2,046 research outputs found

    One class of wild but brick-tame matrix problems

    Full text link
    We present a class of wild matrix problems (representations of boxes), which are "brick-tame," i.e. only have one-parameter families of \emph{bricks} (representations with trivial endomorphism algebra). This class includes several boxes that arise in study of simple vector bundles on degenerations of elliptic curves, as well as those arising from the coadjoint action of some linear groups.Comment: 19 page

    Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

    Full text link
    We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph GG embedded on a surface of genus gg and a designated face ff bounded by a simple cycle of length kk, uncovers a set F⊆E(G)F \subseteq E(G) of size polynomial in gg and kk that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of ff. We apply this general theorem to prove that: * given an unweighted graph GG embedded on a surface of genus gg and a terminal set S⊆V(G)S \subseteq V(G), one can in polynomial time find a set F⊆E(G)F \subseteq E(G) that contains an optimal Steiner tree TT for SS and that has size polynomial in gg and ∣E(T)∣|E(T)|; * an analogous result holds for an optimal Steiner forest for a set SS of terminal pairs; * given an unweighted planar graph GG and a terminal set S⊆V(G)S \subseteq V(G), one can in polynomial time find a set F⊆E(G)F \subseteq E(G) that contains an optimal (edge) multiway cut CC separating SS and that has size polynomial in ∣C∣|C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution

    On the diameter of random planar graphs

    Get PDF
    We show that the diameter D(G_n) of a random labelled connected planar graph with n vertices is equal to n^{1/4+o(1)}, in probability. More precisely there exists a constant c>0 such that the probability that D(G_n) lies in the interval (n^{1/4-\epsilon},n^{1/4+\epsilon}) is greater than 1-\exp(-n^{c\epsilon}) for {\epsilon} small enough and n>n_0(\epsilon). We prove similar statements for 2-connected and 3-connected planar graphs and maps.Comment: 24 pages, 7 figure

    Simple vector bundles on plane degenerations of an elliptic curve

    Get PDF
    In 1957 Atiyah classified simple and indecomposable vector bundles on an elliptic curve. In this article we generalize his classification by describing the simple vector bundles on all reduced plane cubic curves. Our main result states that a simple vector bundle on such a curve is completely determined by its rank, multidegree and determinant. Our approach, based on the representation theory of boxes, also yields an explicit description of the corresponding universal families of simple vector bundles
    • …
    corecore