11 research outputs found

    Toward tactilely transparent gloves: Collocated slip sensing and vibrotactile actuation

    Get PDF
    Tactile information plays a critical role in the human ability to manipulate objects with one\u27s hands. Many environments require the use of protective gloves that diminish essential tactile feedback. Under these circumstances, seemingly simple tasks such as picking up an object can become very difficult. This paper introduces the SlipGlove, a novel device that uses an advanced sensing and actuation system to return this vital tactile information to the user. Our SlipGlove prototypes focus on providing tactile cues associated with slip between the glove and a contact surface. Relative motion is sensed using optical mouse sensors embedded in the glove\u27s surface. This information is conveyed to the wearer via miniature vibration motors placed inside the glove against the wearer\u27s skin. The collocation of slip sensing and tactile feedback creates a system that is natural and intuitive to use. We report results from a human subject study demonstrating that the SlipGlove allows the wearer to approach the capabilities of bare skin in detecting and reacting to fingertip slip. Users of the SlipGlove also had significantly faster and more consistent reaction to fingertip slip when compared to a traditional glove design. The SlipGlove technology allows us to enhance human perception when interacting with real environments and move toward the goal of a tactilely transparent glove

    Sinyal Elektrik untuk Memperkaya Pengendalian Robot Jarak Jauh

    Get PDF
    A remote control operator enables a robot to perform in a hazard or area which can not be reached by humans. To control the robot, several researchers have equipped a robot with a system which can give others types of feedback information, besides of visual feedback from the robot. One of the feedback types is haptic feedback. The aim of this feedback is to make the operator become immersed with the robot. The existing researchers are using electro-mechanics system. However, these systems are complex, bulky, and hence prevent a seamless embodiment between an operator’s body. The objective of this research is to develop a haptic feedback system combined with stereo vision feedback which compact, versatile and easy to fit. This system is tested to accomplish the task using mobile robot and robot arm. The result shows that this system can help the operator to control robot better

    Electro-tactile feedback system for achieving embodiment in a tele-operated robot

    Get PDF
    Tele-operation can enable an operator to control a robot remotely in inaccessible and hazardous environments. However, controlling a robot remotely via a conventional monitor and control panel can be difficult and slow. To achieve faster and more dexterous operation of the robot, enhanced 3D perception and some form of tactile or neural feedback is needed to achieve some degree of embodiment within the robot\u27s physical structure and world. To achieve this objective we have devised an immersive tele-operation system comprised of a stereo vision headset and an electro-tactile feedback system that is worn by the operator, connected to stereo cameras and various sensors mounded on the robot. This arrangement enables the remote operator to see in 3D what the robot sees and experience what the robot feels via electro-tactile feedback in response to hand gesture based control actions. We provide experimental results showing how our tele-operation system can enable the operator to achieve better control of a mobile robot via a sense of being partially embodied within the robot

    A forearm controller and tactile display

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (leaves 187-192).This thesis discusses the design and implementation of ARMadillo, a simple virtual environment interface in the form of a small wireless device that is worn on the forearm. Designed to be portable, intuitive, and low cost, the device tracks the orientation of the arm with accelerometers, magnetic field sensors, and gyroscopes, fusing the data with a quaternion based Unscented Kalman Filter. The orientation estimate is mapped to a virtual space that is perceived through a tactile display containing an array of vibrating motors. The controller is driven with an 8051 microcontroller, and includes a BlueTooth module and an extension slot for CompactFlash cards. The device was designed to be simple and modular, and can support a variety of interesting applications, some of which were implemented and will be discussed. These fall into two main classes. The first is a set of artistic applications, represented by a suite of virtual musical instruments that can be played with arm movements and felt through the tactile display, The second class involves utilitarian applications, including a custom Braille-like system called Arm Braille, and tactile guidance. A wearable Braille display intended to be used for reading navigational signs and text messages was tested on two sight-impaired subjects who were able to recognize Braille characters reliably after 25 minutes of training, and read words by the end of an hour.by David Matthew Sachs.S.M

    Sinyal Elektrik untuk Memperkaya Pengendalian Robot Jarak Jauh

    Full text link

    Design and development of new tactile softness displays for minimally invasive surgery

    Get PDF
    Despite an influential shortcoming of minimally invasive sugary (MIS), which is the lack of tactile feedback to the surgeon, MIS has increasingly been used in various types of surgeries. Restoring the missing tactile feedback, especially information which can be obtained by the palpation of tissue, such as detection of embedded lump and softness characterization is important in MIS. The present study aims to develop tactile feedback systems both graphically and physically. In graphical rendering approach, the proposed system receives signals from the previously fabricated piezoelectric softness sensors which are integrated with an MIS grasper. After processing the signals, the tactile information is displayed by means of a color coding method. Using the graphical images, the softness of the grasped objects can visually be differentiated. A physical tactile display system is also designed and fabricated. This system simulates non-linear material properties of different soft objects. The system consists of a linear actuator, force and position sensors and processing software. A PID controller is used to control the motion of a linear actuator according to the properties of the simulated material and applied force. Graphical method was also examined to render the tactile information of embedded lumps within a soft tissue/object. The necessary information on the size and location of the hidden features are collected using sensorized MIS graspers. The information is then processed and graphically rendered to the surgeon. Using the proposed system surgeons can identify presence, location and approximate size of hidden lumps by grasping the target object with a reasonable accuracy. Finally, in order to determine the softness of the grasped object, another novel approach is taken by the design and fabrication of a smart endoscopic tool equipped with sensors for measuring the applied force and the angle of the grasper jaws. Using this method, the softness/compliance of the grasped object can be estimated and presented to the surgeo

    Far touch: integrating visual and haptic perceptual processing on wearables

    Get PDF
    The evolution of electronic computers seems to have now reached the ubiquitous realm of wearable computing. Although a vast gamut of systems has been proposed so far, we believe most systems lack proper feedback for the user. In this dissertation, we not only contribute to solving the feedback problem, but we also consider the design of a system to acquire and reproduce the sense of touch. In order for such a system to be feasible, a few important problems need to be considered. Here, we address two of them. First, we know that wireless streaming of high resolution video to a head-mounted display requires high compression ratio. Second, we know that the choice of a proper feedback for the user depends on his/her ability to perceive it confidently across different scenarios. In order to solve the first problem, we propose a new limit that promises theoretically achievable data reduction ratios up to approximately 9:1 with no perceptual loss in typical scenarios. Also, we introduce a novel Gaussian foveation scheme that provides experimentally achievable gains up to approximately 2 times the compression ratio of typical compression schemes with less perceptual loss than in typical transmissions. The background material of both the limit and the foveation scheme includes a proposed pointwise retina-based constraint called pixel efficiency, that can be globally processed to reveal the perceptual efficiency of a display, and can be used together with a lossy parameter to locally control the spatial resolution of a foveated image. In order to solve the second problem, we provide an estimation of difference threshold that suggests that typically humans are able to discriminate between at least 6 different frequencies of an electrotactile stimulation. Also, we propose a novel sequence of experiments that suggests that a change from active touch to passive touch, or from a visual-haptic environment to a haptic environment, typically yields a reduction of the sensitivity index d' and in an increase of the response bias c

    Ubiquitous haptic feedback in human-computer interaction through electrical muscle stimulation

    Get PDF
    [no abstract
    corecore