3,094 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Tidal stream generators, current state and potential opportunities for condition monitoring

    Get PDF
    Tidal power industry has made significant progress towards commercialization over the past decade. Significant investments from sector leaders, strong technical progress and positive media coverage have established the credibility of this specific renewable energy source. However, its progress is being retarded by operation and maintenance problems, which results in very low operational availability times, as low as 25 %. This paper presents a literature review of the current state of tidal device operators as well as some commercial tidal turbine condition monitoring solutions. Furthermore, an overview is given of the global tidal activity status (tidal energy market size and geography), the key industry activity and the regulations-standards related with tidal energy industry. Therefore, the main goal of this paper is to provide a bird’s view of the current status of the tidal power industry to serve as a roadmap for the academia regarding the real needs of the tidal power industry

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Digital tools for floating offshore wind turbines (FOWT): A state of the art

    Get PDF
    ABSTRACT: Operations and installation on offshore wind and especially floating are complex and difficult actions due to site accessibility and equipment availability. In this regard, digitalization is disrupting the wind section thanks to the development of advanced sensors, automated equipment, computational power, among other. All these allow to optimize and simplify different parts of the offshore wind power plant development (i.e. design, planning, installation, O&M, etc.). This fact is of special interest on maintenance, since the early detection of failures or malfunctions lead to reduced costly corrective maintenance. This paper presents a literature review of current state-of-the-art on the application of digitalization activities which can be applied for floating wind, including typical component failures, monitoring techniques and advanced digital tools as Digital Twin concept and Building Information Models (BIM). Finally, the review paper provides an analysis of existing gaps, needs and challenges of the sector to provide guides on research and innovation to foster offshore wind sector.The research leading to these results has received funding from the European Union’s H2020 Programme under Grant Agreement n◦ 815083 – Corewin

    Modal analysis of offshore monopile wind turbine: An analytical solution

    Get PDF
    An analytical solution of the dynamic response of offshore wind turbines under wave load with nonlinear Stokes’s wave theory and wave–structure and soil–foundation interactions is developed. Natural frequencies and the corresponding modes are obtained. The effect of the wave–structure interaction, the added mass, the foundation stiffness, and the nacelle translational and rotational inertia on the motion of the structure is investigated. The nonlinear loading provided by the drag term of Morison’s equation is successfully handled. A parametric study to examine the effect of the structural parameters on the dynamic response is conducted, and the results of the proposed analytical solution are compared to numerical ones. The proposed method has the following advantages: (a) it is accurate and straightforward because of its analytical nature, (b) it does not ignore the drag term in the wave loading by keeping its nonlinearity nature, (c) the structure of the wind turbine is modeled as a continuous system, (d) it takes into account the effect of the rotational and translational inertia of the nacelle on the dynamic response, and (e) it provides an interpretation of the effect of the sea level variation in changing the natural frequencies.acceptedVersio

    State of the art in structural health monitoring of offshore and marine structures

    Get PDF
    This paper deals with state of the art in structural health monitoring (SHM) methods in offshore and marine structures. Most SHM methods have been developed for onshore infrastructures. Few studies are available to implement SHM technologies in offshore and marine structures. This paper aims to fill this gap and highlight the challenges in implementing SHM methods in offshore and marine structures. The present work categorises the available techniques for establishing SHM models in oil rigs, offshore wind turbine structures, subsea systems, vessels, pipelines and so on. Additionally, the capabilities of proposed ideas in recent publications are classified into three main categories: model-based methods, vibration-based methods and digital twin methods. Recently developed novel signal processing and machine learning algorithms are reviewed and their abilities are discussed. Developed methods in vision-based and population-based approaches are also presented and discussed. The aim of this paper is to provide guidelines for selecting and establishing SHM in offshore and marine structures.publishedVersio

    Optimal control of the heave motion of marine cable subsea-unit systems

    Get PDF
    One of the key problems associated with subsea operations involving tethered subsea units is the motions of support vessels on the ocean surface which can be transmitted to the subsea unit through the cable and increase the tension. In this paper, a theoretical approach for heave compensation is developed. After proper modelling of each element of the system, which includes the cable/subsea-unit, the onboard winch, control theory is applied to design an optimal control law. Numerical simulations are carried out, and it is found that the proposed active control scheme appears to be a promising solution to the problem of heave compensation

    Plasma sprayed titanium coatings with/without a shroud

    Get PDF
    Abstract: Titanium coatings were deposited by plasma spraying with and without a shroud. The titanium coatings were then assessed by scanning electron microscopy. A comparison in microstructure between titanium coatings with and without the shroud was carried out. The results showed that the shroud played an important role in protecting the titanium particles from oxidation. The presence of the shroud led to a reduction in coating porosity. The reduction in air entrainment with t he shroud resulted in better heating of the particles, and an enhanced microstructure with lower porosity in the shrouded titanium coatings were observed compared to the air plasma sprayed counterpart
    • …
    corecore