactive features. However, the inner of the visualized brain
is hard to investigate since it is filled with a fixed solid color.

Overall, the presented brain visualization solutions lack interactive features, real-time capa-
bilities or suffer performance issues. In contrast, our work shows a simple visual represen-
tation of the activities in the brain which allows a human observer to understand the current
brain activation in real-time. Currently, we investigate this in two contexts: (1) Providing
information to improve medical treatment of brain-related issues, (2) assessment of reactions
to visual stimuli in the context of human-computer interaction. In our work, we propose a
real-time implementation of LORETA including a three-dimensional representation enriched
with interactive features to allow more precise investigations of brain parts. As a proof of
concept, we performed a pilot study with an adaptive VR scene which changes according to
the measured brain activities to achieve a neurofeedback session. Changes in brain activation
are investigated during VR sessions in real-time as well as in post hoc analysis.

9.2 System

The implementation of our algorithm uses neuromore Studio2 as base platform. Together
it builds a system allowing us to retrieve data measured by a BCI device and processing
it with our implementation in real-time. Furthermore, we can create adaptive VR-based
neurofeedback sessions based on the measured EEG data3.

9.2.1 Localizing Electrical Source

We use a multithreaded implementation of the standardized LORETA (sLORETA) algorithm
for electrical source localization [295]. sLORETA allows precise source localization in a
three-dimensional space with different settings regarding noise minimization, voxel density
and the usage of a head model. The input of the algorithm is the current voltages of extracra-
nial scalp measurements received by the attached electrodes. sLORETA then calculates a

1 www.neuroscape.ucsf.edu - last access 2020-01-28
2 www.neuromore.com - last access 2020-01-28
3 The visualizations are available in this publication: Thomas Kosch, Mariam Hassib, and Albrecht Schmidt.

The Brain Matters: A 3D Real-Time Visualization to Examine Brain Source Activation Leveraging Neuro-
feedback. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’16, pages 1570–1576, New York, NY, USA, 2016. ACM
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density distribution throughout a head and associates each voxel with a magnitude that de-
scribes the current density power at the voxel. Voxels are color-coded depending on the
calculated magnitude ranging from blue (weak) over green (medium) to red (strong).

9.2.2 Visualizing Results

After retrieving electrode measurements, the algorithm begins processing the data based on
the chosen head model and the number of voxels. We have decided to use a spherical head
model because it is easier to reproduce and compare results from other research projects.
The number of voxels can be set during program runtime, while a higher number of voxels
increases the precision of the result at the cost of performance. Interactive features like zoom
and rotation are supported to ease the analysis of brain source activation. The computation
of the visualization algorithm is GPU accelerated. In contrast to current systems, we can
visualize the activated areas in real-time for the observer (doctor, researcher) to directly see
the reaction inside the brain.

9.2.3 Evaluation

The implementation is evaluated using the BESA simulator tool4 to verify the correctness of
the results. The BESA simulator provides the functionality to place an electrical source in-
side a head. These can be exported as a CSV file, which allows an import into the sLORETA
implementation. The evaluation showed that the algorithm is working correctly and can be
used in future user studies.

9.2.4 Input Stimulus

Our system uses VR as an input stimulus which enables us to create controllable simula-
tions of real-world situations where the reaction of body and mind can be analyzed. The
simulation can be changed based on the measured electrode values to match a VR scene to
the cognitive load of a user. Depending on the result of the EEG analysis, the difficulty of
tasks or environments can be modified for brain training exercises, for example, to decrease
frustration or boredom. Frequent training using VR with suitable parameters can be used to
increase overall brain activity. Treatment of neuropsychiatric diseases often aim to increase
brain activity in the frontal lobe, since decreased brain activity in these areas often is seen
in patients of depression, schizophrenia, substance abuse or obsessive-compulsive disorders
[359].

4 www.besa.de/downloads/besa-simulator - last access 2020-01-28

138

www.besa.de/downloads/besa-simulator
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9.3 Impact of VR

Virtual reality enables controllable simulations of real-world situations where the reaction
of the body and mind can be analyzed. The simulation can be changed to suit the VR scene
to the cognitive load of a user. Depending on the result of an EEG the difficulty of tasks can
be modified for brain training exercises to decrease frustration or boredom. Therefore it is
important to understand what kind of neurophysiological effect different VR tasks have.

VR is often related to video games that provide an immersive experience. Video games
contain goals that have to be accomplished by a user. The frontal lobe, which is responsible
for motivation-related thinking, is activated during such tasks [5]. Decreased brain activity
in this brain area often involves depression, schizophrenia, substance abuse or obsessive-
compulsive disorders because of dopamine lack or depletion [359]. Frequent training using
VR with suitable parameters can be used to increase brain activity in the frontal lobe, which
may be used to treat neuropsychiatric diseases. Therefore VR is a popular method used in
neurofeedback sessions for frontal lobe training.

9.4 Study

A pilot study with eight male participants was conducted to find visible changes of electrical
source activation within the brain during a neurofeedback session that used VR to change
the stimuli. The average age was 27.12 years (SD = 5.19). The participants were healthy and
have not participated in a bio- or neurofeedback study before. The study took approximately
40 minutes per participant.

9.4.1 Apparatus

We used an OpenBCI5 board with 16-channel support as EEG device for the study. OpenBCI
and its electrodes are mounted on a 3D printed retainer which can be worn on the head. An
Oculus Rift6 was used to display VR content. The visualization uses 8000 voxels to render
the results.

9.4.2 Method

The study is divided into a baseline task, a VR session and a repetition of the baseline task
to see visible differences before and after the VR session. The OpenBCI is continuously

5 www.openbci.com - last access 2020-01-28
6 www.oculus.com - last access 2020-01-28
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recording EEG data to enable post hoc analysis. Changes in brain activation are observed in
real-time.

The baseline task is conducted to visualize initial source activation. The participant is asked
to keep the eyes open for three minutes, followed by three minutes of keeping the eyes
closed. Participants were seated in a dimmed room facing a white wall. This is a common
task to estimate initial electrical brain source activation [21].

The VR session displays an infinite tunnel which is traversed by the participant for ten min-
utes. The traversal speed is influenced by the activation measured by the sum of three elec-
trodes at the frontal lobe. High alpha band magnitudes at these electrodes cause an increasing
traversal speed while low voltages slowdown the traversal speed. We told the participant to
traverse the tunnel as fast as possible. This training aims to increase brain activation in the
frontal lobe. To achieve this, a signal processing algorithm is constructed which focuses on
frontal lobe training. The electrodes at the positions F3, F4 and Fz are used to estimate brain
activation at the frontal lobe. The measured electrode values are summed up and processed
in a Fast Fourier Transform (FFT) to estimate frequencies in the range between 8 Hz and
13 Hz. The estimated frequency is normalized to the interval [0;1]. The normalized values
are used to set the traversal speed of the VR tunnel, where 0 causes the slowest traversal
speed and 1 the fastest traversal speed. In the last step, the baseline task is repeated. This is
required to detect differences in brain activation before and after the VR session.

9.5 Results

Results have shown that significant electrical brain source changes could be found within
all participants. Different brain activations were observed during the eyes-opened and eyes-
closed task. Higher brain activation is noticed during the eyes-closed task. The most active
part in the back of the brain which is responsible for visual processing.

Before and after conducting the VR session, a snapshot of brain activation is taken for com-
parison purposes. The sLORETA visualizations show clear differences regarding brain acti-
vation before and after conducting the VR session. The brain shows higher brain activation
before the session than the baseline task, which could be the effect of excitement since the
participants have not participated in a VR related neurofeedback session before. After con-
ducting the VR session, higher brain activation was measured. Repetition of the baseline
task shows higher brain activation than in the first baseline run.

9.6 Discussion

Investigating brain source localization has shown that changes are visible and measurable
when using VR as a stimulus. Increased brain activity is observed when participants started
closing their eyes. Previous research has shown that this is a natural effect [260]. The back
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of the brain is permanently active since it is responsible for visual processing. Closing the
eyes pushes activity in other brain regions responsible for imagination and multi-sensory
actions which explain enhanced electrical source localization during the eyes-closed task.

Considering the effect of VR as the stimulus has shown increased brain activity in different
brain regions. The cerebellum and the frontal lobe have shown improvement in brain activa-
tion. These regions are responsible for motion sensing and motivation-related thinking. The
changes in motion and speed in the tunnel explain brain activation differences in the cere-
bellum, while the excitement and the desire to speed up the tunnel could explain enhanced
activations in the frontal lobe. The repetition of the baseline task has shown sustainable brain
activity after the VR session. This is usually not a prolonged effect since permanent brain
activation changes require extensive neurofeedback training. Neurofeedback sessions have
to be repeated several times for long term lasting effects. The study has shown that real-time
brain source localization can be used to understand the effect of stimuli on a neuropsycho-
logical level. Improved therapy of neuropsychiatric diseases and tailored enhancements of
neurofeedback sessions are possible to increase the treatment efficiency.

9.7 Study and Chapter Conclusion

We presented an interactive three-dimensional real-time implementation of the sLORETA
algorithm which calculates a density distribution to estimate the electrical origin of brain
source activation. The usage of VR in medical areas has been investigated to estimate neu-
ronal impacts on the brain using EEG devices. Our implementation of sLORETA is used in
a user study to find out if it is possible to see visible changes in brain activation during a VR
session. The results show that changes in real-time can be observed when using VR scenes
as an input stimulus. The outcomes can be used to optimize medical treatment methods or to
identify neuropsychiatric diseases. Our visualization proves visible changes regarding brain
activation for different stimuli. We see this as a first step to create visualizations that can
be interpreted by non-expert users (RQ6). We believe that neurofeedback can be used for
the treatment of brain-related diseases like Alzheimer’s, epilepsy or attention deficit hyper-
activity disorders (ADHD). The use of our brain visualization as an analysis tool by doctors
can help to identify upcoming diseases or track the progression of existing diseases. The
collected dataset is hosted on Github7.

7 www.github.com/hcum/the-brain-matters - last access 2020-01-28
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Chapter10
Workload-Aware Reading Interfaces

No entertainment is so cheap as
reading, nor any pleasure so lasting.

Mary Wortley Montagu

Reading resembles an activity that interprets written text for pleasure or information con-
sumption. It is estimated that approximately 3,500 years B.C. were the first attempts of
written communication that took place. Reading and writing itself was reserved for a small
population of people. However, with the increase and availability of information daily, novel
reading techniques emerged to filter and consume relevant information. One such technique
is RSVP, a paradigm that displays text in a word-by-word manner to present information.
Instead of requiring readers to move their eyes to fixate on individual words whilst reading,
readers would fixate on the display center while the words of the targeted text would be
presented one after another at a chosen frequency [119]. Doing so enables full text to be ac-
curately presented on smartphones [142, 289], smartwatches [96, 97], or smart glasses [324],
in spite of the available display area (see Figure 10.1a) [154]. Furthermore, removing the
need to move one’s eyes and the ability to raise the rate of word presentation above one’s
normal reading speed allows for clear time-savings, which provide the opportunity to in-
crease the presentation rate for faster text processing. The primary display parameters of
most RSVP applications are Text Alignment and Presentation Speed [322]. This is either
fixed or adjustable to user preferences. Past research has shown that these two parameters
influence perceived workload and text comprehension [27, 64, 321].

The overall aim of RSVP is to gain more reading speed by aligning the readers’ eye fixa-
tion around an Optimal Recognition Point (ORP). Commercial applications, such as Spritz,
adopted the concept of ORPs where users can adjust various settings. This can reduce cog-
nitive load and result in better comprehension [234, 309], which is highly disputed in the
community [27]. Presentation Speed determines the rate of the presented words. Previous
research found that Presentation Speed is an individual factor that has to be adjusted ac-
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(a) (b)

Figure 10.1: (a): User reading on a device with small screen space. (b): Electroencephalog-
raphy determines the current level of cognitive workload for different Text Alignments and Pre-
sentation Speeds.

cording to reading ability, text content, and individual preference [70]. Choosing unsuitable
Presentation Speeds may have negative effects on the overall reading efficiency [68, 322].
For example, setting a high Presentation Speed may result in lower text comprehension and
text retention since less time is available to process the presented text. In contrast, setting
Presentation Speeds below the regular reading speed results in a loss of time. Since reading
speed is an individual factor, it is difficult for novice users to estimate their optimal Pre-
sentation Speed. While users can modify the Presentation Speed during RSVP to estimate
their preferred speed, the adjustment itself places additional workload on users which might
compromise their assessment. Hence, the selected Presentation Speed remains static during
the reading session. Given individual differences and variable user states for and throughout
an RSVP reading session of even a single user, it is worthwhile to investigate the viability
of developing a real-time measurement that could determine appropriate Text Alignments or
Presentation Speeds.

In this chapter, we investigate the use of EEG as a direct metric for information process-
ing whilst reading with RSVP with different Text Alignments and Presentation Speeds (see
Figure 10.1b). EEG allows for real-time measurements of a user’s brain activity with high
temporal resolution across different scalp locations [282]. While text comprehension and
subjectively perceived workload have previously been assessed with post hoc questionnaires
for evaluating RSVP applications [98, 324], we propose that EEG could serve as a direct,
implicit, and real-time measurement of cognitive workload during RSVP reading. This over-
comes many of the limitations of questionnaires, which include the need for an explicit mea-
surement phase as well as the mitigating influence of the user’s subjective self-evaluation
(e.g., perceived workload) or their prior knowledge of the read content (e.g., text comprehen-
sion). Here, we evaluate if EEG could feasibly be used to predict the individual current gain
in reading speed, text comprehension, and subjectively perceived workload. We report on a
user study that measures cognitive workload which is raised by the two RSVP parameters
Text Alignment and Presentation Speed using EEG. Thereby, EEG as a direct physiological
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measure to anticipate the current individual gain in reading speed, subjectively perceived
workload, and text comprehension using predictive models from regression analyses. Fi-
nally, we discuss how our results contribute to the evaluation of future novel RSVP designs
and how our findings can be used to select individual RSVP parameters based on cognitive
workload:

→ RQ7: How can RSVP reading parameters be selected based on cognitive workload?

This section is based on the following publications:

• Thomas Kosch, Albrecht Schmidt, Simon Thanheiser, and Lewis L. Chuang.
One does not Simply RSVP: Mental Workload to Select Speed Reading Pa-
rameters using Electroencephalography. In Proceedings of the 2020 CHI Con-
ference on Human Factors in Computing Systems, CHI ’20, New York, NY,
USA, 2020. ACM

• Thomas Kosch and Lewis L. Chuang. Investigating the Influence of RSVP
Display Parameters on Working Memory Load using Electroencephalography.
In 2nd International Conference on Neuroadaptive Technology, 2019

10.1 Related Work

We surveyed related research that investigated the impact of RSVP on the reading experi-
ence, performance, working memory, and engagement.

10.1.1 Reading using RSVP

Past researchers investigated how RSVP can be used to increase, control, or manipulate the
overall reading speed. While reading with RSVP, words are displayed word-by-word on a
fixed space. This is achieved by updating the currently displayed word with a fixed frequency
in a single-word-at-a-time notion [119, 393].

Using RSVP to read text is believed to increase the overall reading speed. Words are con-
stantly presented in the same visual field of view and thus neglect eye movements, that
require time, to jump from word to word [182, 315]. For example, Rubin and Turano [321]
compared the reading speed and comprehension between the regular reading of a single page
letter and previously calibrated RSVP speeds. Their findings show that RSVP speeds up the
reading process while maintaining a text comprehension similar to regular reading. How-
ever, the presented approach relies on a calibration method that requires users to read the text
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aloud. Based on the incorrect or correct reading, the RSVP speed was adjusted manually by
the experimenter.

Since RSVP presents a word at a time, it reduces display-related space restrictions that en-
able the representation of longer texts on devices with small screen space. For example,
RSVP has been successfully employed on mobile phones [289], smartwatches [96], and mo-
bile augmented reality devices [324]. Since the requirements and context for RSVP designs
differentiate between devices, the requirements for RSVP may be different depending on the
used device as well as on the user requirements [188]. For example, users may prefer slower
word representation speeds in a mobile scenario than in a static context. In the following,
we present related research that investigated relevant RSVP designs and their parameters to
provide suitable reading experiences.

10.1.2 Design of RSVP Parameters

RSVP reading operates by presenting single words or short phrases one after another. In
contrast to regular text reading, it removes the need for eye movements and controls the rate
at which text information is accessed by the reader. Past research was concerned with factors
that optimize the overall reading performance.

The centering of text and the rate of its presentation henceforth referred to as Text Alignment
and Presentation Speed respectively, can be argued to critical design parameters. A faster
Presentation Speed reduces the time it takes to read a document. Meanwhile, effective Text
Alignment ensures that the presented word or phrase is appropriately fixated by the reader
upon presentation without the need for eye movements. Thus, a factor for effective Text
Alignment is the fixation location of a word or sentence, where a large number of neighbor-
ing letters are visible to recognize the word in a short amount of time [49]. Some commercial
RSVP implementations (e.g., Spritz Inc.1) adopt an appropriate fixation location, also known
as an Optimal Recognition Position (ORP), to eliminate unnecessary saccades and minimize
eye movements. For instance, highlighting and centering words around their ORP can re-
duce the overall word processing time. However, reading with ORPs over longer periods
suppresses parafoveal processing, increases subjectively perceived workload, and elicits a
higher number of eye blinks which is an indicator for visual fatigue [27, 65]. Thus, Dingler
et al. [98] explored how alternative ORP representation, such as underlining ORPs instead
of coloring them, affect subjectively perceived workload and text comprehension. Although
no significant results in subjective workload and text comprehension were found between
underlined and colored ORPs, participants elaborated that they adjusted more quickly to
colored ORPs instead to underlined ORPs. An alternative approach that utilizes colors in
text representations is BeeLine Reader2. BeeLine Reader integrates color gradients within
text lines to save time during return sweeps. Beyond that, Russel and Chaparro [322] inves-
tigated how different font sizes affected RSVP reading compared to regular reading. They

1 www.spritzinc.com - last access 2020-01-28
2 www.beelinereader.com - last access 2020-01-28
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Figure 10.2: Word position alignment for each text representation. (a): Centered word posi-
tioning. (b): ORP-centered word without color. (c): ORP-centered word with color.

find that font sizes did not significantly influence text comprehension. However, participants
stated a preference for font sizes that were readable and did not strain their eyes.

Presentation Speed yields another critical RSVP design parameter. An effective Presen-
tation Speed has the potential to speed up reading times by accelerating the frequency of
displayed words. However, as Presentation Speed increases, less time is available to cogni-
tively process words. Previous studies found significant differences in text comprehension,
whereas text comprehension and Presentation Speed are correlated negatively [322]. Pre-
vious studies have confirmed that the preferred reading speed is a factor that depends on
individual preferences and text type [234].

10.1.3 Cognitive Processing during Reading

Reading elicits different strains of working memory regarding information retention. Dane-
man and Carpenter [88] revealed that reading performance and comprehension is individual
among users. A reader with poor processing and storage functions may retain information
for a shorter time compared to more experienced readers. However, at the cost of time,
readers that take more time to process information can increase their overall text compre-
hension [242].

Various researchers presented approaches to quantify the exert of working memory for dif-
ferent RSVP design parameters that mainly include Text Alignment and Presentation Speed.
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The awareness about the workload placed on readers enables to compare RSVP design pa-
rameters in terms of time-savings and information retention. For example, Dingler et al. [98]
presented the use of the NASA-TLX questionnaire [160, 161] to measure several facets of
experienced workload when reading with different RSVP design parameters. Further sub-
jective measures, such as the Continuous Subjective Workload Assessment Technique (C-
SWAT) [254], have been employed to measure the placed cognitive workload for various
RSVP parameters [140]. However, the aforementioned measures are susceptible to subjec-
tive biases. When comparing RSVP design parameters in a study, participants might suggest
a better reading performance due to previous knowledge about the presented text or lack of
recall regarding their performance during the self-assessment itself.

To overcome the previous gaps from subjective assessments, physiological measurements
have been proposed as an alternative to evaluating the suitability of RSVP design parame-
ters regarding reading and information retention performance. Oliveira et al. present how
EEG has been used to detect reading activity [285, 286, 287]. They incorporate several fre-
quency bands for each electrode to train a k-nearest neighbor classifier. However, they apply
their approach for regular text reading only and do not evaluate reading activity during dif-
ferent RSVP design parameters. A similar approach was taken by Yuan et al. [395], where
reading comprehension was evaluated instead of reading activity during regular reading.
Finally, Lees et al. [240] provide a literature review about RSVP and EEG. In their review,
they present past work that utilized an event-related potential-based brain-computer interface
paradigm during the RSVP of images and words for analysis or input. The aforementioned
research investigates frequency bands as an indicator of reading activity and comprehension.
Specific EEG bandwidths, such as the frontal theta bandwidth (4 Hertz to 8 Hertz) or alpha
bandwidth (8 Hertz to 12 Hertz), are correlated with executive cognitive functions and brain
resting states that whether synchronize (i.e., theta power increases) or desynchronize (i.e.,
alpha power decreases) when cognitive workload is raised [202].

Cognitive functions correlate with changes in the power of theta and alpha frequency bands
of EEG measurements. In particular, high alpha power is associated with the default mode
of a resting brain, which is exemplified by synchronized neural activity in the alpha band-
width [259]. Hence, cortical processing of perceived stimuli disrupts this default mode,
resulting in alpha-desynchronization that manifests as reduced alpha power. For instance,
inter-individual differences in alpha power have shown to reflect memory performance at the
occipital lobe [200]. In line with this, reading and text comprehension elicits lower alpha
power as reading requires cognitive resources to memorize recently read propositions, text
coherence, and information to put sentences into their context [80, 150]. The theta frequency
bandwidth, on the other hand, is related to executive functions and correlates negatively with
the default mode of a resting state [333]. An increase in theta power is indicative of focus or
higher task engagement [30] across vigilance, learning, and memory tasks. In the context of
the current work, high theta power is also prominent during the effective semantic processing
of language [22]. Thus, theta power is expected to rise with increasing language processing
activity.
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Some researchers also adopt the theta-alpha ratio [202] as a hybrid metric for cortical ac-
tivity that normalizes frontal theta power relative to alpha power. This entangles previous
findings of frequency bands on brain resting states (i.e., alpha) and semantic processing (i.e.,
theta) into a metric that expresses cognitive processing or engagement during reading. Thus,
a small theta-alpha quotient could correlate with low reading effort or no engagement in
reading at all while a large theta-alpha quotient can indicate high reading engagement or
increased cognitive demand.

10.1.4 Summary

Past research investigated how different settings of RSVP influence individual information
processing, working memory, and engagement. However, previous work did not address
how RSVP parameters can be implicitly evaluated without the need for individual user ad-
justments or reading interruptions, hence utilizing fixed RSVP reading parameters that do
not take the mental demand into account. We close this gap by presenting a study that inves-
tigates the impact on EEG measures from three different Text Alignments and Presentation
Speeds. We compare the alpha and theta bandwidth, subjective workload, and text com-
prehension of different RSVP parameter settings to regular reading and examine the placed
cognitive workload. Finally, we evaluate alpha and theta bandwidths as a predictive metric
for the current gain in speed relative to regular reading, subjectively experienced workload,
and text comprehension.

10.2 Study

We designed and conducted a controlled user study to evaluate the influence of the two
RSVP parameters Text Alignment and Presentation Speed on text comprehension, subjective
workload, and measured cortical activity. The experiment consisted of a repeated-measures
design comprising two factors with three levels each. They were Text Alignment (centered,
ORP, ORP with colored letter) and Presentation Speed in words per minute (WPM) (200
WPM, 350 WPM, and 500 WPM). Text comprehension, subjective workload, and cortical
activity (i.e., power in the theta and alpha frequency band) served as the primary measures
in our study. Comparisons are drawn to the baseline of normal non-RSVP reading from a
PDF document and across the test conditions. We describe the independent variables in the
following.

10.2.1 Text Alignment

RSVP can vary in terms of the alignment of presented words, relative to the display and
each other. A centered condition presented words within a bounding box that is centered in
the display (see Figure 10.2a). An ORP condition centered each word around the ORP (see
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Figure 10.3: (a): 32 electrode layout used in the experiment. The ground electrode was placed
on Fpz and the reference electrode on FCz. The red marked electrodes were used to analyze
alpha frequencies while the blue electrodes were used to analyze theta frequencies. (b): Time
difference of using RSVP compared to reading a PDF. Using 200 WPM slowed participants
down, while 350 WPM and 500 WPM accelerated the reading times. Hence, 200 WPM did not
provide effect time-savings compared to 350 WPM and 500 WPM. The error bars depict the
standard error.

Figure 10.2b). An ORP with colored letter condition colored the ORP red in addition (see
Figure 10.2c). This approach is similar to the algorithm employed by Spritz Inc. [27].

10.2.2 Presentation Speed

RSVP can vary in terms of how quickly they are presented measured in words per minute
(WPM). Three Presentation Speeds were chosen with equal intervals, namely 200, 350,
and 500 WPM. Previous work suggests that readers can understand RSVP content well at
200 WPM [68]. The conditions of 350 WPM and 500 WPM were chosen to investigate the
influence of higher Presentation Speeds on cortical activity, subjective workload, and cortical
activity [63, 352]. Hence, we hypothesized workload to increase with higher Presentation
Speeds, albeit not necessarily at the cost of reading comprehension.

10.2.3 Participants

We recruited 18 participants (7 females, 11 males; age M = 27, S D = 3.7). All participants
had a normal or corrected-to-normal vision and none of them reported a history of neurolog-
ical disorders. Two participants have used RSVP once before. Participants were recruited
through university mailing-lists. They received 15 Euro or lecture study points for their par-
ticipation. We removed one participant from our analysis due to technical difficulties during
the experiment.
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10.2.4 Apparatus and Stimuli

The study was conducted in a self-contained room with constant luminance throughout ex-
perimentation. The room was divided into two areas, a test area for the participant and
a control area for the experimenter. The experiment was controlled remotely with a laptop
while participants were presented with stimuli via an LCD monitor (Dell U2715H; 27 inches
diagonal; 2560 × 1440 pixel resolution; 60 Hertz refresh rate).

The reading distance approximated 50 cm from the participants’ head to the display. As
suggested by previous research, words were displayed with a font size that did not strain the
participants’ eyes to avoid confounding measures during the experiment [322]. These were
consistently 20 points during the PDF trial and 55 points during the RSVP trials. The font
size was adjusted to match a similar size relative to the screen resolution. EEG data was
collected using a 32 active gel electrodes wireless system (BrainVision LiveAmp3, Brain-
Products GmbH; bandpass: 0.1-1000 Hz, no notch filter). Electrodes were placed in accor-
dance to the International 10-20 layout (ground electrode: Fpz, reference electrode: FCz;
see Figure 10.3a). Before testing, the impedance of all electrodes was kept to less than 10
kΩ. EEG data was collected at the occipital and frontal lobe. Changes in alpha power at the
occipital lobe are associated with respective changes in brain resting states, where high alpha
power is associated with a distinct resting state. Respectively, low alpha power is associated
with low brain resting states [143]. Theta power is an indicator of task engagement [201]
when measured at the frontal lobe. Thereby, high theta power corresponds to high task en-
gagement whereas low theta power suggests the opposite. EEG data were annotated with
unique triggers for the start and end of the experiment as well as for each word presentation
according to the relevant test condition. We adopted a set of ten short excerpts from the book
Speed Reading: A Course for Learners of English [312, 324]. The presented excerpts had a
mean average of M = 547.9 words (S D = 3.7) and were accompanied by a unique set of ten
comprehension questions.

10.2.5 Procedure

Before testing, participants were required to perform some tasks to establish baseline mea-
sures. First, we derived the individual alpha frequency (IAF) by recording one minute of
resting-state EEG activity for when the participants’ eyes were opened and closed [201].
Next, we requested participants to read a one-page PDF text excerpt that was presented
all at once via a PDF viewer. With this, we established the baseline for each partici-
pants’ reading time and individual cortical activity. Ten comprehension questions and a
raw NASA-TLX questionnaire were conducted after each reading trial. Testing consisted of
nine RSVP presentation conditions which were counter-balanced according to the balanced
Latin square [76]. After each condition, participants were presented with ten questions that
tested for reading comprehension and a NASA-TLX questionnaire for evaluating subjective

3 www.brainproducts.com/productdetails.php?id=63 - last access 2020-01-28
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Figure 10.4: (a): Mean comprehension scores for the showed questionnaires. Increasing the
Presentation Speed reduces the number of correct answers and may impact the overall compre-
hension. The error bars depict the standard error. Brackets indicate significant differences. (b):
Mean raw NASA-TLX scores per condition. Less WPM induce less subjective compared to
higher WPM. The error bars depict the standard error. Brackets indicate significant differences.

workload [161]. The full study took approximately 90 minutes to complete. Briefing and
debriefing of the study purpose were performed before and after the study respectively. All
participants provided signed informed consent.

10.2.6 Data Preprocessing

Four seconds of data were removed from the beginning and end of each recording to remove
signals that are unrelated to cortical activity. The IAF bandwidth [201] was determined
for each participant based on the separate spectral analyses of the EEG recording when the
participants’ opened their eyes and closed them; the mean power around the maximum dif-
ference peak (±2 Hz) was submitted to a spatio-spectral decomposition filter [279, 310]. The
spatio-spectral decomposition derives the bandwidth power based on neighboring electrodes.
A decomposition of recordings maximizes the signal power of the chosen frequency while
simultaneously minimizing it at the neighboring electrodes, thus mitigating the appearance
of noise for frequencies outside the alpha frequency bandwidth. We performed a short-time
Fourier transform by dividing the signal into one-second slices with an overlap of half a
second. After estimating the IAF from each of those electrodes, we averaged the individ-
ual frequency band per electrode. This procedure was applied to the electrodes Pz, P3, P7,
O1, Oz, O2, P4, and P8 located at the occipital lobe [143]. (see Figure 10.3a). A similar
procedure was applied to extract theta power. The signal was filtered using a spatio-spectral
decomposition (5 ± 2 Hz). Again, a short-time Fourier transform was carried out by dividing
the signal into one-second slices with an overlap of half a second and were mean averaged
to obtain the final theta power. This procedure was applied to the electrodes Fp1, Fp2, F7,
F3, Fz, F4, and F8 (see Figure 10.3a).
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Parameter F p ω2

Reading Comprehension
Presentation Speed 3.68 .04 0.08
Text Alignment 0.85 .44 0.00
Text Align.×Pr. Sp. 0.60 .67 0.00

Subjective Workload
Presentation Speed 18.5 <.001 0.27
Text Alignment 1.39 .26 0.00
Text Align.×Pr. Sp. 1.02 .40 0.00

IAF Power
Presentation Speed 491.19 <.001 0.61
Text Alignment 2.37 .13 0.00
Text Align.×Pr. Sp. 2.48 .11 0.00

Theta Power
Presentation Speed 338.09 <.001 0.58
Text Alignment 1.00 .38 0.00
Text Align.×Pr. Sp. 0.42 .79 0.00

Table 10.1: Summary of the confirmatory ANOVA results.

10.3 Results

The RSVP test conditions provided three measurements for each participant that we submit-
ted for further analyses with a 3× 3 repeated measures analysis of variance (ANOVA) for
the factors of Text Alignment (centered; ORP; ORP with red color) and Presentation Speed
(200, 350, 500). They were reading comprehension, raw NASA-TLX workload score, and
IAF power. They respectively represented performance, subjective workload, and cortical
activity. A Shapiro-Wilk test did not reveal a deviation of normality from the measures
(p ≥ .05).

We adopted an alpha-level of 0.05 for statistical significance testing and report the ω2 for ef-
fect sizes of significant results. Greenhouse-Geisser corrections are reported when violations
of sphericity are detected. Post hoc Bonferroni-corrected tests were performed between test
conditions to investigate the significant main effect of Text Alignment. Planned linear con-
trasts were performed to understand significant main effects or interactions that included
Presentation Speed. Post hoc pair-wise comparisons to baseline measures, derived from
normal reading, was performed when applicable. A summary of the results can be found in
Table 10.1.

10.3.1 Time-savings of RSVP

To evaluate the time-savings of RSVP, we subtracted the normal non-RSVP reading times
of our participants from 200, 350, and 500 WPM. The mean reading time was 293.4 WPM
(S D = 59.3). Hence, the mean time-savings were -93.4 WPM, 56.6 WPM, and 206.6 WPM,
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Figure 10.5: (a): Normalized mean IAF band power per condition. Increasing the WPM yields
an increase in alpha power band while slower speeds elicits lower alpha powers. The error bars
depict the standard error. Brackets indicate significant differences. (b): Normalized mean theta
power per condition. Lower Presentation Speeds lead to higher theta power. The error bars
depict the standard error. Brackets indicate significant differences.

for the Presentation Speed levels of 200 WPM, 350 WPM, and 500 WPM respectively.
Figure 10.3b illustrates these time-savings. One-sample t-tests show that participants were
significantly slower at the Presentation speed of 200 WPM (t(16) = −6.69, p < .001,d =

−1.58) and significantly faster at 350 and 500 WPM (t(16) = 4.05, p < .001,d = 0.95; t(16) =

14.8, p < .001,d = 3.49), relative to their normal reading times.

10.3.2 Reading Comprehension

Reading comprehension was operationalized in terms of the number of correct answers out
of the ten questions that were posed during each questionnaire. Figure 10.4a illustrates the
mean number of correct answers per participant and condition. We found a significant main
effect for Presentation Speed with a medium effect size, whereas no significant effect was
found for Presentation Speed and Text Alignment×Presentation Speed.

10.3.3 Subjective Workload

The subjective workload was operationalized as raw NASA-TLX scores. Figure 10.4b shows
the mean averaged raw NASA-TLX for each condition. There was a significant main effect
of Presentation Speed with a large effect size. No significant effect was found for Presenta-
tion Speed and Text Alignment×Presentation Speed.
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IAF Theta
F p R R2 RMSE F p R R2 RMSE

Reading Speed Gain 3681.95 < .001 .980 .961 0.11 2266.56 < .001 .984 .968 0.10
Subjective Workload 25.24 < .001 .378 .143 20.88 28.95 < .001 .401 .161 20.66
Text Comprehension 7.47 .007 .217 .047 1.83 8.43 .004 .230 .053 1.82

Table 10.2: Results of the predictive models using a linear regression. All dependent variables
derive a significant regression equation (p < .05). The normalized IAF and theta powers are
reliable predictors for the current gain in reading speed according to the large R2 value and
low Root Mean Square Errors (RMSE). However, subjective workload and text comprehension
provide less accurate predictive models. Bold values represent the most efficient results.

10.3.4 Cortical Activity for Cognitive Workload

Cortical activity was operationalized in terms of the mean power within the IAF bandwidth
(ca. 10±2 Hz) and theta bandwidth (ca. 5±2 Hz). Deviations from resting-state EEG ac-
tivity result in lower alpha power and higher theta power [202, 199]. This is referred to
as alpha-desynchronization and theta-synchronization. This is a reliable classification fea-
ture for working memory [13], which describes the cognitive processing of information that
is kept in short-term memory. The alpha bandwidth, characterized by a unimodal peak in
spatio-spectral power, varies across individuals and age [201]. Thus, we determined the IAF
bandwidth for each participant based on their peak frequency value across the eyes-opened
and eyes-closed pre-test conditions. We defined ±2 Hz around the peak frequency as the
individual alpha band. The mean alpha peak was M = 9.5 Hz (S D = 1.95), which provides
a mean bandwidth of 7.5− 11.5 Hz. Since alpha and theta power are individual metrics
which are different among participants, we normalized the bandwidths by their individual
bandwidth power that is elicited during the PDF reading trial before aggregating the data.

IAF Power

There was a significant main effect for Presentation Speed with a large effect size. This
was a significant linear trend whereby IAF power increased with increasing Presentation
Speed. The main effect of Text Alignment and Text Alignment×Presentation Speed interac-
tion were not statistically significant. Figure 10.5a shows the normalized mean IAF power
for the employed Text Alignments and Presentation Speeds. Interestingly, the linear trend for
cortical activity contradicts the percept of our participants for subjective workload. The cur-
rent results suggest that there is less cognitive workload with increasing Presentation Speed
based on cortical activity. This raises the possibility that high Presentation Speed might
introduce subjective workload while restricting our participants’ neuro-cognitive ability to
process the presented words. To evaluate this possibility, we performed a post hoc tests to
find a significant effect between 200 and 350 WPM (t(16) = −21.77, p < .001,d = −5.28),
200 and 500 WPM (t(16) = −22.72, p < .001,d = −5.5) as well as 350 and 500 WPM
(t(16) = −20.45, p < .001,d = −4.96).
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Theta Power

The analysis of theta power results in a significant main effect for Presentation Speed with
a large effect size. No significant main effect was found for Text Alignment and Text Align-
ment×Presentation Speed. Similar to the analysis in the IAF bandwidth, a significant linear
trend presented here indicates the possibility to restrict the participants’ possibility to process
words. Figure 10.5b depicts the normalized mean theta power per condition.

Number of Eye Blinks

We counted the number of eye blinks to investigate if the number of eye blinks significantly
change with different Presentation Speeds. An increased number of eye blinks is an indicator
of visual fatigue [65] that could arise from different presentation speeds. Since eye blinks
introduce noise in EEG measures, we want to ensure that our EEG recordings result from
cortical activity and not from noise. We use Python MNE to automatically count eye blinks
using the electrodes Fp1 and Fp2 [361] to detect EOG artifacts using a threshold-based
approach which was set to 200µV . We found that 200 WPM elicited the highest number of
eye blinks (M = 44.88, S D = 33.12) followed by 350 WPM (M = 23.55, S D = 8.99) and
500 WPM (M = 18.8, S D = 7.6). Normalizing the results to blinks per minute shows 16.38
blinks per minute for 200 WPM, 15.04 blinks per minute for 350 WPM, and 17.16 for 500
WPM. Comparing each Presentation Speed using pairwise t-tests did not yield a significant
effect. Due to minimal differences in blinks per minute and non-significant differences for
each Presentation Speed, we do not assess distorted alpha or theta measures due to eye
closure.

10.3.5 Presentation Speed Compared to Regular Reading

The main effect of Presentation Speed was consistently significant across all three measures.
Therefore, we performed pair-wise comparisons between normal reading and the three levels
of Presentation Speed on each measure. The median score of the three Text Alignment levels
were treated as the representative score of the corresponding level. Subjective workload
was the only measure with significant differences, whereby the Presentation Speed of 350
and 500 WPM resulted in significantly higher values of subjective workload compared to
normal reading (t(16) = 4.06, p < .001,d = 0.96; t(16) = 7.35, p < .001,d = 1.73). There were
no significant differences between the Presentation Speed levels and normal reading for
reading comprehension and cortical activity. To summarize, the time-savings of RSVP at
350 and 500 WPM was associated with the cost of increasing subjective workload, without
significant improvements in reading comprehension or changes in cortical activity.
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10.4 Evaluating EEG as Predictive Metric

The results show significant differences in alpha and theta power for reading with different
Presentation Speeds. We evaluate the efficiency of models that utilize EEG frequency bands
to predict current gains in reading speed, subjective workload, and text comprehension using
a linear regression analysis.

10.4.1 Independent and Dependent Variables

We use the IAF and theta power as independent variables for the regression analysis. Sim-
ilar to the previous analysis and to mitigate person-dependent differences in the alpha and
theta bandwidths, both bandwidths are normalized relative to the full-text baseline reading
trial. For each RSVP condition concerning Presentation Speeds and Text Alignments, we
calculated the mean bandwidth for the IAF and theta power for each RSVP reading trial.
This resulted in nine data points for each bandwidth and each participant. Hence, a total of
153 data points were used to fit a function for the IAF and theta power. We use these data
points to evaluate a predictive model using linear regression to evaluate the forecasting effi-
ciency for the current gain in reading speed relative to the full-text reading trial, subjectively
perceived workload, and text comprehension.

10.4.2 Predictive Performance

We describe the results of the regression analysis in the following. We report the significance
of the regression equations and the accuracy of the fitted model. A summary of the results
can be obtained from Table 10.2.

A significant regression equation was found for gains in reading speed (F(1,151) =

3681.95, p < .001,R2 = .961) with a linear trend for increasing Presentation Speeds and IAF
power. In contrary, theta power resulted in a significant regression equation (F(1,151) =

2266.56, p < .001,R2 = .968), where theta power shows a decreasing linear trend with higher
Presentation Speeds. This indicates a strong linear trend between the EEG frequency bands
and gains in reading speed as suggested by the previous results. Similarly, a significant
regression equation (F(1,151) = 25.24, p < .001,R2 = .143) between increasing raw NASA-
TLX scores and IAF power was confirmed. Furthermore, we find a significant regression
equation (F(1,151) = 28.95, p < .001,R2 = .161) between decreasing theta power and in-
creasing raw NASA-TLX scores. However, the low R and R2 scores show that the variance
of the raw NASA-TLX scores is large, thus indicating a low predictive performance. Finally,
we apply the same regression analysis for the text comprehension scores. Again, this results
in a significant equation (F(1,151) = 7.47, p = .007,R2 = .047) with decreasing text compre-
hension for increasing Presentation Speeds. Theta power also shows a significant equation
(F(1,151) = 8.43, p < .001,R2 = .161), where text comprehension decreases with decreasing
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Figure 10.6: (a): A linear regression of the normalized IAF power results in an efficient pre-
diction for gains in reading speed. The green line denotes the regression function. The colors
resemble the Presentation Speed. (b): A linear regression of the normalized theta power re-
sults in an efficient prediction for gains in reading speed. The green line denotes the regression
function. The colors resemble the Presentation Speed.

theta power. Similar to the raw NASA-TLX scores, the R and R2 denote large variances
among the data points and, therefore, a low predictive performance.

10.4.3 Towards a General Model for Predicting Reading Speed

The IAF and theta power show a strong linear trend regarding the current gain in read-
ing speed. These results suggest a functional relationship between gains in reading speed
and the employed EEG frequency bands that generalize to the individual user, hence ob-
viating a dedicated calibration phase. First, we averaged the Presentation Speeds for each
Text Alignment, resulting in 51 data points for all participants. We then performed a leave-
one-participant-out validation between gains in reading speed and the measured frequency
bandwidths. More specifically, we iteratively derived a linear regression model using all
participants except one and used the remaining one for the validation. This resulted in a low
averaged error rate for the IAF (RMSE = 0.12, R2 = .94) and theta (RMSE = 0.11, R2 = .97)
power, indicating that the model fits interpersonal differences that may not require individual
user calibration. Figure 10.6 shows the regression lines for the IAF and theta power relative
to the gains in reading speed for each participant and each Presentation Speed.
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10.5 Discussion

We conducted a study to investigate the influence of Text Alignments and Presentation
Speeds on text comprehension, subjective workload, and cortical activity. Our results show
that time-savings are achieved from the Presentation Speeds of 350 WPM onwards which
corresponds with increased alpha power and decreased theta power in EEG. Faster Presen-
tation Speeds significantly increases subjective workload and impairs text comprehension.
Interestingly, Text Alignment did not influence any of our measurements. Thus, it is clear
that Presentation Speed will continue to be a limiting factor. Until this is resolved, spatial
factors such as the ideal presentation of text, which includes font readability could be rela-
tively less important and should only be considered after optimizing Presentation Speeds. It
is worth noting that Text Alignment could have minimal impact on wearable displays, which
are small and unlikely to subtend to a larger visual angle than the fovea (i.e., 2◦). Thus, we
focus on the implications for Presentation Speeds on future developments of RSVP readers.

10.5.1 Cognitive Workload of RSVP

Our results show that the physical manipulation of Presentation Speeds does not simply
bring gains in reading speed. It has a notable impact on our limited capacity for information
processing at the cortical level. While 350 and 500 WPM induced significant gains in reading
speeds, relative to regular reading, this was accompanied by a significant cost in subjective
workload as well as comprehension scores. These performance findings agree with previous
findings [322]. We show that this is measurable in terms of EEG correlates with established
cognitive processes, whereby higher Presentation Speeds commensurate with reduced work-
ing memory and engagement as respectively measured by IAF and theta power [317]. At 200
WPM, our participants were forced to read slower than their regular speed, which increased
text comprehension scores that were commensurate with the EEG correlates of higher work-
ing memory load and engagement [317]. Thus, we show that physical manipulation of the
speed of RSVP readers exerts an influence on how we process information for comprehen-
sion that can be measured with EEG. Thus, we show that ongoing measurements of cortical
activity can reliably indicate the rate at which we can process and comprehend presented
stimuli. In many cases, it could be desirable to manipulate RSVP speeds to facilitate infor-
mation processing, in a way that could be verified by EEG measurements, as long as fast
reading is not a pressing requirement.

10.5.2 Evaluating EEG as Measure for Predictive Models

We use the mean power in the IAF and theta bands to predict gains in reading speed, sub-
jective workload, and text comprehension scores. We found that only gains in reading speed
could be reliably predicted with both IAF and theta power. This implies a linear relationship
between Presentation Speeds and the measured IAF and theta bandwidths. This forecast
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can support the dynamic selection of RSVP parameters according to the current context
(i.e., reading in private or mobile spaces, reading a novel or a scientific article) to maxi-
mize time-savings, supporting the development of adaptive brain-computer interfaces. In
contrast, subjective workload and text comprehension were not reliably associated with our
EEG measurements. Non-linear models might be necessary to estimate subjective workload
and text comprehension, given that NASA-TLX questionnaires are susceptible to differences
in subjective perception.

10.5.3 Real-Time Assessment of RSVP Parameter Selections

EEG affords high sampling rates and can be employed as a real-time indicator for the evalu-
ation of RSVP reader designs [116]. Since RSVP can be ubiquitously employed on devices
with limited screen space, the reading performance can be evaluated in short time frames
using EEG. Our predictive model shows that workload-aware computer interfaces can im-
plicitly sense the current gain in reading speed depending on the bandwidth powers relative
to a reading baseline. The Presentation Speed can be adjusted to a suitable reading level
depending on the current level of cortical activity. Adaptive RSVP Presentation Speeds can
then be deployed on-the-go, where textual information is available at refresh rates suitable
for mental processing. With the ubiquitous availability of RSVP-enabled devices, baselines
of regular reading speeds can be collected in any context to evaluate the current RSVP read-
ing speed using EEG. RSVP systems can then dynamically select Presentation Speeds which
implicitly suits the users’ reading ability.

10.5.4 Limitations

The current study has several design limitations. We limited our manipulations to three
Presentation Speeds. Therefore, it is not clear how cortical activity is affected for slower
Presentation Speeds than outlined in the study. However, due to our findings, we expect a
similar engagement of mental resources for slower Presentation Speeds. Furthermore, the
comprehension tests may be confounded by knowledgeable participants who were aware
of the answers without reading the text. Although we made sure that the participants were
not knowledgeable about the used text excerpts, we can not exclude the use of common
knowledge during the tests. Finally, our sample consisted of people who exclusively did not
use RSVP regularly. Therefore, our results only confirm the observed effects of non-trained
RSVP users.

10.5.5 Outlook

Although our findings show the feasibility of relying on EEG measurements to predict gains
in reading speed. Any gains due to Presentation Speed depends on the baseline reading
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speed of the individual user. Being able to predict gains means that RSVP readers can
adaptively determine the tradeoff of reading speed gains to ensure that Presentation Speed
is maintained at a level that allows for meaningful text comprehension. Aspects, such as
mobile use, reading interruptions, outdoor scenarios, or different viewing postures have to
be determined before RSVP-based brain-computer interfaces can be implemented in a way
that allows for good signal acquisition. These are open research questions that were not
addressed in our experimental design. However, our findings provide a first step towards
the adaptive selection of Presentation Speed for RSVP readers, which would need to be
manually determined otherwise.

10.6 Study Conclusion

We present a user study that investigates the cognitive workload raised by the RSVP design
parameters Text Alignment and Presentation Speeds using Electroencephalography (EEG).
We find that a Presentation Speed of 350 WPM increases the reading speed compared to
regular reading while preserving a similar level of cortical activity and text comprehension.
However, faster Presentation Speeds increase the subjectively perceived workload with a
decrease in the overall text comprehension and cortical activity. No effect was observed
for different Text Alignments, making Presentation Speed the critical design parameter that
needs to be optimized first before modifying Text Alignments. Due to linear trends in the
EEG measures and Presentation Speeds, we perform a linear regression analysis to evaluate
the robustness of predictive models for gains in reading speed, subjective workload, and text
comprehension. While we find that the current individual gains in reading speed can be re-
liably forecasted using EEG, subjective workload and text comprehension are less suitable
variables for reliable predictions. Our results show that future RSVP interface designer ben-
efit from the presented approach to design workload-aware user interfaces that dynamically
select RSVP parameters to suit the individuals’ cognitive workload using EEG measures.
We publish the data set to foster and encourage research in this area4.

10.7 Chapter Conclusion

In this chapter, we investigated if EEG provides suitable metrics to assess cognitive workload
during information consumption. Thereby, we were able to derive a predictive model that can
predict the current gain in reading speed using EEG metrics. This enables an approximation
of the reading speed towards the workload that is elicited during regular reading.

The human mind possesses a limited capacity for attention and working memory. These two
factors can change during a reading session. During tedious passages of a manuscript, the
attention level can go down, hence being a marker for annotating the displayed text as unread

4 www.github.com/hcum/one-does-not-simply-rsvp - last access 2020-01-28
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and slowing down the reading speed. In contrast, exciting or easy parts of a manuscript can
be sped up to increase the information processing capacities. The individual circadian cycle
is a variable that contributes as well to this circumstance. Different reading performances
can be expected when reading at different times. Thus, a method for setting adaptive reading
speeds benefits the user. To answer RQ7, we conducted a study that utilized EEG as a
real-time measure to evaluate different RSVP parameters. Going a step further towards
workload-aware interfaces, we evaluate a predictive model that uses EEG bandwidth powers
to efficiently forecast the current gain in reading speed.

In conclusion, there is a tradeoff between reading speed and comprehension. In this chapter,
we found that faster reading speeds provide time-savings although text comprehension is
negatively affected. This is not detrimental per se since the human mind is efficient in filter-
ing and discarding irrelevant information. Workload-awareness can be used to proactively
regulate the users’ current cognitive state and match the optimal RSVP reading mode.
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Chapter11
Conclusion and Future Work

Here on this road of no release
Pale reign of misery
That even time cannot erase
On through my sorrows
Life will go on

André Olbrich, Hansi Kürsch

In this thesis, we investigated how workload-aware systems can sense and utilize mental
demand to provide cognitive assistance. Cognitive workload serves as an extrinsic modal-
ity which represents an additional dimension in the paradigm of context-aware computing.
Such workload-aware interfaces are envisioned in the domain of assistive computing where
cognitive workload is sensed and “offloaded” to a system. Through a series of lab stud-
ies and field experiments, we explored opportune moments for diurnal cognitive assistance,
evaluated EEG and eye tracking metrics as a measure for cognitive workload, and showcased
several applications that benefit from real-time workload measurements. We provide a sum-
mary of the presented contributions and implications of this thesis as well as the limitations
and future work in the following.

11.1 Summary

With the recent information growth and rising availability of ubiquitous computing systems,
devices are competing for our attention and cognitive capabilities with regards to indirect
as well as direct interaction. However, cognitive resources that map human cognition, such
as working memory, are generally limited by the speed at which we can memorize infor-
mation in the short-term memory, process or modify it, and provide the respective output
(e.g., phonological loop) [13]. If too many information chunks have to be remembered, the
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cognitive system cannot keep up with additional incoming stimuli and information, and the
likeliness of human errors and cognitive exhaustion rises. Hence, the treatment of the avail-
able cognitive resources is a crucial component to consider when designing workload-aware
interfaces.

In Chapter 3 we started to investigate how cognitive assistance can be delivered regarding
opportune moments that require cognitive assistance and pointed out potential strategies for
cognitive assistance during a cooking session. Posing the question “What are the design
requirements for systems that provide opportune cognitive augmentation?” (RQ1) we con-
ducted a qualitative inquiry in a living facility sheltering persons with cognitive impairments.
This user group is used to report the need for cognitive assistance at every opportunity to
avoid dangerous situations and injuries. These explicit statements allowed us to analyze a
series of observations of a cooking process and conduct interviews with caretakers. This
resulted in five design implications for future assistive computing systems that provide cog-
nitive support. Thereby, persons with cognitive impairments revealed their need for cog-
nitive assistance explicitly. After becoming aware of how users encounter situations that
require cognitive assistance, we investigated the research question “What are suitable in-situ
feedback modalities for cognitive support?” (RQ2). We evaluated three in-situ feedback
modalities regarding their acceptance as well as perception assuming that visual, auditory,
and tactile sensation represent primary sources of information consumption. Using an as-
sembly task designed to provoke errors, we studied the acceptance of visual, auditory, and
tactile in-situ feedback. Visual in-situ feedback provided the highest user preference and
performance in terms of task completion time and the overall number of errors. This was
followed by auditory and tactile feedback, indicating a clear preference for visual feedback.
This is potentially linked to the visual attention capabilities of humans which are respon-
sible for recognizing up to 80% of the presented information. Hence, notifying users and
augmenting interfaces visually anticipates the highest benefit for cognitive support.

Chapter 3 and Chapter 4 provide us with situations that elicit the need for cognitive augmen-
tation and their potential feedback modalities. These can be used to augment or “disaug-
ment” the user depending on the current level of perceived cognitive workload level. Our
prior approach required users to actively state their need for cognitive assistance. However, it
is still unclear when cognitive assistance should be provided without stating an explicit need
for it. Post hoc measures, such as questionnaire-based methods, provide measures for cogni-
tive demand but lack real-time insights and are susceptible to subjective biases. To address
this issue, we investigated objective EEG and eye tracking metrics as a real-time indicator
for cognitive demand. With the research question, “Does electroencephalography provide
measures of cognitive workload for user interface evaluation?” (RQ3) we investigated EEG
signals emitted by the human brain as a direct physiological measure for cognitive workload.
During an assembly task with two different instruction modalities, where both varied in their
difficulty, we found that EEG is a suitable real-time measurement modality for working
memory assessments. Hence, the cognitive workload generated by an interface can be syn-
chronized with the user interaction to reveal user interface designers which aspects of their
interface design induces workload. Finally, a system can use this measure to provide real-
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time interface adjustments. However, EEG headsets are required to be body-worn. Thus,
we further investigated eye gaze properties for cognitive workload assessment. Contrary to
EEG, eye gaze can be recorded contactless without the need for body-worn sensors. In this
context, we leverage eye gaze to investigate the research question “Do eye gaze metrics en-
able the classification of cognitive workload states?” (RQ4). First, we exploited changes
in smooth pursuit eye movements during different levels of cognitive workload. We found
that changes in eye movements can be efficiently measured between different task difficul-
ties. Hence, a SVM-based classifier revealed a classification accuracy of 99.5% for person-
independent classification between two workload states and a 84.5% person-dependent clas-
sification accuracy between four workload states using smooth pursuit eye movements. This
shows that eye movements are a suitable indicator for different workload levels. We show-
case use cases that may exploit natural eye movements to estimate workload states. Since
situations exist that do not allow the integration of moving objects to elicit smooth pursuit
eye movements, we extended our research to pupil diameter measures. Since changes in
pupil dilation inform about cognitive workload states, we leveraged a math multiplication
task to induce workload. Using a SVM-based classifier, we presented an adaptive system
that alternates between simple and difficult task complexities based on the pupil diameter
alone. We assess that an adaptive system enhances the overall task engagement while re-
ducing the experienced frustration. The presented approach indicates the viability of using
physiological sensing for implicit workload-aware measures.

The last part of the thesis looks at potential applications which make use of the prior pre-
sented research. We learned that visual in-situ feedback during a cooking session may help
persons with cognitive impairments for autonomous meal preparation. We designed and pre-
pared an assistive system that utilizes visual and auditory feedback to support people with
cognitive impairments through a cooking process, thus investigating the research question
“Does in-situ feedback provide cognitive support during a cooking task?” (RQ5). A two-
week case study in a sheltered living facility was carried out where tenants with cognitive
impairments cooked with caretakers and the assistive system. Although being slower using
visual in-situ feedback, the tenants appreciated being able to independently prepare their
meal through cognitive assistance. This underpins the physiological user interface evalua-
tion pipeline presented in Chapter 5. However, the interpretation of complex physiological
data can become overwhelming for inexperienced users, posing the research question “How
can complex physiological signals be visualized to be utilized by non-expert users?” (RQ6).
We developed and evaluated a visualization that displays the generation of brain activity
inside the brain. Such visualizations are suitable to understand how stimuli affect the gen-
eration of cortical activity and, to this end, the impact of neurofeedback loops on neuronal
processes. Finally, we investigated how cognitive workload is affected by different RSVP
reading parameters. Since the RSVP parameter space is large in terms of Presentation Speed
and Text Alignments, we pose the question “How can RSVP reading parameters be selected
based on cognitive workload?” (RQ7) using EEG. The results of the study show that larger
Presentation Speed increases the subjectively perceived workload while decreasing cortical
activity. However, different Text Alignments did not show significant changes in cognitive
workload, making Presentation Speed the sole critical factor. A predictive model using a
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regression analysis shows that the results are applicable when predicting the current reading
speed.

11.2 Contribution and Results

During this thesis, we followed an experimental approach to answer seven research questions
that investigated how ubiquitous computing technologies can be used to sense cognitive
workload to tailor task engagement while avoiding frustration and boredom. In the following
we will briefly summarize the three key contributions:

11.2.1 Identifying Opportune Moments for Cognitive Assistance

Our studies in Chapter 3 and 4 showed how and when cognitive assistance is required during
the accomplishment of daily routine tasks. Phases that require constant attention might be
prone to user-related errors, increase the likeliness for injuries, and deteriorate the concen-
tration level. Such situations render opportunities for visual, auditory, or tactile feedback
to alert and notify users. After encountering a favorable moment for cognitive assistance,
our results revealed that visual feedback was most preferred followed by auditory and tactile
feedback (see Chapter 4). We evaluated visual in-situ feedback during a cooking scenario
and found that mental workload is decreased on a cognitive and behavioral level (see Chap-
ter 8).

11.2.2 Methods for Quantifying Cognitive Workload

We investigated eye tracking and EEG as sensing modalities for cognitive workload detec-
tion. We investigated EEG signals as an implicit marker for cognitive workload (see Chap-
ter 5). Thereby, EEG showed a clear distinction of workload states between two assembly
instruction designs. We describe a method that analyzes deviations in smooth pursuit eye
movements to reliably classify different levels of cognitive workload on a person-dependent
and person-independent basis between 88.1% and 99.5% (see Chapter 6). Further investiga-
tions showed that the pupil diameter is a pivotal indicator for cognitive workload. Finally, we
employed a math task with two task difficulties to show that classifications between 64% and
99% can be achieved (see Chapter 7). However, person-dependent differences and changing
lighting conditions are biasing factors that are subject to future research when classifying
based on pupil dilation. This resulted in physiological design pipelines to implicitly assess
cognitive workload in real-time and rich data sets that pave the way for future research in
this area.
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11.2.3 Tools for Workload-Aware User Interfaces

After showcasing workload sensing methods, we presented use cases and their reference
implementations for workload-aware systems. Specifically, we evaluated the validity of
a physiological evaluation pipeline in Chapter 5, self-awareness through visualizations in
Chapter 9, and potential interfaces that adapt to cognitive workload levels in Chapter 10.
Hence, ubiquitous systems are evaluated by physiological measures with complementary
physiological feedback. This tailors cognitive engagement to the individual user. With these
results in mind, we presented a visualization to foster self-awareness regarding the perceived
cognitive workload and present predictive models that can be used by future RSVP reading
interfaces for automatic parameter selection. Complemented by the data sets presented in
the Chapters 5, 6, 9, and 10 as well as a reference implementation of an assistive system in
Chapter 8 we share tools for the development of further workload-aware systems.

11.3 Limitations

Throughout our studies, we have employed empirical approaches to answer the stated re-
search questions. We initially conducted lab studies (e.g., assessing mental load through
physiological sensing) before applying our methods within in-the-wild deployments. This
was necessary to isolate confounding variables that might have influenced the validity of
our results. After confirming the results, we transitioned our prototypes and methods into
in-the-wild deployments. However, this transition resulted in the loss of control for variables
that might lead to different results depending on the environment and individual user.

During our studies, we involved persons with cognitive impairments. These were included
in the design process of workload-aware user interfaces since they explicitly require the
need for cognitive assistance and supervision. The perception of task difficulty and support
modality depends on the level of cognitive impairment. To investigate this, we included
a large variety of cognitive impairments (i.e., ranging from mild cognitive impairments to
autism and Trisomy 21). Here, we did not investigate how individual cognitive impairments
perceive the design of the presented interfaces.

We employed physiological sensing to sense cognitive workload states. Such measures en-
able automatic activation of assistive functions. While these can provide cognitive augmen-
tation to support efficient task accomplishment, unsuitable assistance can be detrimental for
the user experience. We assess EEG and eye tracking as an efficient marker for cognitive
workload estimation in real-time. However, the analyzed features and space of physiologi-
cal modalities presented in this thesis are far from exhaustive. The combination of multiple
sensors for additional physiological responses may provide different results based on the
used modalities. Another limitation is the susceptibility of noise during physiological sens-
ing. Our studies were conducted in controlled lab environments to minimize noise. While
this supports the validity of our results, we are not yet able to confirm similar results within
in-the-wild settings. Thus, this is considered as part of future work.
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Finally, individual differences in cognitive constitution and physiological responses vary per
individual. While some approaches showed robust classification for cognitive workload (see
Chapter 6), they are limited to the classification of two workload states (i.e., binary clas-
sification). The fine-grained distinction of workload states often requires calibration to the
individual user. While this might be acceptable in private spaces, interaction in public spaces
(e.g., interaction in the context of smart cities) benefits from immediate and calibration-
free interaction. However, we believe that with the further integration of sensing devices
(e.g., smartphones) and ubiquitous activity tracking (e.g., fitness trackers) implicit calibra-
tion without the users’ awareness will be possible.

11.4 Future Work

This thesis presented design implications, sensors, and applications for systems that utilize
workload as input for user interaction. While we focus on the design and the measurement
modalities to support workload-related tasks, our methods can be transferred to numerous
applications. In the following, we present future research that can be continued by picking
up the topics presented in this thesis.

The use of machine learning provides a huge potential for classifying cognitive states in real-
time. The presented methods are far from exhaustive and advanced methods, such as deep
learning, become common to automate the extraction of features from physiological data.
Functional Brain Networks (FBNs) [293] and Convolutional Neural Networks (CNNs) [348]
are becoming popular methods for robust human state classification regardless of individual
differences in cognition. However, the scarce availability of efficient methods for classifica-
tion through deep learning and the need for huge amounts of data are a problem and provide
possibilities for future research which includes the combination of sensors to enhance the
overall classification performance. With the computing power available nowadays, these
research topics can be picked up immediately.

The integration of physiological sensing into devices such as smartphones or fitness trackers
has become a trend in the last few years since physiological sensors became smaller in size
and are seamlessly integrated into wearables. This rise in devices that collect physiological
data is credited to the increased acceptance of users to share their physiological data for
certain benefits. For example, in the context of fitness trackers, activity data is shared for in-
sights into health and activity states. After researching the area of learning the physiological
behavior of humans, wearable devices require a seamless integration into the user’s internal
or external environment. Research on the unobtrusive integration of physiological sensing
into the users’ environments represents a major research question that can be picked up in a
mid-term time horizon, i.e., between three to five years.

Finally, ethics and user acceptance pose another important aspect of future workload-aware
interfaces. With systems that can “gaze” into our cognitive states and mind, responsible
handling of the underlying data and their interpretation must be established. Context-aware
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devices communicate sensitive data with vendors to enhance the user experience. Cognition
represents such an additional sensitive variable where its availability to third parties should
be carefully considered. This research area requires a reliable physiological workload model
of the user with hardware that is already able to reliably sense physiological signals. There-
fore, we expect this research to be picked up in the long-term horizon, i.e., ten years from
now.

11.5 Final Remarks

With more and more tools becoming available to support our cognition, the question of what
happens when removing the tool remains: Do humans depend on their tools for cognitive
support? Can they still cope with daily chores when these tools are removed?

Technologies strive to make difficult tasks easier for humans, whether it be on a physical or
mental level. Douglas Engelbart [111, 112] elaborated in the 60s that technologies will play
a pivotal role in augmenting the human intellect. Removing these tools will likely result in
the use of support mechanisms that have been used before. This includes the integration of
objects in the environment which is known as active externalism [75], a concept that has ac-
companied humankind throughout history. Support for working memory was once achieved
by, for example, using fingers to count or memorization of road forks for navigation. While
most of these tasks were substituted by technologies, a symbiosis between the environment
and technology still exists. We believe that technologies make humans more efficient by
combining computing efficiency with human flexibility. While these advantages are likely to
fade away when removing such tools, humans will compensate for this lack of skill by other
means.

A final remark remains on the ethical aspects of workload-aware systems that rely on phys-
iological data collection. What are the caveats to consider assistive technologies that gaze
into the mind?. Ubiquitous technologies, in general, collect huge amounts of data to provide
benefits to the user. Including workload-awareness into a system extends the already large
data collection corpus. This data analysis intends to provide a benefit at a certain cost. For
example, the benefit might be an enhanced user experience at the cost of data sharing. In
particular, physiological data that is transferred to third parties enables the derivation of pat-
terns regarding, health, intellect, cognition, or stress levels. Transparent data collection and
processing pipelines need to be disclosed by the respective stakeholders. The responsibility
lies in the collecting institution to follow the guidelines of modern ethics [403] that inform
and protect the user.
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