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Abstract

Visualization of video is considered as important part of visual analytics. Several chal-
lenges arise from massive video contents that can be resolved by using data analytics and
consequently gaining significance. Though rapid progression in digital technologies
resulted in videos data explosion that incites the requirements to create visualization and
computer graphics from videos, a state-of-the-art algorithm has been proposed in this
chapter for 3D conversion of traffic video contents and displaying on Google Maps. Time
stamped visualization based on glyph is employed efficiently in surveillance videos and
utilized for event detection. This method of visualization can possibly decrease the com-
plexity of data, having complete view of videos from video collection. The effectiveness of
proposed system has shown by obtaining numerous unprocessed videos and algorithm is
tested on these videos without concerning field conditions. The proposed visualization
technique produces promising results and found effective in conveying meaningful infor-
mation while alleviating the need of searching exhaustively colossal amount of video data.

Keywords: video visualization, traffic surveillance, smart cities, glyph-based visualization,
Google Maps

1. Video visualization in smart cities

The quantity of surveillance video cameras increases at the public places results in increase in

automated analysis of video contents and traffic video surveillance [43] considered as one of its

application. These automated systems identify a number of traffic rule violations. Video

features at object, pixel, and semantic level are extracted for analysis [53, 56, 59, 60]. The basic
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purposes of surveillance video-based systems are vehicle tracking, analyzing their patterns

and behaviors, abnormal event prediction, and detecting anomalies before their occurrence.

This research aims to develop a glyph-based system for the real-time video visualization

covering a comprehensive set of traffic videos on complete length of highways.

Intelligent monitoring has rapidly progressed in last 10 years and intended to provide situa-

tional awareness and semantic information for understanding the environmental activity

[14, 69]. VV illustrates the joint process of video analysis and subsequent derivation of repre-

sentative presentation of essence of visual contents [2, 4, 19, 34, 45, 54, 57, 68]. The visualization

of videos is gaining more attention because of addressing challenges of data analysis arisen

from video camera contents [1, 15, 16]. Over the past decade, VV usefulness for traffic surveil-

lance [17, 18] application has been effectively demonstrated by researchers [3, 75, 76].

VVoffers spatio-temporal summary and overview of large collection of videos, and its abstract

representation of meaningful information assists the users in video content [3, 35]. Conversely,

conventional techniques [67] of visual representation such as time series plot have difficulties

in conveying impressions from large video collection [3].

In addition, there is need to present visual contents of videos in compact forms such that user

can quickly navigate through different segments of video sequence to locate segment of interest

and zoom in to different detail levels [1]. Viewing videos is time-consuming process, conse-

quently it is desirable to develop methods for highlighting and extraction interesting features in

videos. There are numerous techniques designed for data analysis in images and a variety of

statistical indicators for data processing. On the contrary, there is lack of effective techniques for

conveying complex statistical information spontaneously to a layperson such as a security

officer, apart from using line graphs to portray 1D signal levels [1]. Many researchers studied

video processing in the context of video surveillance [16], monitoring vehicles, and monitoring

crowds. However, main problem in automatic video processing is communication of results of

Figure 1. Video wall.
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video processing to human operator. Since statistical results are not easily comprehensible,

whereas sequences of difference images again need sequential viewing [1].

Conventional video surveillance systems heavily rely on human operators for activity moni-

toring and determining actions to be taken upon incident occurrence. There are several action-

able incidents that miss-detect in such a manual system due to inherent limitations from

deploying solely human operators eyeballing CCTV screens [58]. Hence, automatic VV [56]

will prove very beneficial in improved traffic management. Miss-detections might be caused

by monitoring excessive number of video screens to monitor as shown in Figure 1 and

tiredness due to prolonged monitoring. In fact, numerous studies have shown the limits of

human-dependent surveillance. The United States Sandia National Laboratories conducted a

study in which most people attention fell below an adequate level after only 20 minutes of

video surveillance screen monitoring [67]. The video content analysis paradigm is shifting

from a fully human operated model to an intelligent machine-assisted automated model [58].

2. State of the art

In the field of visualization, Borgo et al. [51] carried out a comprehensive survey on video

visualization. Effectiveness of VV for conveying meaningful information enclosed in video

sequences was demonstrated by Daniel et al. [1]. Andrienko et al. [47] also illustrated visual

analytical technique to visualize huge amount of video data. Data were clustered and aggre-

gated to display on map by using color arrows. Wang et al. [48] presented situational under-

standing approach by combining the video frame in 3D environment. Romero et al. [49] used

visualization approach to analyze human behavior and explored the activity visualization in

normal settings over time.

Hoummady proposed survey on sensory device shortcomings that are used for collection of

traffic information real time [40], and video camera usage as data collection was also proposed

for traffic management. This approach relies on computational device mainly for pedestrian

recognition and vehicle, 2-wheel vehicles, etc.

For traffic visualization, commonly employed approach is coloring the areas demonstrating

roads on the map [44]. Ang et al. [46] presented analytical approach for management of traffic

from multiple cameras. Vehicle trajectory estimation and extraction of features was done.

Subsequently, Jiang [62] demonstrated the analytical technique for visualizing the huge video

data. Data were clustered and aggregated to display them on map by using color arrows.

Afterward, Botchen [53] proposed technique for flow and volume signature visualization. It

discovered that common people can recognize events on the basis of event signatures quite

than viewing entire video contents.

End users and technology providers identify that manual process is inadequate to search

comprehensively massive amount of video contents and screening timely. In order to lessen

these issues of visualization, we try to project camera activity on Google Maps and have

summarized and holistic view of video contents. Massive video data render ineffectual manual

Video Surveillance-Based Intelligent Traffic Management in Smart Cities 3



analysis of videos; however, present automatic analytic techniques of videos undergo better

performance.

A state of art visualization technique for surveillance videos is presented and tested by using

several traffic videos. It receives suitable visual representations to assist the process of decision

making. One can perceive level and pattern of activities that are recorded from visualization of

videos as it offers more spatial info than using statistical indicators. Semantic info is obtained

from numerous surveillance videos which are connected to Google Maps in order to perform

3D association. In the same time, glyph [5, 20] is familiar and conveys multi-field video

visualization [10]. Well-developed visualization approach based on glyph is proposed that

enables efficient and effective information encoding and visual communication.

3. Glyph-based semantic information visualization

Proposed approach aims to visualize semantic information of traffic videos using time

stamped glyph. Input video frames are processed continuously to detect change in visual

information. The proposed approach consists of several steps for estimation of traffic flow.

3.1. Preprocessing

First step involves the segmentation of object from the surveillance video by using

thresholding and subsequently converting it to binary image from grayscale image. Parts of

road are thinned out, and holes are filled in video frames using morphological operations as

shown in Figure 2.

Object segmentation considered to be a vital process in understanding of image in the

preprocessing step. The purpose of object segmentation is to divide the image into region of

interest, and objects are identified from the video frame using region growing method. The

process of image segmentation results in binary image contains connected components which

represents the multiple objects. Connected component analysis is performed to distinguish

between the connected components. Features are extracted to track the moving objects in

Figure 2. Vehicle segmentation from video space.
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successive frames. Image is scanned pixel by pixel, and gray value of central pixel is compared

with those of the top and left pixels. Surface or region grows, until it finds all the connected

pixels. The values of the pixels are compared with the 3 � 3 neighboring pixels. If there is

disconnect in the connected pixels and the gap is greater than threshold value, algorithm

classifies the pixel to a new region. It is a user defined threshold whose value is chosen on the

basis of distance between the pixels. All the pixels which are part of the object are set to value

1, and those which are not part of the object are set to value zero. In region growing method,

3 � 3 window finds all the neighboring pixels 1 and keep growing the region until pixel with

zero value is found. Algorithm keeps finding the gap, and if the gap is greater than the

threshold value, the algorithm classifies it as a new region. If there are only isolated pixels,

they are marked as outliers. Proposed system is robust in handling problems such as occlusion

and illumination variation encountered in surveillance videos. In case of sunny day, there are

moving shadows of vehicles which can produce false alarms. But the proposed system esti-

mates the vehicle size and is able to predict the shadow size. Based on the moving vehicles

size, shadow can be removed. Proposed method is able to remove the extracted shadow of the

vehicles. Proposed system is tested on several surveillance videos of different scenarios such as

different weather conditions and densities. Proposed system is robust in handling problems

such as occlusion and illumination variation encountered in surveillance videos. The data set

contains a diverse set of scenarios in terms of traffic density and violations.

Traffic flow is assessed on each video frame, and the number of vehicles is counted in every

frame. For every vehicle, mean speed is computed. The flow rate is found by dividing total

vehicles by time. Top level flow diagram of the proposed approach is depicted in Figure 3.

Figure 3 represents the flow of proposed approach. Object tracking [7, 8] is part of the

proposed system which collects temporal and spatial information about the object under

consideration from the video sequence. Semantic information such as trajectories of detected

objects is acquired by motion tracking that is given as input for mapping and 3D computation

and revealing the outcomes on Google Maps. As Google space and video space coordinates are

different, 3D mapping is performed amongst the two different spaces. Time-based glyph is

created for representing semantic info on Google space and video.

Layout of table in order to store coordinates of vehicle is revealed in Figure 4. Blobs detected

within frame signify the number of vehicles. It is illustrated in Figure 4 that single vehicle

exists in current video frame. Array is well-defined for storing vehicle coordinates. First two

columns of array illustrate the y and x vehicle coordinates present in first frame, whereas the

following y and x coordinates represents next frame coordinates of vehicle. Fifth column value

demonstrates the number of frames consumed by vehicle in which vehicle becomes visible in

field of view. Vanishing flag in last column defines the status of vehicle, for example, vehicle

departure. Flag value remains zero till vehicles are in field of view and value will turn 1 when

vehicles disappear. Last column is significant because values reshuffling in arrays change on

the base of flag value.

Though, trajectories of vehicle are of different spans even vehicle travel on the same route since

vehicle travel at different mean speeds [8, 12]. Motion vectors [77] are used for demonstrating

information as motion information has strong relationship with semantic occurrence. Different
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event identifications are done by analysis of motion features. Path demonstrates the vehicle

movement and dynamical measurements that represent the raw vehicle trajectory. A common

trajectory depiction is flow succession, for example,

FT ¼ f 1; f 2; ::………f T
� �

(1)

Figure 3. Top level diagram of proposed approach.

Figure 4. Vehicle tracking information.
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where the flow vectors

ft ¼ xt; yt; v
t
x; v

t
y; a

t
x; a

t
y

h iT

(2)

represent object velocity [vx, vy], position [x, y], and direction [ax, ay] at time t extracted by

tracking the object.

3.2. Bezier fitting for glyph generation

Bezier curve mostly employed for modeling and smoothing the chaotic vehicle trajectories.

Control points are used to define Bezier curve which have geometric modeling interpretation

and can model trajectories inconsistency [61]. Curve is confined in control point’s which are

showed graphically and can be utilized for curve manipulation. By offering P0 and P0 points,

Bezier curve is defined as straight line between two points such as,

B tð Þ ¼ P0 þ t P1 � P0ð Þ ¼ I � tð ÞP0 þ tP1

0 ≤ t ≤ 1
(3)

That is equivalent to linear interpolation. Bezier curve is used to smooth the chaotic trajectories

of vehicles obtained using motion tracking. As each car moves with different speeds, so the

length of trajectories varies.

Figure 5(c) depicts the video taken from area around Northumbria University having frame

rate 30fps and video resolution 1920 � 1080. Video consists of 25 frames. Figure 5(a) illustrates

the chaotic trajectories of different vehicles that are smoothed using Bezier curve to visualize

the traffic pattern as shown in Figure 5(b). Time stamped semantic information is represented

using glyph. Vehicle trajectory is tracked over time, and semantic info is delivered as presented

in Figure 5. Outer circle of glyph denotes that vehicle changes lane although vehicle type was

small which is signified by circle having red color. If vehicle is small and do not change the lane

within field of view than outer circle of glyph is green.

Figure 5. (a) Chaotic vehicle trajectory, (b) smooth vehicle trajectory, and (c) time stamped glyph.
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3.3. Motion tracking and semantic event display

Motion tracking significance [9, 39, 64, 66, 71, 73] in surveillance videos is unquestionable;

subsequently, it is valuable in countless applications. Semantic analysis [62, 63] of video is

utilized for extraction of vital information particularly type of vehicle, speed and lane chang-

ing, and trajectory from the video [38, 41]. This semantic info is extracted automatically in

order to represent indexing, high level descriptors, retrieving, and searching the video con-

tents. Tracking of vehicle comprises of velocity, maintenance of appearance, and positioning of

detected object over time. Vehicle detection is done by object linking to most alike object in

consecutive video frames.

Flow vectors are used to symbolize the common trajectory representation which is basis of

further analysis. Figure 6(a) characterizes the chaotic vehicle trajectories which are taken from

different surveillance videos. Every trajectory of vehicle is attained by individual tracking of

detected vehicle. Figure 6(b) displays the smoothed curves that are acquired by applying

Bezier curve on the chaotic vehicle trajectories.

4. 3D conversion and perspective view from video space to Google Maps

To capture the real time, info is considered as main challenge in dynamic VV [39]. 3D info

recovery from surveillance video is essential to acquire some significant information from the

videos. As frame of videos is the projection of 3D space, abstraction of vital information is

difficult task. In proposed approach, 3D transformation on Google Maps from surveillance

video is processed by using homographic transformation. In homographic transformation,

plane mapping to image space is performed by projective transformation that maps the point

Figure 6. Proposed approach vehicle tracking.
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from one plane to second one. Homography amongst image space and video space is esti-

mated requires four-point correspondence [42]. Calibration of image is acquired through

transformation H, in which pixels pf image mapping on ground plane matches to latitude

and longitude coordinates of maps.

Individual location of vehicle in each video frame sequence is signified by plus symbol in

Figure 7 that is computed by homography matrix in order to calculate map and of video space

coordinates. In perspective projection, location or points are alike in two dissimilar spaces,

however, not equivalent because of universal scale uncertainty. The homography [6, 11, 45, 72, 79]

in camera-based view geometry attains a particular interpretation H = KE, where E represents

Euclidean transformation matrix which defines camera pose while viewing, and K characterizes

the matrix of camera perspective recognized as intrinsic measures. Consider a pair of correspon-

dence points, for example, p ¼ x1; y1; z1
� �T

and u ¼ x2; y2; z2
� �T

is related by homography H:

x2

y2
z2

2

6

4

3

7

5
�

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

2

6

4

3

7

5

x1

y1
z1

2

6

4

3

7

5
(4)

Thus, each correspondence p⇆ u results in two linear equations in the unknowns h ¼

h11; h12,……………,h34ð ÞT . With manifold correspondences, numerous pairs of linear constraints

need to be stored for obtaining coefficient matrix A. Least square h solution is acquired by

solving the

ATA
� �

h ¼ 0 (5)

The h solution is acquired as eigenvector which corresponds to AT A smallest value. Corner

points of video after the H computation are projected on Google Maps correspondence points.

Each position of pixel in dimension space is estimated on map by the use of H matrix, and

Figure 7. Homographic computation and perspective view of video and Google Maps.
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resultant longitude and latitude coordinates are stored. Inverse of H is also computed to map

the space coordinates on video.

5. Time stamped semantic glyph representation

Visualization based on glyph is considered as common procedure of visual scheme in which

group of graphic objects is employed for representing data set known as glyph [35]. Glyph

method is utilized for visualizing motion vectors that are over laid on video stream frame. Our

main concern is to collect visual info that seems in all frames of video till the object remains

within the view. Time stamped glyph is also generated in order to signify the type of car, speed

with distinctive colors, and event information such as lane change information. The proposed

system accurately determines the lane change of vehicle at a specific time due to precise

localization. In the proposed system, an abnormal event detection is performed by specifically

giving vehicle trajectories [52]. Trajectory analysis and interaction with scene feature allows

recognizing interesting events. A time stamped glyph is generated to represent speed and lane

change information of vehicle. For any image point, the position of corresponding scene point

in every video frame is determined until the vehicle leaves the field of view.

There is variation in vehicle speed even in obstacles’ absence because of curves and turns.

Experimental data authenticate the common insight of speed which is considered most signif-

icant factors of safe driving. Variation in vehicle speed considered to be one of likely factors of

congestions and accidents [37, 51, 94]. Therefore, proposed algorithm determines the speed

variation of vehicles in each frame on the basis of trajectory analysis. Trajectories with different

speeds are identified and represented using glyph. At each time frame, if vehicle speed is

lower than the threshold, then the same color is assigned; however, if vehicle speed changes

abruptly then at each instance of time, it is assigned a different color. With this time stamped

identification method, precise instance of speed variation is identified in the video frame that

causes a disruption in flow of the traffic movement.

6. Association between Google Maps and video visualization

To properly visualize analysis of results on Google Maps, the output must be properly aligned

to the map coordinates [13]. Rectification of camera image is automatically done and mapped

on the map. In surveillance video, activity is detected in each frame, and location of vehicle on

ground is gained through correspondence points and trajectory learning which are mapped on

map. Consequently, video inspection of several road cameras is upgraded by projecting the

activity of outdoor surveillance camera on Google Maps. In order to localize the vehicle

coordinates on the Google Maps or association of video and Google Maps space, homography

is computed, and its perspective view is drawn. Transformation matrix provides the associa-

tion information and its mapping. And as the events occur, correspondence video is visualized

on the Google Maps as shown in Figure 8.

Intelligent Video Surveillance10



7. Holistic view of video using Google Maps

A surveillance video naturally takes the perspective view of the visual scene which is recog-

nized as quasi-3D. Significant information is gathered from the different videos and is viewed

to represent unusual events in videos as depicted in Figure 8.

In video surveillance-based system, identification of unusual events is considered to be most

significant task. Anomalous behavior can be drastic and subtle [36, 58, 63]. Changing of lanes

on highways is traumatic. The proposed system precisely identifies the vehicle lane change at

specific time because of precise localization. Anomalous detection of events [40] can be

performed by giving the trajectory [62]. Subsequently, now the vehicle trajectory specifies the

frightening behavior by performing trajectory analysis. Different glyph colors during the video

visualization portray the type, vehicle position, and event information within video frame.

7.1. Small scale

The proposed technique has been tested on the small scale, for example, area across Northum-

bria University City Campus, Newcastle Upon Tyne, UK. Detected object trajectories are

shown in outcome till the objects remain in the scene using semantic glyph as shown in

Figure 9.

There is possibility of future work in the area of visualization. Proposed visualization

approach can be utilized for traffic management system at city level and have precise view of

bigger cite. Spatio-temporal view of collection of videos can be acquired by mapping the

trajectory on Google Maps as shown in Figure 10.

Figure 8. Holistic view of videos on Google Maps.
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To interpret the data in real time system, visualization of video data offers instinctive informa-

tion that can be expended for acquiring trends and patterns. Conversely, gathering statistics

automatically from video data are computationally costly. Subsequently, Walton et al. [39]

visualized the traffic video data on Google Maps to display traffic info. Though, displaying

numerous traffic videos instantaneously was challenging because of heavy transmission load.

Human intellect was used to gather semantic features from surveillance videos in graphic

mapping scheme. Lately, Hsieh and Wang [50] proposed a traffic system for visualizing traffic

information by inferring vehicle data and constitute a video in the database. Flow of traffic was

assessed from surveillance videos and Google mapping was created amongst vehicle detector

Figure 9. Time stamped glyph-based video visualization on Google Maps.

Figure 10. Multiple video visualization on large scale.
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data and videos. While visualizing the traffic information, approach was ineffective in simu-

lating all types of kinematics and dynamics because of driving behavior in various regions.

8. Conclusion

The concern of VV is with visual illustration of input surveillance video for see-through vital

features and events in surveillance video. It is envisioned for providing assistance in intellectual

reasoning whereas easing the load of observing videos. A novel visualization approach based on

glyph has been proposed that can be efficiently utilized for road surveillance videos. A visual

analysis is done on the basis of motion tracking to monitor live road traffic on the highways. The

proposed approach has been verified on numerous video frame rates and resolution for visual-

izing the traffic flows. Experimental outcomes illustrate that approach can be employed in field

conditions and permit better utilization of previous systems of traffic management.
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