276 research outputs found

    Improving Sustainability of Smart Cities through Visualization Techniques for Big Data from IoT Devices

    Get PDF
    Fostering sustainability is paramount for Smart Cities development. Lately, Smart Cities are benefiting from the rising of Big Data coming from IoT devices, leading to improvements on monitoring and prevention. However, monitoring and prevention processes require visualization techniques as a key component. Indeed, in order to prevent possible hazards (such as fires, leaks, etc.) and optimize their resources, Smart Cities require adequate visualizations that provide insights to decision makers. Nevertheless, visualization of Big Data has always been a challenging issue, especially when such data are originated in real-time. This problem becomes even bigger in Smart City environments since we have to deal with many different groups of users and multiple heterogeneous data sources. Without a proper visualization methodology, complex dashboards including data from different nature are difficult to understand. In order to tackle this issue, we propose a methodology based on visualization techniques for Big Data, aimed at improving the evidence-gathering process by assisting users in the decision making in the context of Smart Cities. Moreover, in order to assess the impact of our proposal, a case study based on service calls for a fire department is presented. In this sense, our findings will be applied to data coming from citizen calls. Thus, the results of this work will contribute to the optimization of resources, namely fire extinguishing battalions, helping to improve their effectiveness and, as a result, the sustainability of a Smart City, operating better with less resources. Finally, in order to evaluate the impact of our proposal, we have performed an experiment, with non-expert users in data visualization.This work has been co-funded by the ECLIPSE-UA (RTI2018-094283-B-C32) project funded by Spanish Ministry of Science, Innovation, and Universities and the DQIoT (INNO-20171060) project funded by the Spanish Center for Industrial Technological Development, approved with an EUREKA quality seal (E!11737DQIOT). Ana Lavalle holds an Industrial PhD Grant (I-PI 03-18) co-funded by the University of Alicante and the Lucentia Lab Spin-off Company

    Video Surveillance-Based Intelligent Traffic Management in Smart Cities

    Get PDF
    Visualization of video is considered as important part of visual analytics. Several challenges arise from massive video contents that can be resolved by using data analytics and consequently gaining significance. Though rapid progression in digital technologies resulted in videos data explosion that incites the requirements to create visualization and computer graphics from videos, a state-of-the-art algorithm has been proposed in this chapter for 3D conversion of traffic video contents and displaying on Google Maps. Time stamped visualization based on glyph is employed efficiently in surveillance videos and utilized for event detection. This method of visualization can possibly decrease the complexity of data, having complete view of videos from video collection. The effectiveness of proposed system has shown by obtaining numerous unprocessed videos and algorithm is tested on these videos without concerning field conditions. The proposed visualization technique produces promising results and found effective in conveying meaningful information while alleviating the need of searching exhaustively colossal amount of video data

    A visual analytics approach for visualisation and knowledge discovery from time-varying personal life data

    Get PDF
    A thesis submitted to the University of Bedfordshire, in ful filment of the requirements for the degree of Doctor of PhilosophyToday, the importance of big data from lifestyles and work activities has been the focus of much research. At the same time, advances in modern sensor technologies have enabled self-logging of a signi cant number of daily activities and movements. Lifestyle logging produces a wide variety of personal data along the lifespan of individuals, including locations, movements, travel distance, step counts and the like, and can be useful in many areas such as healthcare, personal life management, memory recall, and socialisation. However, the amount of obtainable personal life logging data has enormously increased and stands in need of effective processing, analysis, and visualisation to provide hidden insights owing to the lack of semantic information (particularly in spatiotemporal data), complexity, large volume of trivial records, and absence of effective information visualisation on a large scale. Meanwhile, new technologies such as visual analytics have emerged with great potential in data mining and visualisation to overcome the challenges in handling such data and to support individuals in many aspects of their life. Thus, this thesis contemplates the importance of scalability and conducts a comprehensive investigation into visual analytics and its impact on the process of knowledge discovery from the European Commission project MyHealthAvatar at the Centre for Visualisation and Data Analytics by actively involving individuals in order to establish a credible reasoning and effectual interactive visualisation of such multivariate data with particular focus on lifestyle and personal events. To this end, this work widely reviews the foremost existing work on data mining (with the particular focus on semantic enrichment and ranking), data visualisation (of time-oriented, personal, and spatiotemporal data), and methodical evaluations of such approaches. Subsequently, a novel automated place annotation is introduced with multilevel probabilistic latent semantic analysis to automatically attach relevant information to the collected personal spatiotemporal data with low or no semantic information in order to address the inadequate information, which is essential for the process of knowledge discovery. Correspondingly, a multi-signi ficance event ranking model is introduced by involving a number of factors as well as individuals' preferences, which can influence the result within the process of analysis towards credible and high-quality knowledge discovery. The data mining models are assessed in terms of accurateness and performance. The results showed that both models are highly capable of enriching the raw data and providing significant events based on user preferences. An interactive visualisation is also designed and implemented including a set of novel visual components signifi cantly based upon human perception and attentiveness to visualise the extracted knowledge. Each visual component is evaluated iteratively based on usability and perceptibility in order to enhance the visualisation towards reaching the goal of this thesis. Lastly, three integrated visual analytics tools (platforms) are designed and implemented in order to demonstrate how the data mining models and interactive visualisation can be exploited to support different aspects of personal life, such as lifestyle, life pattern, and memory recall (reminiscence). The result of the evaluation for the three integrated visual analytics tools showed that this visual analytics approach can deliver a remarkable experience in gaining knowledge and supporting the users' life in certain aspects

    GEO-VISUALISATION AND VISUAL ANALYTICS FOR SMART CITIES: A SURVEY

    Get PDF
    Geo-Visualisation (GV) and Visual Analytics (VA) of geo-spatial data have become a focus of interest for research, industries, government and other organisations for improving the mobility, energy efficiency, waste management and public administration of a smart city. The geo-spatial data requirements, increasing volumes, varying formats and quality standards, present challenges in managing, storing, visualising and analysing the data. A survey covering GV and VA of the geo-spatial data collected from a smart city helps to portray the potential of such techniques, which is still required. Therefore, this survey presents GV and VA techniques for the geo-spatial urban data represented in terms of location, multi-dimensions including time, and several other attributes. Further, the current study provides a comprehensive review of the existing literature related to GV and VA from cities, highlighting the important open white spots for the cities’ geo-spatial data handling in term of visualisation and analytics. This will aid to get a better insight into the urban system and enable sustainable development of the future cities by improving human interaction with the geo-spatial data

    Quality of life, big data and the power of statistics

    Get PDF
    The digital era has opened up new possibilities for data-driven research. This paper discusses big data challenges in environmental monitoring and reflects on the use of statisticalmethodsintacklingthesechallengesforimprovingthequalityoflifeincities

    Font Representation Learning via Paired-glyph Matching

    Full text link
    Fonts can convey profound meanings of words in various forms of glyphs. Without typography knowledge, manually selecting an appropriate font or designing a new font is a tedious and painful task. To allow users to explore vast font styles and create new font styles, font retrieval and font style transfer methods have been proposed. These tasks increase the need for learning high-quality font representations. Therefore, we propose a novel font representation learning scheme to embed font styles into the latent space. For the discriminative representation of a font from others, we propose a paired-glyph matching-based font representation learning model that attracts the representations of glyphs in the same font to one another, but pushes away those of other fonts. Through evaluations on font retrieval with query glyphs on new fonts, we show our font representation learning scheme achieves better generalization performance than the existing font representation learning techniques. Finally on the downstream font style transfer and generation tasks, we confirm the benefits of transfer learning with the proposed method. The source code is available at https://github.com/junhocho/paired-glyph-matching.Comment: Accepted to BMVC202

    Interactive visualization of large image collections

    Get PDF
    • …
    corecore