11,554 research outputs found

    Smart Charging Technologies for Portable Electronic Devices

    Get PDF
    In this article we describe our efforts of extending demand-side control concepts to the application in portable electronic devices, such as laptop computers, mobile phones and tablet computers. As these devices feature built-in energy storage (in the form of batteries) and the ability to run complex control routines, they are well-suited for the implementation of smart charging concepts. We developed simple hardware and software based prototypes of smart charging controllers for a laptop computer that steer the charging process depending on the frequency of the electricity grid and in case of the software implementation also based on the battery charge status. If similar techniques are incorporated into millions of devices in UK households, this can contribute significantly to the stability of the electricity grid, help to mitigate the short-term power production fluctuations from renewable energy sources and avoid the high cost of building and maintaining conventional power plants as standby reserve

    Wearable Capacitive-based Wrist-worn Gesture Sensing System

    Get PDF
    Gesture control plays an increasingly significant role in modern human-machine interactions. This paper presents an innovative method of gesture recognition using flexible capacitive pressure sensor attached on user’s wrist towards computer vision and connecting senses on fingers. The method is based on the pressure variations around the wrist when the gesture changes. Flexible and ultrathin capacitive pressure sensors are deployed to capture the pressure variations. The embedding of sensors on a flexible substrate and obtain the relevant capacitance require a reliable approach based on a microcontroller to measure a small change of capacitive sensor. This paper is addressing these challenges, collect and process the measured capacitance values through a developed programming on LabVIEW to reconstruct the gesture on computer. Compared to the conventional approaches, the wrist-worn sensing method offerings a low-cost, lightweight and wearable prototype on the user’s body. The experimental result shows that the potentiality and benefits of this approach and confirms that accuracy and number of recognizable gestures can be improved by increasing number of sensor

    TechNews digests: Jan - Nov 2008

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Wearable Energy Harvesting for Charging Portable Electronic Devices by Walking

    Get PDF
    Wearable energy harvesting technologies will become an everyday part of future portable electronic devices. By generating the energy where the energy is needed and not relying on a main power source to recharge the portable devices battery, wearable energy harvesters will enable future generations to have even more freedoms, travel further, and never run low on battery again. This will reduce the energy consumption of the mains grid and thus in turn reduce CO² emissions generated by this traditional power source making this research important for the whole plant. This research project aims to take another step towards in helping the development of future technologies by investigating novel wearable energy harvesting designs and showing ability to charge current portable electronic devices such as smart phones and tables. This required research into a broad range of topics including, energies from humans, energy conversion mechanisms, the movement of people and the power demands for charging current portable electronic devices. Background research in the human energy levels and how research to date had gone about exacting different energy sources in different ways was the starting point for this research. This leads on to a more detailed look into the exaction methods and optimization of footfall energy harvester designs. Looking into the human gait cycle gave the information required to replicate human footfall motion for use in scientific experiments. From this background research, two bespoke designs of wearable energy harvester have been created. The first novel design showed a promising way of extracting footfall energy and converting it into useable electrical energy producing Watt-Level of power. The second design is an evolution of the first design but expands the extraction method to both feet and relocated the main harvester unit into a backpack worn by the user. The improved design incorporates a novel approach to energy conversion method by introducing a mechanical energy storage system before transduction into electrical energy. This is shown to increased electrical power output from footfall energy, reduced energy consumption of the wearer and is shown to truly be able to charge current portable electronics. The improved design is shown to produce 2.6 Watts average power from normal walking. The experimental set ups, procedures, and their results are shown throughout this thesis. These experimental results are confirmed by using the wearable energy harvesters on a treadmill at the three main walking speeds showing their real-world capabilities. To demonstrate the wearable energy harvester deigns shown in this research project were truly able to charge current portable technologies, endurance testing was also performed. This confirms the harvesters were able to work for longer periods of time. This longer time frame is needed for the charging times of the current portable devices. After researching into wearable energy harvesting from over the last 20 years it was a struggle to compare all the different forms, designs, types and power outputs. It became clear that the existing methods were unable to provide a clear picture of harvester’s scalability, changeability and useability for future design ideas. This is why a new form of comparison was created and is shown to have strong benefits over the existing methods

    An architecture for distributed ledger-based M2M auditing for Electric Autonomous Vehicles

    Get PDF
    Electric Autonomous Vehicles (EAVs) promise to be an effective way to solve transportation issues such as accidents, emissions and congestion, and aim at establishing the foundation of Machine-to-Machine (M2M) economy. For this to be possible, the market should be able to offer appropriate charging services without involving humans. The state-of-the-art mechanisms of charging and billing do not meet this requirement, and often impose service fees for value transactions that may also endanger users and their location privacy. This paper aims at filling this gap and envisions a new charging architecture and a billing framework for EAV which would enable M2M transactions via the use of Distributed Ledger Technology (DLT)

    Past, Present and Future Trends of Non-Radiative Wireless Power Transfer

    Get PDF
    published_or_final_versio

    Planar Wireless Charging Technology for Portable Electronic Products and Qi

    Get PDF
    published_or_final_versio
    • …
    corecore