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This paper deals with state of the art in structural health monitoring (SHM) methods in offshore and marine
structures. Most SHM methods have been developed for onshore infrastructures. Few studies are available to
implement SHM technologies in offshore and marine structures. This paper aims to fill this gap and highlight the
challenges in implementing SHM methods in offshore and marine structures. The present work categorises the
available techniques for establishing SHM models in oil rigs, offshore wind turbine structures, subsea systems,
vessels, pipelines and so on. Additionally, the capabilities of proposed ideas in recent publications are classified into
three main categories: model-based methods, vibration-based methods and digital twin methods. Recently
developed novel signal processing and machine learning algorithms are reviewed and their abilities are discussed.
Developed methods in vision-based and population-based approaches are also presented and discussed. The aim of
this paper is to provide guidelines for selecting and establishing SHM in offshore and marine structures.
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1. Introduction
Existing offshore and marine structures have been designed for
a limited lifetime. Failures during their service life may have
catastrophic environmental and economic consequences and
may cause fatal accidents. More than 50% of the installed off-
shore and marine structures in the Norwegian continental
shelf, the United Kingdom continental shelf and the Gulf of
Mexico shelf exceed their design life (Aeran et al., 2017a,
2017b). In the past two decades, structural health monitoring
(SHM) has become an important research topic in civil engin-
eering (Adeli and Jiang, 2008; Jang et al., 2021; Soleimani-
Babakamali et al., 2022; Zhang and Zhang, 2021). This tech-
nology integrates several engineering fields such as sensor tech-
nology (Alonso et al., 2021; Kalenjuk et al., 2021), materials
science, artificial intelligence and machine learning (ML) (Gao
et al., 2021; Maeda et al., 2021; Sarmadi and Yuen, 2021),
data science and structural engineering. A key goal of SHM is
to prevent premature failure and ensure satisfactory perform-
ance of the structure (Chandrasekaran, 2019; Ren et al., 2021;
Xu et al., 2021).

The establishment of an SHM system requires three main com-
ponents: (a) planning the system’s overall approach, the data
acquisition and management method and workflow configur-
ation; (b) execution of the plan, instrument configuration and
model establishment; (c) data processing, feature extraction,

interpretation and presentation. Depending on the structural
complexities, costs and the importance of the structure or
structural components, an SHM system may be created to
fulfil one of four different levels: (a) damage existence evalu-
ations, (b) damage location identification, (c) damage severity
evaluation and (d) remaining life estimation (Jiang et al., 2022;
Sajedi and Liang, 2022). The demand for SHM tools is also
necessary for quality control of high-profile mechanical com-
ponents in order that safe service performance is achieved
(Qarib and Adeli, 2014).

Figure 1 shows an overview of the SHM steps of offshore and
marine structures. These structures are typically loaded by
waves and wind, which inherently are stochastic in nature
causing uncertainty in loading (Hirdaris et al., 2014; Yang and
Lei, 2022). Especially, large uncertainties in extreme wave pre-
dictions have been reported (Vanem et al., 2019). Moreover,
wave–structure and soil–structure interactions are important
issues in the structural dynamic evaluation of marine struc-
tures. Therefore, these uncertainties affect the hydrodynamic
modelling of marine systems, leading to the consideration of
large safety factors in calculating fatigue accumulation.
Moreover, marine structures are at risk of accidental actions,
such as ship collisions or dropped objects, structural degra-
dation due to corrosive environments (Mansor et al., 2014),
scouring due to underwater currents (Fazeres-Ferradosa et al.,
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2018, 2019) and thermal stress (Adedipe et al., 2016).
Evaluation of marine structures under these harsh environ-
ments requires long-term monitoring to ensure structural integ-
rity and to estimate the remaining life of structural
components accurately. With this perspective, the offshore
environment must be an integral part of any SHM system for
marine structures operating in it.

The main goal of SHM applications for offshore and marine
structures is to identify and quantify their damage level.
Almost 25% of the reported damage to marine structures is
due to fatigue accumulation (Aeran et al., 2019). Fatigue
damage is mainly accumulated due to stochastic offshore
environmental loadings such as waves and wind. Additionally,
structures operating in offshore environments may experience
operational changes, such as equipment rearrangements and
upgrades and the installation of new equipment during their
lifetime, resulting in a variation in their remaining life.
Conservative design procedures to cover all the uncertainties in
a real operating structure cause life-ended structures to remain
operable. Therefore, these structures can be utilised or reused
for additional years, providing economic and environmental
benefits. For instance, techniques for crack growth retardation

(Pavlou, 2018b; Rege et al., 2019) or arrest (Rege and Pavlou,
2019) have been proposed. The important research questions
to be answered are how much is the remaining life or how it
can be extended. Answering them requires a real-time monitor-
ing system to predict the real behaviour of the structure and
identify the current conditions and damage.

Accumulated fatigue damage can be calculated using fatigue
accumulation theories (Bjørheim et al., 2022a, 2022b; Mourão
et al., 2020; Pavlou, 2018a, 2021, 2022). In real-time fatigue
damage assessment (Gulgec et al., 2020), it is crucial to collect
global motion data from accelerometers and local strain
measurements. In addition, environmental measurements such
as wind direction and speed, water surface profile and tempera-
ture are as important as structural measurements. Over the
years, new sensor technologies and novel data collection tools
have been developed (Amezquita-Sanchez et al., 2018). For
instance, optical fibres (Hampshire and Adeli, 2000) for local
measurement and their application in marine composite joints
(Li et al., 2006), terrestrial laser scanning (Nasimi and Moreu,
2021; Park et al., 2007) and motion capture systems (Park et al.,
2015) for global motion monitoring have been introduced in the
past two decades. In recent years, embedded fibre Bragg gratings
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Figure 1. Overview of SHM steps in offshore and marine structures
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(Mieloszyk et al., 2021) for marine composite materials or wire-
less sensor networking (Chandrasekaran et al., 2016;
Chandrasekaran and Chithambaram, 2019) are some of the
advances in structural sensor technology with applications in
offshore structures. Furthermore a novel magnetic-based sensor
has been introduced in which the variation of the magnetic flux
density of a ferromagnetic material is identified as the mechan-
ical stress of any other defect (Angelopoulos et al., 2020). Data
collected by sensors contain valuable information about the
status of the structure. Extracting them requires the use of stat-
istical methods in addition to structural engineering.

SHM research has been reviewed from several points of view.
Sirca and Adeli (2012) reviewed journal articles on system
identification of structures, including model-based, biologically
inspired, signal-processing-based, chaos theory and multi-para-
digm approaches. Qarib and Adeli (2014) reviewed vibrational-
based SHM, categorising the proposed methods into parameter
and feature estimation based on linear structural behaviour, non-
linear structural behaviour, sensor layout and data collection
strategies, integration of SHM with vibration control of struc-
tures (Fantuzzi et al., 2022), wireless monitoring and application
of light detection and ranging. They divided system identifi-
cation in the vibration-based approach into two main categories:
parametric and non-parametric methods. The parametric
approach consists of monitoring any variation in modal par-
ameters, such as natural frequencies and damping ratios, while
the non-parametric approach deals with time series data col-
lected directly from sensors. Amezquita-Sanchez and Adeli
(2015a) reviewed feature extraction and classification techniques
in civil structures such as buildings and bridges. Recently,
Amezquita-Sanchez et al. (2020) presented a survey of structural
engineering applications of ML in the past few years. Other
reviews on SHM have also been published. For instance,
Tibaduiza Burgos et al. (2020) categorised the published papers
into two approaches – model-driven and data-driven. They
briefly reviewed data-driven approaches for damage identifi-
cation in SHM. In terms of offshore and marine structures, pub-
lished review papers cover only a few topics in this field, such as
wind turbines (Ciang et al., 2008), offshore wind turbines
(OWTs) (Martinez-Luengo et al., 2016) and platforms (Zhu,
2021). In addition, fatigue in offshore structures was reviewed by
Cheliotis et al. (2022) and Jimenez-Martinez (2020), including
the application of artificial neural networks (ANNs) in fatigue
damage evaluation. Aeran et al. (2017a, 2017b) also proposed
frameworks for ageing and remaining life estimation of offshore
jacket structures.

This paper presents a detailed review of methodologies devel-
oped for the health monitoring of offshore and marine structures
and smart structure technologies, including those with potential
applications for offshore structures. Due to the challenges faced,
mainly by the hostile offshore environment on the one hand and

the size and complexity of the structures operating in this
environment on the other, several methods have been proposed
and developed. These methods are categorised into model-
based, vibration-based, digital twin and vision-based
approaches. The recently developed population-based approaches
are also briefly reviewed. Furthermore, this review seeks to find
a link between ML methods used in smart structures and SHM
of offshore and marine structures and to identify the challenges
in this field. The paper could be a guideline for selecting the
proper SHM approach for a particular case in this field.

2. Signal processing and ML algorithms for
SHM in civil and structural engineering

2.1 Recent methods of signal processing
Amezquita-Sanchez and Adeli (2016) reviewed state-of-the-art
signal processing techniques for SHM in civil engineering.
A number of signal processing methods and feature extraction
techniques were reviewed. They are statistical time series, fast
Fourier transform (FFT), short time Fourier transform,
Cohsen’s class, Kalman filter, wavelet transform (WT) (Karami
et al., 2020), S-transform, multiple signal classification
(Music), Hilbert–Huang transform (HHT), ensemble empirical
mode decomposition (EMD) and blind source separation.
Moreover, the following four new signal processing techniques
and algorithms were highlighted.

& Fast S-transform is a modified version of the S-transform
algorithm that requires fewer data and a narrower window
for evaluation.

& Complete ensemble EMD is an improved version of EMD
providing better mode spectral separation.

& Synchrosqueezed wavelet transform (SWT) provides a more
accurate time–frequency representation for highly noisy
signals.

& Empirical wavelet transform (EWT) is an adaptive WT
that decomposes signal based on its contained information.

Amezquita-Sanchez and Adeli (2016) suggested that these
methods can be applied to SHM of civil structures due to their
modifications and improvements compared over traditional
techniques.

Amezquita-Sanchez and Adeli (2015a, 2015b, 2015c) integrated
Music and EWTmethodologies for the time–frequency represen-
tation of noisy non-linear and non-stationary signals. The per-
formance of the methodwas verified by two simulated signals and
an experimental signal by demonstrating immunity to noise, iso-
lating frequencies from noise and accurate estimation of the main
frequencies. Dealing with non-stationary noisy signals attracted
the attention of Perez-Ramirez et al. (2016), who proposed a
method to extract natural frequencies and damping ratios using
the ambient vibration of the structure. The method is based on

91

Maritime Engineering
Volume 176 Issue 2

State of the art in structural health
monitoring of offshore and marine
structures
Pezeshki, Adeli, Pavlou and Siriwardane

Downloaded by [] on [05/10/23]. Published with permission by the ICE under the CC-BY license 



SWT and consists of three steps: the random decrement
technique to evaluate the free vibration from raw data, SWT to
decompose the obtained free vibration into individual mode com-
ponents, and Hilbert transform and Kalman filter for final esti-
mation of natural frequencies and damping ratios. The authors
verified their method by application to several buildings and a
bridge. The success of working with ambient vibrations motivated
Amezquita-Sanchez et al. (2017) to propose a method of extract-
ing the natural frequencies and damping ratios of large civil infra-
structures by using low-amplitude, highly noisy ambient vibration
data. Their method successfully extracted modal parameters
through the low-amplitude ambient vibration in three super
high-rise building structures.

Qarib and Adeli (2015) proposed a new adaptive method for
feature extraction that is particularly useful for noisy exponen-
tially damped signals through adroit integration of Music,
matrix pencil and EMD methods. They verified their proposed
model experimentally by transverse vibration of a cantilever
beam and evaluated the frequencies accurately. In another
study, Qarib and Adeli (2016) compared the performance of
four non-parametric and five parametric signal-processing
techniques (listed in Table 1) in exponentially damped
signals with closely spaced frequencies. They concluded that
the non-parametric and parametric methods chosen for their
study were highly influenced by the length of the sample
the signal and the signal-to-noise ratio. This research led to
the development of new and more powerful methods for
processing non-stationary noisy signals with closely spaced
frequencies.

2.2 Recent methods for feature extraction and
classification

The final step in SHM is the interpretation of the processed
signals. Amezquita-Sanchez and Adeli (2015a, 2015b, 2015c)
categorised feature extraction methods used in SHM as

& artificial neural networks (ANNs)
& wavelet transformation (WT)
& fuzzy logic
& support vector machines (SVM)
& linear discriminant analysis (LDA)
& clustering algorithms
& Bayesian classifiers
& hybrid approaches

The ANN method has proved its capabilities in handling
highly non-linear data. In the last decade, researchers have
developed new methods capable of handling time-variant pro-
blems. A few of these are now briefly described.

& Spiking neural networks (SNN): as opposed to a
traditional ANN, the internal state of SNN changes with

time, providing a more realistic representation of the
problem (Ghosh-Dastidar and Adeli, 2009). This dynamic
nature of SNNs offers the ability to recognise the pattern
of time-dependent problems. This method is called the
third generation of ANNs.

& Enhanced probabilistic neural network (EPNN): the
EPNN was developed by Ahmadlou and Adeli (2010) to
improve the shortcomings of PNN using local decision
circles.

& Neural dynamic classification (NDC): Rafiei and Adeli
(2017) proposed a new NDC algorithm. It employs a new
feature space with large margins between clusters and
proximity within clusters to recognise minor features to
reach an accurate classification. The robustness of this new
method is indicated by the smoothness of convergence
curves.

& Dynamic ensemble learning (DEL): Alam et al. (2020)
developed the dynamic ensemble ML method. The
significant advantages of DEL are designing the ensemble
automatically, maintaining accuracy by not scarifying the
diversity of neural networks (NNs), and minimising
user-defined parameters. Introducing the negative
correlation learning for diversity is one of the new features
of this method. It has been applied successfully in medical
and non-medical applications.

& Finite-element (FE) machine for fast learning: inspired by
the FE methodology, Pereira et al. (2020: p. 6393)
introduced an algorithm for supervised learning problems
where ‘each training sample is the center of a basis
function, and the whole training set is modeled as a
probabilistic manifold for classification purposes’. This
method’s major contribution is its ability to deal with large
data sets so-called ‘big data’, by taking advantage of the
parameterless nature of this algorithm.

3. SHM approaches for offshore and marine
structure application

3.1 Model-based approach
The model-based approach for evaluating existing structures
is a basic method that collects data from a healthy structure

Table 1. List of signal processing methods compared in the study
by Qarib and Adeli (2016)

Non-parametric Parametric

Fourier transform Music
Periodogram estimate of
power spectral density

EWT

WT Pony method
EMD with HHT Matrix pencil method

Estimation of signal parameters by
rotational invariance technique
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using computer modelling. In this method, mathematical/
numerical models of the real structure operating in the off-
shore environment are developed to represent the response of
the structure under arbitrary loading (Ceravolo et al., 2020).
The damage status can then be evaluated by comparing the
results of the model with standard requirements or scaled
experimental tests. In fact, the model-based approach pro-
vides an expectation of future damage by way of comparing
the behaviour of the structure and its components’ damage
tolerance. In other words, having the structural behaviour for
every possible environmental condition and the components’
properties (such as material strength, toughness, S–N curves,
corrosion rate), the damage status can be evaluated for an
incident environmental condition. For instance, in the case of
ship collision with a jacket-supported offshore platform, the
damage status can be evaluated by applying the correspond-
ing environmental conditions (ship impact loading in this
case). Thus, the damage existence, location, severity and the
remaining lifetime can be determined, and immediate actions
can be taken in the case of severe damage to avoid life-threa-
tening situations.

In addition, the model-based approach can be used in the
design phase when the real structure has not yet been con-
structed. It can provide information about the possible damage
status, including damage existence, location, severity and the
overall lifetime. Therefore, the damage status can be regulated
to minimise the cost of construction and future maintenance
and repair. For instance, a component of the structure can be
intentionally weakened to localise possible damage. Therefore,
the SHM model can be focused on the possible damage areas.
Moreover, the model-based approach can be useful in feature
selection by identifying their ability to capture possible
damage. Some damage can be developed without being
detected by selected features. For instance, fatigue damage in
the early stages of nucleation is almost impossible to detect.
Fatigue cracks cannot be traced in the global response of the
structure until it reaches the no-return situation. Therefore,
identifying possible hazardous points, known as ‘hot spots’, is
crucial in fatigue damage monitoring. Therefore, a model-
based approach of SHM can be established with a focus on
these hot spots to evaluate the damage status according to the
real environmental condition.

The model-based approach is established by finding a link
between the environmental conditions, such as loadings or
material degradation, and the structural behaviour. This link
answers the question of how the structure reacts or ‘responds’
to the different conditions of the environment in which it is
operating. To do so, mathematical modelling on the basis of
FE modelling or analytical solutions can be used to obtain the
response of the structure. However, running a simulation to
replicate a physical structure requires the creation of very

complicated models, which can be very expensive and time-
consuming. To understand the behaviour of the structure,
repeated simulations need to be run with varying input par-
ameters, which increases the cost even more. Moreover,
running a simulation can take hours (or days in some cases) to
obtain the results. Therefore, surrogate models such as ANNs
can be substituted to do the same job using training data sets
obtained from the mathematical models.

The data sets required for training a surrogate model consist of
inputs and outputs. Inputs are selected features from the
environmental conditions, which could be wave and wind prop-
erties as well as the geometrical variation and/or material
degradation rate. Outputs can be the structural response, either
displacements or stresses, or the damage level depending on
the SHM application being established. The process of estab-
lishing a surrogate model is depicted in Figure 2. The input
values (environmental conditions) can be determined from
either recorded measured data or using the proposed spectra.
After the training process is complete, the surrogate model can
predict the output by only applying the measured environ-
mental condition. Having inputs and outputs as the training
data set leads to the supervised learning process.

From the output, the damage evaluation process can be
initiated. Depending on the purpose of establishment of SHM,
this can be done by estimating the variation of structural par-
ameters such as stiffness or natural frequencies, structural
overall stability, fatigue accumulation damage, material degra-
dation or other structural evaluation methods. For the case of
fatigue accumulation damage, the existence and severity of
damage and the remaining lifetime are evaluated for some
specified locations. Therefore, the location of the damage in
this case is predefined. Fatigue accumulation damage in the
model-based approach can be evaluated by two approaches,
directly and indirectly (see Figure 3). The output of the direct
method is fatigue accumulation damage while the output of

Environmental conditions

Real operating
measurements

Recorded
measurements

or spectra

ANN

Prediction Training

Structural response
or damage level Mathematical model

SHM model

of the response of the structure at hot spots
or their corresponding damage level

Damage evaluation process

Figure 2. Model-based approach of SHM architecture
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the indirect method is the stress history or stress range distri-
bution of some hot spots required for fatigue accumulation
damage evaluation.

In the direct method of fatigue accumulation damage evalu-
ation, a data set consisting of some parameters, including
stress history or stress range distribution and its associated
fatigue accumulated life, is used to train the ANN algorithm
(Figure 3(a)). This usage of ANN is helpful for cases where
long-term simulated data are available or short-term evaluation
is of interest. For instance, using an ANN, Wong and Kim
(2018) proposed a framework to predict the fatigue life of a
top tensioned riser subjected to a short-term vortex-induced
vibration. A data set of fatigue damage accumulation was
created by running a total of 21 523 riser models. They chose
six input variables as the environmental conditions: the riser
outer diameter, riser thickness, water depth, riser top tension
and current velocity at the sea surface and the sea bottom. The
direct output of the model was fatigue accumulation damage.
Therefore, they established their model in the category of a
direct method for fatigue accumulation damage evaluation.
They trained a feed-forward neural network (FFNN) with a
back-propagation (BP) training algorithm in two layers by
testing different numbers of neurons in the hidden layer and
different activation functions to reach the optimum training
accuracy. Data acquisition for the training data set was
obtained by modelling the riser using the commercial software
OrcaFlex for dynamic simulation and Shear7 for fatigue
accumulation damage.

In the indirect framework, the stress history or stress range dis-
tribution is the output of the model-based approach
(Figure 3(b)). For the case of long-term fatigue damage evalu-
ation, the long-term stress history is required. Obtaining the

long-term stress history using mathematical models is very
time-consuming. Therefore, an ANN algorithm can be utilised
to recognise the short-term stress response pattern and generate
the long-term stress history required for fatigue damage evalu-
ation. Chaves et al. (2015) used this method to obtain the
long-term stress history of flexible pipes used to transport
hydrocarbons from a floating offshore oil exploitation to shore.
They considered time series of six degrees of freedom of the
floater (surge, sway, heave, roll, pitch and yaw) as the input
variables and three outputs (axial tension and two curvatures
as a function of time at the most critical point). The ANN
architecture used in this study was the non-linear auto-regressive
network with exogenous input (NARX), which is categorised
as a recurrent neural network in two layers. They established
three independent ANNs for each output. The training data
set was generated by way of a commercial software program
(DeepLine) to obtain short-term time series of the tension and
two curvatures for the motions of the floater in 88 sea states
obtained from the Janswap spectrum. After training the
ANNs, the long-term response was obtained for long-term
floater motions. Finally, they used these responses to evaluate
long-term fatigue damage evaluation using the RainFlow
method and the Palmgrem–Miner rule. A similar study was
conducted by Cortina et al. (2018) in wave-induced fatigue
assessment of steel catenary risers. Dynamic FE modelling was
utilised to generate a short-term response to provide a data set
to train the ANN. The long-term response was predicted by
the ANN established by the NARX architecture and the
fatigue life was evaluated.

In addition to the stress history, trained ANN algorithms are
able to rapidly predict the stress range distribution in real-time
environmental conditions. The stress range distribution, as
opposed to the time series, is actually generated from the time

(a) (b)

Mathematical or numerical
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Stress history

Stress history

Stress history

Fatigue damage
calculation

Fatigue damage
calculation
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Figure 3. Model-based approach architecture for fatigue accumulation damage evaluation: (a) direct method; (b) indirect method
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series response by way of counting methods (Pavlou, 2022).
The stress range distribution is then fed to the fatigue accumu-
lation damage model to calculate the fatigue damage. ANNs
are useful tools to predict the long-term stress range distri-
bution from the short-term one obtained from mathematical
model. Christiansen et al. (2013) established a framework to
predict the long-term stress range distribution for the fatigue
damage evaluation of the mooring lines of a floating platform.
The time series of the motion of the floater in six degrees of
freedom and the top tension of the mooring line were selected
as the input and output parameters, respectively. They
attempted to simulate the NARX by introducing the top
tension at the end of the last step as input to the next time
frame. A two-layer FFNN with a BP training algorithm was
established and trained. Simo and Riflex were used to analyse
the dynamic response of the floater and the RainFlow count-
ing method was used to generate the corresponding short-term
stress range distribution. Fatigue damage was calculated by the
Palmgren–Miner rule. Li and Choung (2017) also used the
same technique to predict the fatigue damage of the mooring
lines of a floating offshore wind turbine (FOWT). However,
their input parameters were wind velocity, significant wave
height and period, and current velocity. Li et al. (2018) contin-
ued the same study by introducing the stress range distribution
in three different ways, attempting to reduce the total number
of output neurons.

Li and Zhang (2020) proposed a probabilistic model for long-
term fatigue damage assessment of platform of an FOWT
under realistic environmental conditions. Their focus was on
fatigue life calculation at three different locations (mooring
lines, tower top and bottom sections). Six environmental con-
ditions (wind direction, mean wind speed, significant wave
height, peak spectral wave period, mean wave direction and
directional spread at the mean wave direction) were selected as
input variables. For the output variables, the long-term stress
range distribution at every selected point was chosen. They
used two surrogate models, Kriging and ANN (FFNN with a
BP training algorithm). The training data set was generated
from modelling the FOWT using the Fast program for dynamic
response analysis and the RainFlow counting method with
Goodman correction for generating the stress range history.
After the algorithms were trained, the long-term stress range dis-
tribution was calculated by the long-term environmental loading
obtained by the C-vine copula model. Finally, the accumulated
fatigue damage was evaluated by the probabilistic method.

In addition to fatigue damage evaluation, other damage scen-
arios have been investigated. For instance, stiffness reduction in
the tendons used in a FOWT was studied by Sakaris et al.
(2021). They proposed a new geometry for the support struc-
ture of a FOWT consisting of two floating tanks connected by
12 tendons to provide more stability to the floating platform.

They modelled different damage scenarios as a stiffness
reduction in the connection using commercial software pro-
grams (Ansys-AQWA and Fast) to determine the effect of the
damage scenarios on the response. They proposed stochastic
functional models to represent the damage status as a function
of structural response under different environmental loadings
and damage magnitudes. They found that the trace of reduced
stiffness under 20% was fully masked in the dynamic response
of the structure. However, reduction of the stiffness between
20% and 80% showed small effects on the response.

The main reason for establishing model-based SHM using
ANNs may be because environmental loads are unpredict-
able. Running a mathematical simulation to calculate the
online response of a structure under live environmental con-
ditions requires expensive software programs and is very
time-consuming. ANN algorithms can be substituted for
such mathematical simulations due to their ability to recog-
nise complicated patterns and their rapid response evaluation.
However, the main problem is the availability and/or gener-
ation of training data sets. As mentioned earlier in this
section, mathematical simulations have been performed for the
sake of data generation. Moreover, scaled experimental tests (de
Lautour and Omenzetter, 2010) and analytical solutions can be
the source of data set generation in the model-based approach.
In recent years, researchers have been working on proposing
analytical solutions in the field of offshore and marine struc-
tures. For instance, Pavlou and Correia (2019) proposed a sol-
ution to obtain the dynamic response of pipelines under flexural
loads – that is harmonic loads (transmitted by pumps, compres-
sors, etc.) or transient loads (seismic loads, foundation move-
ment and impact for pipeline inspection). Pavlou (2021) solved
the equation of motion of OWTs under wave loading. Pezeshki
et al. (2022) continued this work to obtain the response as a
function useful for generating response data. Novel models for
several applications have also been developed. For instance,
Shao et al. (2022) presented a second-order hydrodynamic
model in the time domain for floating structures with large hori-
zontal motions. Huang and Li (2022) reported on the design of
a submerged horizontal plate breakwater based on a fully
coupled hydroelastic approach. Gortsas et al. (2022) described
an accelerated boundary element method for large-scale catho-
dic protection problems in marine environments.

The particular issue in marine structures is the fact that the
structural properties are time-dependent due to fluid–structure
and/or soil–structure interactions. For instance, the time vari-
ation of natural frequencies of OWTs is reported in the litera-
ture (Damgaard et al., 2013; Norén-Cosgriff and Kaynia,
2021; Prendergast et al., 2015, 2018). Therefore, establishing
SHM systems for complicated structures using only the model-
based approach requires a deep understanding of the behaviour
of the structure in the offshore environment.
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3.2 Vibration-based approach
Unlike the model-based approach, vibration-based SHM deals
with real recorded data from sensors installed on the structure
(Mariniello et al., 2021; Sajedi and Liang, 2021a). For large
and complicated structures, where a model-based approach is
unable to evaluate the current operational conditions effec-
tively, analysing measured data will provide vital information
of the status of the structure. Vibration-based models rely
entirely on the data measured from the sensors. The position-
ing and types of sensors are essential issues in data acquisition
for SHM (Civera et al., 2021). The number of sensors installed
on the structure and the recording duration directly affect the
amount of data recorded and stored. As illustrated in Figure 1,
showing the two main components of offshore and marine
structures (i.e. the structure and the environment), real
recorded data can be recorded from both components.
Therefore, vibration-based SHM can be established in two
schemes: using only real structural measurements (Figure 4)
and using measurements from both the structure and the
environment (Figure 5).

Both schemes have advantages and disadvantages. Establishing
vibration-based SHM entirely on structural measurements can
be beneficial for applications where long-term evaluation is of
interest. Some damage develops very slowly during the lifetime
of the structure. Thus, dealing with environmental measure-
ments would be unnecessary and cost inefficient. For instance,
material degradation is a time-consuming process and

environmental conditions may have negligible effect on the
long-term development. Moreover, in some cases, measuring
the environmental conditions can be difficult. On the other
hand, evaluating recorded data from both the environment and
the structure can provide the opportunity of predicting the
future damage status or operational performance by the
current environmental situation. Due to the fact that environ-
mental conditions are unpredictable and random in nature,
online evaluation of the structure relying entirely on structural
measurements would be unimaginable. For instance, evaluation
of the response of a floater for the current environmental situ-
ation based on its response histories is nearly impossible.
Therefore, estimating its remaining fatigue life without
knowing the current operational situation is unachievable.
Moreover, severe operational situations can be avoided by
knowing the current damage status for a hazardous damage
situation, thus improving operational safety.

In addition, global or local monitoring can be performed in
both schemes, as shown in Figures 4 and 5, for general damage
assessment and fatigue damage evaluation, respectively.
Measured data from strain gauges can be directly fed to fatigue
accumulation damage algorithms after data cleansing, as shown
in Figure 4, while global measurements such as displacements
and/or accelerations that need to be noise-removed through
signal processing methods can be examined by recognising any
deviation from previous patterns. This can be performed directly
on processed signals, known as non-parametric assessment, or
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Figure 4. Vibration-based SHM based on structural measurements only
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indirectly by examining the structural properties after imple-
menting feature extraction algorithms through the parametric
assessment. For pattern recognition, ML algorithms from unsu-
pervised categories can be selected. Similar procedures can be
implemented for cases involving environmental measurements.
The main differences are using supervised ML algorithms and
data synchronising.

3.2.1 Application of the vibration-based approach
Jiang and Adeli (2008) presented a non-parametric SHM
approach for building structures. They introduced a so-called
‘pseudospectrum’ quantity and a dynamic fuzzy wavelet neural
network (WNN) model for damage monitoring. In the first
step, the data acquired from sensors are processed using the
Music method to obtain the pseudospectrum. Then, the
dynamic fuzzy WNN is trained to obtain a damage detection
algorithm. Any unusual changes in the pseudospectrum calcu-
lated from the sensors of an operating structure can be
detected by the trained algorithm and alerted as damage in the
structure. This method was verified on a scaled 38-storey con-
crete building.

Detecting, locating and quantifying damage in high-rise build-
ing structures was the subject of another non-parametric study
conducted by Amezquita-Sanchez and Adeli (2015a, 2015b,
2015c). After acquiring data from sensors, signal processing
was performed by the SWT. As the step of signal interpret-
ation, a quantity called the fractality dimension (FD) was used
and calculated. The FD means how many times a pattern in
the time series signal is repeated. Any change in the FD can
be interpreted as damage to the structure. Damage location
can also be found based on abrupt changes in the FD value
calculated for every recorded signal. The severity of damage
was expressed by introducing a structural damage index (SDI),
varying between zero and one. A higher SDI represents more
damage. These two non-parametric methodologies have poten-
tial to be adopted for offshore and marine SHM. Hillis and
Courtney (2011) proposed a non-parametric early damage
detection method for offshore jackets by using the bicoherence
function of measured structural acceleration. Bicoherence is a
squared normalised form bispectrum, the third-order spec-
trum, used to quantify phase coupling in a signal. They
showed that their method is sensitive to fatigue damage while
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it is insensitive to non-linearity due to the drag term of wave
load. Zhang et al. (2022) discussed damage detection in non-
linear structures using estimations of the probability density
ratio.

In a local fatigue assessments the stress history measured from
local strain gauges can be directly used for fatigue accumu-
lation calculations. The recorded data in this scheme is long-
term measurements, which requires a large memory capacity
to store. Due to the limited local storage capacity, data is
recorded in time intervals. Therefore, the data essentially do
not contain high-frequency noise and the only noise source
can be expected from sensor malfunction. Noise removal can
be performed by comparing the responses of the sensor to a
similar environmental load. Martinez-Luengo et al. (2019) pro-
posed this methodology for data management acquired from
an operating OWT to assess the remaining life of the support
structure (Figure 6). In their framework, data collected from
environmental sensors and strain gauges are synchronised to
have a data set with 10 min intervals due to the local memory
capacity limitation. In the next step, data de-noising is per-
formed by method based on analysing the sensor measure-
ments. According to their method, correlations between
sensors that followed the same behaviour or trends in measure-
ments for defined intervals were found. Interval recordings that
did not follow the overall trend were diagnosed as noisy data
and removed. Then, missing data are added using the ANN
(a two-layer FFNN) method with Levenberg–Marquardt train-
ing algorithms and finally the remaining fatigue life of the struc-
ture can be estimated. Martinez-Luengo et al. (2019) compared
the fatigue life obtained from noisy and de-noised data and con-
cluded that noisy data underestimated the fatigue life.

In terms of system identification in recent years, Norén-
Cosgriff and Kaynia (2021) used three system identification
methods (FFT, multichannel autoregressive moving average
(Marma) modelling and Music) to estimate the first natural
frequency and its associated damping ratio of an OWT from
field data. They found a clear correlation between load level
and the first natural frequency. They reported that Marma and
Music provided better frequency estimation than the FFT.
Some studies have also been performed using fuzzy logic
(Mojtahedi et al., 2011) and wavelet packet transform
(Asgarian et al., 2016) on scaled experimental test data.

3.2.2 Response prediction and missing
data interpretation

For long-term evaluation of structures particularly susceptible
to fatigue damage in the vibration-based approach, the avail-
ability of reliable and durable structural measurements is
crucial. However, long-term measured data can be unavailable
because of unforeseen problems such as disruption in sensor
communications or data loss or a lack of availability of data

becasue the structure is in the design phase or is a recently
erected structure. Therefore, response prediction methods have
been proposed by utilising short-term or defective measure-
ments to construct a long-term response history.

Mondoro et al. (2016) studied the response prediction of naval
vessels based on the limited available data recorded for some
cells. They utilised the linear response surface to extrapolate
data for unobserved cells to predict the fatigue life of the
vessel. Intending to create complete and accurate data sets for
fatigue life assessment of OWT support structures, Martinez-
Luengo et al. (2019) established a framework for missing data
interpretation. A two-layer FFNN was chosen as the ANN
with a sigmoid and a linear transfer function in the hidden
and output layer, respectively. A BP learning procedure with
the Levenberg–Marquardt algorithm was used as the ANN
training procedure. The relevant input variables were the
environmental conditions, including wind speed, wind direc-
tion, active generator power, significant wave height and wave
direction; the output was the missing data from the turbine
sensors.

Puruncajas et al. (2020) conducted a study to convert the
signals of accelerometers into a grey-scale multichannel image.
Then, a deep convolutional NN (Feng et al., 2021; Peng et al.,
2021; Xue et al., 2021) was used to classify the images. They
implemented their proposed method in the measurements of a
laboratory-scale steel jacket-type OWT.

ANNs have also been used to predict the global response of
ships under environmental conditions. Wang et al. (2021)
proposed a method based on deep learning (Fernandez-Jover
and Stambouli, 2021; Lara-Benitez et al., 2021; Ozdemir
et al., 2021) to predict ship roll motion in different environ-
mental conditions. They developed two versions, single input–
single output and multiple input–single output based on
the long short-term memory (LSTM) method (Wang and

Structural measurement
Stress history

Environment

Data quality evaluation

Missing data interpretation

Cleaned stress historyFatigue damage
calculation

SHM model

Figure 6. Framework for fatigue assessment and data
management of OWTs (adapted from Martinez-Luengo et al.
(2019))
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Yan, 2020; Xu et al., 2021). They introduced bidirectional
LSTM convolution and implemented it to predict the roll
motion of ships.

The application of ANNs in predicting wave conditions has
also been the subject of some studies. Vieira et al. (2020) used
an ANN (a two-layer FFNN with BP learning procedure with
Levenberg–Marquardt algorithm) to fill data gaps in wave
records. Deka and Prahlada (2012) hybridised the WT with an
ANN (a two-layer FFNN with BP learning procedure with
Levenberg–Marquardt algorithm) to introduce a WNN to
predict significant wave height up to 48 h lead time.

3.3 Digital twin approach and the concept of
model updating

The digital twin (Zotov et al., 2021) is a relatively new topic in
SHM. A digital twin is the virtual duplication of a physical
object (the real structure under operation), including its phys-
ical details and associated uncertainties. Its capabilities in
dealing with complicated time-dependent engineering problems
have motivated researchers to develop this method for SHM of
offshore and marine structures.

The development of a high-fidelity model including all struc-
tural details and inherent uncertainties such as environmental
loading, especially in the case of offshore and marine environ-
ments, is very demanding and, in some cases, impossible.
Therefore, establishing SHM entirely on the model-based
approach does not replicate a structure’s physical status, par-
ticularly those loaded under the random wave and wind
loading in offshore and marine fields. Of course, it can be a
platform for building an accurate model of an operating
system.

The concept of the digital twin can be explained by the ‘white,
grey and black box’ model (Wagg et al., 2020; Worden et al.,
2007). Considering the model-based approach as a ‘white-box
model’ and the vibration-based model as a ‘black-box model’,
the digital twin approach stands in between these two tech-
niques as a ‘grey-box model’ by taking the advantages of both
model-based and vibration-based approaches. Therefore, the
accuracy issues of model-based and the blindness of vibration-
based approaches can be covered by combining them in the
digital twin approach. In technical terms ‘the main idea would
be to reduce the epistemic uncertainties from the limitations of
the physics-based modeling, using data’ (Wagg et al., 2020).

A general framework of the digital twin concept in the appli-
cation of the SHM is illustrated in Figure 7. Matching the per-
formances of a digital twin and its physical twin requires
updating the structural model with the measured data recorded
from the real structure (Zhu et al., 2020). This provides a
digital twin to replicate the real-time status of the physical

counterpart. Model updating is more critical in offshore and
marine applications since wave and wind loads cannot directly
be anticipated. Cross-model cross-mode (Mojtahedi et al.,
2020; Wang et al., 2015), the inverse FE method (Kefal, 2019;
Li et al., 2020), Kriging (Yin et al., 2019) and Bayesian NN
models (Yin and Zhu, 2020) are some of the model updating
methods developed in the last decade.

In an engineering application, the digital twin approach can be
used for fatigue life prediction of a structure. Tuegel et al.
(2011) studied aircraft structural life prediction using the
digital twin approach. They integrated multiphysics modelling,
including a computational fluid dynamics model, a structural
dynamics model, a thermodynamic model, a stress analysis
model and a fatigue cracking model (FCM), with environ-
mental and operational conditions such as air temperature.
Their model was updated with measured information recorded
by several sensors installed in the aircraft. They concluded that
the digital twin approach could offer a better understanding of
the life prediction of a system under unpredictable operational
conditions.

Tygesen et al. (2018) used the digital twin approach in fatigue
monitoring of offshore platforms in the North Sea on indus-
trial bases. The development of their digital twin model for the
case of fatigue accumulation was presented in five levels.

& Level 1: screening and diagnostics.
& Level 2: FE model updating.
& Level 3: wave load calibration.
& Level 4: quantification of uncertainties.
& Level 5: accumulated fatigue monitoring.

In level 1, the existing platform model (the ‘original digital
twin’ in their study) is evaluated by comparing the modal par-
ameters obtained from measurements and the existing model.
The mass and stiffness of the actual system are updated in the
FE model in level 2 to match the modal parameters with the
measured ones. In level 3, the wave load, consisting of the sea
surface evaluation and its associated measured wave directions,

Environment

SHM model
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Structure
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Digital twin

Model
(mathematical)

Operational evaluation Damage status

Figure 7. Digital twin approach of SHM
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is calibrated in the model to represent the actual condition of
the operating platform. The updated model’s accuracy and
continuous fatigue life monitoring are performed in levels 4
and 5, respectively. The general overview of their proposed fra-
mework is illustrated in Figure 8. Tygesen et al. (2018) also
reported that the continuous measurements from accelero-
grams installed at several points on the platform are enough
for the fatigue life prediction of all the structural elements as
measurements from strain gauges can be used for model
updating and accuracy control. They claimed that this frame-
work could update fatigue damage bi-yearly. It should be
noted that they used the term ‘true’ for the digital twin
because they considered the platform’s original model as a
digital twin.

Thompson (2019) investigated application of the digital twin
approach in ship hull fatigue assessment. The relevant fatigue
assessments in this field were reviewed and it was concluded
that a digital twin could compensate for the uncertainties
related to the operational conditions and the complexities of
ship structures.

Wagg et al. (2020) reviewed applications of the digital twin
approach in structural dynamics. They also proposed a digital
twin framework for wind turbine asset management, shown in
Figure 9. In their framework, numerical model(s) provide the
first-principles information for the wind turbine, updated by
recorded data from its physical twin and physical testbed(s).
A workflow coordinates their interactions and represents feed-
back to users by way of visualisation and quantitative data.
Additionally, evaluations in the workflow can also control and
schedule the physical twin.

Yeratapally et al. (2020) and Leser et al. (2020) studied the
feasibility of the digital twin approach in non-deterministic
fatigue life prediction of an aluminium alloy. They concluded
that the digital twin framework can predict fatigue damage,
ranging from initiation to failure, microstructure to macro-
structure. The model updating process based on in situ

information enables this framework to predict fatigue life in
uniaxial loadings.

Nabuco et al. (2020) used the FE updating technique to
predict the fatigue stress estimation of an offshore jacket struc-
ture. They used operational modal analysis to extract the
modal parameters of the structure from ambient operational
measurements. These modal parameters were then updated in
the FE model using the expansion technique. To predict the
stress history in the entire structure, they used modal expansion
in a virtual sensing technique by assuming that the operational
loads were random vibrations. They verified their approach on
a real offshore platform.

Wu and Li (2021) proposed a framework for using the digital
twin approach for the life prediction of a jet engine. In their
framework recorded data from an operating edging is fed to
the digital twin model using an LSTM NN to dynamically
update the model. Therefore, the up-to-date remaining useful
life of the operational engine could be evaluated. Additionally,
by comparing LSTM with the other ML algorithms such as
linear regression and FFNNs, they concluded that their model
could provide more accurate life estimation for aircraft engines.

3.4 Vision-based SHM
Monitoring structures using a vision-based approach is a
growing field in the SHM community (Chun et al., 2021;
Miao et al., 2021; Tian et al., 2021). Due to its advantages
(non-contact, long-distance, rapid etc.) it has high potential for
development in the SHM field. Dong and Catbas (2021)
reviewed this approach at local levels (such as crack, spalling,
delamination, rust and loose bolt detection) and global levels
(such as displacement measurement, structural behaviour
analysis, vibration serviceability, modal identification, model
updating, damage detection, cable force monitoring, load
factor estimation and structural identification using input–
output information) for application to civil structures and
infrastructures. Sajedi and Liang (2021b) conducted a study to
quantify the uncertainty of deep vision SHM using Monte
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Figure 8. Digital twin framework in SHM of an offshore platform
(adapted from Tygesen et al. (2018))
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Figure 9. Digital twin approach for asset management of a wind
turbine (adapted from Wagg et al. (2020))

100

Maritime Engineering
Volume 176 Issue 2

State of the art in structural health
monitoring of offshore and marine
structures
Pezeshki, Adeli, Pavlou and Siriwardane

Downloaded by [] on [05/10/23]. Published with permission by the ICE under the CC-BY license 



Carlo dropout sampling. They developed deep Bayesian NNs
for vision-based structural inspection. They suggested that this
framework could be applied in quantifying the confidence of
the predictive model. Ngeljaratan et al. (2021) proposed com-
pressive sensing for vision-based target-tracking time signal
processing. They claimed that their proposed method is
capable of signal compression, recovery and upsampling when
malfunction of data collection occurs.

In the case of offshore and marine structures, Liu et al. (2022)
reviewed robot-based damage assessment in OWTs. They
reviewed robotic platforms such as unmanned aerial, under-
water and climbing vehicles carrying optical and infrared
cameras and X-ray equipment. Image analysis and damage
assessment algorithms were also categorised and their appli-
cations summarised. Finally, they discussed the technical chal-
lenges and opportunities in robotic platforms, inspection
devices and data analysis. The application of vision-based
measurement in the structural response of offshore structures
has also been investigated. Tödter et al. (2021) used three-
dimensional digital image correlation (DIC) processing to
measure the structural response of offshore monopiles to
vortex-induced vibration in a scaled experimental study.

Vision-based assessment on the local scale has also been the
subject of researchers’ studies in offshore and marine struc-
tures. For instance, Khodabux and Brennan (2021) used image
processing techniques to detect and evaluate pitting corrosion
in OWT structures installed in the North Sea. Qvale et al.
(2021) utilised the DIC technique for fatigue damage assess-
ment of the corroded surface of an offshore mooring chain.
They paired DIC measurements with FE analysis to correlate
fatigue damage at the initiation phase due to the stress concen-
tration that occurred by pitting corrosion.

3.5 Population-based SHM
The idea of population-based SHM is to transfer and use exist-
ing information in a similar system based on graph theory (Hu
et al., 2021; Zhao et al., 2021). A team of researchers has
recently developed this technique and reported it in three
parts: part 1: (Bull et al., 2021), part 2 (Gosliga et al., 2021)
and part 3 (Gardner et al., 2021). They stated that lacking or
missing data could be filled by similar systems – (i.e. popu-
lations) and developed the method based on the type of popu-
lation. In part 1, they presented homogeneous populations.
These homogeneous populations, which are buildings or struc-
tures, are constructed based on the same design and details so
they can be referred to as nominally identified. An example of
this population is wind turbines on a wind farm. In parts 2
and 3 (Gardner et al., 2021; Gosliga et al., 2021) they intro-
duced the methodology and formulation for heterogeneous
populations, respectively. They defined this category as non-
identical but containing common substructures. For instance,

Gosliga et al. (2021) state that ‘a bridge and an aeroplane do
not share any common features; however, the propellor of an
aeroplane and the blades of a wind turbine may share similar
behaviour, which allows transfer of damage detection and
location capability’.

4. Fatigue damage evaluation process
According to (Boyer, 1986), metal fatigue is defined as the pro-
gressive, localised, permanent structural change that occurs in
materials subjected to fluctuating stresses and strains that may
result in cracks or fracture after a sufficient number of fluctu-
ations. In terms of offshore structure worthiness, the severity of
their impact may be assessed by estimating the accumulated
fatigue damage, which in turn requires the recurrent collection,
analysis and interpretation of actual usage data. Therefore,
estimation of the fatigue life of a structure depends on the
accuracies of the stress history monitoring and the fatigue
damage accumulation calculation.

Two phases of fatigue damage accumulation occur: the crack
initiation phase and the crack propagation phase. Estimation
of the crack propagation phase is usually more accurate and
has fewer uncertainties than the crack initiation phase. Some
researchers, including Pavlou (2002a, 2002b), Mavrothanasis
and Pavlou (2007, 2008) and Rege et al. (2019), have worked
on developing accurate tools for stress intensity factors.
Furthermore, techniques for crack growth retardation or arrest
have been proposed by Pavlou (2018b) and Rege et al. (2019),
and reliable models for fatigue crack growth estimation under
service loading have been developed (Pavlou, 2000).

The estimation of fatigue crack initiation is more
challenging. Recent concepts of fatigue crack initiation modell-
ing are based on the S–N curve and the concept of iso-damage
lines. These models assume non-linear damage functions
against fatigue life. Depending on their assumptions,
non-linear models based on the S–N curve are classified
into four groups: (a) models assuming iso-damage straight lines
converging at the ‘knee point’, (b) models assuming iso-damage
lines converging at the point where the S–N curve intersects the
S-axis, (c) models based on the Manson–Halford concept and
(d) models based on the continuum damage theory. Apart from
the above groups, more complicated models based on the dissi-
pated energy during fatigue have also been proposed.

A promising new non-linear macroscopic model for fatigue
crack initiation prediction has been recently proposed by
Bjørheim et al. (2022a) and Pavlou (2021). The idea of this
model, which is based on the theory of the S–N fatigue
damage envelope (Pavlou, 2018a), is that the area bounded
by the S and N axes and the S–N curve reflects the macro-
scopic consequences of the damage mechanisms for any S–N
pair. Therefore, it can demonstrate a characteristic damage
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map for each material. With the aid of FEs, damage maps
are derived. The iso-damage path on these maps is non-
linear and converges both at the knee point and at the point
where the S–N curve intersects the S-axis. The new concept
is a generalisation of most fatigue models based on the S–N
curve. Using the proposed concept of the curved iso-damage
lines, the prediction of the remaining life under stepwise vari-
able loading histories was verified successfully in specimens
subjected to two-stage loading.

Accurate fatigue damage estimation and life prediction are
challenging because of the following reasons.

& The exact material properties depend on the manufacturing
process.

& The microstructure of structural steels is not uniform.
& The quality of welded joints depends on the welding

technology, the welder and so on, and welding always
contains flaws.

& Welding leads to residual stresses that are difficult to
quantify.

& The stress distribution is not always uniaxial. Very often,
the stress state is multiaxial.

& Stress concentrators like notches or other surface
discontinuities usually exist in structures.

& The loading history during service is not deterministic –
that is, the wave loads are irregular.

Existing research works in fatigue have been mainly carried
out at laboratory scale and usually ignore the above seven

factors. All these uncertainties influence the fatigue life of a
real structure, making the prediction of a precise fatigue life
very challenging.

5. Technical challenges and opportunities
Looking through the literature related to the subject of SHM
of offshore and marine structures, researchers have proposed
numerous approaches, as summarised in Table 2. Techniques
to monitor structures’ safety range from conventional to novel
approaches. However, there are still challenges in the SHM of
offshore and marine structures.

5.1 Challenges
The complexities involved in designing and maintaining off-
shore and marine structures are not the structure itself, but the
environment in which these structures operate. Environmental
loads such as wind and waves are highly non-linear, stochastic
and unpredictable, imposing challenges in evaluating fatigue
life. Besides, floating objects experience buoyancy loads,
increasing difficulties in response prediction and safety assess-
ment of their structures. Interactions between seawater and
moving objects, corrosive environments, plant growth and so
on are challenging load and response prediction issues.
Therefore, SHM in offshore and marine fields faces uncertain-
ties arising from their operating environments.

5.2 Research gaps
The model-based approach to establish SHM still has potential
for growth and development. In most recent publications
on conventional model-based SHM, researchers have used

Table 2. Summary of advantages and disadvantages of SHM approaches

Advantages Disadvantages

Model-based approach
• Can provide a general overview of the behaviour of the structure
• In the case of lacking data, can generate data to establish SHM
• Can verify in situ data in terms of sensor performance and so on

• Creating a mathematical model describing detailed behaviour is
very difficult

• Verification and validation of mathematical models are always
questionable

Vibration-based approach
• Represents the actual behaviour of the operating structure • Presents the local situation of the structure

• Provides the current behaviour of the structure
• Requires reliable historical recording to provide an estimation of
long-term behaviour

• In some cases, it is not feasible to measure data from some
points of the structure

Digital twin approach
• Benefits from the advantages of both model-based and vibration-
based approaches

• Can be costly to establish
• Requires an understanding of model updating techniques

Vision-based approach
• Provides a rapid estimation of the current situation, especially in
the case of accidents

• Primarily assesses the surface of the structure
• The surface of the structure should be accessible

Population-based approach
• In the case of lacking data, can generate data to establish SHM • Still under development
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numerical models in commercial software programs, which are
significantly time-consuming and costly. However, developing
analytical solutions instead of numerical models can rapidly
estimate a system’s response thanks to the developments in
programs handling heavy mathematical calculations.
Analytical solutions can also provide massive data sets for the
training of pattern recognition algorithms.

Recorded data from sensors installed on structures operating in
offshore environments, considering the above-mentioned uncer-
tainties and complexities, can be expected to contain complex
valuable information. Processing and interpreting them
requires the development of novel algorithms capable of hand-
ling the data. The developments of novel algorithms in signal
processing and ML could be utilised and extended to apply
vibration-based SHM to marine and offshore structures. For
instance, methods proposed for the application of ambient
vibration (low-amplitude) by Perez-Ramirez et al. (2016) can
also be used in offshore and marine structures due to their low-
amplitude, high-cycle vibration. Additionally, non-parametric
damage recognition can be developed by defining (fatigue)
damage indexes for this application.

6. Conclusions
Methods proposed for SHM of offshore and marine structures
have been reviewed. Two conventional methods, the model-based
approach and the vibration-based approach, were assessed. The
section on vibration-based approaches summarised recent
advancements in developing novel signal-processing and ML
algorithms. The digital twin concept and its application in SHM
of offshore and marine structures have been reviewed. Finally,
developments in vision-based methods were introduced and a new
method, the so-called population-based SHM, was briefly dis-
cussed. The advantages and disadvantages of the reviewed SHM
methods were presented. The challenges of offshore environments
were presented and the research gaps in the development of SHM
for these structureswere identified.

REFERENCES
Adedipe O, Feargal B and Athanasios K (2016) Review of corrosion

fatigue in offshore structures: present Status and challenges
in the offshore wind sector. Renewable and Sustainable Energy
Reviews 61: 141–154, https://doi.org/10.1016/j.rser.2016.
02.017.

Adeli H and Jiang X (2008) Intelligent Infrastructure Neural Networks,
Wavelets, and Chaos Theory for Intelligent Transportation Systems
and Smart Structures. Taylor & Francis, New York, NY, USA.

Aeran A, Siriwardane SC, Mikkelsen O and Langen I (2017a) A
framework to assess structural integrity of ageing offshore jacket
structures for life extension. Marine Structures 56: 237–259,
https://doi.org/10.1016/j.marstruc.2017.08.002.

Aeran A, Siriwardane SC, Mikkelsen O and Langen I (2017b) Life extension
of ageing offshore structures: a framework for remaining life
estimation. In Proceedings of the ASME 2017 36th International
Conference on Ocean, Offshore and Arctic Engineering, Volume 3A:

Structures, Safety and Reliability. ASME, New York, NY, USA,
paper V03AT02A040.

Aeran A, Vantadori S, Carpinteri A, Siriwardane SC and Scorza D (2019)
Novel non-linear relationship to evaluate the critical plane
orientation. International Journal of Fatigue 124: 537–543,
https://doi.org/10.1016/j.ijfatigue.2019.02.012.

Ahmadlou M and Adeli H (2010) Enhanced probabilistic neural network
with local decision circles: a robust classifier. Integrated Computer-
Aided Engineering 17(3): 197–210, https://doi.org/10.3233/ICA-
2010-0345.

Alam KMR, Siddique N and Adeli H (2020) A dynamic ensemble
learning algorithm for neural networks. Neural Computing and
Applications 32(12): 8675–8690, https://doi.org/10.1007/s00521-
019-04359-7.

Alonso S, Moran A, Perez D et al. (2021) Virtual sensor for probabilistic
estimation of the evaporation in cooling towers. Integrated
Computer-Aided Engineering 28(4): 369–381.

Amezquita-Sanchez JP and Adeli H (2015a) Feature extraction and
classification techniques for health monitoring of structures
citation. Scientia Iranica 22(6): 1931–1940.

Amezquita-Sanchez JP and Adeli H (2015b) A new Music-empirical
wavelet transform methodology for time–frequency analysis of
noisy nonlinear and non-stationary signals. Digital Signal
Processing 45: 55–68, https://doi.org/10.1016/j.dsp.2015.06.013.

Amezquita-Sanchez JP and Adeli H (2015c) Synchrosqueezed wavelet
transform-fractality model for locating, detecting, and quantifying
damage in smart highrise building structures. Smart Materials and
Structures 24(6): 065034, https://doi.org/10.1088/0964-1726/
24/6/065034.

Amezquita-Sanchez JP and Adeli H (2016) Signal processing
techniques for vibration-based health monitoring of smart
structures. Archives of Computational Methods in Engineering
23(1): 1–15, https://doi.org/10.1007/s11831-014-9135-7.

Amezquita-Sanchez JP, Park HS and Adeli H (2017) A novel methodology
for modal parameters identification of large smart structures using
MUSIC, empirical wavelet transform, and Hilbert transform.
Engineering Structures 147: 148–159, https://doi.org/10.1016/
j.engstruct.2017.05.054.

Amezquita-Sanchez JP, Valtierra-Rodriguez M and Adeli H (2018)
Wireless smart sensors for monitoring the health condition of civil
infrastructure. Scientia Iranica 25(6): 2913–2925, https://doi.org/
10.24200/sci.2018.21136.

Amezquita-Sanchez JP, Valtierra-Rodriguez M and Adeli H (2020)
Machine learning in structural engineering. Scientia Iranica
27(6A): 2645–2656.

Angelopoulos S, Misiaris D, Banis G et al. (2020) Steel health monitoring
device based on Hall sensors. Journal of Magnetism and Magnetic
Materials 515: 167304, https://doi.org/10.1016/j.jmmm.2020.
167304.

Asgarian B, Aghaeidoost V and Shokrgozar HR (2016) Damage detection
of jacket type offshore platforms using rate of signal energy using
wavelet packet transform. Marine Structures 45: 1–21,
https://doi.org/10.1016/j.marstruc.2015.10.003.

Bjørheim F, Pavlou GD and Siriwardane SC (2022a) Nonlinear fatigue life
prediction model based on the theory of the S-N fatigue damage
envelope. Fatigue & Fracture of Engineering Materials & Structures
45(5): 1480–1490, https://doi.org/10.1111/ffe.13680.

Bjørheim F, Siriwardane SC and Pavlou D (2022b) A review of fatigue
damage detection and measurement techniques. International
Journal of Fatigue 154: 106556, https://doi.org/10.1016/j.ijfatigue.
2021.106556.

Boyer HE (1986) Atlas of Fatigue Curves. ASM International, Materials
Park, OH, USA.

103

Maritime Engineering
Volume 176 Issue 2

State of the art in structural health
monitoring of offshore and marine
structures
Pezeshki, Adeli, Pavlou and Siriwardane

Downloaded by [] on [05/10/23]. Published with permission by the ICE under the CC-BY license 

https://doi.org/10.1016/j.rser.2016.02.017
https://doi.org/10.1016/j.rser.2016.02.017
https://doi.org/10.1016/j.rser.2016.02.017
https://doi.org/10.1016/j.rser.2016.02.017
https://doi.org/10.1016/j.rser.2016.02.017
https://doi.org/10.1016/j.rser.2016.02.017
https://doi.org/10.1016/j.rser.2016.02.017
https://doi.org/10.1016/J.MARSTRUC.2017.08.002
https://doi.org/10.1016/J.MARSTRUC.2017.08.002
https://doi.org/10.1016/J.MARSTRUC.2017.08.002
https://doi.org/10.1016/J.MARSTRUC.2017.08.002
https://doi.org/10.1016/J.MARSTRUC.2017.08.002
https://doi.org/10.1016/J.MARSTRUC.2017.08.002
https://doi.org/10.1016/j.ijfatigue.2019.02.012
https://doi.org/10.1016/j.ijfatigue.2019.02.012
https://doi.org/10.1016/j.ijfatigue.2019.02.012
https://doi.org/10.1016/j.ijfatigue.2019.02.012
https://doi.org/10.1016/j.ijfatigue.2019.02.012
https://doi.org/10.3233/ICA-2010-0345
https://doi.org/10.3233/ICA-2010-0345
https://doi.org/10.3233/ICA-2010-0345
https://doi.org/10.3233/ICA-2010-0345
https://doi.org/10.3233/ICA-2010-0345
https://doi.org/10.3233/ICA-2010-0345
https://doi.org/10.3233/ICA-2010-0345
https://doi.org/10.1007/s00521-019-04359-7
https://doi.org/10.1007/s00521-019-04359-7
https://doi.org/10.1007/s00521-019-04359-7
https://doi.org/10.1007/s00521-019-04359-7
https://doi.org/10.1007/s00521-019-04359-7
https://doi.org/10.1007/s00521-019-04359-7
https://doi.org/10.1007/s00521-019-04359-7
https://doi.org/10.1016/j.dsp.2015.06.013
https://doi.org/10.1016/j.dsp.2015.06.013
https://doi.org/10.1016/j.dsp.2015.06.013
https://doi.org/10.1016/j.dsp.2015.06.013
https://doi.org/10.1016/j.dsp.2015.06.013
https://doi.org/10.1016/j.dsp.2015.06.013
https://doi.org/10.1088/0964-1726/24/6/065034
https://doi.org/10.1088/0964-1726/24/6/065034
https://doi.org/10.1088/0964-1726/24/6/065034
https://doi.org/10.1088/0964-1726/24/6/065034
https://doi.org/10.1088/0964-1726/24/6/065034
https://doi.org/10.1088/0964-1726/24/6/065034
https://doi.org/10.1088/0964-1726/24/6/065034
https://doi.org/10.1088/0964-1726/24/6/065034
https://doi.org/10.1088/0964-1726/24/6/065034
https://doi.org/10.1007/s11831-014-9135-7
https://doi.org/10.1007/s11831-014-9135-7
https://doi.org/10.1007/s11831-014-9135-7
https://doi.org/10.1007/s11831-014-9135-7
https://doi.org/10.1007/s11831-014-9135-7
https://doi.org/10.1007/s11831-014-9135-7
https://doi.org/10.1016/j.engstruct.2017.05.054
https://doi.org/10.1016/j.engstruct.2017.05.054
https://doi.org/10.24200/sci.2018.21136
https://doi.org/10.24200/sci.2018.21136
https://doi.org/10.1016/j.jmmm.2020.167304
https://doi.org/10.1016/j.jmmm.2020.167304
https://doi.org/10.1016/j.jmmm.2020.167304
https://doi.org/10.1016/j.jmmm.2020.167304
https://doi.org/10.1016/j.jmmm.2020.167304
https://doi.org/10.1016/j.jmmm.2020.167304
https://doi.org/10.1016/j.jmmm.2020.167304
https://doi.org/10.1016/j.marstruc.2015.10.003
https://doi.org/10.1016/j.marstruc.2015.10.003
https://doi.org/10.1016/j.marstruc.2015.10.003
https://doi.org/10.1016/j.marstruc.2015.10.003
https://doi.org/10.1016/j.marstruc.2015.10.003
https://doi.org/10.1016/j.marstruc.2015.10.003
https://doi.org/10.1111/ffe.13680
https://doi.org/10.1111/ffe.13680
https://doi.org/10.1111/ffe.13680
https://doi.org/10.1111/ffe.13680
https://doi.org/10.1111/ffe.13680
https://doi.org/10.1111/ffe.13680
https://doi.org/10.1016/j.ijfatigue.2021.106556
https://doi.org/10.1016/j.ijfatigue.2021.106556
https://doi.org/10.1016/j.ijfatigue.2021.106556
https://doi.org/10.1016/j.ijfatigue.2021.106556
https://doi.org/10.1016/j.ijfatigue.2021.106556
https://doi.org/10.1016/j.ijfatigue.2021.106556


Bull LA, Gardner PA, Gosliga J et al. (2021) Foundations of population-
based SHM, part I: homogeneous populations and forms.
Mechanical Systems and Signal Processing 148: 107141,
https://doi.org/10.1016/j.ymssp.2020.107141.

Ceravolo R, De Lucia G, Miraglia G and Pecorelli ML (2020) Thermo-
elastic finite element model updating with application to
monumental buildings. Computer-Aided Civil and Infrastructure
Engineering 35(6): 628–642.

Chandrasekaran S (2019) Structural Health Monitoring with Application
to Offshore Structures. World Scientific, London, UK.

Chandrasekaran S and Chithambaram T (2019) Health monitoring of
tension leg platform using wireless sensor networking:
experimental investigations. Journal of Marine Science and
Technology 24(1): 60–72, https://doi.org/10.1007/s00773-018-
0531-9.

Chandrasekaran S, Chithambaram T and Khader S (2016) Structural
health monitoring of offshore structures using wireless sensor
networking under operational and environmental variability.
International Journal of Environmental and Ecological Engineering
10(1): 33–39.

Chaves V, Sagrilo VSL, Da Silva VRM and Vignoles MA (2015) Artificial
neural networks applied to flexible pipes fatigue calculations. In
Proceedings of the ASME 2015 34th International Conference on
Ocean, Offshore and Arctic Engineering. Volume 5B: Pipeline and
Riser Technology. ASME, New York, NY, USA, paper
V05BT04A022.

Cheliotis M, Lazakis I and Cheliotis A (2022) Bayesian and machine
learning-based fault detection and diagnostics for marine
applications. Ships and Offshore Structures 17(12): 2686–2698,
https://doi.org/10.1080/17445302.2021.2012015.

Christiansen NH, Torbergsen Voie PE, Høgsberg J and Sødahl N (2013)
Efficient mooring line fatigue analysis using a hybrid method time
domain simulation scheme. In Proceedings of the ASME, 32nd
International Conference on Ocean, Offshore and Arctic
Engineering: Offshore Technology. ASME, New York, NY, USA,
vol. 1, paper V001T01A035, https://doi.org/10.1115/OMAE2013-
10682.

Chun P, Izumi S and Yamane T (2021) Automatic detection method of
cracks from concrete surface imagery using two-step light gradient
boosting machine. Computer-Aided Civil and Infrastructure
Engineering 36(1): 61–72.

Ciang CC, Lee JR and Bang HJ (2008) Structural health monitoring for a
wind turbine system: a review of damage detection methods.
Measurement Science and Technology 19(12): 122001, https://doi.
org/10.1088/0957-0233/19/12/122001.

Civera M, Pecorelli ML, Ceravolo R, Surace C and Fragonara LZ (2021)
A multi-objective genetic algorithm strategy for robust optimal
sensor placement. Computer-Aided Civil and Infrastructure
Engineering 36(9): 1185–1202.

Cortina JPR, De Sousa FJM and Sagrilo LVS (2018) Neural networks
applied to the wave-induced fatigue analysis of steel risers.
Mathematical Problems in Engineering 2018: 2719682, https://doi.
org/10.1155/2018/2719682.

Damgaard M, Ibsen LB, Andersen LV and Andersen JKF (2013) Cross-
wind modal properties of offshore wind turbines identified by full
scale testing. Journal of Wind Engineering and Industrial
Aerodynamics 116: 94–108, https://doi.org/10.1016/j.jweia.2013.
03.003.

de Lautour OR and Omenzetter O (2010) Damage classification and
estimation in experimental structures using time series analysis
and pattern recognition. Mechanical Systems and Signal
Processing 24(5): 1556–1569, https://doi.org/10.1016/
j.ymssp.2009.12.008.

Deka PC and Prahlada R (2012) Discrete wavelet neural network
approach in significant wave height forecasting for multistep lead
time. Ocean Engineering 43: 32–42, https://doi.org/10.1016/
j.oceaneng.2012.01.017.

Dong CZ and Catbas FN (2021) A review of computer vision-based
structural health monitoring at local and global levels. Structural
Health Monitoring 20(2): 692–743, https://doi.org/10.1177/
1475921720935585.

Fantuzzi N, Rustico A, Formenti M and Ferreira AJM (2022) 3D Active
dynamic actuation model for offshore cranes. Computer-Aided
Civil and Infrastructure Engineering 37(7): 864–877, https://doi.org/
10.1111/mice.12690Citations:3.

Fazeres-Ferradosa T, Taveira-Pinto F, Reis MT and das Neves L (2018)
Physical modelling of dynamic scour protections: analysis of the
damage number. Proceedings of the Institution of Civil Engineers –
Maritime Engineering 171(1): 11–24, https://doi.org/10.1680/jmaen.
2017.26.

Fazeres-Ferradosa T, Taveira-Pinto F, Rosa-Santos P and Chambel J (2019)
A review of reliability analysis of offshore scour protections.
Proceedings of the Institution of Civil Engineers – Maritime
Engineering 172(3): 104–117, https://doi.org/10.1680/
jmaen.2019.11.

Feng N, Hu F, Wang H and Zhou B (2021) Motor intention
decoding from the upper limb by graph convolutional
network based on functional connectivity. International Journal
of Neural Systems 31(12): 2150047, https://doi.org/10.1142/
S0129065721500532.

Fernandez-Jover E and Stambouli TB (2021) Real-time facial expression
recognition using smoothed deep neural network ensemble.
Integrated Computer-Aided Engineering 28(1): 97–111,
https://doi.org/10.3233/ICA-200643.

Gao Y, Zhai P and Mosalam KM (2021) Balanced semi-supervised
generative adversarial network for damage assessment from
low-data imbalanced-class regime. Computer-Aided Civil and
Infrastructure Engineering 36(9): 1094–1113, https://doi.org/
10.1111/mice.12741.

Gardner P, Bull LA, Gosliga J, Dervilis N and Worden K (2021)
Foundations of population-based SHM, part III: heterogeneous
populations – mapping and transfer. Mechanical Systems and
Signal Processing 149: 107142, https://doi.org/10.1016/j.ymssp.
2020.107142.

Ghosh-Dastidar S and Adeli H (2009) Spiking neural networks.
International Journal of Neural Systems 19(4): 295–308, https://doi.
org/10.1142/S0129065709002002.

Gortsas TV, Tsinopoulos SV and Polyzos D (2022) An accelerated
boundary element method via cross approximation of integral
kernels for large-scale cathodic protection problems. Computer-
Aided Civil and Infrastructure Engineering 37(7): 848–863.

Gosliga J, Gardner PA, Bull LA, Dervilis N and Worden K (2021)
Foundations of population-based SHM, part II: heterogeneous
populations – graphs, networks, and communities. Mechanical
Systems and Signal Processing 148: 107144, https://doi.org/
10.1016/j.ymssp.2020.107144.

Gulgec NS, Takáč M and Pakzad SN (2020) Structural sensing with deep
learning: strain estimation from acceleration data for fatigue
assessment. Computer-Aided Civil and Infrastructure Engineering
35(12): 1349–1364, https://doi.org/10.1111/mice.12565.

Hampshire TA and Adeli H (2000) Monitoring the behavior of steel
structures using distributed optical fiber sensors. Journal of
Constructional Steel Research 53(3): 267–281, https://doi.org/
10.1016/S0143-974X(99)00043-7.

Hillis AJ and Courtney CRP (2011) Structural health monitoring of
fixed offshore structures using the bicoherence function of

104

Maritime Engineering
Volume 176 Issue 2

State of the art in structural health
monitoring of offshore and marine
structures
Pezeshki, Adeli, Pavlou and Siriwardane

Downloaded by [] on [05/10/23]. Published with permission by the ICE under the CC-BY license 

https://doi.org/10.1016/j.ymssp.2020.107141
https://doi.org/10.1016/j.ymssp.2020.107141
https://doi.org/10.1016/j.ymssp.2020.107141
https://doi.org/10.1016/j.ymssp.2020.107141
https://doi.org/10.1016/j.ymssp.2020.107141
https://doi.org/10.1016/j.ymssp.2020.107141
https://doi.org/10.1007/s00773-018-0531-9
https://doi.org/10.1007/s00773-018-0531-9
https://doi.org/10.1007/s00773-018-0531-9
https://doi.org/10.1007/s00773-018-0531-9
https://doi.org/10.1007/s00773-018-0531-9
https://doi.org/10.1007/s00773-018-0531-9
https://doi.org/10.1007/s00773-018-0531-9
https://doi.org/10.1080/17445302.2021.2012015
https://doi.org/10.1080/17445302.2021.2012015
https://doi.org/10.1080/17445302.2021.2012015
https://doi.org/10.1080/17445302.2021.2012015
https://doi.org/10.1080/17445302.2021.2012015
https://doi.org/10.1080/17445302.2021.2012015
https://doi.org/10.1115/OMAE2013-10682
https://doi.org/10.1115/OMAE2013-10682
https://doi.org/10.1115/OMAE2013-10682
https://doi.org/10.1115/OMAE2013-10682
https://doi.org/10.1115/OMAE2013-10682
https://doi.org/10.1115/OMAE2013-10682
https://doi.org/10.1115/OMAE2013-10682
https://doi.org/10.1088/0957-0233/19/12/122001
https://doi.org/10.1088/0957-0233/19/12/122001
https://doi.org/10.1088/0957-0233/19/12/122001
https://doi.org/10.1088/0957-0233/19/12/122001
https://doi.org/10.1088/0957-0233/19/12/122001
https://doi.org/10.1088/0957-0233/19/12/122001
https://doi.org/10.1088/0957-0233/19/12/122001
https://doi.org/10.1088/0957-0233/19/12/122001
https://doi.org/10.1088/0957-0233/19/12/122001
https://doi.org/10.1155/2018/2719682
https://doi.org/10.1155/2018/2719682
https://doi.org/10.1155/2018/2719682
https://doi.org/10.1155/2018/2719682
https://doi.org/10.1155/2018/2719682
https://doi.org/10.1155/2018/2719682
https://doi.org/10.1155/2018/2719682
https://doi.org/10.1155/2018/2719682
https://doi.org/10.1016/j.jweia.2013.03.003
https://doi.org/10.1016/j.jweia.2013.03.003
https://doi.org/10.1016/j.jweia.2013.03.003
https://doi.org/10.1016/j.jweia.2013.03.003
https://doi.org/10.1016/j.jweia.2013.03.003
https://doi.org/10.1016/j.jweia.2013.03.003
https://doi.org/10.1016/j.jweia.2013.03.003
https://doi.org/10.1016/j.ymssp.2009.12.008
https://doi.org/10.1016/j.ymssp.2009.12.008
https://doi.org/10.1016/j.ymssp.2009.12.008
https://doi.org/10.1016/j.ymssp.2009.12.008
https://doi.org/10.1016/j.ymssp.2009.12.008
https://doi.org/10.1016/j.ymssp.2009.12.008
https://doi.org/10.1016/j.oceaneng.2012.01.017
https://doi.org/10.1016/j.oceaneng.2012.01.017
https://doi.org/10.1016/j.oceaneng.2012.01.017
https://doi.org/10.1016/j.oceaneng.2012.01.017
https://doi.org/10.1016/j.oceaneng.2012.01.017
https://doi.org/10.1016/j.oceaneng.2012.01.017
https://doi.org/10.1177/1475921720935585
https://doi.org/10.1177/1475921720935585
https://doi.org/10.1177/1475921720935585
https://doi.org/10.1177/1475921720935585
https://doi.org/10.1177/1475921720935585
https://doi.org/10.1111/mice.12690Citations:3
https://doi.org/10.1111/mice.12690Citations:3
https://doi.org/10.1111/mice.12690Citations:3
https://doi.org/10.1111/mice.12690Citations:3
https://doi.org/10.1111/mice.12690Citations:3
https://doi.org/10.1111/mice.12690Citations:3
https://doi.org/10.1680/jmaen.2017.26
https://doi.org/10.1680/jmaen.2017.26
https://doi.org/10.1680/jmaen.2017.26
https://doi.org/10.1680/jmaen.2017.26
https://doi.org/10.1680/jmaen.2017.26
https://doi.org/10.1680/jmaen.2017.26
https://doi.org/10.1680/jmaen.2017.26
https://doi.org/10.1680/jmaen.2019.11
https://doi.org/10.1680/jmaen.2019.11
https://doi.org/10.1680/jmaen.2019.11
https://doi.org/10.1680/jmaen.2019.11
https://doi.org/10.1680/jmaen.2019.11
https://doi.org/10.1680/jmaen.2019.11
https://doi.org/10.1142/S0129065721500532
https://doi.org/10.1142/S0129065721500532
https://doi.org/10.1142/S0129065721500532
https://doi.org/10.1142/S0129065721500532
https://doi.org/10.1142/S0129065721500532
https://doi.org/10.1142/S0129065721500532
https://doi.org/10.3233/ICA-200643
https://doi.org/10.3233/ICA-200643
https://doi.org/10.3233/ICA-200643
https://doi.org/10.3233/ICA-200643
https://doi.org/10.3233/ICA-200643
https://doi.org/10.3233/ICA-200643
https://doi.org/10.1111/mice.12741
https://doi.org/10.1111/mice.12741
https://doi.org/10.1111/mice.12741
https://doi.org/10.1111/mice.12741
https://doi.org/10.1111/mice.12741
https://doi.org/10.1111/mice.12741
https://doi.org/10.1016/j.ymssp.2020.107142
https://doi.org/10.1016/j.ymssp.2020.107142
https://doi.org/10.1016/j.ymssp.2020.107142
https://doi.org/10.1016/j.ymssp.2020.107142
https://doi.org/10.1016/j.ymssp.2020.107142
https://doi.org/10.1016/j.ymssp.2020.107142
https://doi.org/10.1016/j.ymssp.2020.107142
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1016/j.ymssp.2020.107144
https://doi.org/10.1016/j.ymssp.2020.107144
https://doi.org/10.1016/j.ymssp.2020.107144
https://doi.org/10.1016/j.ymssp.2020.107144
https://doi.org/10.1016/j.ymssp.2020.107144
https://doi.org/10.1016/j.ymssp.2020.107144
https://doi.org/10.1111/mice.12565
https://doi.org/10.1111/mice.12565
https://doi.org/10.1111/mice.12565
https://doi.org/10.1111/mice.12565
https://doi.org/10.1111/mice.12565
https://doi.org/10.1111/mice.12565
https://doi.org/10.1016/S0143-974X(99)00043-7
https://doi.org/10.1016/S0143-974X(99)00043-7
https://doi.org/10.1016/S0143-974X(99)00043-7
https://doi.org/10.1016/S0143-974X(99)00043-7
https://doi.org/10.1016/S0143-974X(99)00043-7
https://doi.org/10.1016/S0143-974X(99)00043-7


ambient vibration measurements. Journal of Sound and
Vibration 330(6): 1141–1152, https://doi.org/10.1016/
j.jsv.2010.09.019.

Hirdaris SE, Bai W, Dessi D et al. (2014) Loads for use in the design of
ships and offshore structures. Ocean Engineering 78: 131–174,
https://doi.org/10.1016/j.oceaneng.2013.09.012.

Hu L, Yan H, Hu P and He T (2021) Exploiting higher-order patterns for
community detection in attributed graphs. Integrated
Computer-Aided Engineering 28(2): 207–218.

Huang L and Li Y (2022) Design of the submerged horizontal plate
breakwater using a fully coupled hydroelastic approach. Computer-
Aided Civil and Infrastructure Engineering 37(7): 915–932.

Jang K, An YK, Kim B and Cho S (2021) Automated crack evaluation of
a high-rise bridge pier using a ring-type climbing robot. Computer-
Aided Civil and Infrastructure Engineering 36(1): 14–29,
https://doi.org/10.1111/mice.12550.

Jiang K, Han Q and Du X (2022) Lost data neural semantic recovery
framework for structural health monitoring based on deep
learning. Computer-Aided Civil and Infrastructure Engineering
37(9): 1160–1187, https://doi.org/10.1111/mice.12850.

Jiang X and Adeli H (2008) Dynamic fuzzy wavelet neuroemulator for
non-linear control of irregular building structures. International
Journal for Numerical Methods in Engineering 74(7): 1045–1066,
https://doi.org/10.1002/nme.2195.

Jimenez-Martinez M (2020) Fatigue of offshore structures: a review of
statistical fatigue damage assessment for stochastic loadings.
International Journal of Fatigue 132: 105327, https://doi.org/
10.1016/j.ijfatigue.2019.105327.

Kalenjuk S, Lienhart W and Rebhan MJ (2021) Processing of mobile
laser scanning data for large-scale deformation monitoring of
anchored retaining structures along highways. Computer-Aided
Civil and Infrastructure Engineering 36(6): 678–694,
https://doi.org/10.1111/mice.12656.

Karami K, Fatehi P and Yazdani A (2020) On-line system identification
of structures using wavelet-Hilbert transform and sparse
component analysis. Computer-Aided Civil and
Infrastructure Engineering 35(8): 870–886, https://doi.org/
10.1111/mice.12552.

Kefal A (2019) An efficient curved inverse-shell element for shape
sensing and structural health monitoring of cylindrical marine
structures. Ocean Engineering 188: 106262, https://doi.org/
10.1016/j.oceaneng.2019.106262.

Khodabux W and Brennan F (2021) Objective analysis of corrosion pits
in offshore wind structures using image processing. Energies
14(17): 5428, https://doi.org/10.3390/en14175428.

Lara-Benitez P, Carranza-Garcia M and Riquelme JC (2021) An
experimental review on deep learning architectures for time series
forecasting. International Journal of Neural Systems 31(3):
2130001, https://doi.org/10.1142/S0129065721300011.

Leser PE, Warner JE, Leser WP et al. (2020) A digital twin feasibility
study (part II): non-deterministic predictions of fatigue life using
in situ diagnostics and prognostics. Engineering Fracture
Mechanics 229: 106903, https://doi.org/10.1016/j.engfracmech.
2020.106903.

Li CB and Choung J (2017) Fatigue damage analysis for a
floating offshore wind turbine mooring line using the artificial
neural network approach. Ships and Offshore Structures
12(Sup1): S288–S295, https://doi.org/10.1080/17445302.2016.
1254522.

Li CB, Choung J and Noh MH (2018) Wide-banded fatigue damage
evaluation of catenary mooring lines using various artificial neural
networks models. Marine Structures 60: 186–200, https://doi.org/
10.1016/j.marstruc.2018.03.013.

Li HCH, Herszberg I, Davis CE, Mouritz AP and Galea SC (2006) Health
monitoring of marine composite structural joints using fibre optic
sensors. Composite Structures 75(1–4): 321–327, https://doi.org/
10.1016/j.compstruct.2006.04.054.

Li M, Kefal A, Oterkus E and Oterkus S (2020) Structural health
monitoring of an offshore wind turbine tower using IFEM
methodology. Ocean Engineering 204: 107291, https://doi.org/
10.1016/j.oceaneng.2020.107291.

Li X and Zhang W (2020) Long-term fatigue damage assessment for a
floating offshore wind turbine under realistic environmental
conditions. Renewable Energy 159: 570–584, https://doi.org/
10.1016/j.renene.2020.06.043.

Liu Y, Hajj M and Bao Y (2022) Review of robot-based damage
assessment for offshore wind turbines. Renewable and Sustainable
Energy Reviews 158: 112187, https://doi.org/10.1016/j.rser.2022.
112187.

Maeda H, Kashiyama T, Sekimoto Y, Seto T and Omata H (2021)
Generative adversarial networks for road damage detection.
Computer-Aided Civil and Infrastructure Engineering 36(1): 47–60,
https://doi.org/10.1111/mice.12561.

Mansor NII, Abdullah S, Ariffin AK and Syarif J (2014) A review of the
fatigue failure mechanism of metallic materials under a corroded
environment. Engineering Failure Analysis 42: 353–365, https://doi.
org/10.1016/j.engfailanal.2014.04.016.

Mariniello G, Pastore T, Menna C, Festa P and Asprone D (2021)
Structural damage detection and localization using decision tree
ensemble and vibration data. Computer-Aided Civil and
Infrastructure Engineering 36(9): 1129–1149, https://doi.org/
10.1111/mice.12633.

Martinez-Luengo M, Kolios A and Wang W (2016) Structural health
monitoring of offshore wind turbines: a review through the
statistical pattern recognition paradigm. Renewable and Sustainable
Energy Reviews 64: 91–105, https://doi.org/10.1016/j.rser.2016.05.
085.

Martinez-Luengo M, Shafiee M and Kolios A (2019) Data management
for structural integrity assessment of offshore wind turbine support
structures: data cleansing and missing data imputation. Ocean
Engineering 173: 867–883, https://doi.org/10.1016/j.oceaneng.2019.
01.003.

Mavrothanasis FI and Pavlou DG (2007) Mode-I stress intensity factor
derivation by a suitable Green’s function. Engineering Analysis
with Boundary Elements 31(2): 184–190, https://doi.org/10.1016/
j.enganabound.2006.08.004.

Mavrothanasis FI and Pavlou DG (2008) Green’s function for KI
determination of axisymmetric elastic solids containing
external circular crack. Engineering Fracture Mechanics
75(8): 1891–1905, https://doi.org/10.1016/j.engfracmech.2007.
08.014.

Miao Z, Ji X, Okazaki T and Takahashi N (2021) Pixel-level multi-category
detection of visible seismic damage of reinforced concrete
components. Computer-Aided Civil and Infrastructure Engineering
36(5): 620–637, https://doi.org/10.1111/mice.12667.

Mieloszyk M, Majewska K and Ostachowicz W (2021) Application of
embedded fibre Bragg grating sensors for structural health
monitoring of complex composite structures for marine
applications. Marine Structures 76: 102903, https://doi.org/
10.1016/j.marstruc.2020.102903.

Mojtahedi A, Lotfollahi Yaghin MA, Hassanzadeh Y et al. (2011)
Developing a robust SHM method for offshore jacket platform using
model updating and fuzzy logic system. Applied Ocean Research
33(4): 398–411, https://doi.org/10.1016/j.apor.2011.05.001.

Mojtahedi A, Hokmabady H, Yaghubzadeh A and Mohammadyzadeh S
(2020) An improved model reduction-modal based method for

105

Maritime Engineering
Volume 176 Issue 2

State of the art in structural health
monitoring of offshore and marine
structures
Pezeshki, Adeli, Pavlou and Siriwardane

Downloaded by [] on [05/10/23]. Published with permission by the ICE under the CC-BY license 

https://doi.org/10.1016/j.jsv.2010.09.019
https://doi.org/10.1016/j.jsv.2010.09.019
https://doi.org/10.1016/j.jsv.2010.09.019
https://doi.org/10.1016/j.jsv.2010.09.019
https://doi.org/10.1016/j.jsv.2010.09.019
https://doi.org/10.1016/j.jsv.2010.09.019
https://doi.org/10.1016/j.oceaneng.2013.09.012
https://doi.org/10.1016/j.oceaneng.2013.09.012
https://doi.org/10.1016/j.oceaneng.2013.09.012
https://doi.org/10.1016/j.oceaneng.2013.09.012
https://doi.org/10.1016/j.oceaneng.2013.09.012
https://doi.org/10.1016/j.oceaneng.2013.09.012
https://doi.org/10.1111/mice.12550
https://doi.org/10.1111/mice.12550
https://doi.org/10.1111/mice.12550
https://doi.org/10.1111/mice.12550
https://doi.org/10.1111/mice.12550
https://doi.org/10.1111/mice.12550
https://doi.org/10.1111/mice.12850
https://doi.org/10.1111/mice.12850
https://doi.org/10.1111/mice.12850
https://doi.org/10.1111/mice.12850
https://doi.org/10.1111/mice.12850
https://doi.org/10.1111/mice.12850
https://doi.org/10.1002/nme.2195
https://doi.org/10.1002/nme.2195
https://doi.org/10.1002/nme.2195
https://doi.org/10.1002/nme.2195
https://doi.org/10.1002/nme.2195
https://doi.org/10.1002/nme.2195
https://doi.org/10.1016/j.ijfatigue.2019.105327
https://doi.org/10.1016/j.ijfatigue.2019.105327
https://doi.org/10.1016/j.ijfatigue.2019.105327
https://doi.org/10.1016/j.ijfatigue.2019.105327
https://doi.org/10.1016/j.ijfatigue.2019.105327
https://doi.org/10.1016/j.ijfatigue.2019.105327
https://doi.org/10.1111/mice.12656
https://doi.org/10.1111/mice.12656
https://doi.org/10.1111/mice.12656
https://doi.org/10.1111/mice.12656
https://doi.org/10.1111/mice.12656
https://doi.org/10.1111/mice.12656
https://doi.org/10.1111/mice.12552
https://doi.org/10.1111/mice.12552
https://doi.org/10.1111/mice.12552
https://doi.org/10.1111/mice.12552
https://doi.org/10.1111/mice.12552
https://doi.org/10.1111/mice.12552
https://doi.org/10.1016/j.oceaneng.2019.106262
https://doi.org/10.1016/j.oceaneng.2019.106262
https://doi.org/10.1016/j.oceaneng.2019.106262
https://doi.org/10.1016/j.oceaneng.2019.106262
https://doi.org/10.1016/j.oceaneng.2019.106262
https://doi.org/10.1016/j.oceaneng.2019.106262
https://doi.org/10.3390/en14175428
https://doi.org/10.3390/en14175428
https://doi.org/10.3390/en14175428
https://doi.org/10.3390/en14175428
https://doi.org/10.3390/en14175428
https://doi.org/10.3390/en14175428
https://doi.org/10.1142/S0129065721300011
https://doi.org/10.1142/S0129065721300011
https://doi.org/10.1142/S0129065721300011
https://doi.org/10.1142/S0129065721300011
https://doi.org/10.1142/S0129065721300011
https://doi.org/10.1142/S0129065721300011
https://doi.org/10.1016/j.engfracmech.2020.106903
https://doi.org/10.1016/j.engfracmech.2020.106903
https://doi.org/10.1016/j.engfracmech.2020.106903
https://doi.org/10.1016/j.engfracmech.2020.106903
https://doi.org/10.1016/j.engfracmech.2020.106903
https://doi.org/10.1016/j.engfracmech.2020.106903
https://doi.org/10.1080/17445302.2016.1254522
https://doi.org/10.1080/17445302.2016.1254522
https://doi.org/10.1080/17445302.2016.1254522
https://doi.org/10.1080/17445302.2016.1254522
https://doi.org/10.1080/17445302.2016.1254522
https://doi.org/10.1080/17445302.2016.1254522
https://doi.org/10.1080/17445302.2016.1254522
https://doi.org/10.1016/j.marstruc.2018.03.013
https://doi.org/10.1016/j.marstruc.2018.03.013
https://doi.org/10.1016/j.marstruc.2018.03.013
https://doi.org/10.1016/j.marstruc.2018.03.013
https://doi.org/10.1016/j.marstruc.2018.03.013
https://doi.org/10.1016/j.marstruc.2018.03.013
https://doi.org/10.1016/j.compstruct.2006.04.054
https://doi.org/10.1016/j.compstruct.2006.04.054
https://doi.org/10.1016/j.compstruct.2006.04.054
https://doi.org/10.1016/j.compstruct.2006.04.054
https://doi.org/10.1016/j.compstruct.2006.04.054
https://doi.org/10.1016/j.compstruct.2006.04.054
https://doi.org/10.1016/j.oceaneng.2020.107291
https://doi.org/10.1016/j.oceaneng.2020.107291
https://doi.org/10.1016/j.oceaneng.2020.107291
https://doi.org/10.1016/j.oceaneng.2020.107291
https://doi.org/10.1016/j.oceaneng.2020.107291
https://doi.org/10.1016/j.oceaneng.2020.107291
https://doi.org/10.1016/j.renene.2020.06.043
https://doi.org/10.1016/j.renene.2020.06.043
https://doi.org/10.1016/j.renene.2020.06.043
https://doi.org/10.1016/j.renene.2020.06.043
https://doi.org/10.1016/j.renene.2020.06.043
https://doi.org/10.1016/j.renene.2020.06.043
https://doi.org/10.1016/j.rser.2022.112187
https://doi.org/10.1016/j.rser.2022.112187
https://doi.org/10.1016/j.rser.2022.112187
https://doi.org/10.1016/j.rser.2022.112187
https://doi.org/10.1016/j.rser.2022.112187
https://doi.org/10.1016/j.rser.2022.112187
https://doi.org/10.1016/j.rser.2022.112187
https://doi.org/10.1111/mice.12561
https://doi.org/10.1111/mice.12561
https://doi.org/10.1111/mice.12561
https://doi.org/10.1111/mice.12561
https://doi.org/10.1111/mice.12561
https://doi.org/10.1111/mice.12561
https://doi.org/10.1016/j.engfailanal.2014.04.016
https://doi.org/10.1016/j.engfailanal.2014.04.016
https://doi.org/10.1016/j.engfailanal.2014.04.016
https://doi.org/10.1016/j.engfailanal.2014.04.016
https://doi.org/10.1016/j.engfailanal.2014.04.016
https://doi.org/10.1016/j.engfailanal.2014.04.016
https://doi.org/10.1016/j.engfailanal.2014.04.016
https://doi.org/10.1111/mice.12633
https://doi.org/10.1111/mice.12633
https://doi.org/10.1111/mice.12633
https://doi.org/10.1111/mice.12633
https://doi.org/10.1111/mice.12633
https://doi.org/10.1111/mice.12633
https://doi.org/10.1016/j.rser.2016.05.085
https://doi.org/10.1016/j.rser.2016.05.085
https://doi.org/10.1016/j.rser.2016.05.085
https://doi.org/10.1016/j.rser.2016.05.085
https://doi.org/10.1016/j.rser.2016.05.085
https://doi.org/10.1016/j.rser.2016.05.085
https://doi.org/10.1016/j.rser.2016.05.085
https://doi.org/10.1016/j.oceaneng.2019.01.003
https://doi.org/10.1016/j.oceaneng.2019.01.003
https://doi.org/10.1016/j.oceaneng.2019.01.003
https://doi.org/10.1016/j.oceaneng.2019.01.003
https://doi.org/10.1016/j.oceaneng.2019.01.003
https://doi.org/10.1016/j.oceaneng.2019.01.003
https://doi.org/10.1016/j.oceaneng.2019.01.003
https://doi.org/10.1016/j.enganabound.2006.08.004
https://doi.org/10.1016/j.enganabound.2006.08.004
https://doi.org/10.1016/j.enganabound.2006.08.004
https://doi.org/10.1016/j.enganabound.2006.08.004
https://doi.org/10.1016/j.enganabound.2006.08.004
https://doi.org/10.1016/j.enganabound.2006.08.004
https://doi.org/10.1016/j.engfracmech.2007.08.014
https://doi.org/10.1016/j.engfracmech.2007.08.014
https://doi.org/10.1016/j.engfracmech.2007.08.014
https://doi.org/10.1016/j.engfracmech.2007.08.014
https://doi.org/10.1016/j.engfracmech.2007.08.014
https://doi.org/10.1016/j.engfracmech.2007.08.014
https://doi.org/10.1016/j.engfracmech.2007.08.014
https://doi.org/10.1111/mice.12667
https://doi.org/10.1111/mice.12667
https://doi.org/10.1111/mice.12667
https://doi.org/10.1111/mice.12667
https://doi.org/10.1111/mice.12667
https://doi.org/10.1111/mice.12667
https://doi.org/10.1016/j.marstruc.2020.102903
https://doi.org/10.1016/j.marstruc.2020.102903
https://doi.org/10.1016/j.marstruc.2020.102903
https://doi.org/10.1016/j.marstruc.2020.102903
https://doi.org/10.1016/j.marstruc.2020.102903
https://doi.org/10.1016/j.marstruc.2020.102903
https://doi.org/10.1016/J.APOR.2011.05.001
https://doi.org/10.1016/J.APOR.2011.05.001
https://doi.org/10.1016/J.APOR.2011.05.001
https://doi.org/10.1016/J.APOR.2011.05.001
https://doi.org/10.1016/J.APOR.2011.05.001
https://doi.org/10.1016/J.APOR.2011.05.001


model updating and health monitoring of an offshore jacket-type
platform. Ocean Engineering 209: 107495, https://doi.org/10.1016/
j.oceaneng.2020.107495.

Mondoro A, Soliman M and Frangopol DM (2016) Prediction of
structural response of naval vessels based on available structural
health monitoring data. Ocean Engineering 125: 295–307,
https://doi.org/10.1016/j.oceaneng.2016.08.012.

Mourão A, Correia JAFO, Ávila BV et al. (2020) A fatigue damage
evaluation using local damage parameters for an offshore
structure. Proceedings of the Institution of Civil Engineers –
Maritime Engineering 173(2): 43–57, https://doi.org/10.1680/jmaen.
2019.24.

Nabuco B, Tarpø M, Tygesen UT and Brincker R (2020) Fatigue stress
estimation of an offshore jacket structure based on operational
modal analysis. Shock and Vibration 2020: 7890247,
https://doi.org/10.1155/2020/7890247.

Nasimi R and Moreu F (2021) A methodology for measuring the total
displacements of structures using a laser-camera system. Computer-
Aided Civil and Infrastructure Engineering 36(4): 421–437.

Ngeljaratan L, Moustafa MA and Pekcan G (2021) A compressive sensing
method for processing and improving vision-based target-tracking
signals for structural health monitoring. Computer-Aided Civil and
Infrastructure Engineering 36(9): 1203–1223, https://doi.org/
10.1111/mice.12653.

Norén-Cosgriff K and Kaynia AM (2021) Estimation of natural
frequencies and damping using dynamic field data from an
offshore wind turbine. Marine Structures 76: 102915,
https://doi.org/10.1016/j.marstruc.2020.102915.

Ozdemir MA, Cura OK and Akan A (2021) Epileptic EEG classification
by using time-frequency images for deep learning. International
Journal of Neural Systems 31(8): 2150026, https://doi.org/
10.1142/S012906572150026X.

Park HS, Lee HM, Adeli H and Lee I (2007) A new approach for health
monitoring of structures: terrestrial laser scanning. Computer-
Aided Civil and Infrastructure Engineering 22(1): 19–30,
https://doi.org/10.1111/j.1467-8667.2006.00466.x.

Park SW, Park HS, Kim JH and Adeli H (2015) 3D Displacement
measurement model for health monitoring of structures using a
motion capture system. Measurement: Journal of the International
Measurement Confederation 59: 352–362, https://doi.org/10.1016/
j.measurement.2014.09.063.

Pavlou DG (2000) Prediction of fatigue crack growth under real stress
histories. Engineering Structures 22(12): 1707–1713,
https://doi.org/10.1016/S0141-0296(99)00069-3.

Pavlou DG (2002a) Boundary-integral equation analysis of twisted
internally cracked axisymmetric bimaterial elastic solids.
Computational Mechanics 29(3): 254–264, https://doi.org/
10.1007/s00466-002-0338-7.

Pavlou DG (2002b) Green’s function for the bimaterial elastic solid
containing interface annular crack. Engineering Analysis with
Boundary Elements 26(10): 845–853, https://doi.org/10.1016/S0955-
7997(02)00052-8.

Pavlou DG (2018a) The theory of the S-N fatigue damage envelope:
generalization of linear, double-linear, and non-linear fatigue
damage models. International Journal of Fatigue 110: 204–214,
https://doi.org/10.1016/j.ijfatigue.2018.01.023.

Pavlou DG (2018b) Mode I+II fatigue crack growth delay by stopholes.
Journal of Aerospace Technology and Management 10: e1518,
https://doi.org/10.5028/jatm.v10.808.

Pavlou DG (2021) Soil–structure–wave interaction of gravity-based
offshore wind turbines: an analytical model. Journal of Offshore
Mechanics and Arctic Engineering 143(3): 032101, https://doi.
org/10.1115/1.4048997.

Pavlou DG (2022) A deterministic algorithm for nonlinear, fatigue-
based structural health monitoring. Computer-Aided Civil and
Infrastructure Engineering 37: 809–831, https://doi.org/10.
1111/mice.12783.

Pavlou DG and Correia JA (2019) Dynamic response of pipelines under
impact and harmonic loading. Proceedings of the Institution of
Civil Engineers – Maritime Engineering 172(1): 15–22,
https://doi.org/10.1680/jmaen.2019.2.

Peng P, Xie L and Wei H (2021) A deep Fourier neural network for
seizure prediction using convolutional neural network and ratios of
spectral power. International Journal of Neural Systems 31(8):
2150022, https://doi.org/10.1142/S0129065721500222.

Pereira DR, Piteri MA, Souza AN, Papa JP and Adeli H (2020) FEMa:
a finite element machine for fast learning. Neural Computing and
Applications 32(10): 6393–6404, https://doi.org/10.1007/s00521-
019-04146-4.

Perez-Ramirez CA, Amezquita-Sanchez JM, Adeli H et al. (2016) New
methodology for modal parameters identification of smart
civil structures using ambient vibrations and synchrosqueezed
wavelet transform. Engineering Applications of Artificial
Intelligence 48: 1–12, https://doi.org/10.1016/j.engappai.2015.
10.005.

Pezeshki H, Pavlou DG, Adeli H and Siriwardane SC (2022) Modal
analysis of offshore monopile wind turbine: an analytical solution.
Journal of Offshore Mechanics and Arctic Engineering 145(1):
010907, https://doi.org/10.1115/1.4055402.

Prendergast LJ, Gavin K and Doherty P (2015) An investigation into the
effect of scour on the natural frequency of an offshore wind
turbine. Ocean Engineering 101: 1–11, https://doi.org/10.1016/
j.oceaneng.2015.04.017.

Prendergast LJ, Reale C and Gavin K (2018) Probabilistic examination of
the change in eigenfrequencies of an offshore wind turbine under
progressive scour incorporating soil spatial variability. Marine
Structures 57: 87–104, https://doi.org/10.1016/j.marstruc.2017.09.
009.

Puruncajas B, Vidal Y and Tutivén C (2020) Vibration-response-only
structural health monitoring for offshore wind turbine jacket
foundations via convolutional neural networks. Sensors 20(12):
article 3429, https://doi.org/10.3390/s20123429.

Qarib H and Adeli H (2014) Recent advances in health monitoring of
civil structures. Scientia Iranica 21(6): 1733–1742.

Qarib H and Adeli H (2015) A new adaptive algorithm for automated
feature extraction in exponentially damped signals for
health monitoring of smart structures. Smart Materials
and Structures 24(12): 125040, https://doi.org/10.1088/0964-
1726/24/12/125040.

Qarib H and Adeli H (2016) A comparative study of signal processing
methods for structural health monitoring. Journal of
Vibroengineering 18(4): 2186–2204, https://doi.org/10.21595/
jve.2016.17218.

Qvale P, Zarandi EP, Ås SK and Skallerud BH (2021) Digital image
correlation for continuous mapping of fatigue crack initiation sites
on corroded surface from offshore mooring chain. International
Journal of Fatigue 151: 106350, https://doi.org/10.1016/j.ijfatigue.
2021.106350.

Rafiei MH and Adeli H (2017) A new neural dynamic classification
algorithm. IEEE Transactions on Neural Networks and
Learning Systems 28(12): 3074–3083, https://doi.org/10.1109/tnnls.
2017.2682102.

Rege K and Pavlou DG (2019) Effect of stop holes on structural
integrity of offshore structures: a numerical model. Proceedings of
the Institution of Civil Engineers – Maritime Engineering 172(1):
3–14, https://doi.org/10.1680/jmaen.2018.34.

106

Maritime Engineering
Volume 176 Issue 2

State of the art in structural health
monitoring of offshore and marine
structures
Pezeshki, Adeli, Pavlou and Siriwardane

Downloaded by [] on [05/10/23]. Published with permission by the ICE under the CC-BY license 

https://doi.org/10.1016/j.oceaneng.2020.107495
https://doi.org/10.1016/j.oceaneng.2020.107495
https://doi.org/10.1016/j.oceaneng.2020.107495
https://doi.org/10.1016/j.oceaneng.2020.107495
https://doi.org/10.1016/j.oceaneng.2020.107495
https://doi.org/10.1016/j.oceaneng.2020.107495
https://doi.org/10.1016/j.oceaneng.2016.08.012
https://doi.org/10.1016/j.oceaneng.2016.08.012
https://doi.org/10.1016/j.oceaneng.2016.08.012
https://doi.org/10.1016/j.oceaneng.2016.08.012
https://doi.org/10.1016/j.oceaneng.2016.08.012
https://doi.org/10.1016/j.oceaneng.2016.08.012
https://doi.org/10.1680/jmaen.2019.24
https://doi.org/10.1680/jmaen.2019.24
https://doi.org/10.1680/jmaen.2019.24
https://doi.org/10.1680/jmaen.2019.24
https://doi.org/10.1680/jmaen.2019.24
https://doi.org/10.1680/jmaen.2019.24
https://doi.org/10.1680/jmaen.2019.24
https://doi.org/10.1155/2020/7890247
https://doi.org/10.1155/2020/7890247
https://doi.org/10.1155/2020/7890247
https://doi.org/10.1155/2020/7890247
https://doi.org/10.1155/2020/7890247
https://doi.org/10.1155/2020/7890247
https://doi.org/10.1155/2020/7890247
https://doi.org/10.1111/mice.12653
https://doi.org/10.1111/mice.12653
https://doi.org/10.1111/mice.12653
https://doi.org/10.1111/mice.12653
https://doi.org/10.1111/mice.12653
https://doi.org/10.1111/mice.12653
https://doi.org/10.1016/j.marstruc.2020.102915
https://doi.org/10.1016/j.marstruc.2020.102915
https://doi.org/10.1016/j.marstruc.2020.102915
https://doi.org/10.1016/j.marstruc.2020.102915
https://doi.org/10.1016/j.marstruc.2020.102915
https://doi.org/10.1016/j.marstruc.2020.102915
https://doi.org/10.1142/S012906572150026X
https://doi.org/10.1142/S012906572150026X
https://doi.org/10.1142/S012906572150026X
https://doi.org/10.1142/S012906572150026X
https://doi.org/10.1142/S012906572150026X
https://doi.org/10.1142/S012906572150026X
https://doi.org/10.1111/j.1467-8667.2006.00466.x
https://doi.org/10.1111/j.1467-8667.2006.00466.x
https://doi.org/10.1111/j.1467-8667.2006.00466.x
https://doi.org/10.1111/j.1467-8667.2006.00466.x
https://doi.org/10.1111/j.1467-8667.2006.00466.x
https://doi.org/10.1111/j.1467-8667.2006.00466.x
https://doi.org/10.1016/j.measurement.2014.09.063
https://doi.org/10.1016/j.measurement.2014.09.063
https://doi.org/10.1016/j.measurement.2014.09.063
https://doi.org/10.1016/j.measurement.2014.09.063
https://doi.org/10.1016/j.measurement.2014.09.063
https://doi.org/10.1016/j.measurement.2014.09.063
https://doi.org/10.1016/S0141-0296(99)00069-3
https://doi.org/10.1016/S0141-0296(99)00069-3
https://doi.org/10.1016/S0141-0296(99)00069-3
https://doi.org/10.1016/S0141-0296(99)00069-3
https://doi.org/10.1016/S0141-0296(99)00069-3
https://doi.org/10.1016/S0141-0296(99)00069-3
https://doi.org/10.1007/s00466-002-0338-7
https://doi.org/10.1007/s00466-002-0338-7
https://doi.org/10.1007/s00466-002-0338-7
https://doi.org/10.1007/s00466-002-0338-7
https://doi.org/10.1007/s00466-002-0338-7
https://doi.org/10.1007/s00466-002-0338-7
https://doi.org/10.1016/S0955-7997(02)00052-8
https://doi.org/10.1016/S0955-7997(02)00052-8
https://doi.org/10.1016/S0955-7997(02)00052-8
https://doi.org/10.1016/S0955-7997(02)00052-8
https://doi.org/10.1016/S0955-7997(02)00052-8
https://doi.org/10.1016/S0955-7997(02)00052-8
https://doi.org/10.1016/S0955-7997(02)00052-8
https://doi.org/10.1016/J.IJFATIGUE.2018.01.023
https://doi.org/10.1016/J.IJFATIGUE.2018.01.023
https://doi.org/10.1016/J.IJFATIGUE.2018.01.023
https://doi.org/10.1016/J.IJFATIGUE.2018.01.023
https://doi.org/10.1016/J.IJFATIGUE.2018.01.023
https://doi.org/10.1016/J.IJFATIGUE.2018.01.023
https://doi.org/10.5028/jatm.v10.808
https://doi.org/10.5028/jatm.v10.808
https://doi.org/10.5028/jatm.v10.808
https://doi.org/10.5028/jatm.v10.808
https://doi.org/10.5028/jatm.v10.808
https://doi.org/10.5028/jatm.v10.808
https://doi.org/10.1115/1.4048997
https://doi.org/10.1115/1.4048997
https://doi.org/10.1115/1.4048997
https://doi.org/10.1115/1.4048997
https://doi.org/10.1115/1.4048997
https://doi.org/10.1115/1.4048997
https://doi.org/10.1111/mice.12783
https://doi.org/10.1111/mice.12783
https://doi.org/10.1111/mice.12783
https://doi.org/10.1111/mice.12783
https://doi.org/10.1111/mice.12783
https://doi.org/10.1111/mice.12783
https://doi.org/10.1111/mice.12783
https://doi.org/10.1680/jmaen.2019.2
https://doi.org/10.1680/jmaen.2019.2
https://doi.org/10.1680/jmaen.2019.2
https://doi.org/10.1680/jmaen.2019.2
https://doi.org/10.1680/jmaen.2019.2
https://doi.org/10.1680/jmaen.2019.2
https://doi.org/10.1142/S0129065721500222
https://doi.org/10.1142/S0129065721500222
https://doi.org/10.1142/S0129065721500222
https://doi.org/10.1142/S0129065721500222
https://doi.org/10.1142/S0129065721500222
https://doi.org/10.1142/S0129065721500222
https://doi.org/10.1007/s00521-019-04146-4
https://doi.org/10.1007/s00521-019-04146-4
https://doi.org/10.1007/s00521-019-04146-4
https://doi.org/10.1007/s00521-019-04146-4
https://doi.org/10.1007/s00521-019-04146-4
https://doi.org/10.1007/s00521-019-04146-4
https://doi.org/10.1007/s00521-019-04146-4
https://doi.org/10.1016/j.engappai.2015.10.005
https://doi.org/10.1016/j.engappai.2015.10.005
https://doi.org/10.1016/j.engappai.2015.10.005
https://doi.org/10.1016/j.engappai.2015.10.005
https://doi.org/10.1016/j.engappai.2015.10.005
https://doi.org/10.1016/j.engappai.2015.10.005
https://doi.org/10.1016/j.engappai.2015.10.005
https://doi.org/10.1115/1.4055402
https://doi.org/10.1115/1.4055402
https://doi.org/10.1115/1.4055402
https://doi.org/10.1115/1.4055402
https://doi.org/10.1115/1.4055402
https://doi.org/10.1115/1.4055402
https://doi.org/10.1016/j.oceaneng.2015.04.017
https://doi.org/10.1016/j.oceaneng.2015.04.017
https://doi.org/10.1016/j.oceaneng.2015.04.017
https://doi.org/10.1016/j.oceaneng.2015.04.017
https://doi.org/10.1016/j.oceaneng.2015.04.017
https://doi.org/10.1016/j.oceaneng.2015.04.017
https://doi.org/10.1016/j.marstruc.2017.09.009
https://doi.org/10.1016/j.marstruc.2017.09.009
https://doi.org/10.1016/j.marstruc.2017.09.009
https://doi.org/10.1016/j.marstruc.2017.09.009
https://doi.org/10.1016/j.marstruc.2017.09.009
https://doi.org/10.1016/j.marstruc.2017.09.009
https://doi.org/10.1016/j.marstruc.2017.09.009
https://doi.org/10.3390/s20123429
https://doi.org/10.3390/s20123429
https://doi.org/10.3390/s20123429
https://doi.org/10.3390/s20123429
https://doi.org/10.3390/s20123429
https://doi.org/10.3390/s20123429
https://doi.org/10.1088/0964-1726/24/12/125040
https://doi.org/10.1088/0964-1726/24/12/125040
https://doi.org/10.1088/0964-1726/24/12/125040
https://doi.org/10.1088/0964-1726/24/12/125040
https://doi.org/10.1088/0964-1726/24/12/125040
https://doi.org/10.1088/0964-1726/24/12/125040
https://doi.org/10.1088/0964-1726/24/12/125040
https://doi.org/10.1088/0964-1726/24/12/125040
https://doi.org/10.1088/0964-1726/24/12/125040
https://doi.org/10.1088/0964-1726/24/12/125040
https://doi.org/10.21595/jve.2016.17218
https://doi.org/10.21595/jve.2016.17218
https://doi.org/10.21595/jve.2016.17218
https://doi.org/10.21595/jve.2016.17218
https://doi.org/10.21595/jve.2016.17218
https://doi.org/10.21595/jve.2016.17218
https://doi.org/10.1016/j.ijfatigue.2021.106350
https://doi.org/10.1016/j.ijfatigue.2021.106350
https://doi.org/10.1016/j.ijfatigue.2021.106350
https://doi.org/10.1016/j.ijfatigue.2021.106350
https://doi.org/10.1016/j.ijfatigue.2021.106350
https://doi.org/10.1016/j.ijfatigue.2021.106350
https://doi.org/10.1016/j.ijfatigue.2021.106350
https://doi.org/10.1109/tnnls.2017.2682102
https://doi.org/10.1109/tnnls.2017.2682102
https://doi.org/10.1109/tnnls.2017.2682102
https://doi.org/10.1109/tnnls.2017.2682102
https://doi.org/10.1109/tnnls.2017.2682102
https://doi.org/10.1109/tnnls.2017.2682102
https://doi.org/10.1109/tnnls.2017.2682102
https://doi.org/10.1680/jmaen.2018.34
https://doi.org/10.1680/jmaen.2018.34
https://doi.org/10.1680/jmaen.2018.34
https://doi.org/10.1680/jmaen.2018.34
https://doi.org/10.1680/jmaen.2018.34
https://doi.org/10.1680/jmaen.2018.34


Rege K, Grønsund J and Pavlou DG (2019) Mixed-mode I and II fatigue
crack growth retardation due to overload: an experimental study.
International Journal of Fatigue 129: 105227, https://doi.org/
10.1016/j.ijfatigue.2019.105227.

Ren Q, Li M, Li H et al. (2021) A robust prediction model for
displacement of concrete dams subjected to irregular water level
fluctuations. Computer-Aided Civil and Infrastructure Engineering
36(5): 577–601, https://doi.org/10.1111/mice.12654.

Sajedi SO and Liang X (2021a) Dual Bayesian inference for risk-
informed vibration-based damage diagnosis. Computer-Aided Civil
and Infrastructure Engineering 36(9): 1168–1184, https://doi.org/
10.1111/mice.12642.

Sajedi SO and Liang X (2021b) Uncertainty-assisted deep vision
structural health monitoring. Computer-Aided Civil and
Infrastructure Engineering 36(2): 126–142, https://doi.org/
10.1111/mice.12580.

Sajedi SM and Liang X (2022) Deep generative Bayesian optimization
for sensor placement in structural health monitoring.
Computer-Aided Civil and Infrastructure Engineering 37(9):
1109–1127, https://doi.org/10.1111/mice.12799.

Sakaris CS, Yang Y, Bashir M et al. (2021) Structural health monitoring
of tendons in a multibody floating offshore wind turbine under
varying environmental and operating conditions. Renewable
Energy 179: 1897–1914, https://doi.org/10.1016/j.renene.2021.08.
001.

Sarmadi H and Yuen KV (2021) Early damage detection by an
innovative unsupervised learning method based on kernel null
space and peak-over-threshold. Computer-Aided Civil and
Infrastructure Engineering 36(9): 1150–1167, https://doi.org/
10.1111/mice.12635.

Shao Y, Zheng Z, Liang H and Chen J (2022) A consistent second-order
hydrodynamic model in the time domain for floating structures
with large horizontal motions. Computer-Aided Civil and
Infrastructure Engineering 37(7): 894–914, https://doi.org/
10.1111/mice.12782.

Sirca GF and Adeli H (2012) System identification in structural
engineering. Scientia Iranica 19(6): 1355–1364, https://doi.org/
10.1016/j.scient.2012.09.002.

Soleimani-Babakamali MH, Sepasdar R, Nasrollahzadeh K, Lourentzou I
and Sarlo R (2022) Towards a general unsupervised novelty
detection framework in structural health monitoring. Computer-
Aided Civil and Infrastructure Engineering 37(9): 1128–1145,
https://doi.org/10.1111/mice.12812.

Thompson I (2019) Digital Twinning of Ship Structural Fatigue: State of
the Art Review and Strategic Research Agenda. Defence Research
and Development, Dartmouth, NS, Canada.

Tian Y, Zhang C, Jiang S, Zhang J and Duan W (2021) Noncontact cable
force estimation with unmanned aerial vehicle and computer
vision. Computer-Aided Civil and Infrastructure Engineering 36(1):
73–88, https://doi.org/10.1111/mice.12567.

Tibaduiza Burgos DA, Gomez Vargas RC, Pedraza C, Agis D and Pozo F
(2020) Damage identification in structural health monitoring:
a brief review from its implementation to the use of data-driven
applications. Sensors 20(3): article 733, https://doi.org/10.3390/
s20030733.

Tödter S, Sheshtawy HE, Neugebauer J, Moctar OE and Schellin TE (2021)
Deformation measurement of a monopile subject to
vortex-induced vibration using digital image correlation.
Ocean Engineering 221: 108548, https://doi.org/10.1016/j.oceaneng.
2020.108548.

Tuegel EJ, Ingraffea AR, Eason TG and Spottswood SM (2011)
Reengineering aircraft structural life prediction using a digital

twin. International Journal of Aerospace Engineering 2011: article
ID 154798, https://doi.org/10.1155/2011/154798.

Tygesen UT, Jepsen MS, Vestermark J, Dollerup N and Pedersen A (2018)
The true digital twin concept for fatigue Re-assessment of marine
structures. In Proceedings of the ASME 2018 37th International
Conference on Ocean, Offshore and Arctic Engineering. Volume 1:
Offshore Technology. ASME, New York, NY, USA,
paper V001T01A021.

Vanem E, Fazeres-Ferradosa T, Rosa-Santos P and Taveira-Pinto F (2019)
Statistical description and modelling of extreme ocean wave
conditions. Proceedings of the Institution of Civil Engineers –
Maritime Engineering 172(4): 124–132, https://doi.org/
10.1680/jmaen.2019.20.

Vieira F, Cavalcante G, Campos E and Taveira-Pinto F (2020) A
methodology for data gap filling in wave records using artificial
neural networks. Applied Ocean Research 98: 102109, https://
doi.org/10.1016/j.apor.2020.102109.

Wagg DJ, Worden K, Barthorpe RJ and Gardner P (2020) Digital twins:
state-of-the-art and future directions for modeling and simulation
in engineering dynamics applications. ASCE-ASME Journal of
Risk and Uncertainty in Engineering Systems, Part B: Mechanical
Engineering 6(3): 030901, https://doi.org/10.1115/1.4046739.

Wang X and Yan WQ (2020) Human gait recognition based on frame-
by-frame gate energy images and convolutional long short term
memory. International Journal of Neural Systems 30(1): 1950027,
https://doi.org/10.1142/S0129065719500230.

Wang S, Li Y and Li H (2015) Structural model updating of an offshore
platform using the cross model cross mode method: an
experimental study. Ocean Engineering 97: 57–64, https://doi.org/
10.1016/j.oceaneng.2015.01.007.

Wang Y, Wang H, Zhou B and Fu H (2021) Multi-dimensional prediction
method based on Bi-LSTMC for ship roll. Ocean Engineering 242:
110106, https://doi.org/10.1016/j.oceaneng.2021.110106.

Wong EWC and Kim DK (2018) A simplified method to predict fatigue
damage of TTR subjected to short-term VIV using artificial
neural network. Advances in Engineering Software 126: 100–109,
https://doi.org/10.1016/j.advengsoft.2018.09.011.

Worden K, Wong CX, Parlitz U et al. (2007) Identification of Pre-sliding
and sliding friction dynamics: grey box and black-box models.
Mechanical Systems and Signal Processing 21(1): 514–534,
https://doi.org/10.1016/J.YMSSP.2005.09.004.

Wu Z and Li J (2021) A framework of dynamic data driven digital twin
for complex engineering products: the example of aircraft engine
health management. Procedia Manufacturing 55: 139–146,
https://doi.org/10.1016/j.promfg.2021.10.020.

Xu Y, Lu X, Cetiner B and Taciroglu E (2021) Real-time regional seismic
damage assessment framework based on long short-term memory
neural network. Computer-Aided Civil and Infrastructure
Engineering 36(4): 504–521, https://doi.org/10.1111/mice.12628.

Xue Y, Jiang P, Neri F and Liang J (2021) A multiobjective evolutionary
approach based on graph-in-graph for neural architecture search
of convolutional neural networks. International Journal of Neural
Systems 31(9): 2150035, https://doi.org/10.1142/
S0129065721500350.

Yang X and Lei Y (2022) Efficient simulation of wind fields based on
the factorization of wavenumber-frequency joint spectrum.
Computer-Aided Civil and Infrastructure Engineering 37(3):
370–385, https://doi.org/10.1111/mice.12735.

Yeratapally SR, Leser PE, Hochhalter JD, Leser WP and Ruggles TJ (2020)
A digital twin feasibility study (part I): non-deterministic
predictions of fatigue life in aluminum alloy 7075-T651 using a
microstructure-based multi-scale model. Engineering Fracture

107

Maritime Engineering
Volume 176 Issue 2

State of the art in structural health
monitoring of offshore and marine
structures
Pezeshki, Adeli, Pavlou and Siriwardane

Downloaded by [] on [05/10/23]. Published with permission by the ICE under the CC-BY license 

https://doi.org/10.1016/j.ijfatigue.2019.105227
https://doi.org/10.1016/j.ijfatigue.2019.105227
https://doi.org/10.1016/j.ijfatigue.2019.105227
https://doi.org/10.1016/j.ijfatigue.2019.105227
https://doi.org/10.1016/j.ijfatigue.2019.105227
https://doi.org/10.1016/j.ijfatigue.2019.105227
https://doi.org/10.1111/mice.12654
https://doi.org/10.1111/mice.12654
https://doi.org/10.1111/mice.12654
https://doi.org/10.1111/mice.12654
https://doi.org/10.1111/mice.12654
https://doi.org/10.1111/mice.12654
https://doi.org/10.1111/mice.12642
https://doi.org/10.1111/mice.12642
https://doi.org/10.1111/mice.12642
https://doi.org/10.1111/mice.12642
https://doi.org/10.1111/mice.12642
https://doi.org/10.1111/mice.12642
https://doi.org/10.1111/mice.12580
https://doi.org/10.1111/mice.12580
https://doi.org/10.1111/mice.12580
https://doi.org/10.1111/mice.12580
https://doi.org/10.1111/mice.12580
https://doi.org/10.1111/mice.12580
https://doi.org/10.1111/mice.12799
https://doi.org/10.1111/mice.12799
https://doi.org/10.1111/mice.12799
https://doi.org/10.1111/mice.12799
https://doi.org/10.1111/mice.12799
https://doi.org/10.1111/mice.12799
https://doi.org/10.1016/j.renene.2021.08.001
https://doi.org/10.1016/j.renene.2021.08.001
https://doi.org/10.1016/j.renene.2021.08.001
https://doi.org/10.1016/j.renene.2021.08.001
https://doi.org/10.1016/j.renene.2021.08.001
https://doi.org/10.1016/j.renene.2021.08.001
https://doi.org/10.1016/j.renene.2021.08.001
https://doi.org/10.1111/mice.12635
https://doi.org/10.1111/mice.12635
https://doi.org/10.1111/mice.12635
https://doi.org/10.1111/mice.12635
https://doi.org/10.1111/mice.12635
https://doi.org/10.1111/mice.12635
https://doi.org/10.1111/mice.12782
https://doi.org/10.1111/mice.12782
https://doi.org/10.1111/mice.12782
https://doi.org/10.1111/mice.12782
https://doi.org/10.1111/mice.12782
https://doi.org/10.1111/mice.12782
https://doi.org/10.1016/j.scient.2012.09.002
https://doi.org/10.1016/j.scient.2012.09.002
https://doi.org/10.1016/j.scient.2012.09.002
https://doi.org/10.1016/j.scient.2012.09.002
https://doi.org/10.1016/j.scient.2012.09.002
https://doi.org/10.1016/j.scient.2012.09.002
https://doi.org/10.1111/mice.12812
https://doi.org/10.1111/mice.12812
https://doi.org/10.1111/mice.12812
https://doi.org/10.1111/mice.12812
https://doi.org/10.1111/mice.12812
https://doi.org/10.1111/mice.12812
https://doi.org/10.1111/mice.12567
https://doi.org/10.1111/mice.12567
https://doi.org/10.1111/mice.12567
https://doi.org/10.1111/mice.12567
https://doi.org/10.1111/mice.12567
https://doi.org/10.1111/mice.12567
https://doi.org/10.3390/s20030733
https://doi.org/10.3390/s20030733
https://doi.org/10.3390/s20030733
https://doi.org/10.3390/s20030733
https://doi.org/10.3390/s20030733
https://doi.org/10.1016/j.oceaneng.2020.108548
https://doi.org/10.1016/j.oceaneng.2020.108548
https://doi.org/10.1016/j.oceaneng.2020.108548
https://doi.org/10.1016/j.oceaneng.2020.108548
https://doi.org/10.1016/j.oceaneng.2020.108548
https://doi.org/10.1016/j.oceaneng.2020.108548
https://doi.org/10.1016/j.oceaneng.2020.108548
https://doi.org/10.1155/2011/154798
https://doi.org/10.1155/2011/154798
https://doi.org/10.1155/2011/154798
https://doi.org/10.1155/2011/154798
https://doi.org/10.1155/2011/154798
https://doi.org/10.1155/2011/154798
https://doi.org/10.1155/2011/154798
https://doi.org/10.1680/jmaen.2019.20
https://doi.org/10.1680/jmaen.2019.20
https://doi.org/10.1680/jmaen.2019.20
https://doi.org/10.1680/jmaen.2019.20
https://doi.org/10.1680/jmaen.2019.20
https://doi.org/10.1680/jmaen.2019.20
https://doi.org/10.1016/j.apor.2020.102109
https://doi.org/10.1016/j.apor.2020.102109
https://doi.org/10.1016/j.apor.2020.102109
https://doi.org/10.1016/j.apor.2020.102109
https://doi.org/10.1016/j.apor.2020.102109
https://doi.org/10.1016/j.apor.2020.102109
https://doi.org/10.1115/1.4046739
https://doi.org/10.1115/1.4046739
https://doi.org/10.1115/1.4046739
https://doi.org/10.1115/1.4046739
https://doi.org/10.1115/1.4046739
https://doi.org/10.1115/1.4046739
https://doi.org/10.1142/S0129065719500230
https://doi.org/10.1142/S0129065719500230
https://doi.org/10.1142/S0129065719500230
https://doi.org/10.1142/S0129065719500230
https://doi.org/10.1142/S0129065719500230
https://doi.org/10.1142/S0129065719500230
https://doi.org/10.1016/j.oceaneng.2015.01.007
https://doi.org/10.1016/j.oceaneng.2015.01.007
https://doi.org/10.1016/j.oceaneng.2015.01.007
https://doi.org/10.1016/j.oceaneng.2015.01.007
https://doi.org/10.1016/j.oceaneng.2015.01.007
https://doi.org/10.1016/j.oceaneng.2015.01.007
https://doi.org/10.1016/j.oceaneng.2021.110106
https://doi.org/10.1016/j.oceaneng.2021.110106
https://doi.org/10.1016/j.oceaneng.2021.110106
https://doi.org/10.1016/j.oceaneng.2021.110106
https://doi.org/10.1016/j.oceaneng.2021.110106
https://doi.org/10.1016/j.oceaneng.2021.110106
https://doi.org/10.1016/j.advengsoft.2018.09.011
https://doi.org/10.1016/j.advengsoft.2018.09.011
https://doi.org/10.1016/j.advengsoft.2018.09.011
https://doi.org/10.1016/j.advengsoft.2018.09.011
https://doi.org/10.1016/j.advengsoft.2018.09.011
https://doi.org/10.1016/j.advengsoft.2018.09.011
https://doi.org/10.1016/J.YMSSP.2005.09.004
https://doi.org/10.1016/J.YMSSP.2005.09.004
https://doi.org/10.1016/J.YMSSP.2005.09.004
https://doi.org/10.1016/J.YMSSP.2005.09.004
https://doi.org/10.1016/J.YMSSP.2005.09.004
https://doi.org/10.1016/J.YMSSP.2005.09.004
https://doi.org/10.1016/j.promfg.2021.10.020
https://doi.org/10.1016/j.promfg.2021.10.020
https://doi.org/10.1016/j.promfg.2021.10.020
https://doi.org/10.1016/j.promfg.2021.10.020
https://doi.org/10.1016/j.promfg.2021.10.020
https://doi.org/10.1016/j.promfg.2021.10.020
https://doi.org/10.1111/mice.12628
https://doi.org/10.1111/mice.12628
https://doi.org/10.1111/mice.12628
https://doi.org/10.1111/mice.12628
https://doi.org/10.1111/mice.12628
https://doi.org/10.1111/mice.12628
https://doi.org/10.1142/S0129065721500350
https://doi.org/10.1142/S0129065721500350
https://doi.org/10.1142/S0129065721500350
https://doi.org/10.1142/S0129065721500350
https://doi.org/10.1142/S0129065721500350
https://doi.org/10.1142/S0129065721500350
https://doi.org/10.1111/mice.12735
https://doi.org/10.1111/mice.12735
https://doi.org/10.1111/mice.12735
https://doi.org/10.1111/mice.12735
https://doi.org/10.1111/mice.12735
https://doi.org/10.1111/mice.12735


Mechanics 228: 106888, https://doi.org/10.1016/j.engfracmech.
2020.106888.

Yin H, Ma J, Dong K et al. (2019) Model updating method based
on Kriging model for structural dynamics. Shock and
Vibration 2019: 8086024, https://doi.org/10.1155/2019/8086024.

Yin T and Zhu HP (2020) An efficient algorithm for architecture design
of Bayesian neural network in structural model updating.
Computer-Aided Civil and Infrastructure Engineering 35(4):
354–372, https://doi.org/10.1111/mice.12492.

Zhang Q and Zhang J (2021) Internal force monitoring and
estimation of a long-span reinforced concrete ring beam
using long-gauge strain sensing. Computer-Aided Civil and
Infrastructure Engineering 36(1): 109–124, https://doi.org/
10.1111/mice.12569.

Zhang Y, Macdonald JHG, Liu S and Harper P (2022) Damage detection
of nonlinear structures using probability density ratio estimation.
Computer-Aided Civil and Infrastructure Engineering 37(7):
878–893, https://doi.org/10.1111/mice.12772.

Zhao Y, Zhang G, Yuan Q, Xu F and Zheng Y (2021) Graph attention
network with focal loss for epilepsy detection on
electroencephalography signals. International Journal of Neural
Systems 31(7): 2150027, https://doi.org/10.1142/
S0129065721500271.

Zhu J (2021) Review on structural health monitoring
of offshore platform. Journal of Physics: Conference Series 2014:
012019, https://doi.org/10.1088/1742-6596/2014/1/012019.

Zhu YC, Wagg D, Cross E and Barthorpe R (2020) Real-time digital
twin updating strategy based on structural health
monitoring systems. In Model Validation and Uncertainty
Quantification, Volume 3. Conference Proceedings of the Society
for Experimental Mechanics Series (Mao Z (ed.)). Springer, Cham,
Switzerland, pp. 55–64.

Zotov E, Tiwari A and Kadirkamanathan V (2021) Conditional
StyleGAN modelling and analysis for a machining digital twin.
Integrated Computer-Aided Engineering 28(4): 399–415,
https://doi.org/10.3233/ica-210662.

How can you contribute?

To discuss this paper, please email up to 500 words to the
editor at journals@ice.org.uk. Your contribution will be
forwarded to the author(s) for a reply and, if considered
appropriate by the editorial board, it will be published as
discussion in a future issue of the journal.

Proceedings journals rely entirely on contributions from the
civil engineering profession (and allied disciplines).
Information about how to submit your paper online
is available at www.icevirtuallibrary.com/page/authors,
where you will also find detailed author guidelines.

108

Maritime Engineering
Volume 176 Issue 2

State of the art in structural health
monitoring of offshore and marine
structures
Pezeshki, Adeli, Pavlou and Siriwardane

Downloaded by [] on [05/10/23]. Published with permission by the ICE under the CC-BY license 

https://doi.org/10.1016/j.engfracmech.2020.106888
https://doi.org/10.1016/j.engfracmech.2020.106888
https://doi.org/10.1016/j.engfracmech.2020.106888
https://doi.org/10.1016/j.engfracmech.2020.106888
https://doi.org/10.1016/j.engfracmech.2020.106888
https://doi.org/10.1016/j.engfracmech.2020.106888
https://doi.org/10.1016/j.engfracmech.2020.106888
https://doi.org/10.1155/2019/8086024
https://doi.org/10.1155/2019/8086024
https://doi.org/10.1155/2019/8086024
https://doi.org/10.1155/2019/8086024
https://doi.org/10.1155/2019/8086024
https://doi.org/10.1155/2019/8086024
https://doi.org/10.1111/mice.12492
https://doi.org/10.1111/mice.12492
https://doi.org/10.1111/mice.12492
https://doi.org/10.1111/mice.12492
https://doi.org/10.1111/mice.12492
https://doi.org/10.1111/mice.12492
https://doi.org/10.1111/mice.12569
https://doi.org/10.1111/mice.12569
https://doi.org/10.1111/mice.12569
https://doi.org/10.1111/mice.12569
https://doi.org/10.1111/mice.12569
https://doi.org/10.1111/mice.12569
https://doi.org/10.1111/mice.12772
https://doi.org/10.1111/mice.12772
https://doi.org/10.1111/mice.12772
https://doi.org/10.1111/mice.12772
https://doi.org/10.1111/mice.12772
https://doi.org/10.1111/mice.12772
https://doi.org/10.1142/S0129065721500271
https://doi.org/10.1142/S0129065721500271
https://doi.org/10.1142/S0129065721500271
https://doi.org/10.1142/S0129065721500271
https://doi.org/10.1142/S0129065721500271
https://doi.org/10.1142/S0129065721500271
https://doi.org/10.1088/1742-6596/2014/1/012019
https://doi.org/10.3233/ica-210662
https://doi.org/10.3233/ica-210662
https://doi.org/10.3233/ica-210662
https://doi.org/10.3233/ica-210662
https://doi.org/10.3233/ica-210662
https://doi.org/10.3233/ica-210662

	1. Introduction
	Figure 1

	2. Signal processing and ML algorithms for SHM in civil and structural engineering
	2.1 Recent methods of signal processing
	2.2 Recent methods for feature extraction and classification

	3. SHM approaches for offshore and marine structure application
	3.1 Model-based approach
	Table 1
	Figure 2
	Figure 3
	3.2 Vibration-based approach
	Figure 4
	3.2.1 Application of the vibration-based approach

	Figure 5
	3.2.2 Response prediction and missing data�interpretation

	Figure 6
	3.3 Digital twin approach and the concept of model updating
	Figure 7
	3.4 Vision-based SHM
	Figure 8
	Figure 9
	3.5 Population-based SHM

	4. Fatigue damage evaluation process
	5. Technical challenges and opportunities
	5.1 Challenges
	5.2 Research gaps
	Table 2

	6. Conclusions
	REFERENCES
	Adedipe et al. 2016
	Adeli and Jiang 2008
	Aeran et al. 2017a
	Aeran et al. 2017b
	Aeran et al. 2019
	Ahmadlou and Adeli 2010
	Alam et al. 2020
	Alonso et al. 2021
	Amezquita-Sanchez and Adeli 2015a
	Amezquita-Sanchez and Adeli 2015b
	Amezquita-Sanchez and Adeli 2015c
	Amezquita-Sanchez and Adeli 2016
	Amezquita-Sanchez et al. 2017
	Amezquita-Sanchez et al. 2018
	Amezquita-Sanchez et al. 2020
	Angelopoulos et al. 2020
	Asgarian et al. 2016
	Bjørheim et al. 2022a
	Bjørheim et al. 2022b
	Boyer 1986
	Bull et al. 2021
	Ceravolo et al. 2020
	Chandrasekaran 2019
	Chandrasekaran and Chithambaram 2019
	Chandrasekaran et al. 2016
	Chaves et al. 2015
	Cheliotis et al. 2022
	Christiansen et al. 2013
	Chun et al. 2021
	Ciang et al. 2008
	Civera et al. 2021
	Cortina et al. 2018
	Damgaard et al. 2013
	de Lautour and Omenzetter 2010
	Deka and Prahlada 2012
	Dong and Catbas 2021
	Fantuzzi et al. 2022
	Fazeres-Ferradosa et al. 2018
	Fazeres-Ferradosa et al. 2019
	Feng et al. 2021
	Fernandez-Jover and Stambouli 2021
	Gao et al. 2021
	Gardner et al. 2021
	Ghosh-Dastidar and Adeli 2009
	Gortsas et al. 2022
	Gosliga et al. 2021
	Gulgec et al. 2020
	Hampshire and Adeli 2000
	Hillis and Courtney 2011
	Hirdaris et al. 2014
	Hu et al. 2021
	Huang and Li 2022
	Jang et al. 2021
	Jiang et al. 2022
	Jiang and Adeli 2008
	Jimenez-Martinez 2020
	Kalenjuk et al. 2021
	Karami et al. 2020
	Kefal 2019
	Khodabux and Brennan 2021
	Lara-Benitez et al. 2021
	Leser et al. 2020
	Li and Choung 2017
	Li et al. 2018
	Li et al. 2006
	Li et al. 2020
	Li and Zhang 2020
	Liu et al. 2022
	Maeda et al. 2021
	Mansor et al. 2014
	Mariniello et al. 2021
	Martinez-Luengo et al. 2016
	Martinez-Luengo et al. 2019
	Mavrothanasis and Pavlou 2007
	Mavrothanasis and Pavlou 2008
	Miao et al. 2021
	Mieloszyk et al. 2021
	Mojtahedi et al. 2011
	Mojtahedi et al. 2020
	Mondoro et al. 2016
	Mourão et al. 2020
	Nabuco et al. 2020
	Nasimi and Moreu 2021
	Ngeljaratan et al. 2021
	Norén-Cosgriff and Kaynia 2021
	Ozdemir et al. 2021
	Park et al. 2007
	Park et al. 2015
	Pavlou 2000
	Pavlou 2002a
	Pavlou 2002b
	Pavlou 2018a
	Pavlou 2018b
	Pavlou 2021
	Pavlou 2022
	Pavlou and Correia 2019
	Peng et al. 2021
	Pereira et al. 2020
	Perez-Ramirez et al. 2016
	Pezeshki et al. 2022
	Prendergast et al. 2015
	Prendergast et al. 2018
	Puruncajas et al. 2020
	Qarib and Adeli 2014
	Qarib and Adeli 2015
	Qarib and Adeli 2016
	Qvale et al. 2021
	Rafiei and Adeli 2017
	Rege and Pavlou 2019
	Rege et al. 2019
	Ren et al. 2021
	Sajedi and Liang 2021a
	Sajedi and Liang 2021b
	Sajedi and Liang 2022
	Sakaris et al. 2021
	Sarmadi and Yuen 2021
	Shao et al. 2022
	Sirca and Adeli 2012
	Soleimani-Babakamali et al. 2022
	Thompson 2019
	Tian et al. 2021
	Tibaduiza Burgos et al. 2020
	Tödter et al. 2021
	Tuegel et al. 2011
	Tygesen et al. 2018
	Vanem et al. 2019
	Vieira et al. 2020
	Wagg et al. 2020
	Wang and Yan 2020
	Wang et al. 2015
	Wang et al. 2021
	Wong and Kim 2018
	Worden et al. 2007
	Wu and Li 2021
	Xu et al. 2021
	Xue et al. 2021
	Yang and Lei 2022
	Yeratapally et al. 2020
	Yin et al. 2019
	Yin and Zhu 2020
	Zhang and Zhang 2021
	Zhang et al. 2022
	Zhao et al. 2021
	Zhu 2021
	Zhu et al. 2020
	Zotov et al. 2021


