507,799 research outputs found

    Speeding Multicast by Acknowledgment Reduction Technique (SMART)

    Get PDF
    We present a novel feedback protocol for wireless broadcast networks that utilize linear network coding. We consider transmission of packets from one source to many receivers over a single-hop broadcast erasure channel. Our method utilizes a predictive model to request feedback only when the probability that all receivers have completed decoding is significant. In addition, our proposed NACK-based feedback mechanism enables all receivers to request, within a single time slot, the number of retransmissions needed for successful decoding. We present simulation results as well as analytical results that show the favorable scalability of our technique as the number of receivers, file size, and packet erasure probability increase. We also show the robustness of this scheme to uncertainty in the predictive model, including uncertainty in the number of receiving nodes and the packet erasure probability, as well as to losses of the feedback itself. Our scheme, SMART, is shown to perform nearly as well as an omniscient transmitter that requires no feedback. Furthermore, SMART, is shown to outperform current state of the art methods at any given erasure probability, file size, and numbers of receivers

    Smart detectors for Monte Carlo radiative transfer

    Full text link
    Many optimization techniques have been invented to reduce the noise that is inherent in Monte Carlo radiative transfer simulations. As the typical detectors used in Monte Carlo simulations do not take into account all the information contained in the impacting photon packages, there is still room to optimize this detection process and the corresponding estimate of the surface brightness distributions. We want to investigate how all the information contained in the distribution of impacting photon packages can be optimally used to decrease the noise in the surface brightness distributions and hence to increase the efficiency of Monte Carlo radiative transfer simulations. We demonstrate that the estimate of the surface brightness distribution in a Monte Carlo radiative transfer simulation is similar to the estimate of the density distribution in an SPH simulation. Based on this similarity, a recipe is constructed for smart detectors that take full advantage of the exact location of the impact of the photon packages. Several types of smart detectors, each corresponding to a different smoothing kernel, are presented. We show that smart detectors, while preserving the same effective resolution, reduce the noise in the surface brightness distributions compared to the classical detectors. The most efficient smart detector realizes a noise reduction of about 10%, which corresponds to a reduction of the required number of photon packages (i.e. a reduction of the simulation run time) of 20%. As the practical implementation of the smart detectors is straightforward and the additional computational cost is completely negligible, we recommend the use of smart detectors in Monte Carlo radiative transfer simulations.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Travel patterns in ?smart? townsshow potential for traffic reduction

    Get PDF
    Residents in Darlington,Peterborough and Worcester have a realistic alternative forabout 40-50% of their local car trips, according to recent research.With DfTfunding, these towns are now introducing extensive packages of ?soft? measures toencourage people to choose more sustainable travel options

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.
    • …
    corecore