224 research outputs found

    Automatic Small Bowel Tumor Diagnosis by Using Multi-Scale Wavelet-Based Analysis in Wireless Capsule Endoscopy Images

    Get PDF
    BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice

    Histopathological image classification using salient point patterns

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2011.Thesis (Master's) -- Bilkent University, 2011.Includes bibliographical references leaves 69-79.Over the last decade, computer aided diagnosis (CAD) systems have gained great importance to help pathologists improve the interpretation of histopathological tissue images for cancer detection. These systems offer valuable opportunities to reduce and eliminate the inter- and intra-observer variations in diagnosis, which is very common in the current practice of histopathological examination. Many studies have been dedicated to develop such systems for cancer diagnosis and grading, especially based on textural and structural tissue image analysis. Although the recent textural and structural approaches yield promising results for different types of tissues, they are still unable to make use of the potential biological information carried by different tissue components. However, these tissue components help better represent a tissue, and hence, they help better quantify the tissue changes caused by cancer. This thesis introduces a new textural approach, called Salient Point Patterns (SPP), for the utilization of tissue components in order to represent colon biopsy images. This textural approach first defines a set of salient points that correspond to nuclear, stromal, and luminal components of a colon tissue. Then, it extracts some features around these salient points to quantify the images. Finally, it classifies the tissue samples by using the extracted features. Working with 3236 colon biopsy samples that are taken from 258 different patients, our experiments demonstrate that Salient Point Patterns approach improves the classification accuracy, compared to its counterparts, which do not make use of tissue components in defining their texture descriptors. These experiments also show that different set of features can be used within the SPP approach for better representation of a tissue image.Çığır, CelalM.S

    Edge cross-section profile for colonoscopic object detection

    Get PDF
    Colorectal cancer is the second leading cause of cancer-related deaths, claiming close to 50,000 lives annually in the United States alone. Colonoscopy is an important screening tool that has contributed to a significant decline in colorectal cancer-related deaths. During colonoscopy, a tiny video camera at the tip of the endoscope generates a video signal of the internal mucosa of the human colon. The video data is displayed on a monitor for real-time diagnosis by the endoscopist. Despite the success of colonoscopy in lowering cancer-related deaths, a significant miss rate for detection of both large polyps and cancers is estimated around 4-12%. As a result, in recent years, many computer-aided object detection techniques have been developed with the ultimate goal to assist the endoscopist in lowering the polyp miss rate. Automatic object detection in recorded video data during colonoscopy is challenging due to the noisy nature of endoscopic images caused by camera motion, strong light reflections, the wide angle lens that cannot be automatically focused, and the location and appearance variations of objects within the colon. The unique characteristics of colonoscopy video require new image/video analysis techniques. The dissertation presents our investigation on edge cross-section profile (ECSP), a local appearance model, for colonoscopic object detection. We propose several methods to derive new features on ECSP from its surrounding region pixels, its first-order derivative profile, and its second-order derivative profile. These ECSP features describe discriminative patterns for different types of objects in colonoscopy. The new algorithms and software using the ECSP features can effectively detect three representative types of objects and extract their corresponding semantic unit in terms of both accuracy and analysis time. The main contributions of dissertation are summarized as follows. The dissertation presents 1) a new ECSP calculation method and feature-based ECSP method that extracts features on ECSP for object detection, 2) edgeless ECSP method that calculates ECSP without using edges, 3) part-based multi-derivative ECSP algorithm that segments ECSP, its 1st - order and its 2nd - order derivative functions into parts and models each part using the method that is suitable to that part, 4) ECSP based algorithms for detecting three representative types of colonoscopic objects including appendiceal orifices, endoscopes during retroflexion operations, and polyps and extracting videos or segmented shots containing these objects as semantic units, and 5) a software package that implements these techniques and provides meaningful visual feedback of the detected results to the endoscopist. Ideally, we would like the software to provide feedback to the endoscopist before the next video frame becomes available and to process video data at the rate in which the data are captured (typically at about 30 frames per second (fps)). This real-time requirement is difficult to achieve using today\u27s affordable off-the-shelf workstations. We aim for achieving near real-time performance where the analysis and feedback complete at the rate of at least 1 fps. The dissertation has the following broad impacts. Firstly, the performance study shows that our proposed ECSP based techniques are promising both in terms of the detection rate and execution time for detecting the appearance of the three aforementioned types of objects in colonoscopy video. Our ECSP based techniques can be extended to both detect other types of colonoscopic objects such as diverticula, lumen and vessel, and analyze other endoscopy procedures, such as laparoscopy, upper gastrointestinal endoscopy, wireless capsule endoscopy and EGD. Secondly, to our best knowledge, our polyp detection system is the only computer-aided system that can warn the endoscopist the appearance of polyps in near real time. Our retroflexion detection system is also the first computer-aided system that can detect retroflexion in near real-time. Retroflexion is a maneuver used by the endoscopist to inspect the colon area that is hard to reach. The use of our system in future clinical trials may contribute to the decline in the polyp miss rate during live colonoscopy. Our system may be used as a training platform for novice endoscopists. Lastly, the automatic documentation of detected semantic units of colonoscopic objects can be helpful to discover unknown patterns of colorectal cancers or new diseases and used as educational resources for endoscopic research

    HEP-2 CELL FEATURE EXTRACTION USING WAVELET AND INDEPENDENT COMPONENT ANALYSIS

    Get PDF
    Human antibodies work to attack any diseases or bacteria that presented inside the body. However, there is an act when human antibodies tend to attack own body cells or tissues which is called as Anti-nuclear Antibodies (ANA). ANA consist of many different types that can be recognized by its nucleus size and shape. Common method of classifying ANA is by performing Indirect Immunofluorescences (IIF) with HEp-2 cell and observed the pattern under the microscope by naked eye which said to be inaccurate, takes time and subjective. Thus, this project will study on the technique to identify and classify the pattern of ANA automatically. Algorithms are created using MATLAB software and a Graphical User Interface (GUI) is generated for the algorithm to be easily used. This work will focus more on feature extraction using Wavelet and Independent Component Analysis (ICA). The type of Wavelet Transform that will be used is the 2D Discrete Wavelet Transform (2D DWT) and Fast ICA for Independent Component Analysis. Then Support Vector Machine (SVM) is used to perform the classifications parts using the features extracted from both methods. Different features obtained are tested in SVM and the performance of both methods is compared. From the result, it shows that by using the same classifier, Wavelet can provide better features for classification compared to ICA

    Investigation of intra-tumour heterogeneity to identify texture features to characterise and quantify neoplastic lesions on imaging

    Get PDF
    The aim of this work was to further our knowledge of using imaging data to discover image derived biomarkers and other information about the imaged tumour. Using scans obtained from multiple centres to discover and validate the models has advanced earlier research and provided a platform for further larger centre prospective studies. This work consists of two major studies which are describe separately: STUDY 1: NSCLC Purpose The aim of this multi-center study was to discover and validate radiomics classifiers as image-derived biomarkers for risk stratification of non-small-cell lung cancer (NSCLC). Patients and methods Pre-therapy PET scans from 358 Stage I–III NSCLC patients scheduled for radical radiotherapy/chemoradiotherapy acquired between October 2008 and December 2013 were included in this seven-institution study. Using a semiautomatic threshold method to segment the primary tumors, radiomics predictive classifiers were derived from a training set of 133 scans using TexLAB v2. Least absolute shrinkage and selection operator (LASSO) regression analysis allowed data dimension reduction and radiomics feature vector (FV) discovery. Multivariable analysis was performed to establish the relationship between FV, stage and overall survival (OS). Performance of the optimal FV was tested in an independent validation set of 204 patients, and a further independent set of 21 (TESTI) patients. Results Of 358 patients, 249 died within the follow-up period [median 22 (range 0–85) months]. From each primary tumor, 665 three-dimensional radiomics features from each of seven gray levels were extracted. The most predictive feature vector discovered (FVX) was independent of known prognostic factors, such as stage and tumor volume, and of interest to multi-center studies, invariant to the type of PET/CT manufacturer. Using the median cut-off, FVX predicted a 14-month survival difference in the validation cohort (N = 204, p = 0.00465; HR = 1.61, 95% CI 1.16–2.24). In the TESTI cohort, a smaller cohort that presented with unusually poor survival of stage I cancers, FVX correctly indicated a lack of survival difference (N = 21, p = 0.501). In contrast to the radiomics classifier, clinically routine PET variables including SUVmax, SUVmean and SUVpeak lacked any prognostic information. Conclusion PET-based radiomics classifiers derived from routine pre-treatment imaging possess intrinsic prognostic information for risk stratification of NSCLC patients to radiotherapy/chemo-radiotherapy. STUDY 2: Ovarian Cancer Purpose The 5-year survival of epithelial ovarian cancer is approximately 35-40%, prompting the need to develop additional methods such as biomarkers for personalised treatment. Patient and Methods 657 texture features were extracted from the CT scans of 364 untreated EOC patients. A 4-texture feature ‘Radiomic Prognostic Vector (RPV)’ was developed using machine learning methods on the training set. Results The RPV was able to identify the 5% of patients with the worst prognosis, significantly improving established prognostic methods and was further validated in two independent, multi-centre cohorts. In addition, the genetic, transcriptomic and proteomic analysis from two independent datasets demonstrated that stromal and DNA damage response pathways are activated in RPV-stratified tumours. Conclusion RPV could be used to guide personalised therapy of EOC. Overall, the two large datasets of different imaging modalities have increased our knowledge of texture analysis, improving the models currently available and provided us with more areas with which to implement these tools in the clinical setting.Open Acces
    • …
    corecore