4 research outputs found

    Pattern Recognition Based Speed Forecasting Methodology for Urban Traffic Network

    Get PDF
    A full methodology of short-term traffic prediction is proposed for urban road traffic network via Artificial Neural Network (ANN). The goal of the forecasting is to provide speed estimation forward by 5, 15 and 30 min. Unlike similar research results in this field, the investigated method aims to predict traffic speed for signalized urban road links and not for highway or arterial roads. The methodology contains an efficient feature selection algorithm in order to determine the appropriate input parameters required for neural network training. As another contribution of the paper, a built-in incomplete data handling is provided as input data (originating from traffic sensors or Floating Car Data (FCD)) might be absent or biased in practice. Therefore, input data handling can assure a robust operation of speed forecasting also in case of missing data. The proposed algorithm is trained, tested and analysed in a test network built-up in a microscopic traffic simulator by using daily course of real-world traffic

    Design and validation of novel methods for long-term road traffic forecasting

    Get PDF
    132 p.Road traffic management is a critical aspect for the design and planning of complex urban transport networks for which vehicle flow forecasting is an essential component. As a testimony of its paramount relevance in transport planning and logistics, thousands of scientific research works have covered the traffic forecasting topic during the last 50 years. In the beginning most approaches relied on autoregressive models and other analysis methods suited for time series data. During the last two decades, the development of new technology, platforms and techniques for massive data processing under the Big Data umbrella, the availability of data from multiple sources fostered by the Open Data philosophy and an ever-growing need of decision makers for accurate traffic predictions have shifted the spotlight to data-driven procedures. Even in this convenient context, with abundance of open data to experiment and advanced techniques to exploit them, most predictive models reported in literature aim for shortterm forecasts, and their performance degrades when the prediction horizon is increased. Long-termforecasting strategies are more scarce, and commonly based on the detection and assignment to patterns. These approaches can perform reasonably well unless an unexpected event provokes non predictable changes, or if the allocation to a pattern is inaccurate.The main core of the work in this Thesis has revolved around datadriven traffic forecasting, ultimately pursuing long-term forecasts. This has broadly entailed a deep analysis and understanding of the state of the art, and dealing with incompleteness of data, among other lesser issues. Besides, the second part of this dissertation presents an application outlook of the developed techniques, providing methods and unexpected insights of the local impact of traffic in pollution. The obtained results reveal that the impact of vehicular emissions on the pollution levels is overshadowe
    corecore