3,009 research outputs found

    Using Acoustic Holography for Vibration Analysis

    Get PDF
    Disertační práce se zabývá bezkontaktní analýzou vibrací pomocí metod akustické holografie v blízkém poli. Akustická holografie v blízkém poli je experimentální metoda, která rekonstruuje akustické pole v těsné blízkosti povrchu vibrujícího předmětu na základě měření akustického tlaku nebo akustické rychlosti v určité vzdálenosti od zkoumaného předmětu. Konkrétní realizace této metody závisí na použitém výpočetním algoritmu. Vlastní práce je zaměřena zejména na rozbor algoritmů, které využívají k rekonstrukci zvukového pole v blízkosti vibrujícího objektu transformaci do domény vlnových čísel (prostorová transformace), kde probíhá vlastní výpočet. V úvodu práce je vysvětlena základní teorie metody akustické holografie v blízkém poli s popisem základních vlastností a dále rozborem konkrétních nejčastěji používaných algoritmům pro lokalizaci a charakterizaci zdroje zvuku a pro následnou vibrační analýzu. Stěžejní část práce se věnuje pokročilým metodám zpracování, které se snaží určitým způsobem optimalizovat přesnost predice zvukového pole v blízkosti vibrujícího předmětu v reálných podmínkách. Jde zejména o problematiku použitého měřicího systému s akustickými snímači, které nejsou ideální, a dále o možnost měření v prostorách s difúzním charakterem zvukového pole. Pro tento případ byla na základě literárního průzkumu optimalizována a ověřena metoda využívající dvouvrstvé mikrofonní pole, které umožňuje oddělení zvukových polí přicházejících z různých stran a tedy úspěšné měření v uzavřených prostorách např. kabin automobilů a letadel. Součástí práce byla také optimalizace, rozšíření a následné ověření algoritmů publikovaných v posledních letech pro měření v reálných podmínkách za použití běžně dostupných akustických snímačů.The main aim of the thesis is application of near-field acoustic holography for non-contact vibration analysis. Near-field acoustic holography is an experimental technique for reconstruction of sound field close to the surface of the vibrating object based on measurement of sound pressure or acoustic particle velocity in certain distance from the examined object. Practical realization of this method depends on used calculation procedure. The thesis is focused on analysis of acoustic holography algorithms with transformation into wavenumber domain (spatial transformation) where the reconstruction of the sound field near vibrating object is calculated. The introductory part of the thesis describes the theory of near-field acoustic holography with general characteristics and with analysis of most common algorithms used for localization and characterization of sound source and consequent vibration analysis. Principal part of the thesis deals with advanced processing methods where these methods try to optimize the accuracy of prediction of sound field near vibrating object in real environment. In this study, real measurement conditions represent the measurement system with non-ideal acoustic sensors and also areas with reverberant sound field. Based on literature study, there has been optimized and verified the new method which uses double layer microphone array to separate incoming and outgoing sound field, thus allows successful measurement in confined space e.g. cabins of cars and airplanes. Part of the thesis has been also focused on optimization, extension and successive experimental validation of selected classical algorithms published in last decade for possible measurement in real conditions and with common acoustic sensors.

    Heat Transfer Mechanism In Particle-Laden Turbulent Shearless Flows

    Get PDF
    Particle-laden turbulent flows are one of the complex flow regimes involved in a wide range of environmental, industrial, biomedical and aeronautical applications. Recently the interest has included also the interaction between scalars and particles, and the complex scenario which arises from the interaction of particle finite inertia, temperature transport, and momentum and heat feedback of particles on the flow leads to a multi-scale and multi-physics phenomenon which is not yet fully understood. The present work aims to investigate the fluid-particle thermal interaction in turbulent mixing under one-way and two-way coupling regimes. A recent novel numerical framework has been used to investigate the impact of suspended sub-Kolmogorov inertial particles on heat transfer within the mixing layer which develops at the interface of two regions with different temperature in an isotropic turbulent flow. Temperature has been considered a passive scalar, advected by the solenoidal velocity field, and subject to the particle thermal feedback in the two-way regime. A self-similar stage always develops where all single-point statistics of the carrier fluid and the suspended particles collapse when properly re-scaled. We quantify the effect of particle inertial, parametrized through the Stokes and thermal Stokes numbers, on the heat transfer through the Nusselt number, defined as the ratio of the heat transfer to the thermal diffusion. A scale analysis will be presented. We show how the modulation of fluid temperature gradients due to the statistical alignments of the particle velocity and the local carrier flow temperature gradient field, impacts the overall heat transfer in the two-way coupling regime

    FY10 Engineering Innovations, Research and Technology Report

    Full text link

    Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Get PDF
    INE/AUTC 12.0

    Toward Collinearity-Avoidable Localization for Wireless Sensor Network

    Get PDF
    In accordance with the collinearity problem during computation caused by the beacon nodes used for location estimation which are close to be in the same line or same plane, two solutions are proposed in this paper: the geometric analytical localization algorithm based on positioning units and the localization algorithm based on the multivariate analysis method. The geometric analytical localization algorithm based on positioning units analyzes the topology quality of positioning units used to estimate location and provides quantitative criteria based on that; the localization algorithm based on the multivariate analysis method uses the multivariate analysis method to filter and integrate the beacon nodes coordinate matrixes during the process of location estimation. Both methods can avoid low estimation accuracy and instability caused by multicollinearity

    Smart cmos image sensor for 3d measurement

    Get PDF
    3D measurements are concerned with extracting visual information from the geometry of visible surfaces and interpreting the 3D coordinate data thus obtained, to detect or track the position or reconstruct the profile of an object, often in real time. These systems necessitate image sensors with high accuracy of position estimation and high frame rate of data processing for handling large volumes of data. A standard imager cannot address the requirements of fast image acquisition and processing, which are the two figures of merit for 3D measurements. Hence, dedicated VLSI imager architectures are indispensable for designing these high performance sensors. CMOS imaging technology provides potential to integrate image processing algorithms on the focal plane of the device, resulting in smart image sensors, capable of achieving better processing features in handling massive image data. The objective of this thesis is to present a new architecture of smart CMOS image sensor for real time 3D measurement using the sheet-beam projection methods based on active triangulation. Proposing the vision sensor as an ensemble of linear sensor arrays, all working in parallel and processing the entire image in slices, the complexity of the image-processing task shifts from O (N 2 ) to O (N). Inherent also in the design is the high level of parallelism to achieve massive parallel processing at high frame rate, required in 3D computation problems. This work demonstrates a prototype of the smart linear sensor incorporating full testability features to test and debug both at device and system levels. The salient features of this work are the asynchronous position to pulse stream conversion, multiple images binarization, high parallelism and modular architecture resulting in frame rate and sub-pixel resolution suitable for real time 3D measurements

    Vision-Guided Robot Hearing

    Get PDF
    International audienceNatural human-robot interaction (HRI) in complex and unpredictable environments is important with many potential applicatons. While vision-based HRI has been thoroughly investigated, robot hearing and audio-based HRI are emerging research topics in robotics. In typical real-world scenarios, humans are at some distance from the robot and hence the sensory (microphone) data are strongly impaired by background noise, reverberations and competing auditory sources. In this context, the detection and localization of speakers plays a key role that enables several tasks, such as improving the signal-to-noise ratio for speech recognition, speaker recognition, speaker tracking, etc. In this paper we address the problem of how to detect and localize people that are both seen and heard. We introduce a hybrid deterministic/probabilistic model. The deterministic component allows us to map 3D visual data onto an 1D auditory space. The probabilistic component of the model enables the visual features to guide the grouping of the auditory features in order to form audiovisual (AV) objects. The proposed model and the associated algorithms are implemented in real-time (17 FPS) using a stereoscopic camera pair and two microphones embedded into the head of the humanoid robot NAO. We perform experiments with (i)~synthetic data, (ii)~publicly available data gathered with an audiovisual robotic head, and (iii)~data acquired using the NAO robot. The results validate the approach and are an encouragement to investigate how vision and hearing could be further combined for robust HRI
    corecore