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ABSTRACT

HISTOPATHOLOGICAL IMAGE CLASSIFICATION
USING SALIENT POINT PATTERNS

Celal Çığır

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Çiğdem Gündüz Demir

August, 2011

Over the last decade, computer aided diagnosis (CAD) systems have gained great

importance to help pathologists improve the interpretation of histopathological

tissue images for cancer detection. These systems offer valuable opportunities to

reduce and eliminate the inter- and intra-observer variations in diagnosis, which

is very common in the current practice of histopathological examination. Many

studies have been dedicated to develop such systems for cancer diagnosis and

grading, especially based on textural and structural tissue image analysis. Al-

though the recent textural and structural approaches yield promising results for

different types of tissues, they are still unable to make use of the potential bio-

logical information carried by different tissue components. However, these tissue

components help better represent a tissue, and hence, they help better quantify

the tissue changes caused by cancer.

This thesis introduces a new textural approach, called Salient Point Patterns

(SPP), for the utilization of tissue components in order to represent colon biopsy

images. This textural approach first defines a set of salient points that corre-

spond to nuclear, stromal, and luminal components of a colon tissue. Then, it

extracts some features around these salient points to quantify the images. Fi-

nally, it classifies the tissue samples by using the extracted features. Working

with 3236 colon biopsy samples that are taken from 258 different patients, our

experiments demonstrate that Salient Point Patterns approach improves the clas-

sification accuracy, compared to its counterparts, which do not make use of tissue

components in defining their texture descriptors. These experiments also show

that different set of features can be used within the SPP approach for better
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representation of a tissue image.

Keywords: Salient point patterns, texture, histopathological image analysis,

automated cancer diagnosis and grading, colon cancer.



ÖZET

ÖZELLİKLİ NOKTA MODELLERİ KULLANARAK
HİSTOPATOLOJİK RESİMLERİN

SINIFLANDIRILMASI

Celal Çığır

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Y. Doç Dr. Çiğdem Gündüz Demir

Ağustos, 2011

Son on yıl içinde, bilgisayar destekli teşhis sistemleri, patologların kanser tespiti

için histopatolojik görüntüleri yorumlamasını artırmaya yardımcı olması yönüyle

büyük bir önem kazanmıştır. Bu sistemler, kanser tanısı için mevcut histopatolo-

jik doku muayenesi uygulamasında çok yaygın olan gözlemci-içi ve gözlemciler

arası değişkenliği azaltmaya ve ortadan kaldırmaya yönelik çok değerli fırsatlar

sunmaktadır. Özellikle dokusal ve yapısal doku görüntü analizine dayalı birçok

çalışma, kanserin tanı ve sınıflandırması için bu tür sistemleri geliştirmeye

adanmıştır. Son zamanlardaki dokusal ve yapısal yaklaşımlar, farklı tipte dokular

için umut verici sonuçlar vermesine rağmen, doku bileşenleri tarafından taşınan

potansiyel biyolojik bilgiyi kullanabilmekten yoksundurlar. Halbuki, bu doku

bileşenleri, doku temsiline ve dolayısıyla, kanserin yol açtığı doku değişikliklerini

ölçmeye daha iyi yardımcı olur.

Bu tez, kolon biyopsi görüntülerini temsil etmede doku bileşenlerinin kullanımı

için Özellikli Nokta Modelleri olarak adlandırılan yeni bir dokusal yaklaşım sun-

maktadır. Bu dokusal yaklaşım öncelikle kolon dokusunun çekirdek, stroma ve

lümen bileşenlerine karşılık gelen bir dizi özellikli noktaları tanımlar. Sonra, bu

belirgin noktalar etrafından doku görüntülerini ölçmede kullanılan öznitelikler

çıkartılır. Son olarak, bu öznitelikleri kullanarak doku örneklerini sınıflandırır.

258 farklı hastadan alınan 3236 kolon biyopsi örneği üzerinde gerçekleştirdiğimiz

deneyler, Özellikli Nokta Modelleri yaklaşımının, dokuları tanımlamada yapısal

bileşenleri kullanmayan benzer çalşmalarla karşılaştırıldığında, sınıflandırma

başarı yüzdesini artırdığını ortaya koymuştur. Ayrıca gerçekleştirdiğimiz bu

deneyler, doku görüntüsünün daha iyi temsil edilebilmesi için bu dokusal yaklaşım
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kullanılarak farklı özniteliklerin elde edilebileceğini göstermektedir.

Anahtar sözcükler : Özellikli nokta modelleri, yapısal doku, histopatolojik görüntü

analizi, otomatik kanser tanısı ve derecelendirilmesi, kolon kanseri.
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Chapter 1

Introduction

Cancer, also named as malignant neoplasm, is the name for a group of diseases

characterized by the uncontrolled growth and spread of abnormal cells. Around

the world, cancer is ranked the third leading cause of deaths following cardio-

vascular and infectious diseases. In respect of percentage, such diseases caused

almost 13.4 percent of all deaths in men and 11.8 percent in women in 2004 [6].

As it is presented in Figure 1.1, cancer causes more deaths than respiratory dis-

eases, diabetic diseases, and deaths because of perinatal conditions; furthermore

cancer results in more deaths than HIV/AIDS, tuberculosis, and malaria which

lie in infectious diseases.

Normally, body cells grow over time and new cells take place when old ones

die. However, cancer cells grow and divide without dying and form new abnormal

cancer cells. At the end, these cells group together and form an additional mass

of tissue. This mass is called a malignant tumor. Prostate, breast, lung, and

colorectal cancers are some of the cancer types that form a malignant tumor.

Some cancers, like leukemia, do not form tumors. Instead, these cancer cells

divide irregularly causing increase in white blood cells [1].

Being a tumor-forming cancer type, colon cancer is one of the most common

types of cancer that afflicts many people each year. It is also called as colorectal

cancer or large bowel cancer. According to American Cancer Society research in

1
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Figure 1.1: Distribution of deaths by leading cause groups, males and females,
worldwide, 2004.1

2011, about 1.5 million new cancer cases will occur in the U.S. and colon cancer

is estimated as the third most common cancer type for both males and females

[63]. As it is shown in Figure 1.2, 9 percent of new cancer cases will be type of

colorectal cancer and unfortunately, 34 percent of them will result in death for

both males and females.

Colon cancer grows in the wall of the colon. Most begin as a small growth

on the bowel wall. These growths are usually benign (not cancerous), but some

develop into cancer over time. The process of forming tumor in the colon wall

can take many years, which allows time for early detection with screening tests.

Widespread screening tests play an important role to identify cancers at an early

and potentially treatable stage [64]. In order to select the correct treatment

plan, cancer must be diagnosed and graded accurately. For cancer diagnosis,

there are many methods that are employed in clinical institutions. Blood and

urine tests are one of these methods to make cancer diagnosis and they give

1Source: The Global Burden of Disease: 2004 Update by World Health Organization.
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Figure 1.2: Ten leading cancer types for estimated new cancer cases and deaths,
by sex, United States, 2011.2

the pathologists beneficial information about the effects of the disease on the

body. Medical imaging techniques, such as X-ray images, magnetic resonance

imaging (MRI), and ultrasonography are used to detect different types of cancer

[4, 11, 26, 31, 64, 65]. Genetic testing is another technique for cancer diagnosis

but due to complexity of testing, cost, and a requirement for specialists make it

hard to apply for practical use in clinical institutions [17, 52].

Although all these screening methods are used to detect cancer, the final

diagnosis are made with histopathological tissue examination. Moreover, these

aforementioned screening methods are not capable of making reliable grading,

2Source: Siegel R. et al. Cancer statistics, 2011. CA: A Cancer Journal for Clinicians,
61(4):212236, 2011.
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and hence, histopathological tissue examination should be done [9, 12, 58]. In

clinical medicine, histopathology refers to the examination of a biopsy (a sample

tissue) or a surgical specimen by a pathologist, after histological sections have

been stained with a special technique to enhance contrast in the microscopic image

and placed onto glass slides. In this examination, pathologists visually examine

the changes in cell morphology and tissue distribution under a microscope. If a

cancerous region is found in a tissue sample, a grade is assigned to the tissue to

characterize the degree of its malignancy.

Conventional histopathological examination in cancer diagnosis is prone to

subjectivity and may lead to a considerable amount of intra- and inter-observer

variation and poor reproducibility, due to its heavy reliance on human interpre-

tation [3, 33, 46]. Moreover, it is a time-consuming process to examine the whole

specimen for making a decision. Computer-aided diagnosis (CAD), therefore, has

been proposed to eliminate variations among pathologists and decrease the sub-

jectivity level by assisting pathologists with making more reliable decisions in a

time-saving way.

1.1 Motivation

In literature, there have been many studies to develop CAD systems to assist

pathologists in their evaluations of histopathological images. In these studies, a

tissue is represented with a set of mathematical features that is used in automated

diagnosis and grading process. In order to extract these features, there are mainly

four different approaches. These are intensity-based, textural, tissue component-

based (morphological), and structural approaches.

In the intensity-based approach, a tissue is quantified with the statistical

distributions of gray level or color intensities of its pixels. This approach first

computes a color or gray level histogram of a tissue image by quantizing its

pixels into bins and then, defines a set of statistical features on the histogram

[11, 65, 67]. However, intensity distributions are similar for different types of
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tissues stained with the hematoxylin-and-eosin staining technique. Moreover,

this approach is not capable of capturing spatial relations of tissue components

as visual descriptors of the images.

In the textural approach, tissue images are represented with a set of features

that can be calculated from co-occurrence matrices [16, 29, 19, 60], run-length

matrices [44, 74], multiwavelet coefficients [32, 74], fractal geometry [20, 72], and

local binary patterns (LBP) [41, 61, 65]. Since texture definition is made on

pixels, it is sensitive to noise in the pixel values.

In the morphological approach, a tissue is represented with the size, shape,

orientation, and other geometric properties of the tissue components. These

properties are measured defining morphological features such as area, perime-

ter, roundness, and symmetry [72, 67]. This approach requires identifying exact

boundaries of cells before extracting the features. Due to complex nature of

histopathological images, it is hard to locate tissue components and this leads to

a difficult segmentation problem.

Structural approach characterizes the tissue with the spatial distribution of

its cellular components. A tissue is represented as a graph and a set of structural

features is extracted from this graph representation. The locations of the cell

nuclei are considered as nodes to generate such graphs including Delaunay trian-

gulations and their corresponding Voronoi diagrams [18, 74], minimum spanning

trees [75], and probabilistic graphs [15, 27].

Although the recent textural and structural approaches for the development

of CAD systems yield promising results for different types of tissues, they are

still unable to make use of the potential biological information carried by the

tissue components. However, these tissue components help better represent a

tissue, and hence, they help better quantify the tissue changes due to existence

of cancer. For example, in typical colon tissues, epithelial cells are arranged in an

order around a luminal structure to form a glandular structure and non-epithelial

cells take place in stroma found in between these glands. The gland structures

for normal colon tissues are presented in Figures 1.3(a) and 1.3(b). This gland

formation deviates from its regular structure due to existence of cancer. At
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3: Histopathological images of colon tissues, which are stained with
the routinely used hematoxylin-and-eosin technique: (a)-(b) normal, (c)-(d) low-
grade cancerous, and (e)-(f) high-grade cancerous.
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the beginning, the degree of distortion is lower such that gland formations are

well to moderately differentiated; examples of low-grade cancerous tissues are

shown in Figures 1.3(c) and 1.3(d). Then, the distortion level becomes higher

such that the gland formations are poorly differentiated. Figures 1.3(e) and

1.3(f) present such high-grade cancerous colon tissue samples. The quantification

of these deviations in glandular structure is very important for accurate cancer

grading. In addition to its nuclear components, luminal and stromal regions make

easier the quantification of the distortions.

1.2 Contribution

Pathologists visually examine the spatial relations of tissue components such as

stroma, nuclei, and lumen for cancer diagnosis and grading. However, most of the

textural and structural approaches use only the information provided by nuclear

region, ignoring the potential information provided by luminal or stromal regions.

On the other hand, it is beneficial to use these tissue components all together for

better characterization of a tissue.

In this thesis, we introduce a new textural method, called Salient Point Pat-

terns (SPP), for the utilization of tissue components in order to represent colon

biopsy images. For this purpose, first a set of salient points is defined to approx-

imately represent the tissue components including nuclei, stroma, and lumen.

Then, a circular window centered on the centroids of the components is used as

a mask to extract different types of features around these salient points. Finally,

tissue classification is performed by using the extracted set of features. Our ex-

periments demonstrate that this classification approach leads promising results

for differentiating normal, low-grade cancerous, and high-grade cancerous tissue

images. The main contribution of this thesis can be summarized as the use of

salient points to represent tissue components in texture definition. Moreover, the

SPP method has a potential of being applied for other types of cancer such as

prostate and skin cancer.
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1.3 Organization of the Thesis

This thesis is organized as follows: In Chapter 2, we give an overview of the

medical background information about cancer and the earlier research related to

classification of histopathological images. In Chapter 3, we explain the proposed

Salient Point Patterns method in detail. Consequently, in Chapter 4, we describe

the experiments and analyze the experimental results. Finally, we summarize our

work and discuss its future research aspects in Chapter 5.



Chapter 2

Background

This chapter presents the background information about histopathological image

analysis. First of all, general information about colon tissues, the staining process,

and changes in colon tissues caused by colon cancer are mentioned. Following the

medical background, a brief summary of the previous studies about histopatho-

logical image classification for cancer grading and diagnosis is presented. Finally,

SIFT key point descriptor, a method for detecting interest points in tissue images,

is mentioned.

2.1 Medical Background

The colon, sometimes referred to as the large intestine or large bowel, is a long,

hollow tube at the end of the digestive tract. Its main role can be defined as a

waste processor; taking digested food in the form of solid waste and pushing it

out of the body through the rectum and anus. It absorbs water, electrolytes and

nutrients from food and transports them into the bloodstream.

If a doctor suspects cancer in colon, he or she needs to know the status of the

colon tissues. In a current clinical practice, histopathological examination is the

9
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routinely applied method for diagnosis and grading of colon cancer. Histopatho-

logical examination of tissues starts with removing a sample of a small amount

of tissue. This procedure is called biopsy. The sample tissue or surgical specimen

is to be examined under a microscope by a pathologist. Before the microscopic

examination, histological sections have been taken from the biopsy and stained

with special chemicals in order to enhance contrast in the microscopic image.

Hematoxylin-and-eosin (H&E) is the routinely used technique for staining tis-

sues at clinical institutions. In a typical tissue, hematoxylin colors nuclei of cells

with blue-purple hue, whereas alcoholic solution of eosin colors eosinophilic struc-

tures such as proteins and cytoplasms with pink [22]. Therefore, a biopsy tissue

stained with the hematoxylin-and-eosin technique has large amounts of different

levels of blue-purple, pink, and white components. In Figure 2.1, a sample colon

tissue stained with the hematoxylin-and-eosin technique is presented. In a typ-

ical colon tissue, there are epithelial cells and stromal cells. An epithelial cell

consists of a nucleus, dark purple region, and a cytoplasm, white region near the

epithelial cell nucleus. A sample epithelium cell is marked with a red solid circle

in the figure. A group of epithelium cells is lined up around a luminal region to

form a glandular structure; a luminal area and a gland border are also marked

in this figure. Stromal cells are not part of the glandular structures. They are

connective tissue components that hold all of the structures in the tissue together.

Figure 2.1: Cellular, stromal, and luminal components of a colon tissue stained
with the hematoxylin-and-eosin technique.
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Colon adenocarcinoma, which accounts for 90-95 percent of all colorectal

cancers, originates from the lining of the large intestine causing organizational

changes in the glandular structure of the colon tissue. In order to determine

the most appropriate treatment plan, cancer should be diagnosed and graded

accurately. For colon adenocarcinoma, grading is a description of how closely a

colorectal gland looks like a normal gland. It scales the distortions in the or-

ganization of the colon tissue. In low-grade cancerous tissues, gland formations

are well to moderately differentiated. However, in high-grade cancerous tissues,

gland formations are only poorly differentiated [21]. In this thesis, we consider

classifying a tissue image as normal, low-grade cancerous, or high-grade cancer-

ous.

2.2 Automated Histopathological Image

Analysis

In literature, there have been several studies related to the development of CAD

systems for histopathological image analysis. These studies can be broadly di-

vided into three main groups based on their purpose: tissue image segmentation,

retrieval, and classification.

2.2.1 Tissue image segmentation

Segmentation is the initial step in histopathological image analysis. Here, the

aim is to divide a heterogenous image into its homogeneous parts. These ho-

mogeneous parts can later be used by classification algorithms. To identify the

homogenous regions in an image, many approaches have been proposed. Tosun

et al. [70] proposed a new algorithm for an unsupervised segmentation of colon

biopsy images. In their algorithm, they first run k-means clustering on the color

intensities of pixels to cluster them into three main groups: purple for epithelial

and lymphoid cell nuclei regions, pink for connective tissue regions and epithelial
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cell cytoplasm and white for luminal structures, connective tissue regions, and

epithelial cell cytoplasm. Then, they define circular primitives on the pixels of

each cluster and define a descriptor on these primitives that is to be used in a re-

gion growing algorithm. In their recent study, they introduced another descriptor

that is used for histopathological image segmentation [69]. In this study, graphs

are used to quantify the relations of tissue components.

Kong et al. applied clustering-based segmentation on whole slide histology

images [36]. They first divide a whole slide image of neuroblastoma tumor into

tiles and each image tile is segmented into five salient components: nuclei, cy-

toplasm, neuropil, red blood cells, and background. Segmentation is performed

by constructing a feature vector that combines color and entropy information

extracted from the RGB and La*b* color spaces and classifying this vector into

one of the components.

Image filtering is also proposed for segmentation of colon biopsy images [78].

In this study, a directional 2D filter is applied to an image. Each directional 2D

filter detects the chain segment in a particular direction and gland segmentation is

performed on these filter responses. Image thresholding on the color intensities of

pixels followed by iterative region growing is another approach for segmentation

of histopathological images [77]. Naik et al. proposed to use a Bayesian classifier

on pixel values to detect nuclei, cytoplasm, and lumen components in prostate

tissue images [47, 48]. They manually select a set of pixel values representing

each of the three classes as the ground truth. Then, pixels in a tissue image

are labeled using a Bayesian classifier after applying an empirically determined

threshold. Finally, a region that corresponds to a set of connected pixels in the

same cluster is considered as a segmented region.

2.2.2 Medical image retrieval

With the development of medical imaging and computer technology, there is

an exponential increase in the amount of medical images and this makes the

management, maintenance, and retrieval of medical images more difficult. This
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fact leads researchers to work on medical image retrieval systems [43]. Such

systems are designed for accessing the most visually similar images to a given

query image from a database of images.

ASSERT [62] is one of the medical image retrieval systems that mainly focus

on the computed tomography (CT) images of lung. Image Retrieval in Medical

Applications (IRMA) [34] system is designed for the classification of images into

anatomical areas. Traditional content-based medical image retrieval is based on

low level features such as color, texture, shape, spatial relationships, and mixture

of these [43, 79, 83, 85]. On the other hand, recent studies have focused on the

semantic content analysis of medical images in order to improve the retrieval

performance [8, 68, 80]. Tang et al. propose I-Browse system that is specialized

for retrieval of gastrointestinal tract images [68]. They manually assign semantic

labels to the subimages with the help of histopathologists to form ground truth

image patches. Then, a set of Gabor features and gray level mean and deviations

of the normalized histogram of these subimages are extracted to construct features

in image retrieval process. Caicedo et al. propose a semantic content-based image

retrieval for histopathology images [8]. They first extract low level features,

such as gray/color histogram, edge histogram, and texture histogram features,

on images of special skin cancer called basal-cell carcinoma. Then, these low

level features are mapped to high-level features that reflect the semantic content

of the images with help of pathologists.

The evaluation of content-based medical image retrieval performance is usu-

ally done by measuring precision and recall values defined as follows [43]:

precision =
number of relevant items retrieved

number of items retrieved
(2.1)

recall =
number of relevant items retrieved

number of relevant items
(2.2)
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2.2.3 Histopathological image classification

Many studies have been proposed to classify histopathological images in order to

support pathologists in their evaluations. In these studies, tissue images are rep-

resented with a set of mathematical features. In literature, there are mainly four

different approaches to extract mathematical features for tissue representation.

These are morphological, intensity-based, textural, and structural approaches.

In the morphological approaches, a tissue is represented with the size, shape,

orientation, and other geometric properties of its cellular components. How-

ever, this approach requires segmentation of tissue components before hand. One

of the earliest studies based on morphological features is done by Street et al.

[66]. They first segment the nucleus components of breast tumor tissues in a

semi-automated way. Then, they define morphological features such as radius,

perimeter, area, compactness, smoothness, concavity, and symmetry. Masood

et al. use morphological features to represent cellular components of the colon

tissues [42]. Such components are nuclei, cytoplasm, glandular structures, and

stromal regions, which are segmented by applying k-means clustering on color

intensities of a colon tissue image. Rajpoot et al. extract morphological features

such as area, eccentricity, average diameter, Euler number, orientation, solidity,

major axis length, and minor axis length for colon tissue cell representations

[55]. Moreover, morphological features are commonly used in cancer diagnosis

[11, 18, 45, 47, 67, 72]. Here are the definitions of some of these morphological

features :

• Area: The number of pixels in the region.

• Perimeter : The total length of the region boundaries.

• Radius : The radius of a circle with the same area as the region.

• Compactness : The measure of the compactness of the region using the

formula perimeter2/area.

• Major axis length: The longest axis length in the region.
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• Minor axis length: The length of the axis that is orthogonal to the major

axis of the region.

In the intensity-based approach, gray level or color intensities of pixels are

used to quantify a tissue image. First, color histogram is computed by putting

the pixels of the image into bins and then, features such as mean, standard

deviation, skewness, kurtosis, and entropy are defined on this histogram [11, 76,

18]. However, this type of features does not include any information about the

spatial distributions of tissue components or pixels.

In the textural approach, the texture of an entire tissue or tissue components

is quantified by computing different textural features derived from co-occurrence

matrices, run-length matrices, Gabor filters, and fractal dimension analysis. Co-

occurrence matrices are widely used tools to extract textural descriptors for

histopathological image analysis [16, 18, 19, 29, 60, 72]. Doyle et al. use co-

occurrence matrices and Gabor filter responses to represent prostate tissue images

for cancer grading [18]. Waheed et al. performe textural analysis on renal cell

carcinoma by computing fractal dimension features together with co-occurrence

features on an entire image as well as on an individual cellular structures [72].

Esgiar et al. study on the textural analysis of cancerous colonic mucosa [19].

They first compute a co-occurrence matrix on gray-level tissue images. Then,

angular second moment to characterize the homogeneity of the image, difference

moment to measure local variation, correlation function to calculate the linearity

of the gray-level dependencies, entropy to measure randomness, inverse difference

moment to identify the local homogeneity of the image and dissimilarity to mea-

sure the degree of dissimilarity between pixels are computed on the co-occurrence

matrix.

In the structural approach, a tissue is represented with the spatial distribu-

tions of its cellular components. Graph representation is made on the tissue

components and a set of structural features is derived on this graph. Doyle et

al. employed Delanuay triangulations, minimum spanning trees, and Voronoi

diagrams to describe spatial arrangement of the nuclei on prostate tissue im-

ages [18]. Features are derived from these graphs including area, the disorder of
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the area, and roundness factor on a Voronoi diagrams together with the average

edge length and maximum edge length on Delanuay triangulations. Altunbay et

al. propose color graphs for representing colon tissue images [2]. They initially

segment nuclear, stromal, and luminal regions from a tissue image and identify

their centroids as graph nodes. Then, a Delanuay triangulation is constructed on

these nodes by assigning different colors to the edges depending on the compo-

nent types of their end nodes. Finally, the colored-version of the average degree,

average clustering coefficient, and diameter are extracted to quantify the graph,

and thus, to represent the tissue.

Moreover, recent studies on histopathological images focus on the local salient

points that contain more information about the underlying medical structure.

Raza et al. propose a CAD system for classification of renal cell carcinoma sub-

type using the scale invariant feature transform (SIFT) features [57]. In their

next study [56], they use the SIFT features to decompose an image into a col-

lection of small patches and then, apply k-means to cluster these small patches.

Finally, they represent an image as the number of descriptors assigned to each

cluster, called bag-of-features. Caicedo et al. employ the SIFT keypoints for con-

struction of the codebook to represent histopathological image contents [7]. Dı́az

et al. apply the SIFT algorithm to represent local patches that correspond to

nuclear structures in skin biopsy images [14].

2.3 SIFT Key Points

Lowe propose a SIFT (Scale Invariant Feature Transform) method for extracting

distinctive features that characterize a set of keypoints for an image [39]. The

keypoints are shown to be scale and orientation invariant. Therefore, SIFT is

used in many studies such as object recognition, image matching applications,

and image retrieval applications.

There are four major stages of computation that the SIFT algorithm uses to

generate the set of image features :
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Figure 2.2: The initial image is repeatedly convolved with Gaussians to produce
the set of scale space images shown on the left. Adjacent Gaussian images are
subtracted to produce the difference-of-Gaussian images on the right. After each
octave (an octave corresponds to doubling the value of σ), the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

1. Scale-space extreme detection: Potential interest points are identified

by scanning an image over locations and scales. The keypoints are the

local peaks or extreme points in the scale space of the image generated by

applying Difference-of-Gaussian (DoG) functions to the image. The scale

space of the image is defined as a function, L(x, y, σ), that is produced by

convolving the input image, I(x, y), with variable scale Gaussian function

G(x, y, σ):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.3)

where ∗ is the convolution operation and G(x, y, σ) is a Gaussian function

defined as:

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2πσ2

(2.4)

A DOG scale space function D(x, y, σ) can be computed from the difference

of two scales separated by a constant multiplicative factor of k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (2.5)

= L(x, y, kσ)− L(x, y, σ)
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An efficient approach to construct DOG images is shown in Figure 2.2.

First, an initial image I is convolved with a Gaussian function, G0, of

width σ0. Resulting image, L, is the blurred version of the original image.

Then, this blurred image is incrementally convolved with a Gaussian, Gi,

of width σi to generate the ith image in the stack, which is equivalent to

the original image convolved with a Gaussian Gk, of width kσ0. Adjacent

image scales are subtracted to produce the Difference-of-Gaussian images

as shown on the right side of the figure.

2. Accurate keypoints localization: This stage is to determine a detailed

model of location and scale for each candidate location. Least square fitting

is conducted via Taylor expansion of the scale-space function, D(x, y, σ), so

that the origin is at the sample point:

D(X) = D +
∂DT

∂X
X +

1

2
XT ∂

2D

∂X2
X (2.6)

where X = (x, y, σ)T is the offset from this point. Then, keypoints at the

location are located and scaled by calculating the extreme of the fitted

surface. The keypoints are eliminated if they are found unstable during the

computation.

3. Orientation assignment: Each keypoint location is assigned to several

orientations that is based on local image gradient directions in a scale in-

variant manner. For each image sample, L(x, y), at scale of the keypoint,

the gradient magnitude, m(x, y), and orientation, θ(x, y), is computed using

pixel differences:

m(x, y) =
√
(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))

An orientation histogram, which has 36 bins covering the 360 degree, is

formed from the gradient orientations. Finally, orientation of the highest

magnitude is assigned to the keypoint.

4. Keypoints descriptor: A descriptor for each keypoint is created. First of

all, the coordinates of the descriptor and gradient orientations are rotated
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Figure 2.3: DOG images in different scales and octaves: (a) Normal, (b) low-
grade cancerous, and (c) high-grade cancerous colon tissues. Their corresponding
DOG images in different scales and octaves are (d), (e), and (f), respectively. The
SIFT keypoints defined on (a) are presented in (g).



CHAPTER 2. BACKGROUND 20

relative to the keypoint orientation in order to achieve rotation invariance.

Using the scale of the keypoint, the pixels in the 16 × 16 neighborhood

of the keypoint location are divided into 4 × 4 windows. The gradient

vectors are accumulated into 8 orientation bins resulting in 128 descriptors

for each keypoint. Then, the vector is normalized to make it invariant to

illumination changes.

An example of DOG images generated from the colon biopsy tissue images

can be found in Figure 2.3.



Chapter 3

Methodology

In previous chapters, we mentioned that histopathological examination is prone to

subjectivity and may lead to a considerable amount of intra- and inter-observer

variation due to its heavy reliance on pathologist interpretation. To eliminate

the subjectivity level, and therefore, to help pathologists make more accurate

decisions, computer-aided diagnosis (CAD) has been proposed. There have been

many studies and methods on the construction of CAD systems as presented in

Chapter 2. However, these studies usually discard the domain specific knowl-

edge and treat histopathological images as generic images. In this chapter, we

introduce a new method, called Salient Point Patterns (SPP), to characterize the

histopathological images with its tissue components: nuclei, stroma and lumen.

The proposed method is composed of a series of processing steps. The first step

begins with clustering the pixels of an image into three groups, which correspond

to nuclear (purple), stromal (pink), and luminal (white) areas using the k -means

clustering algorithm. Then, postprocessing is applied on the pixels of each cluster

to decrease the effects of noise due to incorrect clustering of pixels. The next step

fits circular structures into these white, purple, and pink areas with the help of

the circle-fit transform [28]. The centroids of resulting circular objects constitute

salient points to the next step. A set of textural and intensity-based features are

computed around these salient points by using a circular window. The features of

objects of the same component type are aggregated to define the feature set of the

21
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Figure 3.1: The flowchart of the proposed histopathological image processing
system.

entire image. Finally, training and classification of the tissue images is performed

by using these feature sets. The flowchart of the proposed system is given in

Figure 3.1. As shown in this figure, the proposed system consists of three main

components: salient point identification, feature extraction, and classification. In

this chapter, details of these components are presented.

3.1 Salient Point Identification

Histopathological examination depends on pathologists’ visual interpretation of

medical images. During this examination, pathologists examine the tissue com-

ponents and their spatial relations within the tissue images. Therefore, detecting

these tissue components may help us define different feature descriptors for colon

biopsy images. However, because of the complex nature of a histopathological

image scene, it is difficult to exactly segment the components even by a human

eye. In a typical histopathological image, there could be staining and section-

ing related problems such as existence of touching and overlapping components,
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heterogeneity of the regions inside a component, and presence of stain artifacts

in a tissue [25]. Therefore, instead of determining the exact locations, we ap-

proximately describe the tissue components with a set of circular primitives. The

centroids of these tissue components are considered as the salient points. In this

representation, colon tissues stained with hematoxylin-and-eosin (H&E) staining

technique have three types of circular primitives: one for nuclear components,

one for stromal components, and one for luminal components. The idea behind

this approach is inspired from the study presented in [28]. The following sections

provide the steps of salient point identification process in detail.

3.1.1 Clustering

In order to segment the tissue components, our system first converts a tissue

image from an RGB to La*b* color space. The La*b* color space is developed by

the Commission Internatile d’Eclairage (CIE) [51]. It is a perceptually uniform

color space when its compared to other color spaces such as RGB, HSI, and YUV.

Perceptual uniform means that an amount of change in a color value should result

in the same amount of perceptual difference. This allows the use of the Euclidean

distance metric in image analysis applications. The La*b* color space is able to

represent luminance and chrominance information separately. The L channel

carries the information for the light intensity whereas the a* and b* channels

represent color intensities.

The k -means clustering algorithm is a process of partitioning or grouping a

given N-dimensional set of patterns into k disjoint clusters. This is done such

that patterns in the same clusters have similar characteristics and patterns be-

longing to different clusters have different characteristics. The k -means algorithm

has been shown to be effective in producing good clustering results for many ap-

plications [81]. The aim of the k -means algorithm is to divide m points in d

dimensions into k clusters so that the sum of the squared distance between each

point to the centroid of the cluster that it belongs to is minimized where k is

the desired number of clusters, Ci with i= 1,2,...,k is the ith cluster containing

ni data points, 0 < ni < N , and ci is the geometric centroid of the cluster Ci.
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In other words, the algorithm minimizes the following mean-squared-error cost

function for the given N input data points x1, x2, ..., xN :

E =
k∑

i=1

∑
xtϵCi

∥xt − ci∥2 (3.1)

The appropriate choice of k is problem and domain dependent.

We used the k -means algorithm to discriminate pixels of the nuclear, stromal,

and luminal regions in a tissue image due to the fact that the H&E staining tech-

nique colors nuclei regions with dark purple, stromal regions with pink and lumen

regions with white. Therefore, we select the value of k as 3. Consequently, the

k -means algorithm easily separates pixels of three dissimilar regions in the image

and the La*b* color conversion also increases the rate of separation. Examples

of normal, low-grade cancerous, and high grade cancerous tissue images are pre-

sented in Figures 3.2(a), 3.2(c), and 3.2(e), respectively. Their corresponding

clustered results are presented in Figures 3.2(b), 3.2(d), and 3.2(f), respectively.

In these figures, lumen clusters are represented with yellow, stroma clusters with

cyan, and nuclear clusters with blue.

3.1.2 Type assignment

After applying k -means clustering on an image, we have three disjoint regions:

one for purple regions, one for pink regions, and one for white regions. In order

to determine the type of clusters, the average L values of the regions are used. In

the La*b* color space, L represents the light intensity of color with having 0 for

black and 100 for white. Therefore, the cluster vector with the highest average

L and its corresponding pixels are labeled as lumen and the darkest one and its

corresponding pixels are labeled as nucleus, which typically has a purple color

in the RGB space. The remaining cluster and its pixels are labeled as stroma,

which has usually a pink color in the RGB space.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Examples of colon tissue images : (a) normal, (c) low-grade cancerous,
and (e) high-grade cancerous. Resulting k-means clusters are given in (b), (d),
and (f). In this figure, lumen, stroma, and nuclear clusters are represented with
yellow, cyan, and blue, respectively.
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3.1.3 Salient points

At the end of the k -means algorithm, the pixels are automatically separated into

three groups. Although pixel grouping provides important information about the

tissue, it is hard to identify the exact boundaries of its cytological components.

The reason behind this is that, due to complex nature of histopathological im-

ages, the exact boundaries of nuclear, stromal, and luminal structures are not

clearly identifiable even for a human eye. Therefore, an alternative segmentation

algorithm, which will be an approximation, should be used.

In our study, instead of determining the exact boundaries of tissue compo-

nents, we approximately represent them by transforming each individual histolog-

ical component into a circular primitive. We particularly select a circular shape

for the transformation because borders of the tissue components typically are

composed of curves. Moreover, circles are efficiently located on a set of pixels

and they are easy to compute compared to, for example, elliptical shapes. For

defining these circular objects, we make use of a technique called the circle-fit

algorithm, implemented by our research group. This algorithm locates circles on

given connected components [28, 70].

Before calling the circle-fit algorithm, a preprocessing on the pixels of each

cluster is performed to decrease the effects of noise due to the incorrect assignment

of pixels in the k -means clustering step. This preprocessing includes a series of

morphological operations (a morphological closing followed by a morphological

opening with a square structuring element of size 3) to reduce the noise in the

results.

After the preprocessing step, we run the circle-fit algorithm on the white,

purple, and pink clusters, separately. Circles are iteratively located on a given

set of pixels that are in the same connected component. Moreover, it is possible

to have some small artifacts around luminal, stromal, and nuclear regions due to

incorrect quantization of pixels in the clustering step and these artifacts result in

undesired circular primitives in the output. In order to reduce these artifacts, a

radius threshold is employed in the circle-fit algorithm. In this study, we set the
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circle radius threshold to 3 for the white and pink regions and to 2 for the purple

regions since nuclei are expected to be smaller than the other components. The

details of the circle-fit algorithm are presented in [28, 70].

The output of the circle-fit algorithm is a set of circular primitives that approx-

imately represent the tissue components. Figure 3.3 shows the resulting circular

primitives found for the clusters given in Figure 3.2. Likewise, in this figure, yel-

low, cyan, and blue circles represent luminal, stromal, and nuclear components,

respectively.

In our study, we use these circular primitives as salient points, which have a

potential of carrying important biological information. A salient point is defined

as a quadruple such that Sk =< xk, yk, rk, tk > is the kth salient point where

(xk, yk) are the x and y coordinates of its centroid, rk is its radius, and tk is

the type, tk ∈ {nucleus, stroma, lumen}. This definition allows us to define a

set of features around these salient points for quantifying and representing tissue

images. Next section explains the way how we extract some intensity-based and

textural features by using these salient points.

3.2 Salient Point Patterns

As explained in previous sections, we have partitioned the pixels of a tissue im-

age into there disjoint regions and circular primitives are defined on these re-

gions. Then, we identify these circular primitives as salient points. However,

these salient points are not sufficient to be analyzed by themselves. Therefore,

some quantitative features are necessary to represent salient points, and hence,

to represent a tissue image. For this purpose, we propose a method to extract

quantitative information around salient points to be used in cancer diagnosis and

grading.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Examples of colon tissue images : (a) normal, (c) low-grade cancerous,
and (e) high-grade cancerous. The output of the circle-fit algorithm are given in
(b), (d), and (f). In this figure, lumen, stroma, and nuclear components are
represented with yellow, cyan, and blue circles, respectively.
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The previous step (Section 3.1.3) explains the definition of salient points. Let,

I be the tissue image which is represented with a set of features:

I = {fR′

k }Kk=1 (3.2)

where fR′
k is the feature vector extracted for the kth salient point (Sk) using a

circular window with a radius of R′. Note that R′ = R + rk, where R is an

external parameter selected for all of the salient points and rk is the radius of

the kth salient point. K is the total number of salient points in the image. These

features fR′
k are used to define a feature vector F . This definition will be explained

towards the end of this section. We call this feature extraction pattern as Salient

Point Patterns (SPP). Figure 3.4 illustrates the SPP on a sample tissue image. In

this figure, the red circle, centered on the centroid of a salient point, is a circular

window which is used as a mask to extract features within its area. Note that

if the radius of a salient point increases, the radius of the circular window that

surrounds this salient point also increases.

Figure 3.4: Some Salient Point Patterns (SPP) on a normal colon tissue. Here
yellow, cyan, and blue circles correspond to examples of lumen, stroma, and nuclei
components, respectively.
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Moreover, the feature vector f , that is extracted by using a surrounding circle,

could be derived by using different intensity-based or textural approaches. In this

study, we employ color histogram, co-occurrence matrix, run-length matrix, local

binary pattern (LBP) histogram, and Gabor filter features; these features are

explained in Section 3.3. The final feature vector that represents the tissue image

is constructed by accumulating each feature vector of salient points with respect

to their types. Suppose that the mean and standard deviation computed from

the feature vectors of t type salient points are denoted as µt and σt:

µt =

∑nt
i=1 f

R′
i

nt

(3.3)

σt =

√∑nt
i=1 |fR′

i − µt|2
nt

(3.4)

Here t is the salient point type such that t ∈ {nucleus, stroma, lumen} and nt is

the number of salient points with type t. Note that both µt and σt are vectors.

Consequently, we define a feature vector F that quantifies the entire tissue image

by employing the means and standard deviations :

F = {µnuclei, σnuclei, µstroma, σstroma, µlumen, σlumen} (3.5)

The SPP method aims to capture the visual properties of tissue components.

If we analyze Figure 3.4, it can be observed that the salient point of lumen type

located in the center of glandular structure and circular window around this

salient point nearly fill the glandular area. Therefore, this SPP gives information

about the characteristics inside glandular structures. Moreover, an epithelial cell

nucleus is usually located at the border of glandular structures. Thus, the SPP

with a nucleus type helps capture characteristics around the gland boundary.

Stromal structures usually correspond to connective tissue components that are

not part of glandular structures. Thus, the SPP of stroma type helps characterize

the regions in between the glandular structures. With three distinct types of

salient points and the SPP method that provides a way to extract features around
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these salient points, we can employ different features. In the next section, the

features that are used to represent a tissue image will be discussed.

3.3 Feature Extraction

There are many features that can be used in the SPP framework. In this study,

we cover some of the intensity-based and textural features. In this section, details

of the selected features are presented.

3.3.1 Color histogram features

Color histogram is a structure that models the distribution of color intensities of

an image. Generally, gray level or color intensities are put into bins to construct

the histogram and first order statistical features are extracted on this histogram.

In this study, we employ gray level histogram to extract our intensity-based fea-

tures.

For the calculation of the color histogram features, an RGB image is trans-

formed into gray level. Then, gray intensities are quantized into N bins. It is

common to observe brightness changes in tissue images. Histogram normaliza-

tion is applied to reduce the effect of these brightness changes. The probability

density function h(gi) of the gray level gi, satisfying the following condition :

N∑
i

h(gi) = 1 (3.6)

is used to describe the histogram. A feature vector is defined on the histogram

by computing the mean, standard deviation, skewness, kurtosis, and entropy

features, as presented in Table 3.1 [76].
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Mean µ =
∑N

i h(gi)gi

Standard deviation σ =
∑N

i (gi − µ)2h(gi)

Skewness S =
∑N

i (gi − µ)3h(gi)

Kurtosis K =
∑N

i (gi − µ)4h(gi)

Entropy E = (−)
∑N

i h(gi)log2h(gi)

Table 3.1: The intensity-based features defined on the gray level histogram.

3.3.2 Co-occurrence matrix features

A co-occurrence matrix is used to define the second order texture measures. It

considers the spatial relationship between each pair of pixels. It is initially defined

by Haralick in 1973 [30]. Each of its entry specifies the number of times pixel

value pi co-occurred with pixel value pj in a particular relationship define by a

distance d and orientation θ. The co-occurrence matrix M is defined over a w×h

image I, parameterized by an offset (△x, △y) :

M△x,△y(i, j) =
w∑

p=1

h∑
q=1


1, if I(p, q) = i and I(p+△x, q +△y) = j

0, otherwise

(3.7)

A pixel value of an image could be any value from 32-bit color to binary. For

example, if an image is 8-bit color, as in our case, the corresponding co-occurrence

matrix will be 28 × 28 size, which takes more memory space. Moreover, such a

co-occurrence matrix is sensitive to noise in an image. Therefore, we quantize the

gray intensity values into different number of bins N . A co-occurrence matrix is

also rotation-variant, so the rotatin invariance is achieved by the use of a set of

offsets corresponding to orientation θ = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}
with the same distance d. Subsequently, for a given distance d, we accumulate

each resulting co-occurrence matrix to make it invariant to rotation. The illus-

tration of the co-occurrence matrix generation process is presented in Figure 3.5.
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Figure 3.5: The accumulated co-occurrence matrix computed over those when d
is selected as 1.

The raw co-occurrence matrix is not sufficient to describe the texture in an

image. Therefore, many textural features are derived from the co-occurrence ma-

trix. In this study, we extract six most commonly used statistical features [30]

on the co-occurrence matrix. These features are entropy to measure randomness,

homogeneity to characterize the image homogeneity, correlation to calculate the

linearity of gray-level dependencies, dissimilarity to measure the degree of dissim-

ilarity between pixels, inverse difference moment to identify the local homogene-

ity of the image and maximum probability to keep the maximum of co-occurrence

matrix. Table 3.2 presents the formula of these features.

Entropy =
∑

i

∑
j Md(i, j)logMd(i, j)

Homogeneity =
∑

i

∑
j
Md(i,j)
1+|i−j|

Correlation =
∑

i

∑
j
(i−µx)(j−µy)Md(i,j)

σxσy

Dissimilarity =
∑

i

∑
j |i− j)|Md(i, j)

Inverse difference moment =
∑

i

∑
j

Md(i,j)
1+|i−j|2

Maximum probability = maxMd(i, j)

Table 3.2: The textural features derived from a co-occurrence matrix.
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3.3.3 Run-length matrix features

Galloway proposes the use of a run-length matrix for texture representation in

an image [24]. It is another way of defining higher order statistical texture fea-

tures. The run-length matrix Rθ(i, j) keeps the number of runs of j-length con-

secutive, collinear pixels that all have the same gray value i, in the direction

of θ. In this study, we compute four run-length matrices over four basic direc-

tions θ = {0◦, 45◦, 90◦, 135◦} and accumulate the resulting run-length matrices

to define rotation-invariant matrix. Figure 3.6 illustrates the construction of the

accumulated run-length matrix from a given gray level matrix. In this figure,

rows represent the gray level of a run, and columns represent the length of the

run.

Figure 3.6: Run-length matrices derived from a gray level image (G = 3) in
different orientations. Rows represent the gray level of a run, columns represents
the length of the run. The accumulated run-length matrix is also shown.

Galloway defines a set of textural features on run-length matrices. The fea-

tures derived from a run-length matrix are short run emphasis, long run em-

phasis, gray level nonuniformity, run-length nonuniformity, and run percentage;

those features are given in Table 3.3. Before computing the run-length matrices,

image pixels are quantized into N bins to reduce the effects of noise occurred in

images.
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Short run emphasis =

∑
i

∑
j

R(i,j)

j2

n

Long run emphasis =

∑
i

∑
j
R(i,j).j2

n

Gray level nonuniformity =

∑
i
(
∑

j
R(i,j))2

n

Run-length nonuniformity =

∑
j
(
∑

i
R(i,j))2

n

Run percentage =

∑
i

∑
j
R(i,j)

p

Table 3.3: The textural features derived from run-length matrices. In this table,
p is the number of pixels in an image and n =

∑
i

∑
j R(i, j).

3.3.4 Local binary pattern features

Local binary patterns (LBP) are a powerful method to capture local textural

properties within an image [49, 50]. For a simple definition, this method compares

the grayscale value of Pi,j with those of its eight nearest neighbors Nn(n = 1, , 8).

The results from eight neighbors are used to form a binary number, b1b2...b8,

where bn = 0 if the pixel value of the nth neighbor is less than that of Pi,j and

bn = 1, otherwise. The computation of LBP for a given pixel is presented in

Figure 3.7.

Figure 3.7: Illustration of extraction an LBP features.

The LBP operator is circular, which means that it considers the surrounding

neighbors of the central pixel. Therefore, when the image is rotated, the binary

pattern will only be shifted. Based on this observation, Ojala et al. introduce a

new definition called uniform LBP [50]. They call an LBP uniform if it contains,

at most, two bitwise 0/1 transition in its circular chain. Based on this definition,

we compute the histogram of a rotation invariant LBP as illustrated in Figure 3.8.

In this figure, the numbers inside circular patterns correspond to the respective
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bin numbers in the histogram. For example, pixel pi having LBPpi = 100000002

and pixel pj having LBPpj = 010000002 contribute to the same bin = 1 since the

binary pattern of pi is only the shifted version of pj’s binary pattern. Moreover,

we add an extra bin for remaining non-uniform patterns. The construction of

an LBP histogram can be effectively done with the help of a lookup table. The

feature vector of length 10 is constructed using the raw LBP histogram.

Figure 3.8: Rotation invariant binary patterns with white and black circles cor-
respond to 0 and 1 in the output of the LBP operator. The numbers inside them
correspond to the respective bin numbers.

3.3.5 Gabor filter features

Gabor filters are one of the commonly used techniques for image texture repre-

sentation [40, 53, 82, 83]. Basically, Gabor filters can be described as a group

of wavelets, with each wavelet capturing energy at a specific frequency and a

specific direction [82]. In this study, we use the 2-D Gabor filter implementation

in Matlab [37]. For a given image I(x, y) with size P × Q, its Gabor wavelet

transform is given by a convolution:

Gm,n(x, y) =
∑
s

∑
t

I(x− s, y − t)Ψ∗
m,n(s, t) (3.8)

where, s and t are the filter mask size variables, m is scale, n is orientation, and

Ψ∗
m,n is a wavelet function. Since tissue images contain glandular structures in

circular shapes with different sizes, there is no specific direction that glands are

oriented. Therefore, we use orientation independence for better texture repre-

sentation. To this end, magnitudes at each orientation for the same scale are

summed up:

Sm(x, y) =
∑
n

|Gm,n(x, y)| (3.9)
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To model the homogeneity of images or regions, following mean µm and standard

deviation σm are computed:

µm =

∑
x

∑
y Sm(x, y)

P ×Q
(3.10)

σm =

∑
x

∑
y(Sm(x, y)− µm)

2

P ×Q
(3.11)

where P ×Q is the total number of pixels in an image. Using µm and σm as its

components, a feature vector f is derived from the Gabor filters. Four different

scales and six orientations n = {0, π/6, π/3, π/2, 2π/3, 5π/6} are used in the

implementation and the feature vector is given by:

f = (µ0, σ0, ..., µ4, σ4) (3.12)

3.4 Tissue Classification

The last step of our proposed system is tissue classification. Up to now, we have

built our system as to quantify a colon biopsy image with a distinctive set of

features. After extracting these features, we train a classifier to classify unknown

samples. In this section, we cover the classifier that is used in tissue classification

and the cross-validation method for estimating the model parameters.

The success of a classification system depends on two important factors:

feature definition and classifier selection. After defining a set of textural and

intensity-based features on colon tissue images, we should decide a classifier to

use in our system. In literature, there are many classifiers that are actively

used in many medical image analysis studies such as k-nearest neighbors (KNN)

[11, 36, 54, 61], decision trees [38, 65, 84], Bayesian classifiers [5, 36, 48, 61], and

support vector machines (SVM) [2, 18, 73, 57, 57, 56]. We have experimented

some of these classifiers in our study. Finally, we have decided to use an SVM

classifier since it performs the best among the other classifiers.



CHAPTER 3. METHODOLOGY 38

3.4.1 Support vector machines (SVM)

A support vector machine (SVM) is a supervised learning technique that is used

for both regression and classification based on the statistical learning theory [13].

For a simple definition, an SVM maps two sets of input data points to a high or

infinite dimensional feature space and constructs a hyperplane or a set of hyper-

planes, which separates these data points. New data points are then mapped to

the same space and predicted to a category based on which side of the hyperplane

they fall in.

(a) Smaller margin (b) Larger nargin

Figure 3.9: Two different hyperplane constructed by a support vector classifier:
(a) Smaller margin and (b) larger margin.

Figures 3.9(a) and 3.9(b) present two different hyperplanes, drawn as solid

lines, which separate two classes of data points. In this figure, data points closest

to a hyperplane, marked with circles, are called support vectors and the distance

between the support vectors of different classes is called margin. The aim of the

SVM is to find an optimal hyperplane such a way that the closest member of

each class are far from each other. Therefore, good separation is achieved by

maximizing the margin in the SVM.

The data points given in Figures 3.9(a) and 3.9(b) are linearly separable,

which means that they can be completely separable by a single line. However,

there exist some data points that are not linearly separable. To handle such cases,

a kernel function is used to transform the data points to a higher dimensional

feature space in order to make it possible to separate the data. A radial basis

function (RBF), a sigmoid function, and a polynomial function are some of the

kernel functions that are commonly used with an SVM.
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Although the kernel function is provided, it is not always possible to separate

the given data points according to their categories. If the classifier constructs a

model that handles every data points, this model may not be generalized well to

classify unseen test samples. This may result in dramatic decrease in the classi-

fication accuracy. To overcome this problem, the SVM provides a regularization

parameter, C, which allows user to control the trade-off between errors of the

SVM on training data and margin maximization [23, 59]. Larger C values cor-

respond to giving a higher penalty to training errors and result in constructing

more strict hyperplanes. Smaller C values result in wider margins and increase

training errors.

In our experiments, we used LIBSVM [10] implementation of the SVM clas-

sifier. It is available online at http://www.csie.ntu.edu.tw/-cjlin/libsvm.

3.4.2 Cross-validation

During the feature extraction and classification phase, there are some unknown

parameters that need to be estimated. For instance, the number of bins used

in the computation of gray level color histogram, the number of bins and the

distance parameter in the computation of co-occurrence matrices, the radius pa-

rameter in our SPP method are some of them that we consider while extracting

the features. Additionally, the selection of regularization parameter C in the

SVM classifier highly affects the accuracy of the classification. For the accurate

selection and generalization of these parameters, we use k-fold cross-validation.

Cross-validation is a statistical method of evaluating and comparing the learn-

ing algorithms by partitioning the data into two segments: one used to learn

the model and the other used to validate the model [35]. For the k-fold cross-

validation, the training data is partitioned into k mutually exclusive subsets,

which are called as the folds. One of these k subsets is selected as the test

data, and the remaining k − 1 are used as the training data. The classification

accuracy is validated with the predefined set of parameters, such as the regular-

ization parameter C of the SVM classifier or the number of bins N in gray level
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color histogram, using this particular test data, and this is repeated for each dis-

tinct subsets. The average classification accuracy is used to determine the value

of parameters such that for a given predefined set of parameters, the one with

the maximum cross-validation accuracy is selected. In our experiments, we use

10-fold cross-validation. Note that, after selecting the parameters, we test the

learned model on a separate data set, which is not used in parameter selection at

all.
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Experimental Results

This chapter presents the evaluation of our experiments on histopathological colon

biopsies. The data set preparation process, parameter selection, the success of

our proposed method, and comparisons will be explained in detail.

4.1 Experimental Setup

In our experiments, we used 3236 colon biopsy samples that are taken from 258

different patients; these patients are randomly selected and collected from the

Pathology Department archives of Hacettepe School of Medicine during the years

2004-2009. The samples are composed of 5 micron-thick tissue sections that

are stained with hematoxylin-and-eosin, which is the routinely used technique

to stain biopsies in clinical institutions. The images of our dataset are taken

with a Nikon Coolscope Digital Microscope using 20× microscope objective lens.

This magnification level is high enough to obtain homogenous images and at the

same time low enough to obtain images containing multiple glands and tissue

components. At first, image resolution is selected as 960 × 1280. However, this

size requires much more computational time. Therefore, each image is down

sampled to 480 × 640 resolution, which produces both accurate classification

results and relatively lower computational times.

41
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Our dataset consists of normal, low-grade cancerous, and high-grade cancerous

colon tissue images, which are examined and graded by an expert pathologist1.

Since a support vector machine (SVM) classifier works in a supervised manner

and requires training samples, we have divided our dataset into training and

testing sets. The training set is used to estimate parameters and learn models.

Note that the test set is not involved in any phase of training. The number of

normal, low-grade cancerous, and high-grade cancerous samples in our dataset

are given in Table 4.1.

TrainingDataset TestDataset

Normal 510 491

Low-grade cancerous 859 844

High-grade cancerous 275 257

Total 1644 1592

Patient 129 129

Table 4.1: Number of colon tissue images in the training and test sets.

4.2 Comparison Criteria

As mentioned in the previous chapter, the proposed SPP method employs lo-

cal textural features to represent colon tissue images. In order to compare the

effectiveness of this method, we also extract features on the entire images, grid-

partition images, and around the scale invariant feature transform (SIFT) interest

points. The details of this extraction are given below. In the rest of the thesis, we

refer them as EntireImageApproach, GridPartitionApproach, and SIFTPointsAp-

proach.

During the feature extraction process in EntireImageApproach, whole content

of an image is used. However, in the computation of features on GridPartition-

Approach, image is first divided into fixed size subimages and then features are

extracted on each of them. Final feature vector is constructed by computing mean

1Prof. Dr. Cenk Sökmensuer is currently a member of Pathology Department, Hacettepe
School of Medicine.
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and standard deviation of the feature vectors extracted on these subimages. We

consider the set of {10, 20, 40, 80, 160} as the grid size in our experiments.

In this study, we also employ the SIFT algorithm to detect salient points

within the tissue images. Since the SPP method captures textural information

around salient points, SIFT salient points have a potential of representing a tissue

image with its local identities. In order to analyze this, we follow the same way

as in the SPP algorithm. We first detect SIFT salient points on a tissue image

with the help of Matlab/C implementation of SIFT [71]. A circular window is

located at each SIFT salient points and then, textural features are extracted on

this circular window. Final feature vector that describes the image is constructed

by taking the mean and standard deviation of the computed features. Here

we use SIFTPointsApproach in our comparisons because of the following: The

SIFT algorithm is successfully used for many types of images but it determines

the salient points without using any domain specific information. On the other

hand, in our salient point definition, we make use of the approximate locations

of cytological tissue components, which carry domain specific information.

4.3 Results and Comparisons

4.3.1 Parameter selection

In the experiments, our aim is to classify the given tissue images with the highest

possible accuracy. For this purpose, we extract features to describe the tissue im-

ages and classification is performed with these features. However, there are some

unknown parameters issued in the feature extraction and classification phases.

Table 4.2 presents the list of these parameters. Here, N represents the number

of bins used in color histogram, co-occurrence matrix, and run-length matrix

computations. R is the circular radius parameter used in the SPP computation

phase. d is the distance parameter in the computation of co-occurrence matrices.

w is the grid size parameter considered in the grid-partition images. In addition,

C is the regularization or cost parameter issued in an SVM classifier. Note that
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we use SVM classifiers with linear kernel functions.

Moreover, 10-fold cross-validation is applied to estimate the values of unknown

parameters. For this aim, the training set (1644 tissue images) is divided into

10 distinct subsets (six sets of size 164 and four sets of size 165). Each set

has nearly the same number of normal, low-grade cancerous, and high grade

cancerous samples. Note that the tissue images taken from the same patient are

placed into the same fold. Moreover, the images in the test set is not included in

any cross-validation processes.

Parameter Description Values

Color histogram N Number of bins { 8, 16, 32, 64 }

Co-occurrence matrix
d Distance { 3, 5, 10, 20 }
N Number of bins { 8, 16, 32, 64 }

Run-length matrix N Number of bins { 8, 16, 32, 64 }
Grid-partitioning w Grid size {5, 10, 20, 40, 80, 160

}
Salient Point Pattern R Circular window

radius
{ 10, 20, 30, 40, 50 }

SVM linear kernel C Regularization
parameter

{ 0.001, 0.0025, 0.005,
0.01, 0.025, 0.05,
0.0625, 0.1, 0.125,
0.25, 0.5, 1, 2, 2.5, 4,
5, 8, 10, 16, 25, 32,
50, 64, 100, 128 }

Table 4.2: The list of the parameters issued during feature extraction and classi-
fication steps.

4.3.2 Color histogram features

In this section, classification results obtained by using the gray level color his-

togram features will be analyzed in detail. In Table 4.3, the confusion matrix

and the classification accuracies obtained by the color histogram features when

the EntireImageApproach is used. Here, 10-fold cross-validation is performed to

identify both the SVM parameter C and histogram bin number N . Maximum
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cross-validation accuracy (75.39%) is obtained with C = 0.5 and N = 16. The

gray level color histogram features using EntireImageApproach give 78.83% over-

all classification accuracy. It can be observed that, if color histogram features,

the SVM classifier distinguishes high-grade cancerous tissues better than normal

and low-grade cancerous ones.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 371 101 19 75.56

Low-grade 82 662 100 78.44

High-grade 24 11 222 86.38

Overall accuracy 78.83

Table 4.3: The confusion matrix and the accuracies obtained by the color his-
togram features when the EntireImageApproach is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 451 30 10 91.85

Low-grade 22 716 106 84.83

High-grade 2 15 240 93.39

Overall Accuracy 88.38

Table 4.4: The confusion matrix and the accuracies obtained by the color his-
togram features when the GridPartitionApproach is used.

Table 4.4 presents the classification results of the color histogram features

when the GridPartitionApproach is used. Ten-fold cross-validation selects the

SVM cost parameter C = 16, the grid size W = 20, and the histogram bin

number N = 64. Maximum cross-validation accuracy is computed as 85.58%.

Compared with the EntireImageApproach, the overall accuracy is improved by

9.55 percent.

Table 4.5 shows the confusion matrix and classification accuracies obtained by

the color histogram features that are computed using the SIFTPointsApproach.
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Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 464 25 2 94.50

Low-grade 20 719 105 85.19

High-grade 1 19 237 92.22

Overall Accuracy 89.20

Table 4.5: The confusion matrix and the accuracies obtained by the color his-
togram features when the SIFTPointsApproach is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 483 6 2 98.37

Low-grade 2 770 72 91.23

High-grade 0 16 241 93.77

Overall Accuracy 93.84

Table 4.6: The confusion matrix and the accuracies obtained by the color his-
togram when the proposed SPP method is used.

In this case, the histogram bin N = 64 and the circular window radius R = 10

are selected. The cross-validation accuracy is measured as 88.75%. The overall

accuracy is increased to 89.20%, which is slightly better than the GridPartition-

Approach.

Table 4.6 presents the classification results obtained by using the proposed

SPP method. Here, maximum cross-validation accuracy is achieved when C =

5 , N = 64, and R = 10 are selected. Ten-fold cross-validation accuracy is

measured as 91.54%. The overall accuracy is increased to 93.84%, which is the

best classification accuracy compared with the aforementioned approaches. This

result is statistically significant with significance level p < 0.05. By using the

SPP method, 98.37% of normal colon tissues are classified accurately. Moreover,

91.23% of low-grade and 93.77% of high-grade cancerous tissues are correctly

classified.
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Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 447 30 14 91.04

Low-grade 22 707 115 83.77

High-grade 3 15 239 93.00

Overall Accuracy 87.50

Table 4.7: The confusion matrix and the accuracies obtained by the color his-
togram features when the TypelessApproach is used.

In order to analyze the effects of the type assignment step of the proposed

SPP method, we make some experiments without considering the types of the

salient points. In other words, a feature vector is computed based on all salient

points regardless of their types (we will refer this method as the TypelessApproach

thereafter). Table 4.7 presents the classification results based on this scheme.

The highest cross-validation accuracy is measured as 86.86% where C = 0.25,

N = 64, and R = 5. Here, the overall accuracy significantly decreases from

93.84% to 87.50% compared with the proposed SPP method, which alos involves

the type assignment step. This shows that feature computation by considering

the types of the salient points in the SPP approach provides higher classification

accuracies.

4.3.3 Co-occurrence matrix features

This section presents the experimental results obtained with the co-occurrence

matrix features. In Table 4.8, the confusion matrix and classification accuracies

obtained by the co-occurrence matrix features are shown when the EntireIm-

ageApproach is used. Maximum cross-validation accuracy, 81.20%, is achieved

when the number of bin N = 32, distance parameter d = 10, and the cost param-

eter C = 100. We can see that overall accuracy, 83.54%, is achieved with correctly

classifying 81.47% of normal, 84.60% of low-grade cancerous, and 84.05% of high-

grade cancerous samples.
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Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 400 60 31 81.47

Low-grade 51 714 79 84.60

High-grade 29 12 216 84.05

Overall Accuracy 83.54

Table 4.8: The confusion matrix and the accuracies obtained by the co-occurrence
matrix features when the EntireImageApproach is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 466 17 8 94.91

Low-grade 20 724 100 85.78

High-grade 9 32 216 84.05

Overall Accuracy 88.32

Table 4.9: The confusion matrix and the accuracies obtained by the co-occurrence
matrix features when the GridPartitionApproach is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 466 20 5 94.91

Low-grade 15 730 99 86.49

High-grade 3 35 219 85.21

Overall Accuracy 88.88

Table 4.10: The confusion matrix and the accuracies obtained by the co-
occurrence matrix features when the SIFTPointsApproach is used.
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Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 470 14 7 95.72

Low-grade 11 772 61 91.47

High-grade 11 38 208 80.93

Overall Accuracy 91.08

Table 4.11: The confusion matrix and the accuracies obtained by the co-
occurrence matrix features when the proposed SPP method is used.

Table 4.9 presents the results obtained with the GridPartitionApproach. The

value for the highest cross-validation accuracy is 87.83%, achieved with the grid

size W = 40, the cost parameter C = 50, the number of bin N = 64, and the

distance d = 10. Compared with the EntireImageApproach, the overall accuracy

is increased from 83.54% to 88.32%. This is consistent with our experiments that

use the color histogram features.

Table 4.10 shows the confusion matrix and classification accuracies obtained

by the co-occurrence matrix features that are computed by SIFTPointsApproach.

In this case, N = 64, d = 10, and R = 20 are selected by considering the max-

imum cross-validation accuracy, 88.75%. The overall accuracy is better than

EntireImageApproach and similar to the GridPartitionApproach. Since the ex-

traction of SIFT points requires more expensive computation, one may prefer

using the GridPartitionApproach with the co-occurrence matrix features.

Table 4.11 presents the classification results obtained by our SPP method.

Ten-fold cross-validation selects C = 16 , N = 8, d = 10, and R = 30. The

overall accuracy is increased to 91.08% which is the highest classification accuracy

obtained by using the co-occurrence matrix features. This result is statistically

significant ( p < 0.05 ) when it is compared with the other approaches that use

the same set of features. We also examine the effects of the type assignment on

classification accuracies. Table 4.12 presents the results of the TypelessApproach.

Likewise, from the results, we observe that the type assignment to the salient

points significantly increases the classification results.
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Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 468 12 11 95.32

Low-grade 36 715 93 84.72

High-grade 21 30 206 80.16

Overall Accuracy 87.25

Table 4.12: The confusion matrix and the accuracies obtained by the co-
occurrence matrix features when the TypelessApproach is used.

4.3.4 Run-length matrix features

In this section, classification results obtained by employing the run-length matrix

features will be analyzed in detail. Table 4.13 presents the results obtained by

using the run-length matrix features computed with the EntireImageApproach.

Maximum cross-validation accuracy (72.82%) is achieved when the number of bin

N = 32 and the cost parameter C = 2. The overall accuracy is 72.36% which is

very low compared to the color histogram and the co-occurrence matrix features.

When we analyze the confusion matrix, we observe that, the SVM classifier is

unable to distinguish low-grade and high-grade cancerous tissues.

In Table 4.14, classification results for the GridPartitionApproach are pre-

sented. The highest cross-validation accuracy is obtained when N = 8, W = 40,

and C = 2.5. The overall classification accuracy increases at a rate of 13.07%

compared to the EntireImageApproach .

Table 4.15 demonstrates the results for the SIFTPointsApproach. The cross-

validation selects N = 8, R = 10, and C = 10 where the corresponding cross-

validation accuracy is 85.94%. It can be observed from the table that, most of the

misclassified samples occur between low-grade and high-grade cancerous tissues.

With the use of the run-length matrix features computed with the SPP

method, we have obtained the classification accuracies shown in Table 4.16. Max-

imum cross-validation accuracy is achieved when N , R, and C values are set to
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Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 414 39 38 84.32

Low-grade 71 539 234 63.86

High-grade 29 29 199 77.43

Overall Accuracy 72.36

Table 4.13: The confusion matrix and the accuracies obtained by the run-length
matrix features when the EntireImageApproach is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 455 25 11 92.67

Low-grade 56 720 68 85.31

High-grade 50 22 185 71.98

Overall Accuracy 85.43

Table 4.14: The confusion matrix and the accuracies obtained by the run-length
matrix features when the GridPartitionApproach is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 456 13 22 92.87

Low-grade 29 706 109 83.65

High-grade 17 32 208 80.93

Overall Accuracy 86.06

Table 4.15: The confusion matrix and the accuracies obtained by the run-length
matrix features when the SIFTPointsApproach is used.



CHAPTER 4. EXPERIMENTAL RESULTS 52

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 478 13 0 97.35

Low-grade 14 764 66 90.52

High-grade 8 35 214 83.27

Overall Accuracy 91.46

Table 4.16: The confusion matrix and the accuracies obtained by the run-length
matrix features when the proposed SPP method is used.

64, 20, and 128, respectively. The overall classification accuracy is 91.46%. We

also report the results of the TypelessApproach (Table 4.17). Similarly, we observe

a significant accuracy decrease. Note that here N = 64, R = 10, and C = 32 for

the maximum cross-validation accuracy, 85.46%.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 460 25 6 93.69

Low-grade 34 716 94 84.83

High-grade 7 22 228 88.72

Overall Accuracy 88.19

Table 4.17: The confusion matrix and the accuracies obtained by the run-length
matrix features when the TypelessApproach is used.

4.3.5 LBP histogram features

In this section, experimental results made for the LBP histogram features will

be summarized. Table 4.18 shows the classification accuracies obtained by the

LBP histogram features when the EntireImageApproach is used to describe tissue

images. The highest cross-validation accuracy, 81.74%, is achieved when C = 4.

From the table, we can observe that, although 92.46% of normal tissues are
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accurately classified, the classifier could not distinguish low-grade and high grade-

cancerous tissues, leading to 82.00% overall accuracy.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 454 26 11 92.46

Low-grade 21 652 171 77.25

High-grade 25 29 203 78.99

Overall Accuracy 82.22

Table 4.18: The confusion matrix and the accuracies obtained by the LBP his-
togram features when the EntireImageApproach is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 450 17 24 91.65

Low-grade 12 694 138 82.23

High-grade 16 15 226 87.94

Overall Accuracy 86.06

Table 4.19: The confusion matrix and the accuracies obtained by the LBP his-
togram features when the GridPartitionApproach is used.

For the GridPartitionApproach, maximum cross-validation accuracy is 84.73%

and the selected parameters are C = 2 and w = 10. Its results are given in

Table 4.19. For the SIFTPointsApproach, the results are given in Table 4.20. The

maximum cross-validation accuracy is 84.42% that selects R = 20 and C = 0.05.

Both of these approaches increase the overall test accuracy to approximately 86

percent.

The results of the proposed SPP method are shown in Table 4.21. Here

R = 10, C = 0.125, and the corresponding cross-validation accuracy is 89.72%.

This proposed feature extraction method significantly increases the overall test

accuracy to 92.53%. Similarly, when the TypelessApproach is used, this accuracy
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Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 460 12 19 93.69

Low-grade 12 694 138 82.23

High-grade 5 31 221 85.99

Overall Accuracy 86.37

Table 4.20: The confusion matrix and the accuracies obtained by the LBP his-
togram features when the SIFTPointsApproach is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 483 5 3 98.37

Low-grade 0 754 90 89.34

High-grade 0 21 236 91.83

Overall Accuracy 92.53

Table 4.21: The confusion matrix and the accuracies obtained by the LBP his-
togram features when the proposed SPP method is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 472 16 3 96.13

Low-grade 9 718 117 85.07

High-grade 6 13 238 92.61

Overall Accuracy 89.70

Table 4.22: The confusion matrix and the accuracies obtained by the LBP his-
togram features when the TypelessApproach is used.
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decreases to 89.70%. Here the parameters are selected as R = 10 and C = 0.25

and the maximum cross-validation accuracy is 86.13%.

4.3.6 Gabor filter features

In this section, we will investigate the Gabor filter features in detail. Table 4.23

presents the results for EntireImageApproach. The SVM parameter C is set to

128; the maximum cross-validation accuracy is 81.51%. In this table, it is ob-

served that the test accuracy is low. The reason behind this is that the SVM

could not distinguish low-grade and high-grade cancerous tissues good enough by

using the Gabor filter features. In Table 4.24, the results achieved for the Grid-

PartitionApproach are presented. For this approach, when the grid size w is set

to 20 and the cost parameter C is set to 50, the highest cross-validation accuracy,

86.13%, is obtained. The results for the SIFTPointsApproach are reported in

Table 4.25. Here, the highest cross-validation accuracy, 85.52%, is obtained by

when C = 100 and w = 10.

In Table 4.26, we report the results for our SPP method. The highest cross-

validation accuracy is 89.29% when R = 20 and C = 64. For the Gabor filter

features, the proposed method reaches the maximum overall test accuracy. When

we repeat our experiments for the TypelessApproach, we again observe a decrease

in the test set accuracies (Table 4.27). Here the parameters are selected as R = 10

and C = 16 and the cross-validation accuracy is 83.94%.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 421 51 19 85.74

Low-grade 109 628 107 74.41

High-grade 37 35 185 71.98

Overall Accuracy 77.51

Table 4.23: The confusion matrix and the accuracies obtained by the Gabor filter
features when the EntireImageApproach is used.



CHAPTER 4. EXPERIMENTAL RESULTS 56

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 449 36 6 91.45

Low-grade 58 665 121 78.79

High-grade 14 34 209 81.32

Overall Accuracy 83.10

Table 4.24: The confusion matrix and the accuracies obtained by the Gabor filter
features when the GridPartitionApproach is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 466 22 3 94.91

Low-grade 34 714 96 84.60

High-grade 31 53 173 67.32

Overall Accuracy 84.99

Table 4.25: The confusion matrix and the accuracies obtained by the Gabor filter
features when the SIFTPointsApproach is used.

Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 471 14 6 95.93

Low-grade 4 736 104 87.20

High-grade 4 37 216 84.05

Overall Accuracy 89.38

Table 4.26: The confusion matrix and the accuracies obtained by the Gabor filter
features when the proposed SPP method is used.
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Predicted

Normal Low-grade High-grade Accuracy

Actual

Normal 461 26 4 93.89

Low-grade 68 668 108 79.15

High-grade 25 46 186 72.37

Overall Accuracy 82.60

Table 4.27: The confusion matrix and the accuracies obtained by the Gabor filter
features when the TypelessApproach is used.

4.3.7 Parameter analysis

In this section, we will analyze the effects of the our model parameters to the

classification accuracy. In our experiments, we analyze this effect for each pa-

rameter, fixing the remaining ones to the previously selected values. Besides the

SVM parameter C, the color histogram features have the number of bins N and

the circular window radius R. In Figures 4.1 and 4.2, the accuracies as a function

of these parameters are shown. Here we observe that the circular window radius

R has a larger effect on the accuracies.

For the co-occurrence matrix features, our SPP method involves there param-

eters: The number of bins N , the distance d, and the circular window radius R.

The accuracies obtained as a function of these parameters are given in Figures 4.3,

4.4, and 4.5, respectively. Here we observe that the parameters N slightly affects

the results whereas the other two have larger affects on the accuracies.

Co-occurrence features produces the best classification accuracy when SPP

method is used during the feature extraction phase. Classification results indicate

that the maximum cross-validation accuracy is achieved when N = 8, d = 10,

and R = 30. In order to analyze the optimal values of these parameters, we first

fixed the distance parameter d and R. Then, we analyzed the cross validation

accuracies by varying the number of bin parameter N . Figure 4.3 presents the

results obtained by using co-occurrence features with SPP method. From the

table, we can derive that maximum cross-validation accuracy is achieved when
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Figure 4.1: Classification accuracies as a function of the number of bins N when
the SPP method uses the color histogram features. Here the circular window
radius R is fixed to 10.
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Figure 4.2: Classification accuracies as a function of the circular window radius
R when the SPP method uses the color histogram features. Here the number of
bins N is fixed to 64.
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N = 8. Therefore, we fixed N = 8. Then, we performed analysis on the distance

parameter d. Figure 4.4 presents the cross-validation accuracies obtained by

varying the distance parameter. Here, cross-validation accuracy is peaked at d =

10. Hence, we set the distance parameter d to 10. Finally, we analyze the optimal

value of the circular radius parameter R. Figure 4.5 shows the result obtained by

varying the circular radius parameter R. Here, cross-validation accuracy reaches

the highest value when R = 30. To sum up, if co-occurrence features extracted

by SPP are used to classify the tissue images, SVM performs best when N = 8,

d = 10, and R = 30.
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Figure 4.3: Classification accuracies as a function of the number of bins N when
the SPP method uses the co-occurrence matrix features. Here the distance pa-
rameter d and the circular window radius parameter R are fixed to 10 and 30,
respectively.
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Figure 4.4: Classification accuracies as a function of the distance d when the
SPP method uses the co-occurrence matrix features. Here the number of bins
parameter N and the circular window radius parameter R are fixed to 8 and 30,
respectively.
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Figure 4.5: Classification accuracies as a function of the circular window radius R
when the SPP method uses the co-occurrence matrix features. Here the number of
bins parameter N and the distance parameter d are fixed to 8 and 10, respectively.

The SPP method has two parameters for the run-length matrix features.

These are the number of bin parameter N and the circular window radius pa-

rameter. The analysis of these parameters are given in Figure 4.6 and 4.7. In

these figures, we observe that the selection of the number of bins is important for

obtaining higher accuracies.

For the LBP histogram and Gabor filter features, the SPP method uses only

one parameter, which is the circular window radius R. Figure 4.8 and 4.9 show

the accuracies as a function of R for the LBP histogram and Gabor filter features,

respectively. We observe that for both of these features, the R value do not too

much change the accuracy.
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Figure 4.6: Classification accuracies as a function of the number of bins N when
the SPP method uses the run-length matrix features. Here the circular window
radius R is fixed 20.
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Figure 4.7: Classification accuracies as a function of the circular window radius
R when the SPP method uses the run-length matrix features. Here the number
of bins N is fixed 64.
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Figure 4.8: Classification accuracies as a function of the circular window radius
R when the SPP method uses the LBP histogram features.
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Figure 4.9: Classification accuracies as a function of the circular window radius
R when the SPP method uses the Gabor filter features.
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4.4 Discussion

In this section, we will discuss the experimental results.

4.4.1 Parameters

The parameter selection is one of the most important factors that highly affects

the classification results. For the k-means step, we have selected k as 3 since the

hematoxylin-and-eosin staining leads to three main colors in tissues, which are

purple, pink, and white. Therefore, we implicitly choose this parameter value.

For the salient point definition step, the minimum radius threshold used by the

circle-fit algorithm is set to 2 for the nuclei and 3 for the lumen and stroma types.

This selection is based on our observations and experimental results. We see that

these threshold parameters are selected large enough to eliminate noise arising

from the color quantization step and yield representative circular primitives.

We employed 10-fold cross-validation for the remaining parameters that ap-

pear either in the feature extraction step or classification step. Note that folds

are not randomly determined since there exist many tissue images belonging to

the same patient. Therefore, we determine these folds considering the patients.

In Section 4.3.7, we present the list of parameters and their values selected by

the 10-fold cross-validation.

4.4.2 Features

In our experiments, we have analyzed five different textural features to represent

colon tissue images. For comparison, we have used four different approaches: (1)

The EntireImageApproach, which uses an entire image to define their features,

(2) the GridPartitionApproach which divides an image into grids, extracts fea-

tures on these grids and then aggregates the features of the grids to obtain the

feature vector of the image, (3) the SIFTPointsApproach, which finds the salient
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points on an image, extracts features around these salient points, and then ag-

gregates the features, and (4) the TypelessApproach that follows the same steps

with the proposed method except the type assignment step. The feature-based

comparisons are summarized in Tables 4.29-4.32.

In these tables, we observe that the lowest accuracy is obtained when the En-

tireImageApproach is used. The results of the other three approaches (GridParti-

tionApproach, SIFTPointsApproach, and TypelessApproach) are usually more or

less the same. For the LBP histogram features, the TypelessApproach gives higher

accuracies to the other two. The proposed SPP method significantly improves

the results of these algorithms for all of the features. This indicates the effective-

ness of making use of biologically meaningful salient points in feature extraction.

These tables (as well as the confusion matrices given in Tables 4.3-4.27) show

that all these algorithms confuse low-grade and high-grade cancerous tissues the

most. This decreases the overall accuracies.

Normal Low-grade High-grade Overall

Our SPP method 98.37 91.23 93.77 93.84

EntireImageApproach 75.56 78.44 86.38 78.83

GridPartitionApproach 91.85 84.83 93.39 88.38

SIFTPointsApproach 94.50 85.19 92.22 89.20

TypelessApproach 91.04 83.77 93.00 87.50

Table 4.28: Classification results obtained for the color histogram features.

Normal Low-grade High-grade Overall

Our SPP method 95.72 91.47 80.93 91.08

EntireImageApproach 81.47 84.60 84.05 83.54

GridPartitionApproach 94.91 85.78 84.05 88.32

SIFTPointsApproach 94.91 86.49 85.21 88.88

TypelessApproach 95.32 84.72 80.16 87.25

Table 4.29: Classification results obtained for the co-occurrence matrix features.
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Normal Low-grade High-grade Overall

Our SPP method 97.35 90.52 83.27 91.46

EntireImageApproach 84.32 63.86 77.43 72.36

GridPartitionApproach 92.67 85.31 71.98 85.43

SIFTPointsApproach 92.87 83.65 80.93 86.06

TypelessApproach 93.69 84.83 88.72 88.19

Table 4.30: Classification results obtained for the run-length matrix features.

Normal Low-grade High-grade Overall

Our SPP method 98.37 89.34 91.83 92.53

EntireImageApproach 92.46 77.25 78.99 82.22

GridPartitionApproach 91.65 82.23 87.94 86.06

SIFTPointsApproach 93.69 82.23 85.99 86.37

TypelessApproach 96.13 85.07 92.61 89.70

Table 4.31: Classification results obtained for the LBP histogram features.

Normal Low-grade High-grade Overall

Our SPP method 95.93 87.20 84.05 89.38

EntireImageApproach 85.74 74.41 71.98 77.51

GridPartitionApproach 91.45 78.79 81.32 83.10

SIFTPointsApproach 94.91 84.60 67.32 84.99

TypelessApproach 93.89 79.15 72.37 82.60

Table 4.32: Classification results obtained for the Gabor filter features.
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Conclusion and Future Work

Computer aided diagnosis (CAD) systems have a potential to offer more stable

and objective framework to pathologists for helping their decision making. Many

studies have been proposed to develop such CAD systems for automated cancer

diagnosis and grading, especially based on textural or structural tissue image

analysis. Although these approaches provide promising results for different types

of tissues, they are still incapable of using potential biological information carried

by the tissue components. However, these tissue components can help better

quantify the tissue images.

In this thesis, we proposed a new textural method, called Salient Point Pat-

terns (SPP), for the utilization of tissue components to represent histopathological

images of colon tissues. In the first step of this method, tissue images are trans-

formed to the La*b* color space and their pixels are quantized into three disjoint

groups by the k -means clustering algorithm. These groups correspond to nuclei

(purple regions), stroma (pink regions), and lumina (white regions). In its next

step, circular primitives are separately defined on these regions using the circle-

fit algorithm. We call these circular primitives as salient points, each of which

has a type (nucleus, stroma, or lumen), a radius, and a location. Afterwards, a

circular window centered at the centroid of a salient point is used as a mask to

extract textural or intensity based features within the window area. This feature

extraction framework is called as Salient Point Patterns (SPP).

67
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Our proposed method can be used for different feature types. In our experi-

ments, we analyzed five different intensity-based and textural features including

the color histogram, co-occurrence matrix, run-length matrix, local binary pat-

terns (LBP) histogram and Gabor filters features. A support vector machine

(SVM) with a linear kernel is used to classify tissue images into normal, low-

grade cancerous, and high-grade cancerous classes. Ten-fold cross-validation is

applied on training samples to estimate the parameters associated with the fea-

ture extraction and classification steps. For these features, the results obtained

by the proposed method are summarized in Table 5.1.

Normal Low-grade High-grade Overall Accuracy

Color histogram 98.37 91.23 93.77 93.84

LBP histogram 98.37 89.34 91.83 92.53

Co-occurrence matrix 95.72 91.47 80.93 91.08

Run-length matrix 97.35 90.52 83.27 91.46

Gabor filters 95.93 87.20 84.05 89.38

Table 5.1: Classification results obtained by the proposed Salient Point Patterns
(SPP) method for different features.

Experimental results show that the proposed SPP method improves the classi-

fication results of those obtained by the EntireImageApproach, GridPartitionAp-

proach, and SIFTPointsApproach, indicating the effectiveness of defining features

on the biologically meaningful salient points.

The main contribution of this thesis is the following: it offers a new feature ex-

traction scheme that make use of the tissue components, which carry biologically

important information, to describe histopathological images for cancer diagnosis

and grading. The use of domain specific knowledge and mapping this knowledge

to the computer environment provide us to develop more reliable and stable CAD

systems.

As future work, different sets of textural features would be employed and

analyzed with the SPP method. Additionally, the detailed parameter analysis

can be made to improve the classification accuracy. Moreover, SPP method can

be applied on other types of cancer, including prostate cancer and skin cancer.
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