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Abstract—We present a novel feedback protocol for wireless
broadcast networks that utilize linear network coding. We con-
sider transmission of packets from one source to many receivers
over a single-hop broadcast erasure channel. Our method utilizes
a predictive model to request feedback only when the probability
that all receivers have completed decoding is significant. In ad-
dition, our proposed NACK-based feedback mechanism enables
all receivers to request, within a single time slot, the number
of retransmissions needed for successful decoding. We present
simulation results as well as analytical results that show the
favorable scalability of our technique as the number of receivers,
file size, and packet erasure probability increase. We also show
the robustness of this scheme to uncertainty in the predictive
model, including uncertainty in the number of receiving nodes
and the packet erasure probability, as well as to losses of the
feedback itself. Our scheme, SMART, is shown to perform nearly
as well as an omniscient transmitter that requires no feedback.
Furthermore, SMART, is shown to outperform current state of
the art methods at any given erasure probability, file size, and
numbers of receivers.

I. INTRODUCTION

Reliability is a challenging issue in wireless communica-
tions, particularly as the number of nodes becomes large, in
which case conventional acknowledgment methods can result
in unmanageable growth of feedback. We propose a new
feedback mechanism for wireless broadcast networks and a
predictive model that are built upon linear network coding.
We dub our new approach Speeding Multicast by Acknowl-
edgment Reduction Technique (SMART). The novelties of
SMART are that it provides a predictive model for the time
at which transmissions are likely to be able to be terminated
and it also reduces the feedback from all users to one time
slot per request. The primary relevant piece of information
the transmitter would derive from the feedback is the number
of degrees of freedom missing at the worst receiver. Combi-
nation of network coding and the predictive model allows the
transmitter to use this information to substantially reduce the
amount of feedback as well as unnecessary retransmissions.

Our proposed feedback mechanism has four main advan-
tages over previous schemes: First, unnecessary initial polling
by the transmitter is eliminated by use of the predictive
model. Secondly, a significant reduction in the number of
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time slots allocated for feedback is achieved; this number
currently scales with the number n of receivers, but under
the new method will become a scalar of order 1. Thirdly,
unnecessary retransmissions to the receivers can be greatly
reduced. Fourthly, SMART is robust and is quite scalable, even
to an uncertain number of receiving nodes.

A prime example of an appropriate application of this
method can be seen in large latency and delay challenged
networks [1], where feedback about received packets may
be considerably delayed, reducing the feedback’s usefulness
and accuracy about the current state of the network. Other
applications range from reliable bulk data transfer to streaming
video to a large set of receivers.

We study the performance gains of this feedback strategy,
and compare it to the delay/throughput performance of an
omniscient transmitter that requires no feedback. We also
compare SMART to a wireless representation of a state of
the art negative feedback protocol, NACK-Oriented Reliable
Multicast (NORM) [2].

The rest of the paper is organized as follows: In Section II,
the network model and parameters are introduced. In Section
III, we present the feedback mechanism. In Section IV-A, we
evaluate the delay performance of the broadcast network under
a discrete slotted model. In Section IV-B, we demonstrate the
scalability of SMART to very large numbers of receivers.
In Section IV-C we discuss the robustness of SMART to
channel estimation errors, NACK erasures, and correlated
losses. Section V compares the performance of SMART to
a genie bound as well as to the NORM protocol. Finally, we
provide a summary and concluding remarks in Section VI.

II. NETWORK MODEL AND PARAMETERS

Consider a wireless broadcast scenario in which a node
transmits a single file consisting of k packets to n independent
users. In such systems a feedback mechanism is required to
notify the transmitting node if all packets are received by the
n users or further transmissions are needed. The transmitting
node could be a base station or a peer node within the network,
but for simplicity we now consider that node a base station.
A given channel between the base station and the ith user can
be modeled as an erasure channel with parameter pi, where
pi is the packet erasure probability on that channel. Assume
that channels are independent across time and across receivers
and the base station is required to successfully complete the
transmission of its packets to all n users. We also assume that
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the base station uses network coding in the transmission of its
packets, thus in the remainder of this paper we will use packets
and degrees of freedom interchangeably. The analysis in
Section IV assumes that all channels are statistically identical
and have the same packet erasure probability denoted by pe,
but it can be readily generalized to allow each channel to have
its own distinct erasure probability.

III. FEEDBACK MECHANISM

The main idea that enables a single slot feedback is the use
of CDMA codes. During the feedback slot, any receiver that
has not correctly decoded the file will send a predetermined
CDMA codeword to the base station, which indicates how
many new degrees of freedom the base station needs to
transmit for this user to recover all its missed packets. Two
examples of CDMA codes are DS-CDMA and jitter.

With jitter, any of the n users that have not correctly de-
coded all k packets will send a short pulse to the base station,
the timing of which indicates how many new degrees of
freedom the user needs to decode the entire file. The feedback
slot can be viewed as a concatenation of subslots whereby the
presence of a pulse in a specific subslot will indicate that a
corresponding predetermined number or percentage of dofs is
needed.

We propose the following scheme: the larger the number of
degrees of freedom a receiving node will request, the earlier
the subslot in which it will transmit within the single feedback
slot. Thus, the base station will aim to find the first subslot in
which a user transmits. If DS-CDMA were used, then the base
station would first apply the matched filter corresponding to
the highest percentage range of dofs requested. If a detection
is found, the base station would be done processing the NACK
slot, and would then transmit the highest number of dofs
requested. If a detection is not found, the base station would
next apply the matched filter corresponding to the second
highest number of dofs, and the process is repeated. The
ordering of CDMA codes would be chosen so that pairs of
codes that represent similar percents of missing dofs would
have higher correlations than pairs of codes that represent
vastly differing percents of missing dofs. This ordering will
increase the robustness of SMART to NACK erasures as well
as to a noisy NACK channel. It should be noted that the
single-slot mechanism is a physical layer enhancement, and a
transport layer designer may not have control over it. However,
the predictive model can be used to ensure that there will
be feedback only from a minimal number of users, or the
transmitter can transmit enough extra coded packets to ensure
with high probability that there is feedback from at most one
user.

If ordered CDMA codes or the associated receiver pro-
cessing are not available to form this single slot feedback
mechanism, having all NACKs transmitted in a single slot
can still potentially be accomplished by other methods. For
example, an energy detection mechanism at the base station
can enable the base station to know whether or not all users
have successfully received the file. The base station can then,

according to the predictive model, select a time of feedback
large enough so that the probability of any nodes needing more
than one additional coded packet is small. As shown with our
calculations presented in the next section, and confirmed by
simulations, unless the erasure probability is large, the number
of additional time slots needed to ensure this criteria is small.

IV. PREDICTIVE MODEL

In this section, we demonstrate the prediction capability
of our method and we show that the receivers should be
polled if and only if there is a reasonable probability that
they have completed their download. Fig. 1 captures the
difference between traditional protocols and our scheme by
showing sample feedback times of both mechanisms. With
currently available protocols, including NORM enhanced by
feedback suppression, NACKs occupy a proportion of the slots
throughout the transmission. In contrast, our SMART scheme
allows for strategic placement of the NACKs at only a few
isolated slots near the download completion time. SMART
considers the inherently lossy nature of the channel and
incorporates the predicted loss in scheduling of the feedback.
Furthermore, each feedback cycle of SMART utilizes only a
single slot, whereas NORM utilizes multiple slots, for example
10, as shown in Fig. 1.
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Fig. 1. Feedback times for NORM vs. SMART for n = 10000, k = 100,
and pe = 0.3. The number above each blue bar indicates the number of slots
devoted to NACKs at that cycle and red bars denote the end of transmissions.

A. Performance evaluation in a Discrete Model

In this section, we analyze the number of time slots needed
to reliably transmit a file of k packets to n receivers. For exam-
ple, the k coded packets could represent a file or image. We
consider a slotted broadcast channel where each transmitted
packet is received independently with probability 1−pe at any
of the n receivers, where pe is the packet erasure probability.
This model is equivalent to n independent Bernoulli processes,
each with parameter 1 − pe, where we are interested in the
shortest time until all processes have had k successful arrivals.
The case of correlated users will be discussed in IV-C.

The transmission is completed when each of the n receivers
has successfully received k or more coded packets. Let us
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denote the number of degrees of freedom (dof) missing at
node i after t time slots by M t

i ∈ [0, k]. We define another
random variable Mt = max{M t

1,M
t
2, ...M

t
n} to denote the

number of dofs missing at the node that has experienced the
highest number of erasures during t transmissions. Ideally,
the transmitter should receive feedback enabling it to stop at
{min(t)|Mt = 0}. The probability that receiver i has received
k or more coded packets in t time slots is:

Pr{M t
i = 0} = 1 −

k−1∑

j=0

(
t

j

)
pt−j

e (1 − pe)j (1)

Similarly, let us denote the probability that all n receivers
have completed the download after t time slots by β(t):

β(t) = Pr{Mt = 0} =
(
Pr

{
M t

i = 0
})n

=



1 −
k−1∑

j=0

(
t

j

)
pt−j

e (1 − pe)j




n

(2)

Note that β(t) is the probability that transmissions can cease
after t time slots. In the following figures, we show how β(t)
changes as a function of pe, k, and n. Fig. 2 depicts β(t) for
a range of erasure probabilities. Notice that the time at which
transmissions can cease is very sensitive to packet erasure
probability. As shown, for a network of n = 1000 nodes and
k = 10 packets, the probability β(t) = 0.7 is achieved after
21 time slots when pe = 0.2. This number increases to 40
time slots when pe = 0.5. An important feature of this graph
is the shape of the β(t) function; the probabilities rise more
sharply for smaller erasure probabilities than for larger ones.
Simulations of SMART show that for small pe the protocol
will have minimal number of feedback cycles (an average of
slightly more than 1 cycle), while for large pe at most a few
more cycles are needed.
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Fig. 2. Completion probability as a function of t for different values of pe.

Fig. 3 shows the number of transmissions required to
achieve a specified reliability, as we scale the size of the file
and the number of receiving nodes. Notice that the number
of transmissions is strongly dependent on the file size k but
is not very sensitive to the number of receivers n. As shown,
doubling the number of packets in the file will roughly double

the number of transmissions needed for any given reliability.
Ovals within the figure are used to show the proximity of
the curves that correspond to an increase in n (from 100 to
10000) for a fixed k. As we show analytically in Section
IV-B, the number of coded packet transmissions required
for a given reliability is not very sensitive to an increase
in n, so as seen in Fig. 3, large changes in n requires
small changes to the number of packet transmissions. The
figure shows the robustness of this transmission scheme to
uncertainty in n. It is important to note that in both figures,
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Fig. 3. Completion probability as a function of t for varying k and n.

the CDFs have very sharp increases when erasure probability
is not too high: a significant increase in reliability is achieved
by very few extra transmissions. Therefore, SMART avoids
extraneous transmissions and feedbacks by only requesting
feedback when β(t) is sufficiently large; the base station will
then be able to cease transmissions β(t) proportion of the time.

Once we have scheduled the initial feedback at time t,
we are interested in the number of nodes that will then be
requesting feedback in the single slot. We thus calculate the
expected value of the minimum of n random variables. Let
us denote the number of nodes that have not completed the
download at time t by a random variable N1 and also use N1

as its expected value. The probability mass function (pmf) of
N1 is:

Pr {N1 = i} =
(

n

i

)(
Pr

{
1 node completed
the download by t

})n−i

·
(

1 − Pr

{
1 node completed
the download by t

})i

(3)

Recall that N1 is non-negative, thus:

N1 =
∫ ∞

0
(1 − F (x)) dx (4)

where F is the cumulative distribution function of N1. Fig. 4
depicts N1 for different initial feedback times for a network of
n = 10, 000 nodes with k = 100 packets and pe = 0.1. Notice
that the analytical results of (4) and the simulated values are
virtually identical and N1 decreases rapidly with the initial
feedback time. Smaller values of N1 are particularly helpful
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in reducing feedback traffic if the single-slot mechanism is
difficult to fully implement.
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Fig. 4. Expected number of nodes that have not completed the download.

After feedback, the base station will know the number Mt of
packets missing at the worst receiver. We allow the transmitter
to transmit M̂t = Mt

1−pe
coded packets after the feedback. We

can calculate the probability β̂ that everyone has completed
the download M̂t time slots after the first feedback, given that
N1 nodes have not completed the download by the time t of
the initial feedback.

β̂(M̂t) = Pr

{
everyone completed
the download by t + M̂t

}

= Pr

{
N1 nodes completed
the download in M̂t slots

}
(5)

Following M̂t transmissions by the base station, another single
slot of feedback is allocated, and if any NACKs are received
in it, the process is repeated. Simulations have shown that the
entire file download is usually accomplished within at most a
few cycles of the first feedback.

B. Performance evaluation in a Continuous Model

In this section, we will derive the scaling laws for the
performance of the system when transmissions are modeled
as continuous. We model the arrivals at each receiver as a
Poisson process and analyze the behavior of completion time
as the number of receivers n grow.

Each of the n users needs to receive k or more coded packets
from a single transmitting node. In time t packet lengths, each
of the n nodes independently receives a number of packets that
is Poisson distributed, on the time scale of integral numbers
of packet lengths, with parameter λt, where λ = 1 − pe, and
pe is the packet erasure probability. The probability that user
i receives k or more coded packets within time t is thus:

Pr{M t
i = 0} = 1 −

k−1∑

j=0

(λt)j exp(−λt)
j!

(6)

Hence the probability that all n users receive at least k coded
packets in time t or earlier is (6) raised to the power of n. As
in Section IV-A we define β(t) to be the probability that all
of the n users received k or more coded packets within time

t. This probability β(t), which is also the probability that the
transmitter can stop sending coded packets, is:

β(t) =



1 −
k−1∑

j=0

(λt)j exp(−λt)
j!




n

(7)

We select the first feedback time so that there is a significant
probability that every receiver has completed the download
and there is no need for retransmissions. In other words, t∗

is a time whose corresponding β(t∗) has reached a certain
reliability threshold. Let us use β∗ to denote this threshold.
Thus:

t∗ = t∗
(
β∗, n

)
= inf { t | β(t) ≥ β∗} (8)

Rearranging terms in (7) and substituting β∗ and t∗ for β(t)
and t yields:

λt∗ = ln




k−1∑

j=0

(λt∗)j

j!



 − ln
(
1 − β∗ 1

n

)
(9)

= λt∗ + ln
(

Γ(k,λt∗)
Γ(k)

)
− ln

(
1 − β∗ 1

n

)
(10)

we then have:
Γ(k,λt∗)

Γ(k)
=

(
1 − β∗ 1

n

)
(11)

where the Gamma functions are defined as:

Γ(a, b) =
∫ ∞

b
ta−1e−tdt

Γ(a) =
∫ ∞

0
ta−1e−tdt

Γ(k,λt)
Γ(k)

t

1

(

1− (β∗)
1
n

)

t∗0

Fig. 5. Calculating t∗ from the Γ(k,λt)
Γ(k) function.

Fig. 5 illustrates equation (11). Notice that Γ(k,λt)
Γ(k) is strictly

decreasing in t and is thus invertible. As a result, given a set
of parameters (n, k,β∗), a unique t∗ can be determined that
is the amount of time that it takes for all n users to receive
the k packet file, with probability β∗. The right hand side of
(11) corresponds to the horizontal line in Fig. 5, and is the
probability that any given user has not received the file by
time t∗. For large n and even a modest β∗, this probability,
and hence the resulting horizontal line, would be quite low,
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resulting in the selection of a t∗ such as that shown in the
figure. Alternatively, if the function Γ(k,λt)

Γ(k) is considered at

time t, rather than at time t∗, then raising 1 − Γ(k,λt)
Γ(k) to

the power of n yields a continuous model version of the the
probability function β(t) plotted in Fig. 3. Taking the nth

power of 1 − Γ(k,λt)
Γ(k) for large n renders β(t) close to 1 only

if 1 − Γ(k,λt)
Γ(k) is very close to 1, thereby yielding the sharp

transition in time seen in Fig. 3.
We are interested in sensitivity of t∗ to n for a given value of

β∗. A better understanding of this sensitivity can be achieved
by looking at the reverse problem. Let us see how many nodes
n we can accommodate after t transmissions for a given value
of β∗. Rearranging terms in (11) and solving for n yields:

n =
ln

(
β∗)

ln
(
1 − Γ(k,λt)

Γ(k)

) (12)

Figure 6 provides the number of users that can be accom-
modated by time t, for a range of β∗. The figure was computed
according to (12) for a file size of k = 100 packets and
packet erasure probability of pe = 0.1. Fig. 6 can be used
to determine the t∗ that will ensure a given reliability β∗ for a
given k and n. The dashed black lines in the figure illustrate
how to determine this time for the example case of β∗ = .9
and n = 1000.

The number of nodes n that can be accommodated increases
rapidly, as emphasized by the logarithmic scale of the vertical
axis and the linear scale of the horizontal axis. In fact a much
larger group of users can be accommodated with a relatively
short extra transmission time. For example, when β∗ = 0.1,
an increase of approximately 20 in t (from 110 to 130) can
accommodate 100 times as many users (from 10 to 1000
users). Because of the convexity exhibited in the figure, ever
larger groups can be accommodated with the same number of
extra transmissions.

It should also be noted that n is not very sensitive to β∗,
and the sensitivity decreases as t increases. For example, the
figure shows that in order to accommodate n = 10 users, with
reliabilities β∗ = 0.1 and β∗ = 0.9, we need t = 108 and
t = 125 respectively (a 15.7% increase in t to reach the higher
β∗). Accommodating n = 1000 users for the same values of
β∗ will require t = 130 and t = 142 respectively (a 9.2%
increase in t).

Similar numerical results hold for larger file sizes and can be
verified by plotting (12) for larger values of k. As k increases,
the per packet time required to reliably transmit a file to a fixed
number of receivers decreases. This favorable gain comes from
the ability to code across larger files, and shows the robustness
of SMART to increases in the file size.

C. Robustness of SMART

Robustness of SMART to channel estimation errors is
mainly the result of its single slot characteristic. If physical
considerations do not allow for an accurate estimation of
the channel, an appropriately conservative approach is to
underestimate pe so that the predictive model will schedule
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Fig. 6. The number of nodes n that can be accommodated for a given
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)
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from these curves is illustrated by the dashed lines for the case of β∗ = .9
and n = 1000.

the initial feedback at an earlier time slot. Since the feedback
penalty is only 1 time slot, the earlier feedback will avoid
significant loss of throughput and we can adjust the previous
estimation of pe based on the feedback. Simulation results
show that for a network of n = 1000 receivers and k = 100
packets if a channel with pe = 0.2 was estimated to have
pe = 0.1 the total download time will be increased from 151
to 152 time slots.

SMART is also robust against correlated losses among
users. Correlation of erasures among users can be thought of
as reducing n, the number of independent users, and thus will
have a similar effect to decreasing n. We showed in IV-B
the total download time is not very sensitive to n, and thus
correlation is not expected to affect the results substantially in
most cases.

Robustness of SMART to NACK erasures is also superior to
other protocols. Unlike NACK suppression schemes that allow
only a few nodes to send their feedback, SMART allows every
eligible node to participate in the feedback and if a NACK
is erased, the base station will be able to use the feedback
from other nodes. As an additional robustness feature, if the
base station does not receive any NACKs during a feedback
cycle, another feedback slot will be scheduled immediately to
confirm that transmissions can end. This increases robustness
to NACK erasures with minimal cost to total download time.

V. COMPARISON TO OTHER MULTICASTING PROTOCOLS

We performed simulations of SMART over a range of k, n,
pe, and β∗. The simulations showed that while the value of
N1, as plotted in Fig. 4, as well as the number of outstanding
packets needed, varies with the time of the first feedback, the
total completion time was generally not sensitive to the precise
value of t∗ used.

The red curves of Fig. 7 plot on a log-log scale the download
completion time per packet of SMART vs. file size k, for a
network of n = 1000 receivers. Recall that with SMART the
total download time is not very sensitive to n and the SMART
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curves in Fig. 7 will thus change only slightly as the network
size increases.

The theoretical genie bound, in which the base station
always knows how many coded packets each receiver is
missing without any transmitted feedback, is shown in black
in Fig. 7. It is seen that SMART performs almost as well
as such an omniscient base station that requires no feedback,
particularly at larger file sizes. This behavior occurs because
the number of slots allocated for feedback in SMART will
stay approximately constant regardless of the file size or the
erasure probability.

The blue curves represent the performance of a wireless rep-
resentation of NORM. NACK-based protocols such as NORM
[2] have been proposed to provide end-to-end reliable transport
of bulk data while avoiding the feedback implosion associated
with reliable multicast. In order to reduce the amount of
feedback, NORM, like SMART, utilizes negative acknowl-
edgments (NACKs), rather than the positive acknowledgments
(ACKs) used by earlier protocols. NORM also uses end-to-
end coding, which is equivalent to network coding for the
single hop example illustrated here. End-to-end coding incurs a
longer time for each feedback cycle, which we did not include
in our representation of the NORM model. Furthermore, our
single slot feedback mechanism relies on the base station that
receives the wireless nodes’ feedback in a single slot to process
this feedback, and adjust or terminate its transmissions of
coded packets accordingly.

While we have attempted to select representative modes and
settings of NORM and to optimistically model its performance
in a wireless setting, it is possible that other choices of
parameters could provide better performance. A central feature
of NORM is its NACK-suppression scheme [3]. In NORM’s
default setting, FEC is sent only in response to NACKs and
according to [4], the base station allocates between 5 to 7
round trip times to NACK aggregation before restarting the
transmission, which is equivalent to 10-14 time slots.

We have assumed that NORM spends 10 time slots for
NACK aggregation during each feedback cycle and expe-
riences no NACK collisions at the base station. We also
model the Reed-Solomon (RS) coding option of NORM [5];
if k < 250 packets, the entire file is considered as a single RS
block, in which case exactly k successful packet receptions are
required for decoding. For larger file sizes, we approximate
NORM as using a series of 250-packet RS blocks, and the
transmitter will move on to the second RS block if and only
if the first block is decoded at all receivers. A block size
smaller than 256 packets was recommended by [5] to avoid
high decoding complexity.

As shown, SMART outperforms NORM at every erasure
probability and for any file size. In particular, note that
NORM’s performance is detrimentally affected when the file
size is small, which occurs because the penalty associated
with the NACK aggregation wait dominates over the data
transmission time. As shown in the figure, SMART’s per
packet completion time is very close to 1 for large files.
In contrast, for files of greater than 250 packets NORM is

seen to have a larger constant download time per packet. For
large files, network coding overhead of SMART resulting from
encoding of the coefficients can be prevented if we initialize
the random number generators at the transmitter and receivers
with the same seed [6].
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VI. CONCLUSION

We proposed a predictive model to determine suitable
feedback times that will reduce the feedback traffic as well
as transmission of extraneous coded packets in a broadcast
erasure channel. We also introduced a novel single slot
feedback mechanism, that enables any number of receivers
to simultaneously transmit their feedback. We showed the
scalability of the combined predictive model and feedback
mechanism with increasing file size, as well as with a large
number of receivers. We showed the robustness of SMART,
and we demonstrated that SMART’s performance is close to
that of an omniscient transmitter with no feedback. While
homogeneous channels among the different receivers were
discussed in this paper, ongoing work is considering channels
with different erasure probabilities.
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