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Abstract

Optical projection tomography enables 3-D imaging of colorectal polyps at resolutions

of 5 − 10 µm. This thesis presents image analysis methods for the polyp diagnosis

from such images. Specifically, we investigate 3-D texture-based recognition meth-

ods, as well as weakly supervised classification methods, for the diagnostic task of

discriminating levels of dysplastic change.

Firstly, we build a patch-based recognition system and evaluate both multi-class

classification and ordinal regression formulations. 3-D texture representations com-

puted with a hand-crafted feature extractor, random projection, and unsupervised image

filter learning are compared using a bag-of-words framework.

Secondly, two novel classification methods are proposed to learn from partially

and weakly annotated images respectively. For the partially annotated images, we

developed a relevance ranking method to infer the overall classification model using

unlabelled contextual image patches. For the weakly annotated images labelled at the

image level, we proposed a boosting with regularised tree algorithm to learn the region

classifier.

Results on a database of 90 polyps demonstrate that randomly projected features are

effective. Discrimination was improved by carefully manipulating various important

aspects of the system, including class balancing, output calibration and approximation

of non-linear kernels. For the cancer region classification measured by the area under

the ROC curve, 0.81 was achieved by training with image level labels, 0.85 by training

with eight mouse click annotations per image. They both outperformed the competing

methods. 0.88 was achieved by training with the delineated regions.
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Chapter 1

Introduction

Since the invention of X-ray technology by Wilhelm Röntgen in 1895, quite a number

of imaging methods have been developed as tools for medical purposes, such as X-ray

computed tomography, magnetic resonance imaging, and ultrasound. These tools are

now routinely used in clinical medicine and research. Analysis of medical images is

essential in modern medicine. In recent decades, the amount of medical image data is

growing rapidly due to the popularity of the imaging technologies. Automated image

analysis tools are desirable in order to help clinicians and researchers in providing

accurate and efficient assessments.

This thesis investigates automated methods for histological analysis of colorectal

polyps in optical projection tomography (OPT). To our best knowledge, it is the

first time the ability of automatic methods based on pattern recognition techniques is

explored for OPT images of human tissue. Figure 1.1 illustrates the workflow of OPT

polyp image analysis. The colorectal polyps taken during colonoscopy are processed

and scanned using the OPT method. The polyp images obtained using OPT, together

with manual annotations provided by the pathologists, are studied in this research. The

scope of this thesis is indicated by the dashed box.
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Figure 1.1 A diagram of colorectal polyp imaging and processing in optical projection
tomography. The contributions of this thesis lie in the dashed box.

1.1 Motivations

We focus on the task of providing histological diagnosis automatically using colorectal

polyp images. Currently, this task is routinely completed by highly trained pathologists

who inspect sections of polyp samples stained with haematoxylin and eosin (H&E)

under a light microscope. However, this conventional technique has its limitations:

(1) it involves taking a thin section of tissue from the centre of the polyp and this will

not necessarily be representative of the whole specimen; (2) much variability exists

among experienced pathologists when making diagnoses using H&E sections due to

features such as epithelial displacement (EPD), in which surface epithelial cells become

misplaced into the stalk of the polyp mimicking true invasive cancer. Over-diagnosis of

EPD as cancer has a confounding effect subjecting patients to unnecessary treatments

and generating inaccurate epidemiology reports [96, 109].

OPT is a relatively new 3-D imaging technique first applied to better our understand-

ing of embryo development [128]. It is a simple and affordable imaging technology

that is well-suited for specimens between 0.5 and 10 mm in size. OPT imaging of

colorectal polyp is non-destructive to the original tissue and enables virtual sectioning
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(a) (b)

Figure 1.2 (a) An H&E-stained whole mount slide. (b) A virtual section from an
OPT image of the same polyp with the section chosen to be close to the cut surface
that resulted from removal of the physical section shown in (a). Image contrast was
manually adjusted for polyp visualisation purpose.

of the specimen at any orientation. Figure 1.2 shows a comparison between an H&E

section and an OPT section of the same polyp. A significant advantage of tomography

is the flexibility in viewing virtual sections and manipulating the image to gain more

information. By contrast, once the cutting angle has been chosen for the H&E section,

it cannot be changed. Histology sections are cut from the tissue once it has been em-

bedded in paraffin wax and subsequently stained. These can be viewed at sub-micron

resolutions whereas OPT provides a lower spatial resolution of about 5-10 µm [129].

Near-visible light is used to obtain OPT images and therefore polyps must be optically

cleared in advance of scanning using benzyl alcohol benzyl benzoate (BABB).

Manual polyp image analysis can be tedious and time-consuming. Additionally,

inter- and intra-observer variation exists when pathologists diagnose colorectal polyps,

notably when grading dysplasia whether from H&E or OPT images [27, 28]. Reliable

and repeatable automatic recognition systems are desirable.
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1.2 Research problems

Computer-aided diagnosis systems for colorectal polyps mostly follow a feature ex-

traction and classification paradigm. Analogously, when designing novel recognition

systems for optical tomographic images of polyps, two essential research problems

arise from a computer vision perspective.

• What 3-D visual feature descriptors are appropriate to represent the histological

patterns?

• What discriminative methods are feasible to model the relationship of the features

and the diagnostic outputs used by pathologists?

These problems are empirically explored in this thesis, with novel applications of

computer vision and pattern recognition techniques.

In the empirical studies of OPT image analysis, large amounts of high-quality

manual annotations are needed in order to train an accurate classification model.

However, the manual annotations should be generated by experienced pathologists.

The process of obtaining annotations can be very costly and laborious. Therefore, a

research problem arises in training methods for OPT analysis:

• How to train good-quality histology analysis models with reduced requirements

of costly experts’ manual annotation?

Two novel machine learning algorithms are proposed in this thesis to train OPT patch

classification models. One is designed for efficient training with a form of partial

annotation, and the other for both patch and image classification with only image-level

annotations.

The aim of this research is twofold. Firstly, to investigate texture-based analysis

methods to discriminate diagnostic levels of dysplastic change in OPT colorectal polyp

images. Secondly, to propose novel weakly-supervised algorithms for training OPT

image classification models. Figure 1.3 illustrates the tasks and the annotations studied
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Chapter 5 & 6
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Chapter 8

Figure 1.3 The OPT image analysis tasks and the associated annotations studied in this
research.

in this research. Manually delineated regions were used for the patch based 3-D texture

analysis. Both mouse click annotations and image-level annotations — as forms of

simplified manual annotations — were used to train cancer detectors in OPT images.

1.3 Contributions

The main contributions of this thesis are as follows.

1. It provides the first study in the literature on automatically discriminating be-

tween invasive cancer, high-grade dysplasia, and low-grade dysplasia in optical

projection tomography images.

2. A rigorous comparative evaluation of three state-of-the-art 3-D texture feature

representations was conducted on a large dataset. It demonstrated that random

projection performs better than local binary patterns (LBP), a recent, popular

hand-crafted feature, and independent subspace analysis (ISA), an automatic

image filter learning technique, in terms of discriminating OPT image patches.

3. While the task of discriminating diagnostic levels of dysplastic change can be

cast as a three-class classification problem, this ignores the ordinal structure of
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these labels. Hence, a classification model and an ordinal regression model,

both based on margin maximisation, are compared and contrasted for this task.

These raise issues of class imbalance and output calibration which are explored

empirically. Two state-of-the-art strategies for fast approximation of non-linear

kernels are also evaluated. Although the focus is on OPT images of colorectal

polyps, the analysis and evaluation methods used should be applicable to other

ordinal regression tasks in other image modalities.

4. To reduce the requirement of costly manual annotations in training classifiers, we

investigated the use of partial annotations consisting of just one or a few clicks

in the polyp region of interest. A learning framework using partially annotated

OPT images was proposed for colorectal cancer detection. The proposed ranking

algorithm enables efficient training of classification models by utilising the

contextual information near the clicks.

5. A novel multiple instance learning algorithm was proposed for cancer detection

in OPT images using image level annotations, i.e., a binary label indicating

whether cancer is present in the image. With images annotated at image-level,

we first search a set of region-level prototypes by solving a submodule set cover

problem. Regularised regression trees are then constructed and combined on the

set of prototypes using a multiple instance boosting framework. This algorithm

explored training classification models without using the cancer location infor-

mation, which brings a further reduction of annotation workload compared to

the partial annotations.
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1.4 Thesis outline

Chapter 2 introduces optical projection tomography, colorectal polyps and

cancer, relevant clinical background, and summarises the image dataset.

Chapter 3 reviews applications of colorectal polyp image analysis in the litera-

ture.

Chapter 4 reviews 3-D texture feature extraction in the literature, and describes

the three representative texture feature extraction methods we explored.

Chapter 5 presents a novel application of texture analysis methods for discrimi-

nating dysplastic regions in OPT colorectal polyp images.

Chapter 6 presents a novel framework using partial annotations for cancer and

non-cancer classification in OPT images.

Chapter 7 presents a novel algorithm using multiple instance learning frame-

work, to train cancer detectors with image-level annotations.

Chapter 8 concludes the thesis with discussions of the proposed methods and

gives potential directions for future research.



Chapter 2

Background and Dataset

2.1 About this chapter

This chapter introduces the clinical background of the research, including optical

projection tomography and its application to colorectal polyp visualisation, colorectal

polyp categorisation and colorectal cancer. The data used in this research is also

introduced.

2.2 Optical projection tomography

Optical projection tomography is a 3-D imaging method that is ideally suited for

specimens between 0.5 and 10 mm in size [129]. OPT can operate in a transmission or

an emission mode. The transmission mode involves shining light into the specimen

from one side and detecting photons on the other side using a charged-coupled device

(CCD). In a sense, the setup of transmission OPT is analogous to the widely used

X-ray computed tomography. In the emission mode, the light source is distributed

in the specimen by applying fluorescent dyes. When the specimen is exposed to an

excitation light (e.g., ultraviolet light), fluorescent molecules are excited throughout
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the specimen and emitted photons can be detected by CCD [127]. In this thesis, the

images of colorectal polyp were obtained with the emission OPT.

Lenses of optical systems
Ultraviolet

light source
Fluorescent specimen 

supported in agarose gel

Rotation axis

Camera CCD

Focused image 

of specimen

(a)

(b)

Figure 2.1 Optical projection tomography imaging system. (a) A simplified overview
of OPT imaging in emission mode (adapted from [128]), (b) A commercial OPT
scanner (photo courtesy of Bruker microCT [21].)

Figure 2.1 summarises the main features of a typical OPT imaging system. The

fluorescent specimen is prepared with optical clearing in advance of scanning using

benzyl alcohol benzyl benzoate (BABB) and embedded in a transparent cylinder of

agarose gel. The cylinder is rotated around an axis with a fixed small angular step.

At each rotation step, a 2-D image is recorded by a CCD chip. After the images

are captured throughout 360 degrees, virtual sections can be reconstructed using a

back-projection algorithm. The time it takes is about 20 minutes for an OPT scan

and about 45 minutes for a 3-D reconstruction process of a 10243-voxel image, on a

single-CPU PC [128].
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Table 2.1 compares OPT with other 3-D microscopy technologies, including serial

sections [135], confocal microscopy [147], optical coherence tomography (OCT) [71],

microscopic magnetic resonance imaging (µMRI) [126], and X-ray microtomography

(Micro-CT) [48]. OPT is relatively simple, non-invasive and can achieve effective

resolutions of 5 to 10 µm. The main disadvantage of OPT microscopy, as compared to

µMRI, is that high-resolution reconstruction depends on the specimen being transparent

and its tissues possessing a homogeneous refractive index [129].

OPT imaging was first developed to study embryo development [129]. Recently it

has been applied to image human tissues and study diseases, e.g., breast tumours [86],

liver and pancreas tissues [108], and various cancer cells [2]. Coats et al. [28] investi-

gated the feasibility of using OPT to visualise and diagnose colorectal polyps. In this

thesis, we study the automation of the diagnosis. The clinical background of colorectal

polypoid cancer is briefly reviewed in the following sections.

2.3 Colorectal cancer

Colorectal cancer was the third most common cancer in men (756,000 new cases

per annum, 10.0%) and the second in women (614,000 new cases per annum, 9.2%)

worldwide in 2013 [47]. The highest incidence was reported in countries of Europe,

North America, and Oceania, whereas incidence was lowest in some countries of south

and central Asia and Africa [19]. According to Cancer Research UK [22], colorectal

cancer was the third most common cancer in both males and females in the UK;

41,581 new cases were registered in 2011. It is also the second most common cause of

cancer death; 16,187 people died of colorectal cancer in 2012. The main risk factors

of colorectal cancer include age, male sex, family history of colorectal cancer, and

inflammatory bowel disease. Although no single risk factor explains most cases, the

most associated factor is age. 95% of the cases occur in people over the age of 50, and

the incidence rate strongly increases with age [131].
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Colorectal polyps that have malignant potential (adenomas) are the most important

precursor lesions of colorectal cancer. About 95% of cancers develop from polyps [19].

However, the majority of polyps remain benign; less than 10% of them develop into

cancer. The development from benign polyps to cancer can be very slow: the process

may take more than ten years. Detecting and removing premalignant or early-stage

cancer polyps is an effective way to reduce mortality of colorectal cancer.

Screening and follow-up of high-risk groups of patients can detect colorectal cancer

at an early stage and trigger a potential cure. For example, results from epidemiological

studies suggest that sigmoidoscopy (a routine test to examine the lining of a sigmoid

colon) screening can reduce incidence and mortality rates of distal colorectal cancer

by roughly 60% to 80% [32]. In the UK, the world’s largest bowel cancer screening

(BCS) programme was started by the NHS in 2006. As of 2012, 65,535 polyps had

been excised and recorded in the BCS programme database [100].

2.4 Colorectal polyps and diagnosis

To diagnose colorectal cancer, histological analysis of polyps taken during colonoscopy

is essential. The current gold standard method is to examine sections of polyp stained

with haematoxylin and eosin (H&E) under a light microscope. By inspecting the H&E

sections, pathologists analyse histological patterns of the tissue and identify the cell

types. Finally, the findings of the pathologists will decide the treatment for the patients.

A review of the tissue preparation process for routine histology analysis can be

found in [105]. The major steps of preparing glass slides are summarised as follows.

(1) Fixation. The tissue is first immersed into fixative solutions, then dehydrated and

infiltrated with paraffin. This step ensures cells and tissue components are preserved.

(2) Embedding. The tissue is embedded into a block of hardened paraffin. The

orientation of the tissue is important in this step, as in the next step the tissue block

will be sliced parallel to the block.



13

(3) Sectioning. Very thin (a few micrometres thickness) slides of the tissue are

cut and transferred into a clean glass slide. Too thick sections can make the nuclei

over-stained and the differentiation of cellular components very poor.

(4) Staining. In terms of the routine H&E stain, the dyes are applied to the tissue so

that they will bind cells and cellular components. Haematoxylin mainly has an affinity

with the nucleic acids of the cell nucleus, whereas eosin with cytoplasmic components

of the cell.

As mentioned in Section 1.1, the conventional 2-D histology technique has several

limitations: a thin section of tissue from the centre of the polyp may not be repre-

sentative of the whole specimen. Features such as epithelial displacement (EPD) can

cause differences between experienced pathologists when making diagnoses using

H&E sections.

By contrast, the procedure of conducting OPT scanning of tissue is faster: First

embed the specimen in an agarose block, then dehydrate it with methanol, and finally

clear it using BABB. A significant advantage of tomography is the flexibility in

viewing virtual sections and manipulating the image to gain more information. As a

comparison, building a reconstruction of 3-D visualisation with a set of H&E stained

sections can be a relatively complex task [135]. However, the H&E sections can be

viewed at sub-micron resolutions whereas OPT provides a lower spatial resolution of

about 5-10 µm [129].

Coats et al. [28] compared the utility of OPT images and standard H&E stained

sections with 352 colorectal polyps from a screening population in the UK BCS

programme. The results showed that surface morphology was clearly identifiable by

OPT and comparable with the one obtained from H&E; low-grade dysplasia (59.7%)

was distinguishable from high-grade dysplasia (25.3%) and invasive cancer (15.0%)

using OPT but differentiation between the latter two classes was less distinct. Moreover,

OPT demonstrated additional features (e.g., surface ulceration, epithelial misplacement,

and vasculature patterns) that were not apparent on H&E sections. Coats et al. [27]
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further compared the colorectal polyp diagnostic agreement of OPT and conventional

methods among specialist pathologists. 59 specimens (39 low-grade dysplasia; 8

high-grade dysplasia; 12 invasive cancer) specimens were reviewed. Inter-observer

analysis showed that no pathologist agreed with the glass slides for all specimens when

reviewing glass slides alone. Intra-observer analysis of dysplasia diagnoses showed

substantial agreement when comparing glass and digital slides (Kappa coefficient 0.68-

0.74; specificity 93.6-100%) and fair to moderate agreement between glass slides and

OPT images (Kappa coefficient 0.27-0.47; specificity 86.3-97.6%) Introducing OPT

created more variation in diagnoses than using H&E slides. The pathologist with the

most OPT experience had the best agreement.

The variations among specialist pathologists suggest that repeatable automated

analysis systems are desirable in order to achieve accurate diagnoses. In addition, given

the large number of polyps obtained from colon cancer screening in programmes such

as the UK BCS, there is a strong motivation for automating the polyp analysis.

2.5 Classification of colorectal polyps

Colorectal 

Polyps

Non-neoplastic

Neoplastic

(Adenoma;

malignant potential)

Hyperplastic

(No malignant potential)

Inflammatory

Hamartomatous

Tubular

Tubulovillous

Villous

Figure 2.2 A brief classification of colorectal polyps.
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Figure 2.2 briefly summarises the classification of colorectal polyps [31]. Colorectal

polyps can be generally categorised into neoplastic and non-neoplastic. Hyperplastic

polyps are non-neoplastic usually found in the distal colon and rectum, and are without

malignant potential. Neoplastic polyps (adenomas) are benign but have malignant

potential. Adenomas can be further divided into three groups based on histological

patterns: tubular, tubulovillous and villous adenomas. Tubular adenomas are usually

non-advanced neoplastic lesions while the other two subtypes, i.e., tubulovillous

adenoma and villous adenoma, are generally more advanced neoplastic polyps.

This thesis mainly concerns adenomas and invasive cancers. Adenoma is charac-

terised by the presence of epithelial dysplasia; it is the most well-known precursor of

colorectal cancer. Epithelial dysplasia denotes an unequivocal neoplastic epithelial

alteration. It is characterised histologically by: (1) cytological atypia, (2) aberrant

differentiation, and (3) disorganised architecture [70]. The grade of dysplasia is an

important parameter of adenomas. It measures the aggressiveness of lesions that are

considered to be precancerous in terms of microscopic architecture, aberrant differentia-

tion, and cytological features. Measuring the grade of dysplastic change can provide an

estimation of the malignant risk that helps preventing and controlling the cancer [46].

Invasive cancer polyps are malignant polyps which invade into the submucosa and

beyond, including the metastatic spread.

The term “dysplasia” is only used to describe polyps when there is no evidence

of invasion [34]. Following NHS BCS programme lesions reporting guidelines [110],

adenomas are graded as low-grade dysplasia and high-grade dysplasia. Additionally,

we include the class of invasive cancer polyp where the lesions already show evidence

of invasion. The three classes reflect the chronological sequence of dysplastic change

and form the output space of our classification system.
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2.6 Image acquisition and annotation

2.6.1 Colorectal polyp images

(a) LGD, natural surface (b) LGD, cut surface

(c) HGD, natural surface (d) HGD, cut surface

(e) ICA, natural surface (f) ICA, cut surface

Figure 2.3 Direct renderings of OPT polyp images with polyp voxels rendered as
opaque: (a), (b) a low-grade dysplasia (LGD) polyp, (c), (d) a high-grade dysplasia
(HGD) polyp, (e), (f) an invasive cancer (ICA) polyp. Top row: viewing angles adjusted
to view the natural surfaces of the polyps. Bottom row: viewing angles adjusted to
view artefactual surfaces due to physical cuts.
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Ninety colorectal polyps were selected from the NHS Tayside Tissue Bank archive

to be representative of the subgroups: invasive cancer (ICA), high-grade dysplasia

(HGD) and low-grade dysplasia (LGD). Thirty samples were obtained for each of

these three groups to give a balanced dataset. The H&E stained sections taken from

each specimen were re-diagnosed by an experienced gastro-intestinal histopathologist

according to the NHS BCS programme and WHO guidelines to reduce intra-observer

bias [66, 110]. Images were acquired using OPT in emission mode under ultraviolet

light and Cy3 dye at a voxel resolution of 6.7 µm3. Each image was of one colorectal

polyp and had 10243 voxels. Figure 2.3 and Figure 2.5 demonstrate 3-D and 2-D

visualisations of tissues from each class in OPT respectively.

2.6.2 Image annotations

Table 2.2 Organisation of the dataset.

Classes LGD HGD ICA
Number of images 30 30 30
Number of annotated slices 2,710 787 2,446

0

50

100

150

200

250

0 50000 100000 150000
Number of annotated voxels in a slice

N
um

be
r 

of
 s

lic
es

Type
HGD
ICA
LGD

Figure 2.4 Statistics of annotated slices per class.

Each 3-D image was manually annotated with 3-D regions by an individual experi-

enced in interpreting OPT images (Dr. Maria Coats from the University of Dundee’s

School of Medicine). Characteristic regions were annotated in each polyp, i.e., regions
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of ICA were annotated in polyps labelled as ICA, regions of HGD were annotated

in polyps labelled as HGD, and regions of LGD were annotated in polyps labelled

as LGD. Each region’s boundary was delineated such that the annotator had high

confidence that all tissues within the region were correctly labelled. The H&E slide

corresponding to the cut surface of each polyp was used as guidance for this annotation.

Annotations were performed using the software tool ITK-SNAP [153] by delineating

2D regions every 4 or 5 slices and then interpolating between them (as illustrated in

Figure 2.6). Table 2.2 and Figure 2.4 summarise the quantities of voxels annotated per

slice. Figure 2.5 shows some examples of annotated slices. Although the number of

images was the same in each class, the numbers of annotated regions were unbalanced.

The issue of training from an unbalanced dataset is addressed in Chapter 5.

(a)

(b)

(c)

Figure 2.5 Images showing slices with regions annotated as (a) LGD, (b) HGD, and (c)
ICA. Image contrast was manually adjusted for visualisation purpose.
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2.7 Summary

This chapter summarises the background of analysing colorectal polyps using OPT

method. The advantages of the 3-D imaging method, its potentials for polyp visual-

isation and cancer diagnosis were emphasised. The images and manual annotations

employed throughout this research were introduced. The next chapter reviews the

related work of colorectal polyp image analysis.



Chapter 3

Literature review

3.1 About this chapter

This chapter reviews automated methods proposed in the literature for pathological

classification of polyps, i.e., for the detected polyps or removed polyp samples, dif-

ferentiate the pathological stages to which they belong (as illustrated in Figure 2.2).

Various imaging methods were demonstrated effective for such purpose. This chapter

is organised according to the imaging modalities that were employed in the systems.

Table 3.1 lists the colorectal polyp analysis systems according to the type of features

and classifiers, as well as imaging modality and dataset information.
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3.2 Imaging modalities for polyp diagnosis

Microscopic imaging is the most widely used tool in histological analysis. By exam-

ining the high resolution (sub-micron) visualisations of the polyp sections obtained

with microscopy, accurate staging of colorectal cancer can be made. At this resolution,

cellular components and subcellular details of colon biopsies are available. Previous

work studied modelling texture features as well as structure features of the cells or

cellular components in the images. A large amount of histopathology analysis literature

exists for colon biopsies [118], and human tissues in general [53]. Here we review

related applications in terms of system targets, i.e., providing pathological grades and

cancer region detections in colorectal polyps.

At considerably lower resolutions, modalities including routinely used endoscopy

and computed tomographic (CT) colonography can be used for histological anal-

ysis. Relatively new approaches — such as narrow band imaging (NBI) zoom-

videoendoscopy, capsule endoscopy, and microendoscopy — were also explored in the

literature. These methods are more convenient and less invasive compared to the 2-D

microscopy. However, the resolutions are limited: the cellular level details are hardly

identifiable. Based on these modalities, extensive computer-aided diagnosis (CAD)

systems were proposed for polyp detection and diagnosis. Liedlgruber and Uhl [93]

reviewed endoscopy-based systems; Yoshida et al. [151, 152] reviewed systems using

CT colonography.

3.3 Microscopy image analysis

The analysis of microscopy images can be roughly divided into segmentation-based

and segmentation-free methods.
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Segmentation-based methods

In segmentation-based methods, pixels are first grouped into different regions corre-

sponding to cells or other components. Then the image can be represented by the set of

descriptive statistics of each individual segment.

To detect meaningful structures in the images, the most common pre-processing

step is to segment images using colour information. For example, image pixels can

be clustered according to colour using k-means algorithm [6, 77, 78, 106, 117, 121,

132, 140, 141]. Usually k is set to 3 because white, pink and purple are the three main

colours in an H&E section and roughly correspond to the lumen, connective tissue, and

nuclei. Similarly Ozdemir et al. [114] and Olgun et al. [112] used colour deconvolution

and quantisation to divide each image into 2 or 3 different parts.

After applying the k-means segmentation, Rajpoot and Rajpoot [117] extracted

multi-scale morphological features (such as area, eccentricity, equivalent diameter)

from the segmented image. In their experiments, the morphological features were

classified into normal or malignant using support vector machines (SVMs) with a

Gaussian kernel. The morphological features performed better than statistical features

(such as patch location, pixel variation measures, and some high-order statistics) mainly

because the former were gathered from the segmented tissue cell image. Masood et

al. [103] further studied the selection of the best spectral band for the hyperspectral

images and also compared texture features and morphological features. The texture

features they applied is the circular local binary patterns (LBP). They showed that

using a single spectral band with the texture features can achieve better classification

performance than using morphological features. This suggests LBP-based features can

efficiently represent the patterns of the histology components. McCann et al. [106]

followed the idea of patch encoding using features extracted from the segmented

images. They first applied moment filters to detect nuclei from the segmented images;

then they developed a set of features based on visual cues used by pathologists, such as

nucleus size, colour, density, as histopathology vocabulary to describe image patches. A
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pixel-level classifier was constructed using an artificial neural network to classify each

pixel and its supporting region. To identify abnormalities at image level, a multiple-

instance inference rule was used, i.e., if and only if there exist abnormal patches, the

image is labelled as abnormal; otherwise the image is normal. However, these methods

did not fully utilise the shape information of cell components in the segmented images.

In Kalkan et al. [78] a Laplacian of Gaussian blob detector was used to detect nuclei

in H&E-stained sections. A combination of statistics computed from the detected

nuclei and texture features were used as the final image patch representation.In their

experiments, these image patches were classified as normal, cancer, adenomatous

and inflamed classes. The authors applied feature selection and observed that nuclei

shape features, Haralick features, and Gabor filter features were the most important

features for patch classification. The patch classifiers were further extended to image

level by averaging patch classification scores and applying logistic regressions [77].

Rathore et al. [121] represented the segmented images with run-length features and

percentage of clusters area features for the purpose of normal and malignant region

classifications. They showed that ensemble classifiers such as random forest, rotation

forest and boosting classifiers were accurate for their classification tasks.

More recently, capturing structural information by constructing a graph using the

segmented H&E image showed promising results [6, 112, 114, 132, 140]. A typical

procedure of generating a graph is as follows: first, quantifying image pixels into three

groups (e.g., white, pink and purple in H&E sections) using k-means; then, applying

a circle-fit algorithm to locate a set of circular objects; finally, a colour graph with

three types of colour node can be constructed by applying Delaunay triangulation to

the centroids of the circular objects. Using this method, the spatial distribution of the

circular objects can be encoded efficiently. Altunbay et al. [6] proposed to quantify a

colour graph with three global properties of the graph: the average number of edges for

each node, the average clustering coefficient reflecting the connectivity of the nodes,

and the diameter quantifying the paths between the graph nodes. Their methods with
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colour graph features demonstrated better performance in classifying normal, low-

grade, and high-grade images compared to statistical features, and Haralick features.

Tosun et al. [140] defined a graph-edge run-length matrix from the colour graph and

calculated statistical features such as short run emphasis and gray-level nonuniformity.

A region growing algorithm was then employed to segment the H&E sections in an

unsupervised manner. Ozdemir et al. [114] proposed to first select a set of subgraphs

as query graphs, then use graph edit distance to the query graphs as image features.

Simsek et al. [132] measured co-occurrences of the graph nodes and subgraphs at

multiple scales for cancer region segmentation. Olgun et al. [112] proposed local object

patterns to encode the n-nearest neighbours of the circular objects as features.

Apart from the colour-based segmentation methods, the active contour method was

also studied in the literature for tracking the boundaries of the glands and nuclei [3, 23,

29, 30].

In general, the segmentation-based methods require considerable domain knowl-

edge (e.g., shape of nuclei and glandular object, colour of cell components under

different stain materials) in order to detect and analyse meaningful image segments.

However, compared to the widely used microscopy images, OPT imaging technique is

still in its infancy; designing the colour and shape based feature extractors according to

the morphology is not feasible in the current study.

Segmentation-free methods

In segmentation-free methods, discriminative features are extracted from the patches or

the images directly, without localising cells and other components. To apply texture

feature extraction, the images are usually divided into regular grids. The features

are extracted from each grid patch and then aggregated into the final patch or im-

age representation. The representation is then classified by general-purpose classi-

fiers [13, 42, 65, 130]. Masood and Rajpoot [104] adopted circular LBP as image patch

representation and showed that support vector machines outperformed subspace meth-
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ods such as principal component analysis and linear discriminant analysis. Ozdemir

et al. [115] augmented their image dataset using resampling-based Markovian model

and demonstrated the efficiency of second-order statistics on co-occurrence matrices

with the bag-of-words approach. Fractal analysis combined with a nearest neighbour

classifier was used by Esgiar et al. [43], who showed that, compared to the conventional

texture features (correlation and entropy features), the fractal dimension improves sensi-

tivity and specificity in colon cancer detection. Lim et al. [52] extracted co-occurrence

matrix features and classified by a genetic algorithm. Rathore et al. [119, 120] exploited

histogram of oriented gradients (HOG), colour component based statistics, and Haralick

features for normal and malignant image classification. Ensembles of linear and non-

linear SVMs were used as feature classifiers. Xu et al. [150] encoded histopathology

image patches with texture features and proposed multiple instance learning algorithms

to classify the image patches. The algorithm clustered and classified image patches

simultaneously with only image-level annotations. This is different from many systems

in the literature that require detailed pixel-level annotations for patch classifications.

3.4 Endoscopic image analysis

Studies showed that the macroscopic surfaces of polyps were also useful for histological

diagnosis, e.g., Kudo et al. [81] proposed and later modified [75] the pit pattern

classification scheme for polyp classification. For diagnostic purposes colorectal

polyps can be divided into six groups, based on the morphological features of mucosal

surfaces (pit patterns I-V, illustrated in Figure 3.1). In the literature, a number of

systems were proposed to analyse polyp surfaces in vivo following the pit pattern

scheme. Texture feature extraction is one of the key ingredients of the systems. The

rest of this section briefly reviews the related approaches.

One of the most active research groups in this area is the group of the EndoPit

project at the Medical University of Vienna. In their studies, the images were obtained
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Figure 3.1 Illustration of the pit pattern characteristics (first row) and examples of
colorectal polyp images obtained during a high-magnification colonoscopy (second
row). From left to right columns, the images correspond to pit pattern I, II, III-S, III-L,
IV and V, respectively (courtesy of Häfner et al. [55]).

with a magnifying endoscope and a dye-spraying procedure (chromo-endoscopy). The

magnification, with up to 150 times zoom factor, can reveal fine details of mucosal

surfaces as well as small lesions. Dye spraying was employed to enhance the visual

appearance. The dye used in their experiments is indigo-carmine. The methods

proposed by the group include (1) frequency domain features extracted using Fourier

transform or wavelet transform, (2) extensions of LBP, and (3) texture features by

detecting pit candidates [54–63, 82, 83]. The methods are summarised as follows.

Frequency domain features

Häfner et al. [60] and Kwitt et al. [82] studied several types of discrete wavelet

transforms for textural feature representation. 2-D wavelet transforms were applied to

each image to capture the image details oriented approximately 15°, 45°, 75°, 105°,

135°, and 160°. The magnitudes of the complex wavelet coefficients are approximately

shift-invariant. Conventionally, statistics of the coefficients such as the empirical mean

and the empirical standard deviation were used as texture features. Kwitt and Uhl [82]

proposed to model the marginal distributions of the wavelet coefficients and use the

parameters of the probability density function as novel texture descriptors. Häfner et

al. [60] extended the co-occurrence matrix based method to the wavelet-domain and

further calculate Haralick features from the matrix.
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Variants of local binary patterns

Häfner et al. [57] and Häfner et al. [62] argued that the standard LBP is not suitable for

noisy endoscopic images. Two extensions of LBP, multi-scale block LBP (MB-LBP)

and local colour vector patterns (LCVP) were proposed for endoscopic texture analysis.

LBP operator encodes a local image patch as a binary code, by thresholding the central

pixel and its neighbours. MB-LBP was proposed to use neighbouring image blocks

instead of pixel neighbours which reduce the influence of noise. Choosing different

block size changes the scale of the feature. LCVP was proposed for colour images

where intensity values used in LBP were replaced by 3-D colour vectors consisting of

values of the three colour channels. The pixel intensity value comparisons in LBP were

extended to colour vector comparisons. These features were classified using a k-nearest

neighbour classifier. The performance of combining LCVP and MB-LBP was better

than the standard LBP and LCVP in the classification of polyp surfaces according to

the pit pattern scheme.

Edge-based features

Instead of using texture features, edges of pits were detected in [56]. This was achieved

by first removing artefacts using anisotropic diffusion, and then applying Canny edge

detection. Given the edges, 18 statistics — including number of pits, mean area of all

pits, and mean of average intensity within each pit — were calculated as the image

representation. Greedy forward feature selection and k-nearest neighbours classifier

were jointly applied to classify the images. An overall classification accuracy of 97%

for two classes and 88% for six classes was reported for the edge-based method, while

with the above-mentioned wavelet-based features the accuracy was 99% and 96%

respectively.
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Other work from the EndoPit project

Häfner et al. [59] evaluated colour histograms constructed for the three colour channels

as well as co-occurrence histograms that count the number of pairs of pixels at given

separation distances as the image features. In Häfner et al. [63], MB-LBP operator

was applied to detect pits, and a graph was constructed using Delaunay triangulation

to represent the spatial distribution of the pits. Finally, the density of the pits was

measured by histogramming the edge lengths of the graph. The histogram was the final

representation of polyp surfaces.

Recently Häfner et al. [61] conducted experiments to compare the methods men-

tioned above in a consistent cross-validation scheme. An extension of LBP achieved the

highest overall accuracy in their evaluations. Although the dataset in the experiments

was relatively small, it suggested that the LBP based method is very promising in

encoding the textural appearances of the polyp surfaces.

In terms of the classification methods, Häfner et al. [58] compared k-nearest

neighbour (KNN) and support vector machine (SVM) classifiers for the pit pattern

classification using colour histograms. KNN showed better classification accuracies

than SVM in their experiments. Häfner et al. [55] further considered solving the

multi-class pit pattern classification problem in a one-vs-one classification scheme with

a nearest-neighbour classifier and optimising each classifier using a greedy feature

selection. The authors argued that by using one-vs-one classification scheme the

multi-class problem is decomposed into simpler and easier binary problems. The

results showed a remarkable improvement compared to KNN. More recently, Kwitt

et al. [83] modelled each image as a collection of local features which were sampled

from a set of pit pattern concepts. Gaussian mixture models were used to estimate the

distribution of each concept. Each image was map onto a semantic space of pit pattern

concepts and classified with a kernel SVM. They argued that it is possible to learn a

set of semantically meaningful visual concepts corresponding to the pit pattern scheme.

However, it was not clear how to decide the number of concepts in their algorithm.
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Apart from analysing the chromo-endoscopy images, Tamaki et al. [138] proposed

to analyse polyp surfaces with images obtained by NBI zoom-videoendoscopy. Com-

pared with chromo-endoscopy, NBI image is more convenient as it does not require

spraying, washing, and vacuuming dye and water. Tamaki et al. [138] proposed to en-

code NBI images with densely extracted local features and then calculated histograms

using the bag-of-words framework. Specifically, SIFT descriptors were extracted on a

regular grid over the image; then the authors proposed to calculate the difference of

SIFT descriptors at adjacent grid points as local features (gridSIFT). SVM was used

to map the bag-of-words of gridSIFT features to five class labels in the pit pattern

scheme. They showed that the bag-of-words histogram of gridSIFT with linear SVM is

sufficient for polyp classification.

Similarly, with a bag-of-words framework, André et al. [8–10] investigated images

obtained with probe-based confocal laser endomicroscopy, which is able to visualise

the epithelium at microscopic level during the endoscopy procedure. In their endomi-

croscopic database, an image of diameter 500 pixels corresponds to a field of view of

240 µm. To represent benign and neoplastic images, the authors proposed to extract

dense SIFT features from the disc regions and the regions were further encoded with

the bag-of-words framework. k-nearest neighbour classifier with χ2 similarity measure

was used to classify the bag-of-words histogram representations. In their experiments,

a binary classification was conducted to differentiate neoplastic and non-neoplastic

while a multi-class classification was conducted to classify five types of lesions: be-

nign, hyperplastic, tubular, tubulovillous, and cancer. They demonstrated the proposed

densely extracted features outperformed textons, Haralick features and sparse SIFT

features, in terms of classification accuracy. These work has demonstrated that using

the bag-of-words encoding method to summarise a set of densely sampled local features

is very effective for the colorectal polyp pit pattern classification.

Instead of using the pit pattern scheme, Tischendorf et al. [139] and Stehle [137]

explored the feasibility of polyp diagnosis based on segmentation-based vascular
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features extracted from NBI endoscopic images. The classification accuracy was 87%

on a dataset of 209 polyps (49 non-neoplastic, 160 neoplastic); the result was lower

than the human investigators (accuracy 91%).

3.5 Analysis with other imaging methods

Except the widely studied microscopy and endoscopic image analysis, several other

imaging modalities were applied to colorectal polyp analysis in the literature. The

statistical and textural feature analysis methods are the most common tools.

Song et al. [133] studied 3-D intensity-based textural features for the classification

of colon lesions in CT colonography. The Haralick texture model was originally

designed for 2-D grayscale images. In [133], the co-occurrence matrix was expanded to

3-D, and 13 statistics were considered in 3×3×3 cubic neighbours. The authors argued

that even though the microscopic pathological patterns may not be exactly reflected

by the voxel-level patterns in the macro-level images, certain tissue-level texture

information may be embedded in the voxel-level pattern. The pattern distributional

information can be captured and analysed using the voxel-level feature extraction

methods.

A 3-D active sensor was applied to created real-time 3-D reconstruction of colorectal

polyps by Ayoub et al. [14, 15]. The polyp was visualised as a cloud of 3-D points

using the stereo sensor signals. Ayoub et al. [14, 15] calculated statistics including

mean, variance and skewness as features and classified them into hyperplastic and

adenomatous with SVMs.

Shao et al. [125] analysed adenomas, hyperplastic polyps as well as normal tissues

with images of near-infrared autofluorescence spectroscopy. Near-infrared light can

have tissue penetrations up to 1 mm. The fluorescence spectral space consisted of

325 intensity values. Principal component analysis and linear discriminant analysis

were applied to classify the returned signals. The classification accuracy on a set of
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116 observations was 88.9%, 85.4% and 91.4% for normal tissue, hyperplastic and

adenomatous polyp respectively. Similarly in Rodriguez-Diaz et al. [123], principal

component analysis was used to reduce the dimensionality of features. An ensemble

of linear SVMs was constructed with each trained on a region of the spectrum. The

outputs of SVMs were then combined with majority voting and naive Bayes method.

Mitrea et al. [107] applied texture analysis approaches to classify colorectal tumours

and inflammatory bowel diseases using ultrasound imaging. They constructed co-

occurrence matrix and extracted Haralick features. In the classification process, SVMs,

decision trees, random forest and boosting methods were compared; the boosted

decision trees achieved the best accuracy among the other classifiers.

3.6 Summary

Most systems in the literature followed the feature extraction and feature classifica-

tion paradigm. Figure 3.2 compares the colorectal polyp analysis systems according

to Table 3.1. Both structure and texture features were widely applied and showed

promising results across different imaging methods. For structure features, a detection

or segmentation step is usually required in order to identify structures, e.g., cellular

components in microscopic images, pits or vessels on polyp surfaces. The classification

performance can be largely dependent on the segmentation performance. In compar-

ison, texture features are relatively simple and flexible. Additionally, encoding the

densely sampled features with the bag-of-words framework has shown very promising

results in polyp classifications in recent work [8–10, 138].

Zhang et al. [157] demonstrated that polyp surface analysis with OPT using

structure-based features according to the pit pattern scheme was feasible. This thesis

focuses on histological grading using volumetric texture information in OPT images.

Only limited work such as [14, 15, 133] in the literature studied texture features in the

three-dimensional imaging space for polyp diagnosis. In these texture-based methods,
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Figure 3.2 A parallel coordinate plot of Table 3.1. The columns from left to right
correspond to pathology, modality, features, and classifications, respectively.
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relatively simple features such as colour histograms and statistical features (mean,

variance, and skewness) were employed.

In terms of classification methods, SVM and KNN classifier were the most popular

choices. SVM often showed favourable classification performance, especially in binary

classification problems; KNN classifier is relatively easy to implement, and inherently

suitable for multi-class classification problems.

Annotations from human investigators were very important in order to train accu-

rate classification models. For relatively new imaging methods, because of lack of

established classification standard, histopathology analysis was usually conducted in

order to generate ground truth. Recently Xu et al. [150] proposed a weakly supervised

learning framework to reduce the annotation requirements in training a microscopic

image patch classifier.

In this research, 3-D OPT textures are analysed with 3-D local binary patterns,

random projection, and independent subspace analysis techniques using the bag-of-

words encoding. The next two chapters (Chapter 4 and Chapter 5) present the details of

these methods and also empirical studies in both classification and ordinal regression

formulations.



Chapter 4

Feature extraction from optical

tomographic images

4.1 About this chapter

In this chapter, for the purpose of discriminating polyp dysplasia in OPT, three repre-

sentative textural features — 3-D local binary patterns (LBP) descriptors, randomly

projected features, and independent subspace analysis features — are experimentally

compared. These are state-of-the-art methods from three important categories: hand-

crafted feature extractor, randomly generated image filters, and feature representations

learned automatically. These methods were selected from the vast literature on texture

features mainly because they are among the most advanced and arguably effective for

OPT classification. Computational efficiency was also considered when choosing these

methods since the OPT datasets in our experiments are large.

Random projection was reported effective in representing general 2-D textures [94].

It can be extended to 3-D and computed efficiently. Local binary patterns are invariant

to local contrast changes and can be made invariant to local rotations; these properties

are potentially capable of representing micro-textures in OPT images adequately. An

approximation of 3-D LBP was employed in our experiments which is not fully invariant
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to arbitrary 3-D rotations but computationally feasible. Independent subspace analysis

can be used to learn a set of phase- and shift-invariant filters that have similarities

to features computed by complex cells in the V1 area of primate visual cortex. ISA

learning scales well to large training sets, e.g., [85]. The next section briefly reviews

related work on texture analysis. The following sections present technical details of the

feature extraction procedures.

4.2 Related work

Previous work demonstrates that texture-based analysis is often an important component

of lesion detection, segmentation and classification. 3-D texture features have been

widely used in medical image analysis broadly; a comprehensive review of 3-D texture

analysis methods is available elsewhere [37].

LBPs are popular, computationally simple texture descriptors that summarise

micro-patterns in images. An LBP feature extractor is also an important component

of many successful 3-D medical image classification systems under different imaging

modalities, e.g., for brain white matter lesion classification in MRI [113], analysis of

lung CT [136], fluorescent cell image classification [101], and retinal optical coherence

tomography [95].

Random projection (RP), as a non-adaptive dimensionality reduction tool from the

compressive sensing theory, was recently applied to image analysis. The motivation of

using RP in texture classification comes from the work by Varma and Zisserman [143]

in which they demonstrated that using raw patches outperforms using filter banks in

the bag-of-words framework. RP is proven to reduce the dimensionality of a raw patch

while guaranteeing bounded distortion in k-means clustering analysis [17]. In [17] RP

as a simple yet efficient method demonstrated promising results in image clustering

tasks. RP’s performance was comparable to more sophisticated dimensionality reduc-

tion methods including PCA and local linear embedding on a clustering task of a face
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images collection. In the classification experiments by Liu et al. [94], RP was applied to

2D texture analysis in a bag-of-words framework. The computationally simple method

outperformed the state-of-the-art. Bingham et al. [16] used RP as a dimensionality

reduction tool for image classification tasks. In [4], RP accelerated the feature-based

registration process of 3-D neural ultrastructure with electron microscopy.

Image filters learned automatically from images have also shown promising results

in medical image computing. For example, Brosch and Tam [20] used Deep Belief

Networks to learn features for 3-D brain image segmentation, Le et al. [84] used ISA

for feature extraction from H&E histology images of glioblastoma multiforme, and

Jurrus et al. [76] constructed a series of artificial neural networks to learn context

information for large electron microscopy datasets. ISA as a feature learning method

was also applied to prostate MR segmentation by Liao et al. [92]. However, in general

learning feature extractors directly from data requires a relatively large number of

training images and long training time.

4.3 Patch encoding

In the following, patch denotes a cube-shaped OPT image region to be classified;

window denotes a smaller cube-shaped region of d3 voxels from which local texture

features are extracted. Figure 4.1 shows example patches from LGD, HGD and ICA.

LGD tends to have somewhat regular texture with low spatial frequency as shown

in Figure 4.1 (a); LGD normally has tubular morphological structure. ICA, shown

in Figure 4.1 (c), contains more homogeneous micro-texture patterns corresponding

to more dense tissue. HGD is intermediate in appearance as shown in Figure 4.1 (b).

The bag-of-words framework is adopted to encode patches with a pre-learned visual

dictionary [155]. The procedure of encoding a patch is illustrated in Figure 4.2. A

window slides through the patch and at each location, a texture feature vector is

extracted from the window. The feature vectors are quantised into visual words by



43

(a)

(b)

(c)

Figure 4.1 OPT image patches from regions labelled as (a) low-grade dysplasia (LGD),
(b) high-grade dysplasia (HGD), and (c) invasive cancer (ICA).

matching with the most similar visual word in a pre-learned dictionary. Finally, an

ℓ1-normalised histogram of visual word frequencies constitutes the patch representation.

Window step size was set to half the window width. Dictionaries of 200 visual words

were obtained with k-means++ [12]. Bag-of-words provides a compact representation

of fixed dimensionality regardless of the number of local windows used. It offers a

uniform approach to a comparative evaluation of local feature extraction methods. The

next section elaborates the feature extraction methods used.



44

D
en

se
 s

am
p

li
n

g

F
ea

tu
re

 e
x

tr
ac

ti
o

n

S
et

 o
f

lo
ca

l 
fe

at
u

re
s

D
ic

ti
o

n
ar

y

o
f 

lo
ca

l 
fe

at
u

re
s

(K
-m

ea
n

s+
+

)

H
is

to
g

ra
m

m
in

g

Fi
gu

re
4.

2
T

he
pr

oc
ed

ur
e

of
en

co
di

ng
a

pa
tc

h
as

a
ba

g-
of

-w
or

ds
hi

st
og

ra
m

.

In
p

u
t 
im

a
g

e
 w

in
d

o
w

 

x
n

!!
!

D
o

t 
p

ro
d

u
c
t 
w

it
h

 3
0

0
 t
ra

in
e

d
 fi

lt
e

rs
 r

e
s
p

e
c
ti
v
e

ly

(7
5

 g
ro

u
p

s
 x

 4
 fi

lt
e

rs
 p

e
r 

g
ro

u
p

)

S
q

u
a

re
d

 s
u

m
 o

f 
tw

o
 fi

lt
e

r 
re

s
p

o
n

s
e

s

w
it
h

in
 e

a
c
h

 s
u

b
s
p

a
c
e

S
q

u
a

re
 r

o
o

t 
o

f 
e

a
c
h

 p
o

o
le

d
 r

e
s
p

o
n

s
e

  
  
  
  
IS

A
 w

in
d

o
w

 r
e

p
re

s
e

n
ta

ti
o

n
 (

1
5

0
-d

im
e

n
s
io

n
a

l 
v
e

c
to

r)

Encoding image window

 with ISA model

Fi
gu

re
4.

3
T

he
pr

oc
ed

ur
e

of
en

co
di

ng
an

im
ag

e
w

in
do

w
w

ith
IS

A
m

od
el

.



45

4.4 Random projection

Let X be a d3 × N matrix in which the elements in each column are the voxel values

of one of N windows. The RP method maps windows onto a k-dimensional subspace

using a suitably generated k × d3 random projection matrix R (Equation (4.1)).

X̂ = RX. (4.1)

Each element in the matrix R is an independent sample from a standard normal distribu-

tion, i.e., a Gaussian with zero mean and unit variance. After projection, the columns in

X̂ are considered as the window descriptors. According to the Johnson-Lindenstrauss

lemma [33], data points in Rd3
are embedded into the lower-dimensional Euclidean

space Rk such that pairwise distances between columns in X are approximately pre-

served. The computational complexity of RP is O(d3kN). In experiments reported in

this thesis, k was set to 200 unless d3 < 200 in which case the window was transformed

with a square (d3 × d3) random projection matrix.

4.5 3-D local binary patterns

Computing LBP from 2D images involves thresholding each 3×3-pixel neighbourhood

at the value of its central pixel thus obtaining an 8-bit binary code. A histogram

of these codes over an image window can then be used as a local descriptor. This

representation, known as LBP8,1, (i.e., 8-bit LBP with radius 1 neighbourhood), is not

rotation invariant. Ojala et al. [111] found that the vast majority of binary codes in a

local neighbourhood are so-called uniform patterns — the uniform appearance of the

local binary pattern, i.e., there are a limited number of transitions or discontinuities in

the circular presentation of the pattern. The most frequent “uniform" binary patterns

correspond to primitive microfeatures, such as edges, corners, and spots. To achieve

rotational invariance (around the central pixel) using uniform patterns, all non-uniform
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LBP patterns are stored in a single bin in the histogram computation. The length

of the uniform LBP8,1 descriptor is 59 bins, which is smaller than the permutations

(28 bins). In a 3-D volumetric image, designing LBPs that are invariant to arbitrary

rotations is not straight-forward as the ordering of 3-D neighbourhood is undefined.

Fehr and Burkhardt [45] addressed the problem by computing spherical correlations

in the frequency domain. The approach is robust to 3-D rotations however it is

computationally expensive. We choose to approximate the 3-D LBP with uniform

LBP8,1 descriptors computed in each of three orthogonal planes, taken to be aligned

with the image axes for convenience [160]. This is computationally feasible in our

experiments. In addition, this approximated 3-D LBP has been demonstrated to be

competitive with a full volumetric LBP for encoding texture features in microscopic

images [99]. The 3-D uniform LBP8,1 operator encodes a window as a histogram with

177 bins.

4.6 Independent subspace analysis

ISA is an unsupervised feature learning method based on natural image statistics [73].

The features learned by ISA exhibit phase- and shift-invariant properties and have

similarities to features computed by complex cells in the V1 area of primate visual

cortex.

In the ISA method, image filters W = {wt}
T
t=1 can be learned from a set of image

windows X = {xn}
N
n=1. Invariance is achieved by grouping the image filters into

subspaces: the filter responses within the same subspace are pooled together, while

among different groups the filter responses are treated independently. The model is
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estimated by maximising the log-likelihood function [74]:

logL(X|W) = −
N∑

n=1

L∑
l=1

√∑
t∈g(l)

(w⊺
t xn)2, (4.2)

subject to : WW⊺ = I, (4.3)

where each image filter wt is a d3-dimensional vector which is applied to the image

window; g(l) is the set of indices of lth group in the total L groups; I is an identity

matrix. The constraint (4.3) is introduced to reduce the number of free parameters and

leads to more stable solutions [72].

This optimisation was performed using stochastic gradient descent, after applying

whitening transformations to remove correlations between voxels and then PCA to

reduce the dimensionality to 300 (whenever the number of voxels in the window

was greater than 300). A set of 300 filters forming 75 independent subspaces (4

filters per subspace) were simultaneously learned by optimising Formula (4.2). The

parameters were chosen according to the empirical studies described in [90]. For each

optimisation process, 200 passes of stochastic gradient descent with adaptive learning

rate were applied through the entire set of training windows. After training, windows

are represented as vectors containing 300 filter responses. Some filters learned from

the training window set are visualised in Figure 4.4. These 300 responses are further

pooled into a 150-dimensional vector as the final window representation. The pooling

process takes the square root of the sum of squared two responses in the same subspace

(illustrated in Figure 4.3). Filters within a given subspace are similar.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.4 (a-f) Six groups of 4 filters learned from 2,700 windows (filter size: 13 ×
13× 13). Filters within the same subspace (group) shared some similarities while filters
in different subspaces had different orientations and frequencies.

4.7 Summary

This chapter described the rationale of the choices of texture analysis methods and

provided technical details of the settings. In the next chapter, these methods will be

used to encode OPT image patches, and compared and contrasted in classification and

ordinal regression formulations.



Chapter 5

3-D patch classification and ordinal

regression

5.1 About this chapter

The previous chapter described three representative texture feature extraction methods

that have shown promising results in the literature. This chapter provides a rigorous

evaluation of these methods for the task of discriminating between OPT patches of

LGD, HGD and ICA. A classification model and an ordinal regression model both

based on margin maximisation are applied in the experiments. The issues of class

imbalance and output calibration are investigated empirically. Two strategies for fast

approximation of non-linear kernels are also evaluated.

5.2 Multi-class classification

When formulated as a three-class classification problem, the task of discriminating OPT

patches was addressed using a set of three SVM binary classifiers [5]. Each classifier

was trained to discriminate one class from the others. This one-vs-rest approach leads to

unbalanced datasets for each of the classifiers. Furthermore, it is important to calibrate
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the outputs of the classifiers before comparing them in order to infer the class label.

A further consideration is the use of non-linear kernels in the classifiers which, given

large datasets, must be approximated for practical reasons. This chapter describes the

classification method used and considers available solutions to each of these issues.

5.2.1 Binary subproblem

Given a training set {xi, yi}
l
i=1 where xi is the ith bag-of-words feature vector and

yi ∈ {−1, 1} is its corresponding class label, a classification function f that maps

the feature vector to the label set {−1, 1} can be found using the widely used SVM

formulation by minimising

L(w, ξ) =
1
2
||w||2 +C

l∑
i=1

ξi, (5.1)

subject to : yi(w⊺xi + b) ≥ 1 − ξi, ξi ≥ 0, (5.2)

where C is a parameter controlling the trade-off between model complexity and training

errors; ξi, i = 1, . . . , l are slack variables; w is the weight vector, b is a bias weight,

and f (x) = w⊺x + b is the SVM hyperplane to be optimised. This optimisation was

performed using the primal form solver provided in the LIBLINEAR package [44].

C was searched over the set {2λ | λ ∈ Z and λ ∈ [−15, 15]}. We observed that the

classification accuracies were not very sensitive to the choice of C. C = 0.1 usually

gave high accuracies.

5.2.2 Handling class imbalance

The binary classification subproblems do not have balanced datasets because in each

case one class is being discriminated against all other classes. Class imbalance also

arises because HGD is a less commonly assigned label than LGD or ICA in our dataset

(see Figure 2.4). The classifier trained with the imbalanced data could overfit the
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dominating class. This problem can be addressed by replacing the free parameter

C with Cp and Cn for positive and negative classes respectively. Formula (5.1) then

becomes:

Minimise
w, ξ+, ξ−

1
2
||w||2 +Cp

l+∑
i=1

ξ+i +Cn

l−∑
i=1

ξ−i , (5.3)

subject to : w⊺x+i + b ≥ 1 − ξ+i , (5.4)

− w⊺x−i − b ≥ 1 − ξ−i , (5.5)

ξ+i ≥ 0, ξ−i ≥ 0, (5.6)

where x+i , x−i are positive and negative training examples in the one-vs-rest setting; l+

and l− are the numbers of such examples; ξ+i , i = 1, . . . , l+ and ξ−i , i = 1, . . . , l− are

slack variables; w is the weight vector, b is a bias weight, and f (x) = w⊺x + b is the

SVM hyperplane to be optimised; Cp and Cn are set as

Cp =
l+ + l−

2l+
C0, (5.7)

Cn =
l+ + l−

2l−
C0. (5.8)

C0 was searched over the set {2λ | λ ∈ Z and λ ∈ [−15, 15]}.

5.2.3 Output calibration

Three binary classifiers are trained for the three-class classification problem. Tradition-

ally in the one-vs-rest scheme the final output score for a test example is the highest

among the scores given by the three classifiers. However, since the three classifiers

are trained independently, the scores are not necessarily comparable. This situation

is helped by calibrating the scores prior to making this comparison by using Platt’s

scaling method to obtain values that can be treated as class probability estimates [116].

Calibration maps the binary classifier output (w⊺x) onto values that can be treated as
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probabilities with a parameterised sigmoid function:

P(y = 1|x; w, A, B) =
1

1 + exp(Aw⊺x + B)
, (5.9)

where A and B are learned from a validation set. For k-class classification, k such

sigmoid functions are estimated, one per binary classifier. Unbalanced datasets mean

that the fitting of these sigmoid functions is more heavily effected by over-represented

classes. This problem was recently addressed by [146] who introduced bagging of

under-sampling data estimators to refine the calibration procedure. Similarly, we apply

the bagging method to one-vs-rest classifier calibration. More specifically, T balanced

patch sets are formed by randomly discarding patches from over-represented classes

and T calibration models are learned from these sets. The final probability estimate

from a binary classifier is an average of the T models, i.e.,

P(y = 1|x,w) =
1
T

T∑
t=1

P(t)(y = 1|x; w, A(t), B(t)), (5.10)

where P(t)(y = 1|x; w, A(t), B(t)) is obtained by applying Formula (5.9) with A(t) and B(t)

estimated from the tth balanced patch set.

5.2.4 Non-linear kernel approximation

Using appropriate non-linear kernels that map feature vectors into a high-dimensional

space can improve the classification performance of bag-of-words encoding. For exam-

ple, the χ2 kernel has been used for classification of endoscopic images [138]. However,

this is computationally prohibitive for large-scale problems due to the expensive op-

eration of constructing a Gram matrix over all training data. Recently the method of

approximating kernels with explicit feature maps enabled the use of non-linear kernels

with relatively low computational cost on large scale datasets [98, 145]. The main

idea is that for a homogeneous kernel k(x, y) : Rd × Rd 7→ R, it is possible to use an
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approximation function Φ(·) : Rd 7→ Rw so that k(x, y) ≈ Φ(x)⊺Φ(y). The Φ(·) can be

data-independent. A linear SVM can then be used directly with Φ(x) for classification.

This leverages the high performance of non-linear kernels while maintaining scalability

to large scale problems.

Given two OPT patches encoded with bag-of-words, x, y ∈ Rd, the χ2 kernel is

computed as

kchi(x, y) =
d∑

i=1

2xiyi

xi + yi
, (5.11)

and the histogram intersection kernel is computed as

khist(x, y) =
d∑

i=1

min(xi, yi), (5.12)

where xi and yi are the ith component of x and y respectively. These two kernels were

approximated with methods proposed in [145] and [98] respectively.

5.3 Ordinal regression

The labels of dysplastic change are qualitative measurements that reflect increasing

severity in diagnosis from LGD to HGD to ICA. This suggests that a patch label

r ∈ {LGD,HGD, ICA} could be an ordinal variable rather than a nominal one; the order

is LGD ≺ HGD ≺ ICA.

5.3.1 Large-margin formulation

Given a training set {xi, ri}
l
i=1 where xi is the ith bag-of-words feature vector and

ri ∈ {LGD,HGD, ICA} is its corresponding ordinal label, a function g that maps

the feature vector to the label set {LGD,HGD, ICA} can be found using a structural

risk minimisation formulation of ordinal regression. Herbrich et al. [69] show how

to estimate g by learning a ranking function f (x) ∈ R so that the pairwise orders are
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preserved, i.e.,

f (xi) ≺ f (x j) ⇐⇒ ri ≺ r j. (5.13)

The score f (xi) is thresholded to determine the ordinal category of xi, i.e.,

g(x) = k ⇐⇒ f (x) ∈ [θk, θk+1] (5.14)

where θk and θk+1 are the learned thresholds of the kth category. In the case of a linear

mapping f (x) = w⊺x, the weight vector w can be learned by minimising the empirical

risk on the pairwise order set P = {(i, j)|ri ≺ r j}:

L(w, ξ) =
1
2
||w||2 +C

∑
(i, j)∈P

ξi j, (5.15)

subject to : ti j(w⊺x j − w⊺xi) ≥ 1 − ξi j, ξi j ≥ 0, ∀(i, j) ∈ P,

where ti j is the order label, i.e., ti j = 1 iff ri ≺ r j; ti j = −1 otherwise; ξi j,∀(i, j) ∈ P are

slack variables.

There are three types of pairwise ordering in P, i.e., LGD ≺ HGD, LGD ≺ ICA

and HGD ≺ ICA (the number of pairs of each type is denoted as N1, N2, and N3

respectively). Similar to the balancing of multi-class classification in Section 5.2.2, the

balance problem is also considered on the pairwise order set. Specifically, we replace

C with three cost parameters to be proportional to the number of pairwise preferences

of each type respectively, i.e.,

CLGD≺HGD =
C0(N1 + N2 + N3)

N1
, (5.16)

CLGD≺ICA =
C0(N1 + N2 + N3)

N2
, (5.17)

CHGD≺ICA =
C0(N1 + N2 + N3)

N3
, (5.18)
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where C0 is a free parameter; the value is searched within the set {2i | i ∈ Z and i ∈

[−15, 15]}.

5.3.2 Solving the optimisation problem

The objective function in Formula (5.15) is a standard quadratic programming problem

that can be solved by many existing convex optimisation packages. However, the

size of the pairwise order set grows quadratically with the number of samples, e.g.,

100 LGD and 100 ICA patches gives 10, 000 pairwise orders. Most solvers are not

feasible due to the scale of our problem. Here we choose the fast rank SVM solver

proposed in [24] which tackles the primal form of rank SVM with Newton’s method.

Instead of computing the inverse Hessian matrix in the Newton step, the fast rank SVM

approximates the inverse with a conjugate gradient method. This approximation is both

fast and memory efficient.

With the estimated ŵ, the optimal threshold θk is set to be in the middle of the

closest correctly separated training pair in the kth and (k + 1)th category, i.e.,

θk =
ŵ⊺xik + ŵ⊺x jk

2
, (5.19)

where: (ik, jk) = argmin
(i, j)∈Pk

(ŵ⊺x j − ŵ⊺xi), (5.20)

Pk = {(i, j)|ri = k ∧ r j = k + 1 ∧ (ŵ⊺x j − ŵ⊺xi) ≥ 1}. (5.21)

5.4 Patch sampling and cross-validation

Empirical evaluations used patches sampled with a systematic uniform random sam-

pling (SURS) strategy. The major advantage of SURS over repeated uniform random

sampling is its statistical efficiency. The sampling method is illustrated in Figure 5.1.

The displacement between points on the sampling grid was set to 31 voxels along each

of the three image axes. Patches were sampled with their centres at the grid points.
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Annotated regionOPT image

SURS interval

Patch sample

SURS points

d

Figure 5.1 Patch sampling with SURS applied to an annotated region. A regular
sampling grid with fixed displacement between sampling points is positioned at random.
Patches are sampled with their centres at the grid points.

A set of 20, 000 patches was sampled from the 90 polyps at each of 10 patch sizes,

d ∈ {11, 21, 31, . . . , 111}, giving 200, 000 patches in total. This enabled exploration of

the effect of patch size as a system parameter.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9Fold 0

Select 9 folds as training set

3-fold cross-validation on training folds 
for SVM and calibration system parameters learning

OPT polyp image patch set
Stratified split into 10 folds

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8Fold 0

Train 9 folds with learned parameters

Test on the rest fold Fold 9

R
epeat w

ith all possible com
binations of 

9 folds as training set, testing on the rest fold 

Learn visual dictionary

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9Fold 0

Encode all folds with the dictionary

Figure 5.2 Cross-validation scheme.

Experiments based on 10-fold cross-validation with stratified splitting were carried

out to estimate generalisation capability of the systems as follows. (1) All patches from

the same image are in the same fold; this ensures that no part of the polyp participating
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in the test is in the training set (cross-polyp generalisation); (2) the testing fold is

generated so that it always contains the same proportions of polyp images in the three

classes as the original dataset to ensure that there is no dominating class in the test

dataset. Within the training folds, we further applied 3-fold cross-validation to search

the appropriate system parameters (e.g., SVM calibration parameters, cost parameters).

This experimental design is illustrated in Figure 5.2. The results in the following

section are based on this cross-validation scheme unless otherwise specified.

5.5 Performance metrics

There are six types of mis-classification, i.e., LGD as ICA, LGD as HGD, ICA as

HGD, ICA as LGD, HGD as LGD, HGD as ICA. Error rates were calculated for each

error type respectively. Performance was also compared with measures of overall mis-

classification rate, absolute error rate and F-measure. Overall mis-classification rate is

the number of mis-classified cases divided by the total number of test cases, N, without

considering ordinal information. The absolute error rate is (
∑N

n=1 |en|)/N, where en is a

scalar error value. In the case of correct prediction, en = 0. In the case of an out-by-one

error (LGD confused with HGD or HGD confused with ICA), en = 1. In the case of

an out-by-two error (LGD confused with ICA) en = 2. For experiments on handling

class imbalance, averaged F-measure was used. The averaged F-measure is an average

over F-measures with respect to each class. The 95% confidence intervals of each type

of measurement were obtained by bootstrapping [38] with n = 10, 000; specifically

we generated n bootstrap replicates of the classifier outputs, and calculated average

F-measures of each bootstrap replicate. The confidence intervals were computed

with n average F-measures using the boot.ci function from the boot package (R

implementation). When evaluating window and patch size parameters, and kernel

approximations, performance was measured with Averaged Area under the ROC

curve (AAUC) which is not affected by specific choices of thresholds on the raw SVM
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outputs. Error bars indicating 95% confidence intervals were estimated with the method

proposed by [35]. When comparing features with ordinal regression formulations, ROC

surfaces were constructed with true positive rates. Volumes under the surfaces were

further calculated using the algorithm proposed by [97].

5.6 Results

5.6.1 Overall comparison of formulations and feature types

Table 5.1 Multi-class classification (left) and ordinal regression (right) confusion
matrices.

((a)) Random projection features.

Predictions
ICA HGD LGD

L
ab

el
s ICA 0.713 0.212 0.075

HGD 0.298 0.528 0.174
LGD 0.088 0.130 0.782

Predictions
ICA HGD LGD

L
ab

el
s ICA 0.535 0.418 0.048

HGD 0.228 0.556 0.216
LGD 0.025 0.275 0.701

((b)) Local binary pattern features.

Predictions
ICA HGD LGD

L
ab

el
s ICA 0.722 0.168 0.110

HGD 0.340 0.402 0.258
LGD 0.081 0.119 0.800

Predictions
ICA HGD LGD

L
ab

el
s ICA 0.417 0.491 0.093

HGD 0.167 0.568 0.265
LGD 0.031 0.244 0.725

((c)) Independent subspace analysis features.

Predictions
ICA HGD LGD

L
ab

el
s ICA 0.628 0.217 0.155

HGD 0.273 0.481 0.247
LGD 0.084 0.192 0.724

Predictions
ICA HGD LGD

L
ab

el
s ICA 0.541 0.362 0.097

HGD 0.236 0.530 0.234
LGD 0.043 0.339 0.618
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Figure 5.3 shows cobweb diagrams for multi-class classification and ordinal regres-

sion for each of the three feature types. Table 5.1 reports confusion matrices. Table 5.2

reports the misclassification rates, absolute error rates, and average F-measures. These

results were obtained using the patch size 81×81×81 and the window size 13×13×13

using the procedures described in Sections 5.2.2 and 5.2.3. Experiments exploring the

effect of varying such parameters are reported in the following section. The values in

Table 5.2 suggest that RP outperforms ISA and LBP; the performance rank of RP is

consistent for all measures considered for both problem formulations. Compared to

multi-class classification, ordinal regression makes less confusion between the ICA

and LGD classes. The ordinal regression formulation is a better choice over one-vs-rest

classification when the focus concentrates on minimising the risk of mis-classification

between LGD and ICA.

Table 5.3 compares classification performance of the one-vs-rest SVM classifica-

tions with three inherently multi-class classifiers: random forest (RF) [18], k-nearest

neighbours (KNN), and multi-layer perceptrons (MLP). A non-linear classification

function f̂ that maps the feature vector to the label set {LGD,HGD, ICA} was trained

for each method to discriminate three classes. For RF classifier we report performances

of 2,000 randomised classification trees. k was searched over the set {5, 10, 20} in the

KNN classifier. We set one hidden layer with 20 neurons for the MLP1. For the one-vs-

rest SVM in the comparison, the procedures described in Section 5.2.2, Section 5.2.3

and Section 5.2.4 were used (denoted as KSVM). The non-linear kernel in KSVM was

computed as the 1400-dimensional χ2 approximation (the Chi_2 method in Figure 5.9)

described in Section 5.2.4. In most cases, RF, KNN and MLP performed worse than

one-vs-rest KSVM. MLP gave the most competitive performance among the three

inherently multi-class classifiers.

1We used the newpr function from the Matlab Neural Network Toolbox. (URL: http://uk.mathworks.
com/products/neural-network/)

http://uk.mathworks.com/products/neural-network/
http://uk.mathworks.com/products/neural-network/
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5.6.2 One-vs-rest classification
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Figure 5.4 AAUC using random projection features with varied window size and patch
size. Error bars show 95% confidence intervals.
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Figure 5.5 AAUC using local binary pattern features with varied window size and patch
size. Error bars show 95% confidence intervals.
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Figure 5.6 AAUC using independent subspace analysis features with varied window
size and patch size. Error bars show 95% confidence intervals.

Figures 5.4, 5.5, and 5.6 plot averaged area under the ROC curves (AAUCs)

averaged over 10 folds for each one-vs-rest classifier for various window and patch

sizes. These plots suggest that patch size has greater impact than window size. At

patch size 81 × 81 × 81 all features reached high performance. At large window size

(13 × 13 × 13) we generated a smaller number of windows than with smaller window

sizes; this was computationally more efficient without significantly decreasing the

AAUC. These parameter values were used in other experiments unless otherwise

specified. RP gave generally good results compared to the other two types of feature.
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Classifier calibration
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Figure 5.7 Calibrating the HGD-vs-rest classifier output of all testing folds. Figure best
viewed in colour. (a) Histogram and (b) Gaussian kernel density estimates of raw SVM
scores. (c,e,g) Histogram, Gaussian kernel density estimates and reliability diagram
of SVM outputs after calibration using Equation (5.9). (d,f,h) Histogram, Gaussian
kernel density estimates and reliability diagram of SVM outputs after calibration using
Equation (5.10). The diagonal solid lines in the reliability diagrams indicate perfectly
calibrated classifiers.
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Figure 5.7 shows calibration of an HGD-vs-rest SVM classifier. Thresholding

the raw output scores at 0 gave an F-measure of 0.213 with 95% confidence interval

(0.199, 0.226). After calibration using formula (5.9) (see Figure 5.7(c-e)), thresholding

probabilities at 0.5 gave an improved F-measure of 0.329 with 95% confidence interval

(0.309, 0.337). However, the probability of HGD is systematically underestimated by

the sigmoid function in Formula (5.9) because the model is biased towards the “rest”

class due to the imbalanced training set. This can be seen from Figures 5.7 (a-e). In

Figures 5.7 (f–h) we visualise the probability outputs of the bagging method. The

under-sampling of the dominating class and the ensemble strategy mitigated the bias

problem. In the reliability diagrams (Figures 5.7 (e, h)), the observed probabilities

are grouped into 25 bins and the observed frequency of positives are plotted against

mean probability in each bin. For a perfect reliability, the observed frequency and the

predicted probability should be equal (shown as dotted line in diagonal direction). By

using the bagging method, the probability outputs from 0.8 to 1.0 are more reliable com-

pared to the original Platt’s method. We are able to further improve the F-measure from

0.329 to 0.464 with 95% confidence interval (0.453, 0.475). In the other experiments

reported here we applied Equation (5.10) for the calibration procedure.

Effect of class balancing and calibration

We conducted a group of experiments to investigate the effect of balancing the cost

function (Section 5.2.2) and output calibration (Section 5.2.3) on classification perfor-

mance. As a baseline we use the standard SVM (Formula (5.1)). To obtain decisions

from one-vs-rest classifiers, raw SVM scores were thresholded at 0 and calibrated

outputs at 0.5. Multi-class classification decisions were obtained by applying all the

one-vs-rest classifiers and predicting the class for which the corresponding classifier

reports the highest score (max-win strategy). Figure 5.8 shows comparisons with the

baseline SVM in terms of F-measures of each fold. Classification results after class

balancing and calibration were significantly different from the baseline (p < 0.0001;
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McNemar’s test [39]). Use of the balanced SVM cost function generally improved

performance, especially for HGD-vs-rest classification where the baseline suffers from

the very unbalanced dataset (see Figure 2.4). SVM output calibration helped address

the data imbalance problem and improved performance compared to the baseline.

Combining the balanced cost function and output calibration does not lead to further

improvement in terms of F-measure as compared to each applied individually.

Effect of kernel approximation

The effect of approximating the histogram intersection and χ2 kernels as discussed

in Section 5.2.4 was evaluated. Two approximation strategies were compared: (1)

B-spline approximations2 [98] of the χ2 kernel (denoted as Chi_1) and the histogram

intersection kernel (denoted as Min_1); and (2) the homogeneous feature map3 [145]

for the χ2 kernel (denoted at Chi_2) and the histogram intersection kernel (denoted as

Min_2). Figure 5.9 gives AUC results using those approximations compared with the

baseline result of the plain linear SVM (error bars indicate 95% confidence intervals).

It can be seen that, generally, the approximations of non-linear kernels can improve

dysplasia classification over the baseline for all three feature types if the feature

dimensionality is carefully tuned; the exception was that the performance improvement

of B-spline approximations of the histogram intersection kernel was not stable and

conclusive. The homogeneous feature map consistently outperformed the B-spline

approximation although the improvement was marginal. The χ2 kernel worked better

than the histogram intersection kernel in most cases.

2We used the Matlab implementation by [98]. (URL: http://ttic.uchicago.edu/~smaji/projects/
libspline-release1.0.tar.gz)

3We used the Matlab implementation provided in VLFeat package [144].

http://ttic.uchicago.edu/~smaji/projects/libspline-release1.0.tar.gz
http://ttic.uchicago.edu/~smaji/projects/libspline-release1.0.tar.gz
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Polyp classification

Table 5.4 Polyp classification results for different features (with 95% confidence
intervals).

Type Mis-classification rate Absolute error rate Average F-measure
RP 0.411 (0.285, 0.538) 0.344 (0.247, 0.443) 0.655 (0.561, 0.756)
ISA 0.489 (0.361, 0.619) 0.422 (0.318, 0.525) 0.579 (0.482, 0.683)
LBP 0.478 (0.350, 0.610) 0.400 (0.300, 0.501) 0.595 (0.497, 0.700)

Table 5.5 Polyp classification confusion matrices.

((a)) Random projection features.

Predictions
ICA HGD LGD

L
ab

el
s ICA 0.733 0.167 0.100

HGD 0.167 0.567 0.267
LGD 0.100 0.233 0.667

((b)) Local binary pattern features.

Predictions
ICA HGD LGD

L
ab

el
s ICA 0.667 0.200 0.133

HGD 0.300 0.433 0.267
LGD 0.100 0.200 0.700

((c)) Independent subspace analysis features.

Predictions
ICA HGD LGD

L
ab

el
s ICA 0.500 0.433 0.067

HGD 0.233 0.533 0.233
LGD 0.133 0.167 0.700

Table 5.4 reports multi-class classification results at polyp-level. These results

were obtained using the window size 13 × 13 × 13, and the procedures described in

Sections 5.2.2 and 5.2.3. Instead of patch-level classification, each polyp was encoded

using three types of local features and classified based on 10-fold cross-validation

described in Section 5.4. Table 5.5 shows the confusion matrices. The values in

Table 5.4 and 5.5 suggest that RP outperforms ISA and LBP in terms of all the

measures we adopted.

5.6.3 Ordinal regression

Figure 5.10 shows distributions of rank SVM scores obtained along with the two

thresholds for three-class ordinal regression using Formula (5.19). By varying the two
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Figure 5.10 Distributions of training set ranking scores. Dashed and dotted vertical
bars are thresholds for the three ordinal categories, obtained using Formula (5.19).

thresholds ROC surfaces can be created. Each point on an ROC surface represents a

tuple of three true positive rates (TPR). Figure 5.11(a) shows ROC surfaces for the

three feature types.

For visual comparison, each surface was mapped onto the plane TPRLGD+TPRICA+

TPRHGD = 1 and the signed distances between points on the surface and the plane

were colour-coded (Figure 5.11(b)). The plane represents the ROC surface for random

classification. The signed distances give an indication of how much better the classifier

is than random guessing. The signed distance maps for different feature types were

further compared (Figure 5.11(c)). Compared to ISA features, RP and LBP give better

performances in high TPR range of LGD (high LGD specificity range), whereas ISA is

better in high TPR range of ICA (high ICA specificity range). In the comparison of RP

and LBP, RP performs better when true positive rate of HGD is in low range (in low

HGD specificity).

The volume under an ROC surface (VUS) is the expected proportion of correctly

ranked triplets uniformly drawn from all possible samples of triplets [68]. It is an

extension of area under the ROC curve to the three-class case. The VUS and its 95%

confidence interval for the RP, ISA and LBP methods were 0.590 (0.582, 0.598), 0.522

(0.514, 0.529) and 0.533 (0.525, 0.541) respectively. In this experiment RP features

showed significantly better performance than ISA and LBP in terms of VUS.
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(a)

(b)

(c)

Figure 5.11 (a) ROC surfaces for three-class ordinal regression (patch size: 81×81×81,
window size: 13 × 13 × 13). Colour on the TPRLGD − TPRICA plane encodes TPRHGD

value. (b) Signed distances from points on the ROC surfaces to the plane TPRLGD +

TPRICA + TPRHGD = 1. (c) Differences between the maps in (b).
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5.7 Summary

Large margin multi-class classification and ordinal regression techniques were adopted

with a focus on practical considerations. Their performance with three types of texture

descriptor was demonstrated. The results showed that random projection features and

bag-of-words framework was the best among the three methods. Although the RP

method is relatively simple, it outperformed carefully designed LBP operators as well

as automatically learned ISA filters for all parameter settings. Similar observations

were also reported in several general texture classification systems [94, 143] where

classification of filter-based features did not outperform raw pixels as patch represen-

tation. The RP method generates a low-dimensional representation without making

strong assumptions about the nature of the texture being analysed. These attributes

may partially explain its relatively good performance in OPT analysis.

The class balancing problem is important and the performance can be further

improved if it is carefully managed. Using the approximation of non-linear kernels,

especially χ2 kernel, also improves the classification performance slightly when the

dimensionality parameter is properly chosen.

In terms of computational complexity, encoding a window with RP and ISA meth-

ods is similar: the output window feature is a simple multiplication of the vectorised

window with a matrix (either a random projection matrix4 or a set of filters learned

with ISA). The LBP operator5 is more expensive as it involves a neighbourhood-pixel

thresholding and a uniform pattern matching procedure. ISA requires a training phase

in order to estimate filters from training patches. In our experiments learning a set of

300 filters6 from a 81× 81× 81 patch set required approximately 4 hours; encoding and

4The complexity of RP method can be further reduced by constructing sparse random projections
with a simpler sampling distribution than a standard normal distribution [e.g., 1, 87]. We use the standard
normal distribution for RP matrix because both methods achieve similar performance and a standard
normal distribution is easier to implement.

5For LBP operator we use the C++ implementation by [160] (URL: http://www.cse.oulu.fi/CMV/
Downloads/LBPSoftware).

6For ISA model estimation we use the Matlab implementation by [74] (URL: http://www.
naturalimagestatistics.net).

http://www.cse.oulu.fi/CMV/Downloads/LBPSoftware
http://www.cse.oulu.fi/CMV/Downloads/LBPSoftware
http://www.naturalimagestatistics.net
http://www.naturalimagestatistics.net


73

classifying 200 test patches with size 81 × 81 × 81 required approximately 30 seconds

for the RP and ISA methods, and 4 minutes for the LBP method on a 3.4GHz Intel i7

CPU with 16Gb memory.

LGD was the class most readily distinguished. Unsurprisingly, being the intermedi-

ate class, HGD was the most often confused class. In terms of problem formulations,

ordinal regression performance was slightly worse than multi-class classification in

terms of mis-classification rate, absolute error rate and averaged F-measure (Table 5.2).

However, ordinal regression makes less confusion between the ICA and LGD classes

(Figure 5.3). The ordinal regression formulation is a better choice over one-vs-rest

classification when the focus concentrates on minimising the risk of mis-classification

between LGD and ICA. Ordinal regression is also simpler than multi-class classifica-

tion in the sense that only one model is trained while in multi-class classification three

models are trained. Dysplastic change is naturally a continuous phenomenon on which

ordinal grading imposes artificial categories. The ordinal regression method works by

first mapping samples onto the real line and it would be interesting to investigate using

this continuous map in diagnostic histopathology.



Chapter 6

Cancer detection with partial

annotations

6.1 About this chapter

To model the underlying patterns of image regions, accurate annotations are necessary.

However, the volumetric images of polyps are large (10243 voxels); while high resolu-

tion brings us considerable detail, difficulty arises in obtaining annotations. In OPT

dataset, a polyp typically extends across 700 ∼ 800 slices and about 0.5 billion voxels

in total in one OPT image. Fully delineating 3D regions slice by slice is tedious and

time-consuming.

This chapter presents an alternative approach based on partial, sparse, incomplete

annotations. A learning framework is proposed for partially annotated OPT image

for the task of cancer detection in colorectal polyps. The focus of this chapter is the

cancer detection task because it is one of the most important problems in medical image

analysis. More specifically, the objective in this chapter is to discriminate between

image patches in two settings: (1) invasive cancer (ICA) vs. low-grade dysplasia (LGD)

and (2) ICA vs. the other classes (LGD and HGD).
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(a)

(b)

Figure 6.1 OPT colorectal polyp images with (a) a region fully annotated and (b) some
partial annotations.

Different forms of partial annotation can be appropriate for different image modali-

ties and applications. In this chapter, we consider partial annotations consisting of just

one click or a few clicks in the 3D polyp region of interest (as shown in Figure 6.1(b))

as an alternative to the stronger annotation shown in Figure 6.1(a). The annotation

effort required is quite different. Our goal is to reduce the annotation efforts while

achieving good classification performance. In addition, learning should scale well

making it suitable for high-resolution volumetric images.

6.2 Related work

In Chapter 4 and 5, local features for patch and region classification of OPT images

were compared. Here we focus on the model learning aspect of the task. Our method

falls into the broad category of weakly supervised classification. At one extreme of

this category, annotation is performed only at the image level, in which case multiple

instance learning (MIL) has been adopted (we explored this case in Chapter 7). In
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MIL, a sample image is labelled as positive if and only if at least one of the instances

is classified as positive. Dundar et al. [41] proposed a large-margin approach for

pathology slides. It shared some similarity to our work, however the prediction was

at the image level. In Xu et al. [149] MIL was adapted to classify and segment

histopathology images. Doyle et al. [40] applied active learning to detect cancer

regions with histopathology annotations. Our approach is to leverage spatial annotation

but to keep annotation simple, sparse and thus fast to perform.

6.3 Methods

In supervised classification, locations outside annotated regions are usually ignored

during training because the corresponding class labels are considered unknown. How-

ever, for images annotated with a partial annotation protocol, the annotations carry

information about the class membership at unannotated locations. We refer to 3D cubic

regions as patches. Patches in the training set at locations with annotated (known)

class labels are referred to as reference patches. Patches near to them (in terms of

displacement or distance in feature space) are referred to as candidate patches. In

this chapter, we consider an extreme form of partial annotation consisting of single

point locations defined by mouse clicks. We introduce our definition of contextual rele-

vance, based on which we then propose a ranking model for classification. Figure 6.2

illustrates the reference and candidate patches in feature classification. Intuitively

the decision boundary was found so that the distances between reference patches and

the decision boundary are large (classified with high confidence), while the distances

between candidate patches and the boundary are small (classified with low confidence).

6.3.1 Labelling patches’ confidence

First we assign confidence labels to candidate patches. Consider a reference patch Sr

sampled at an annotated location zr labelled as yr ∈ {1,−1}. The patch Sk sampled at a

nearby unannotated location zk will have a lower confidence label yk which can be set
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Decision Boundary

Feature Space
Patch Encoding

ICA image

LGD image

Patch Encoding

Figure 6.2 ICA-vs-LGD image patch classification with reference patches (circles) and
candidate patches (rectangles).

to:

yk = a(Sk,Sr) yr, (6.1)

where a(·, ·) ∈ (0, 1] is a measurement of affinity between two image patches. The

absolute value of yk can be viewed as a confidence measurement.

As patches sampled at locations near to each other usually belong to the same class,

the reference patch of Sk can be set as the nearest annotated patch Sr. Affinity a(·, ·) is

defined as a Gaussian function with regard to spatial displacement of Sk and Sr in the

image and a scaling parameter σ, i.e.,:

a(Sk,Sr) = exp(−
∥zk − zr∥

2

σ2 ). (6.2)

Another way to define a(·, ·) is to consider similarity in feature space. Assuming

feature xr is extracted from reference patch Sr and xk from Sk, we can define the

feature-based affinity with a scaling parameter δ as:

a(Sk,Sr) = exp (−
∥xk − xr∥

2

δ2 ). (6.3)

Note that a(·, ·) can be extended to use multiple reference patches. σ and δ are

free parameters modelling how fast the confidence decreases when the distance from

candidate to reference patch increase. Here we assign only one (the nearest) reference

patch for each candidate patch.
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6.3.2 Contextual relevance ranking model

Let xi ∈ Rd, i = 1, · · · ,N denote a feature vector extracted from an image patch

indexed by i. We assign the label yi ∈ {1,−1} if the i-th feature vector is from a

reference patch; otherwise we set yi according to formula (6.1). We form the ranking

model by optimising a regularised margin-based problem:

min
w, b

λ

2
||w||2, (6.4)

s.t.
1
yi

(wT xi + b) ≥ 1, ∀xi ∈ X, (6.5)

wT xi − wT x j ≥ Ri j, ∀xi ∈ X+, x j ∈ X−, (6.6)

where X+ = {xk : 0 < yk ≤ 1}, X− = {xk : −1 ≤ yk < 0} and X = X+∪X−. The pairwise

contextual relevance Ri j of two patches Si and S j is defined as:

Ri j =
a(Si,Sir)a(S j,S jr)

a(Si,Sir) + a(S j,S jr)
, (6.7)

where the patches Sir and S jr are the reference patches of Si and S j respectively.

Constraints (6.5) are for all feature vectors in the training set. Note that in (6.5) features

from candidate patches yk are loosely constrained compared to their reference patches

yr ∈ {−1, 1} because |yk| ∈ (0, 1). Constraints (6.6) rank a pair of patches from two

images with regard to their contextual relevance. We argue that patches sampled

nearer to annotated locations (in image or feature space) should be classified with a

larger score, i.e., further away from decision boundaries. The constraints keep a large

projected distance between any data point with high magnitude in y and the data points

in the opposite class. In the case that pair (xi, x j) is labelled with certainty, i.e., yi = ±1

and y j = ±1, the pairwise constraint (6.6) vanishes due to constraint (6.5). Figure 6.3

illustrates the geometric interpretation of this model.

Given a training set, the optimisation problem can be transformed into a dual form

of w by constructing a new feature set with (xi−x j)
Ri j

. Then this can be solved by any
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Figure 6.3 Geometric interpretation of the contextual relevance ranking model. w
is the weight vector; point k is a feature vector extracted from a reference patch. r
refers to the differences of ranking score between data point k and points in the other
class (projected along the direction of w). Constraints in formula (6.5) were designed
for minimising the classification error; constraints in formula (6.6) were designed for
optimising the ranking difference r.

SVM dual form solver, e.g., LIBSVM, SVMlight. However, this method is very slow

and constructing feature set (xi−x j)
Ri j

across all the pairwise constraints is infeasible for

our problem because the set of candidate patches is large. Here we tackle the primal

form directly with a recently proposed efficient stochastic gradient method, SAG [124].

This method enables us to learn features online and with minimal storage cost.

To solve the optimisation problem we minimise function (6.4) while controlling

constraint violations in (6.5) and (6.6). The risk function J(w, b) on training features

{xi}
N
i=1 and labels {yi}

N
i=1 can be written as:

J(w, b) =
λ

2
||w||2 +

1
N+N−

∑
xi∈X+

∑
x j∈X−

( fi + f j +Cgi j); (6.8)

where: fi = f (
1
yi

(wT xi + b)), f j = f (
1
y j

(wT x j + b)), (6.9)

gi j = g(wT xi − wT x j − Ri j). (6.10)

The loss term f (·) corresponding to constraints (6.5) is the squared hinge loss:

f (t) = max(0, 1 − t)2; (6.11)
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Figure 6.4 Demonstration of loss functions: (a) squared hinge loss f (t), (b) Huber loss
gh(t), and (c) smoothed hinge loss gs(t).

the loss term g(·) corresponding to constraints (6.6) can be a Huber loss function:

gh(t) =


0 if t ≥ 0

−2t − 1 if t < −1

t2 otherwise

, (6.12)

or a smoothed hinge loss function:

gs(t) =


0 if t ≥ 0

−t − 1
2 if t < −1

1
2 t2 otherwise

. (6.13)

In risk function J(w, b), parameter λ is the regularisation strength; C ≥ 0 controls

the trade-off between classification errors and ranking errors; N+ and N− are the number

of positive and negative samples respectively. Figure 6.4 illustrates the loss function

used in J(w, b). The squared hinge loss is much more sensitive to outliers and large

errors than the smoothed hinge and Huber loss. It is applied to patch classification to

ensure the risk function is sensitive to every training label. The latter two functions are

choices for the pairwise ranking errors. OPT images of colorectal polyps usually involve

large intra-class variations so we expect the pairwise outliers would not dominate the
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risk function. There are other loss functions that meet our requirements [122]. We

chose these convex and smooth functions as they can be efficiently integrated into SAG.

To apply SAG methods for minimising J(w, b) iteratively, at each iteration w is

updated with an average of the gradient of a randomly selected training pair (xi, x j) and

most recently computed gradients of the other training pairs. At the (k+1)th iteration

the updating rule with a small step size αk has the form:

wk+1 = (1 − αkλ)wk −
αk

N+N−
∑

xi∈X+

∑
x j∈X−

gradk
i j, (6.14)

where for the training pair (ik, jk), we set:

gradk
i j =


f ′i + f ′j +Cg′i j if(i, j) = (ik, jk)

gradk−1
i j otherwise

. (6.15)

For the bias term b, we simply extend each feature vector with one bias component

(from x to [x; b]) in each iteration. This method has an exponential convergence rate

and with a few implementation tricks (described in [124]) we reduce the storage cost

to O(N+N−). This allows the method to scale to large datasets.

6.4 Evaluation

In this section we evaluated two aspects of the proposed model in terms of patch

classification performance: (1) the ability to utilise both labelled and unlabelled patches

(reference and candidate patches), compared with not using unlabelled patches, and

using unlabelled patches naively (standard SVM); (2) the choice of loss function and

affinity measurement. The experiments were conducted in two classification settings:

(1) ICA-vs-LGD classification, and (2) ICA-vs-rest classification.
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Experimental setup

In the experiments, we applied 10-fold cross-validation. 10 iterations of training and

testing were performed such that within each iteration one fold was used as test set.

The performance in terms of averaged area under the ROC curve (AAUC) values was

averaged over the 10 iterations as the performance measure (as illustrated in Figure 5.2).

Test patches were randomly sampled from annotated regions in the test folds. In the

training sets, the partial annotation process was simulated by randomly sampling point

locations within the pathologist-annotated regions. These annotations were confirmed

by the pathologist. Candidate patches were randomly sampled in the training set.

With reference and candidate patches, three types of models were trained:

• T1 (standard supervised settings without candidate patches): training with

only reference patches, using standard SVM (denoted as SVM.REF).

• T2 (standard supervised approach with candidate patches): training with

both reference and candidate patches, using standard SVM. Labels of candidate

patches can be assigned with either feature-based or location-based affinity

(formula (6.2) or (6.3)) (denoted as SVM.ALL).

• T3 (proposed approach with candidate patches): using our proposed model

with both reference and candidate patches. We evaluated four combinations of

different loss functions (formula (6.12) and (6.13)) and affinities (formula (6.2)

and (6.3)) (denoted as PROP.HUBER and PROP.SQU).

Method T2 used candidate patches in a standard SVM by assuming their labels are

binary. The binary labels were determined by their reference patches according to

formula (6.2) or formula (6.3). Method T3 considered the confidences of candidate

patches using the proposed contextual ranking framework.

For feature extraction we used bag-of-words encoding with random projection since

this achieved high classification accuracies in Chapter 5. The dimensionality of each



83

feature vector was 200. Each feature was normalised to zero mean and unit variance. In

all standard SVM evaluations, we used the LIBLINEAR [44] solver that solves the ℓ2

regularised squared loss primal problem (with regularisation parameter searched from

10−7 to 107 and eps = 0.01). In our proposed method, C searched from 10−10 to 10−5,

λ = 1
N+N− , b = 0, and the stochastic gradient step size was set to 0.004. The scaling

factors were estimated from standard deviation of all distances (∥zk − zr∥ or ∥xk − xr∥)

between reference patches and candidate patches in the training set (σ = 158.1 in

formula (6.2), δ = 7071.1 in formula (6.3)).

6.4.1 Cancer-vs-LGD classification

As a preliminary experiment, the proposed method was initially validated with ICA-

vs-LGD classification using OPT images from 59 patients (30 LGD and 29 ICA). We

started with a training set with only 2 reference patches sampled at the click locations

and 40 candidate patches sampled outside the annotated regions for each training image

— the candidate patches were sampled so that we have no knowledge of the ground

truth labels of these patches.

The models were learned using T1, T2 and T3 methods respectively and the

classification performance was evaluated on the test patches. Then we added more

reference patches and their associated candidate patches. At each iteration 2 reference

and about 15 candidate patches per image were added. Such iterations were repeated

20 times till there were about 1, 500 reference patches in the training set. At the final

iteration the number of training patches was about 10, 000.

Figure 6.5 shows AAUC values depending on the number of reference patches per

training image at patch size 21 × 21 × 21 and 81 × 81 × 81 respectively. We list the

AAUC values depending on number of reference patches per image in Table 6.1. In

Figure 6.5, AAUC is generally higher at patch size 81×81×81 than 21×21×21. With

more than 10 reference patches per image (530 reference patches, about 3,000 training

patches in total) the classification performances of all the methods saturated. With both
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Figure 6.5 AAUC values (ICA-vs-LGD) depending on number of reference patches
with location-based and feature-based affinity measurements.

location-based and feature-based affinity the SVM.ALL method showed the same or

slightly higher AAUCs than the SVM.REF method. This indicates that simply feeding

uncertain patches to standard SVM does little to help patch classification performance.

The information presented in uncertain patches was not utilised effectively by standard

SVM. The proposed methods performed relatively well with small training sets

indicating that they were making effective use of the unannotated patches. AAUCs of

all methods converged to similar values when number of reference patches reaches 20

per image.

For both affinity-based experiments, the proposed models with Huber loss and

smoothed hinge loss showed almost the same AAUCs. However, our grid search of

parameters showed that the best parameters C are quite different (C = 10−4 for Huber

loss and C = 10−2 for smoothed hinge loss).
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Table 6.1 Cancer-vs-LGD classification performance comparison between standard
SVM and proposed model. AAUC values ± standard errors depending on the number
of reference patches per image.

((a)) Feature-based Affinity, at patch size 21 × 21 × 21.

# Clicks Per Image 2 4 8 12
SVM.REF 0.72 ± 0.029 0.77 ± 0.014 0.80 ± 0.023 0.83 ± 0.021
SVM.ALL 0.71 ± 0.022 0.78 ± 0.030 0.83 ± 0.022 0.84 ± 0.023
PROP.HUBER 0.78 ± 0.022 0.83 ± 0.020 0.85 ± 0.019 0.86 ± 0.016
PROP.SQU 0.78 ± 0.023 0.83 ± 0.018 0.86 ± 0.018 0.85 ± 0.019

((b)) Location-based Affinity, at patch size 21 × 21 × 21.

# Clicks Per Image 2 4 8 12
SVM.REF 0.72 ± 0.029 0.77 ± 0.014 0.80 ± 0.023 0.83 ± 0.021
SVM.ALL 0.69 ± 0.022 0.78 ± 0.030 0.80 ± 0.022 0.84 ± 0.023
PROP.HUBER 0.74 ± 0.022 0.81 ± 0.020 0.82 ± 0.019 0.86 ± 0.016
PROP.SQU 0.75 ± 0.023 0.82 ± 0.018 0.82 ± 0.018 0.86 ± 0.019

((c)) Feature-based Affinity, at patch size 81 × 81 × 81.

# Clicks Per Image 2 4 8 12
SVM.REF 0.79 ± 0.028 0.84 ± 0.037 0.87 ± 0.027 0.89 ± 0.026
SVM.ALL 0.77 ± 0.040 0.81 ± 0.034 0.87 ± 0.023 0.90 ± 0.014
PROP.HUBER 0.86 ± 0.026 0.85 ± 0.021 0.87 ± 0.024 0.88 ± 0.025
PROP.SQU 0.86 ± 0.025 0.85 ± 0.022 0.87 ± 0.025 0.89 ± 0.026

((d)) Location-based Affinity, at patch size 81 × 81 × 81.

# Clicks Per Image 2 4 8 12
SVM.REF 0.79 ± 0.027 0.84 ± 0.037 0.87 ± 0.027 0.89 ± 0.026
SVM.ALL 0.79 ± 0.040 0.85 ± 0.028 0.86 ± 0.032 0.89 ± 0.022
PROP.HUBER 0.87 ± 0.021 0.86 ± 0.026 0.90 ± 0.022 0.91 ± 0.017
PROP.SQU 0.88 ± 0.021 0.87 ± 0.024 0.89 ± 0.022 0.90 ± 0.019

6.4.2 Cancer-vs-rest classification

In addition to the ICA-vs-LGD classification, the experiments were extended to include

the high-grade dysplasia (HGD) class. 90 images were used with 30 from each of the

three classes (LGD, HGD and ICA). The aim of this experiment was a fair comparison

using the same setting described in Chapter 5, except that the classification models

were trained with partial annotations in this experiment.



86

Feature−based Location−based

●
●

● ●
● ● ●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●
● ●

●
●

●
●●

● ●

● ●
●

● ● ● ●

● ● ●

●
●

●
● ●

●

●

● ● ●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

● ●
●

● ● ● ●

0.7

0.8

0.9

0 5 10 15 20 0 5 10 15 20
Number of clicks per image

A
A

U
C

Type ● ● ● ●SVM.REF SVM.ALL PROP.HUBER PROP.SQU

Figure 6.6 AAUC values (ICA-vs-rest) depending on number of reference patches with
location-based and feature-based affinity measurements.

Table 6.2 Cancer-vs-rest classification performance comparison between standard SVM
and proposed model. AAUC values ± standard errors depending on the number of
reference patches per image.

((a)) Feature-based Affinity, at patch size 81 × 81 × 81.

# Clicks Per Image 2 4 8 12
SVM.REF 0.81 ± 0.032 0.81 ± 0.032 0.82 ± 0.030 0.83 ± 0.030
SVM.ALL 0.68 ± 0.021 0.72 ± 0.025 0.80 ± 0.029 0.79 ± 0.032
PROP.HUBER 0.81 ± 0.025 0.81 ± 0.020 0.83 ± 0.023 0.83 ± 0.020
PROP.SQU 0.80 ± 0.025 0.82 ± 0.021 0.83 ± 0.022 0.84 ± 0.020

((b)) Location-based Affinity, at patch size 81 × 81 × 81.

# Clicks Per Image 2 4 8 12
SVM.REF 0.81 ± 0.032 0.81 ± 0.032 0.82 ± 0.030 0.83 ± 0.030
SVM.ALL 0.71 ± 0.036 0.73 ± 0.036 0.81 ± 0.031 0.83 ± 0.027
PROP.HUBER 0.81 ± 0.026 0.82 ± 0.026 0.85 ± 0.018 0.83 ± 0.021
PROP.SQU 0.81 ± 0.026 0.82 ± 0.025 0.85 ± 0.019 0.83 ± 0.020

A binary ranking model was evaluated by treating ICA as the positive training

samples and both LGD and HGD as the negative training samples. We followed

the same procedure of adding reference patches into the training process as in the

previous section. Unlike the previous experiments, the candidate patches were sampled

randomly from the training images without using the region annotations. This is a

more realistic approach to obtain the candidate patches. Figure 6.6 shows AAUC

values depending on the number of reference patches per training image at patch size

81 × 81 × 81. We list the AAUC values depending on the number of reference patches

per image in Table 6.2.
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We observed similar trends of classification performance to that in Section 6.4.1. In

terms of AAUC, our method is slightly better than training SVM with only reference

patches (the SVM.REF method). However, it is often much better than simply adding

uncertain patches into the training set (the SVM.ALL method). The difference between

different loss functions, i.e., between the PROP.HUBER and the PROP.SQU method

was very small. The overall highest AAUC achieved, by using the location-based

affinity measure was 0.85 ± 0.19 at 8 clicks per image. Not surprisingly, the AAUC

is lower than that of using all the fully labelled image patches in supervised settings

described in Section 5.6, where AAUC 0.876 was achieved for cancer-vs-rest patch

classification.

6.5 Summary

A learning model was proposed for partially annotated images. The experiments

conducted on cancer-vs-LGD and cancer-vs-rest classifications showed that it is able

to robustly learn from patches with uncertain labels, achieving high classification

performances while reducing the annotation effort. At the same time, the proposed

model can be efficiently evaluated with only O(N+N−) in storage cost. Therefore it is

suitable for high-resolution, volumetric datasets.



Chapter 7

Cancer detection with image-level

annotations

7.1 About this chapter

The previous chapter described training a cancer detector with click annotations;

this chapter presents training with image-level annotations using a multiple instance

learning (MIL) framework. MIL has recently been applied to histopathology image

analysis for both segmentation and classification tasks [80, 150]. MIL methods can

potentially infer cancerous regions with image-level annotation, i.e., binary labels

indicating whether cancer is present in the image. The MIL formulation is attractive as

it does not require the effort of manually delineating image regions.

The general MIL inference rules are defined in the context of binary classification:

a bag of instances is positive if at least one instance in the bag is positive, negative if

all of the instances in the bag are negative. A common implementation of the rules in

image classification treats each image as a bag, and regions in an image as instances.

In terms of histopathology image analysis, an example application is to label an image

as cancer if cancer is present in at least one region of the image, and as non-cancer

otherwise.
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In this chapter, following the MIL setting, we propose a novel tree boosting algo-

rithm for training a cancer detector. Our algorithm extends multiple instance boosting

(MILBoosting) [154] by boosting regularised trees with instance-to-prototype distances

as features. The discriminative prototypes in our algorithm are searched by solving a

submodular set cover problem. Our approach is validated with 2-D OPT image frames,

3-D OPT volumes, as well as a public dataset of breast cancer tissue microarray (TMA)

images.

7.2 Related work

Although MIL has been extensively studied since [102] and there exists a large literature

(for a general review of MIL, see [7]), it was only recently applied to histopathology

image analysis. Here we give a brief review of some of the most relevant work.

Zhao et al. [159] applied multiple-instance learning via embedded instance selection

(MILES) [25] for 10 category histopathology image classification. Xu et al. [150]

extended MILBoosting [154] to simultaneously detect and cluster multiple types of

tissue region in TMA images. Kandemir et al. [79] evaluated MIL formulations on

diagnosis of Barrett’s cancer with H&E images. Xu et al. [148] used MIL to classify

colon cancer histopathology images with features extracted from convolutional neural

networks.

Selecting instances as prototypes for bag classification was used previously with

bags represented in terms of distances to prototypes [25, 51]. Our work extends

MILBoosting to select prototypes with instance-to-prototype distances. We search

a set of positive instance prototypes that is both discriminative and covers multiple

modes of the appearance distribution. Instance-to-prototype distances are considered

as features. A regularised regression tree boosting method is proposed to further select

and combine the features.
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Prototypes should satisfy three criteria; they should be (1) relevant: present in

many positive images, (2) discriminative: dissimilar to negative instances, and (3)

complementary: covering multiple types of positive instances. Song et al. [134]

formalised these intuitions as a submodular set cover problem solved by a greedy

algorithm. The set of prototypes was used as an initial training set for latent SVM. In

this chapter, we adopt the ‘discriminativeness’ of each prototype as a regularisation

strength in the MILBoosting framework.

7.3 Methods

7.3.1 Notation

Here we introduce the notation adopted throughout the chapter. We denote xi j ∈ Rd

as a d-dimensional feature representation of an instance (patch). Index i j represents

the jth instance in the ith bag (image). yi ∈ {0, 1} represents the label of the bag, where

0 denotes non-cancer and 1 denotes cancer. The kth prototype pk ∈ Rd is an instance

selected from the training instance set. In the following sections we introduce the two

steps of our proposed method: searching for a set of discriminative prototypes and

learning cancer detectors.

7.3.2 Discriminative prototypes

The discriminativeness of a prototype g(pk) can be estimated as follows [134]: first find

the m nearest neighbours of pk from the set of training instances {xi j}; then, counting the

number of neighbours from the positive bags (denoted as mpos), the ratio mpos/m can

be a measurement of discriminativeness. Greedy search for a set of prototypes starts

with an empty set of prototypes and a candidate set comprising all training instances.

The most discriminative instance from the candidate set is then added to the prototype

set, at the same time removing the prototype’s m nearest neighbours from the candidate
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set. This is repeated until the candidate set is small enough (e.g., only 10% of initial

candidates remain).

Song et al. [134] used the prototypes as an initialisation set for training latent SVM.

We propose to combine the set of prototypes in a boosting framework. We further

select prototype subsets and simultaneously learn an instance classifier by boosting

regularised trees where we utilise g(pk) as the regularisation strength.

7.3.3 Boosting with regularised regression trees

In MILBoosting, the instance classifier F(xi j) is formulated as a linear combination of

T weak learners, i.e., F(xi j) =
∑T

t=1 αt ft(xi j), where ft(xi j) gives a score to each instance

xi j; αt is the weight of ft. The probabilities that cancer is present in an instance Pi j and

in a bag Pi are respectively modelled as

Pi j =
1

1 + exp(−F(xi j))
and Pi = 1 −

∏
j

(1 − Pi j). (7.1)

The instance classifier can be estimated by minimising the negative log-likelihood L of

the bag labels:

L(yi, F(xi j)) = − log
∏

i

Pyi
i (1 − Pi)(1−yi). (7.2)

Using the gradient boosting framework [49], L can be optimised by iteratively fitting

weak learners ft and optimising coefficients αt. We adopt J-terminal regression trees as

weak learners with a boosting shrinkage parameter ν [67]. However, instead of fitting

regression trees to the feature set {xi j}, we first represent each instance in terms of

distances to prototypes, i.e.,

x̂i j = [d(xi j,p1), . . . , d(xi j,pk)], (7.3)

where d(., .) is a distance measure, e.g., ℓ2-distance. Regression trees are then con-

structed on the new feature set {x̂i j}. Each of the regression trees partitions the feature
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space into disjoint regions. The best variables to split and the optimal thresholds of the

tree are searched by maximising information gain. In {x̂i j} each variable is associated

with a prototype pk. Our method encourages trees constructed on {x̂i j} to split at those

variables that are associated with large g(pk). The motivation is to further select proto-

types so that regression trees split at a few very discriminative prototypes, instead of

splitting at many non-informative prototypes which could result in poor generalisation.

We introduce regularisation to properly control the variable to split in the tree

construction process. The method we adopted is guided regularisation for tree con-

struction [36]. It was first proposed as a feature selection technique integrated in

a random forest classifier; the selection of variables was guided by pre-computing

variable importance from a preliminary random forest training. Here we combine the

regularisation method with boosting trees. We utilise the discriminativeness g(pk) as

the regularisation strength instead of a preliminary random forest training.

Specifically given a set of K prototypes, we normalise g(pk) as

ĝ(pk) =
g(pk)

maxK
k=1 g(pk)

; (7.4)

when the tree chooses to split on the kth feature of {x̂i j}, the information gain is

regularised by a function of ĝ(pk):

GR(k) = ((1 − λ)γ + λĝ(pk))Gain(k), (7.5)

where λ ∈ [0, 1] is a free parameter to control the overall regularisation; γ ∈ [0, 1] is a

base regularisation coefficient. We calculate Gain(k) as the reduction of variance at all

leaf nodes when splitting at the kth feature. The regularised regression tree can directly

utilise discriminativeness to control the regularisation strength via Formula (7.5). The

tree-based feature selection can capture non-linear variable interactions if J > 2. We

set J = 4, γ = 1, and grid search for λ in our experiments. Algorithm 1 summarises the

proposed procedure.
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Algorithm 1 Summary of the proposed algorithm
1: procedure Boosting prototypes({xi j}, {yi}, ν, J,T )
2: {pk} ← Greedy search for prototypes (Section 7.3.2)
3: {x̂i j} ← Transform {xi j} with {pk} (Formula (7.3))
4: for t ← 1 · · · T do
5: for all i,j do
6: Compute rt

i j ← −
∂L
∂ f

∣∣∣
f= ft−1

7: end for
8: Fit a J-terminal regression tree ft to rt

i j (regularised by Formula (7.5))
9: Line search: αt ← arg minα L(yi, Ft−1(x̂i j) + α ft)

10: Update classifier: Ft ← Ft−1 + ναt ft (shrinkage ν is a fixed parameter)
11: end for
12: return instance classifier FT

13: end procedure

7.4 Evaluation

We evaluated the proposed method on cancer detection at (1) image level (predicting

the presence of cancer in an unseen image) and (2) region level (localising the cancer

region in an image). Two datasets were used in the experiments: a breast cancer TMA

dataset and the colorectal polyps OPT dataset. For the OPT dataset, we evaluated MIL

in two annotation configurations: the first is treating 2-D slice of OPT as bag, i.e., in

the training stage, slice is manually labelled as either cancer or non-cancer. The second

is treating sub-volumes of OPT as bags, i.e., label provided in the training stage only

consists of whether cancer presented in a sub-volume of OPT polyp.

7.4.1 Experiments with breast cancer TMA images

The TMA dataset consists of 58 TMA breast cancer images stained with H&E. 26

images are diagnosed as malignant, 32 as benign. For a fair comparison we used

the feature sets made publicly available1 by Kandemir et al. [80]. Each image was

divided into 49 equally-sized instances. Each instance was further encoded with a

708-dimensional feature vector. The feature vector composed of SIFT descriptors,

local binary patterns, colour histograms, as well as cell-level morphological features.

1Link: http://www.miproblems.org/datasets/ucsb-breast/
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Table 7.1 Cancer detection performance at image level measured with AAUC.

Method GPMIL [80] RGPMIL [80] Proposed
AUC 0.86 0.90 0.93

Since the location information of each instance is not available in the feature set, we

focus on image-level performance evaluation.

We follow the 4-fold cross validation protocol used in [80]. For the proposed

method we first applied the set cover search with m = 20. This usually selects 100 to

200 positive prototypes from a total of 1, 500 instances. We set shrinkage parameter ν

to 0.05, and the maximum number of iterations T to 300. The regularisation parameter

λ was searched in the value set {0.1, 0.2, 0.3, . . . , 1.0} with a 10-fold cross validation

on the training folds. Averaged area under the ROC curve (AAUC) was computed as

the image classification performance measure (Table 7.1). The standard error of our

method was 0.04. The equal Error Rate was 0.16± 0.03. Note that Relational Gaussian

Process MIL (RGPMIL) was designed for TMA images by explicitly modelling cells

with a graph. Both GPMIL and RGPMIL outperformed widely-used MIL methods

including EMDD [158], MILBoosting [154] and MI-SVM [11]. As shown in Table 7.1

our method achieved better image-level performance than the top-ranked methods.

7.4.2 Experiments with 2-D OPT slice as bag

2-D slice dataset

To evaluate the feasibility of MIL setting for OPT image classification, we first con-

ducted preliminary experiments by applying the proposed methods on 2-D slices of

OPT image. We evaluated both image- and instance-level cancer detection performance

on 60 OPT images (30 ICA and 30 LGD). The 2-D dataset consists of 200 2-D slices,

with 100 slices randomly selected from ICA polyps and 100 from LGD. Figure 7.1

illustrates the experimental settings. Figure 7.3 shows some of the cancer slices and

their annotations.
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Annotated region OPT image

Training with 2-D slice as bag Test with annotated region

represents a 2-D patch sampling point

OPT Dataset

Evaluating cancer detection: 2-D slice as bag

Figure 7.1 Illustration of evaluating with 2-D OPT slice as bag.

The pathologist was only asked to delineate major cancer regions with relatively

high confidence rather than exhaustively trace all the cancer locations. Part of our

motivation for applying MIL is that complete region-level annotations are difficult

to obtain and validate. As a result, in ICA images, instance labels outside annotated

regions were unknown. In the training stage, since the instance labels are not required

in training MIL classifiers, the region annotations are not used. In the test stage, we

report instance-level test results based on the classifier output over all instances in LGD

images, and all instances that have at least 50% overlap with ICA annotations.

Experimental protocol

We treated each slice as a bag and densely extracted patches as instances. The size

of each instance was 48 × 48 pixels. The sampling step size was 24 pixels in the

training stage, and 12 in the test stage in both horizontal and vertical directions. We

combined local binary patterns, SIFT features, and intensity histograms as instance

features. The set cover search parameter was m = 10. Three-fold cross validation

was conducted with the proposed method using the same grid search of parameters

described in Section 7.4.1. Figure 7.2(a) shows the image-level AUC of the proposed

method plotted against the parameters T and ν on a validation set. The performance in

terms of AUC is not very sensitive to T and ν. Choosing a large T and a small ν tends

to give a high AUC. We set ν to 0.05, and T to 300.
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We also implemented MILBoosting as a baseline. Differences between the proposed

method and MILBoosting are that the latter fits regression trees directly to {xi j} without

transformation and regularisation. In addition to the MIL methods we trained instance-

level support vector machines (Inst-SVM) in a fully supervised setting as a comparison.

In training Inst-SVM, instances with at least 50% overlap with the annotations were

treated as cancer; the instances from LGD images were treated as non-cancer.

Results
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Figure 7.2 Cancer detection at image-level on 2-D slice dataset. (a) AUC of the
proposed method against number of iterations T and shrinkage parameter ν, (b) ROC
curves for the three methods compared.

Table 7.2 Cancer detection at image-level and instance-level (with standard errors).

Method MILBoosting Proposed Inst-SVMs
AUC (image-level) 0.74 ± 0.04 0.79 ± 0.01 0.85 ± 0.03
F-measure (instance-level) 0.41 ± 0.01 0.45 ± 0.03 0.53 ± 0.05

Table 7.2 compares image- and instance-level performance in terms of AUC and F-

measure respectively. Figure 7.2(b) shows ROC curves at image-level. At image-level,

Inst-SVM score was calculated as the maximum score in the image. At instance-level

score thresholds of each method were searched on the training set by maximising
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training F-measures. Our method outperformed MILBoosting in both image- and

instance-level classification. However it was worse than fully supervised classifications,

as would be expected. Figure 7.3 shows a few cancer detection examples.

(a) Slices of OPT images.

(b) Ground truth labels.

(c) Predictions of MILBoosting.

(d) Predictions of the proposed method.

(e) Predictions with fully supervised SVM.

Figure 7.3 Instance-level annotations and predictions. Green patches in third to fifth
rows indicate scores of the instances are greater than the learned threshold. Instances
with higher scores were mapped to higher opacity values.
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7.4.3 Experiments with sub-volume of OPT polyp as bag

Sub-volume dataset

Annotated region OPT image

Training with 3-D volume as bag Test with annotated volume

represents a 3-D patch sampling point

OPT Dataset

Evaluating cancer detection: 3-D volume as bag

Figure 7.4 Illustration of evaluating with 3-D OPT slice as bag.

We further evaluated the proposed method on the entire dataset of 90 OPT images.

Instead of using 2-D slices, our sub-volume dataset for MIL consists of 300 sub-

volumes, with 100 volumes selected from ICA polyps and 200 from LGD and HGD.

The 200 sub-volumes were treated as non-cancer in this experiment. The size of the

sub-volume was 1024×1024×81. The third dimension was set to size 81 in order to use

the same parameter settings and have a fair comparison to the supervised classification

conducted in Section 5.4. Figure 7.4 illustrates the experimental settings.

We cropped the sub-volume so that the black borders outside the polyps were

removed and treated each cropped sub-volume as a bag. 3-D image patches densely

sampled from the sub-volume were treated as instances. The size of each instance was

81 × 81 × 81 voxels. The sampling step size was 40 × 40 voxels in the training stage.

Each instance was encoded with bag-of-words framework using random projection

features (described in Chapter 4).

Different from the previous Section 7.4.2, we follow exactly the same tenfold cross-

validation scheme that was used in the supervised patch classification (Section 5.4) and

in the experiments of learning with partial annotations (Section 6.4.2). In the training

fold, MIL settings was applied to the sub-volume to train 3-D patch classifier, while
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Figure 7.5 ROC curves for sub-volume cancer detection.

in the testing stage the classifier is tested on the delineated regions that were used in

previous experiments in Section 5.4. The ROC curves with the method described in

Section 7.4.2 were reported in Figure 7.5. The average AUC value was 0.81, 0.88, 0.76

for the proposed method, instance-level SVM, and MILBoosting [154].

Table 7.3 Comparison of patch classification performance measured with AAUC values
± standard errors.

Type of annotation AAUC
Region annotation 0.88 ± 0.020
Click annotation 0.85 ± 0.019

Image-level annotation 0.81 ± 0.020

The same cross-validation scheme and test patch set were used for training with

region annotations (Section 5.4), click annotations (Section 6.4.2), and image-level

annotations (this section). The classification performances are compared in Table 7.3.

The cancer-vs-rest patch classification performance increases as the level of details of

the annotation increases.
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7.5 Summary

This chapter introduced a novel multiple instance learning algorithm by combining

discriminative prototype search with boosting of regularised regression trees. Compared

to the work presented in Chapter 6, the requirement of manual annotations was further

reduced to only image level. In the patch-level cancer detector training stage, only

a binary training label was provided in each image that indicates whether cancerous

regions are present in the image. The method is empirically studied for the task

of cancer detection in OPT images. Initially, the method was validated with 200

slices sampled from the OPT dataset. Then the experiments were extended to the full

dataset. In the training stage, binary labels were provided only at the sub-volume level.

Additionally, the proposed methods were validated on a public breast cancer TMA

dataset. All these experiments showed that the proposed method can achieve more

accurate results in both image- and instance-level classification than the state-of-the-art

methods.



Chapter 8

Conclusions

8.1 Summary of contributions

The aim of this research was to investigate automated methods for histological analysis

of colorectal polyps in optical projection tomography. It is the first study on this topic.

Efficient and effective feature extraction and classification methods, as well as the use

of annotations from domain experts when training the systems, were presented.

Chapters 4 and 5 investigated the power of 3-D texture features to discriminate

diagnostic levels of dysplastic change from OPT images, specifically, low-grade dys-

plasia, high-grade dysplasia, and invasive cancer. A patch-based recognition system

was evaluated in both multi-class classification and ordinal regression formulations on

a 90 polyp dataset. 3-D texture representations computed with a hand-crafted feature

extractor, random projection, and unsupervised image filter learning were compared

using the bag-of-words framework. The classification performance was measured

in terms of error rates, F-measures, and ROC surfaces. Results demonstrated that

randomly projected features were the best among the three texture representations. Dis-

crimination was improved by carefully manipulating various important aspects of the

system, including class balancing, output calibration and approximation of non-linear

kernels. This work was published at the medical image understanding and analysis
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(MIUA) conference 2013 [88] and the international symposium on biomedical imaging

(ISBI) 2013 [90].

Annotations delineating regions of interest can provide valuable information for

training medical image classification and segmentation methods. However the process

of obtaining annotations is tedious and time-consuming, especially for high-resolution

volumetric images. In Chapter 6, a novel learning framework to reduce the requirement

of manual annotations while achieving competitive classification performance was

presented. With images annotated with a few clicks, an image patch-based ranking

model was developed to utilise the contextual information near the clicked locations.

The results show that the proposed method can robustly infer patterns from partially

annotated images with low computational cost. This is joint work with Dr. Wei-shi

Zheng (Sun Yat-sen University) and has been published at the international conference

on medical image computing and computer-assisted intervention (MICCAI) 2013 [91].

Learning cancer detectors using only image-level annotations is a very attractive

yet challenging problem. Since it does not require the effort of manually delineating

cancer regions, in practice it is more applicable than using the supervised learning

setting. In Chapter 7, a novel multiple instance learning algorithm for cancer detection

in colorectal polyp images was presented. With images labelled at slice level or sub-

volume level, we first searched a set of image patch level prototypes by solving a

submodular set cover problem. Regularised regression trees were then constructed

and combined on the set of prototypes using a multiple instance boosting framework.

The method compared favourably with competing methods in experiments on OPT

images as well as on a public breast cancer tissue microarray dataset. This work

has been accepted by the International Conference on medical image computing and

computer-assisted intervention (MICCAI) 2015 [89].

In Chapter 5 we showed that by training the classification system with the regions

annotated by the pathologist, an AAUC value of 0.88 was achieved for the task of

cancer-vs-rest image patch classification (the ‘rest’ class consisted of LGD and HGD).
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In Chapter 6, by using only eight mouse clicks per image, we have achieved an AAUC

value of 0.85 for the same task. In Chapter 7, with only binary labels indicating whether

cancer was present, an AAUC of 0.81 was achieved.

8.2 Limitations

8.2.1 Polyp analysis in OPT

Compared to the emerging study of using OPT for colorectal polyp analysis, extensive

literature exists on automatic analysis of more traditional histopathology images for a

range of analysis tasks, clinical settings, and disease types. However, we are not aware

of a suitable study with which to make direct comparisons (i.e., patch discrimination

between LGD, HGD and ICA in colorectal polyps). The proposed system achieved

promising performance in discriminating OPT image patches. Further improvements

and incorporation into software tools would be needed to enable translation or adoption

for clinical research. Larger datasets of annotated images would be needed to train and

validate such tools because the visual appearance of dysplastic change is complex and

the variations across polyps are large.

It is worth noting that inter-observer variation exists in polyp diagnosis with

OPT [27]. In order to minimise the effect of such variation and uncertainty in our

study, the ground truth was annotated within high confidence regions by only one

experienced pathologist rather than trying to delineate accurate region boundaries. The

annotated regions were meanwhile cross-checked and calibrated with the corresponding

H&E slices to ensure the confidence of the obtained ground truth. Nevertheless, there

may still exist some uncertainty in the ground truth. Quantifying this using multiple

pathologists would be interesting for a future study.

The image regions outside the annotated areas may contain a mixture of dysplasia,

invasive cancer, and other components (e.g., stroma and connective tissue). However,
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the actual labels were unknown in the current dataset. This has prevented us from

quantitatively validating our algorithms by labelling every voxel.

8.2.2 Partial annotations

Chapter 6 investigated training OPT patch classifiers using click annotations in a binary

classification setting. In the training stage, each click and its context — either in terms

of patch locations or in the patch feature space — were modelled individually without

considering their mutual relations. In order to fully utilise the click information, this

could be extended to incorporate multiple clicks per image by constructing a joint

confidence map (e.g., using a mixture of Gaussians model).

8.2.3 Weakly supervised image analysis

In the multiple instance boosting algorithm proposed in Chapter 7, we have treated each

cropped sub-volume of the OPT images as a bag. This was computationally feasible as

each bag only contains about 200 instances. However, we were not able to use each

OPT image as a bag because it would lead to a large number of instances per bag. In

future work, it would be interesting to extend the algorithm to learn from very large

bags.

The level of complexity in manual annotations was largely reduced, from delin-

eating regions to mouse clicks, and further to image-level binary labels. However

systematically quantifying the time taken to annotate OPT images, according to anno-

tators’ experiences and the complexity of polyps’ appearances, can be an interesting

future direction.

8.3 Future work

It would be important to compare and contrast the automated analysis of OPT with the

gold standard H&E section using fully annotated datasets. Ideally, to make a rigorous
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comparison of the microscopy imaging and analysis methods, detailed annotations

would be needed for the images of the same polyp obtained with both imaging methods.

Automatic histology analysis methods could be applied to generate segmentation scores

with respect to each pixel or voxel for each image. The differences between the seg-

mentation results and the annotations could be quantified and compared. Furthermore,

the comparative studies of OPT images and H&E sections could include (1) polyp

image registration using the H&E section and the virtual section of OPT, (2) transfer of

the domain knowledge from H&E sections to analysis of OPT images, and vice versa,

(3) fusion of histological analysis of both modalities to achieve a better diagnosis. For

colorectal cancer research, these studies would potentially improve our understanding

of colorectal polyps; for clinical applications, it would be interesting to investigate

whether providing a synchronised visualisation of colorectal polyps using both H&E

section and 3-D OPT images could improve the accuracy of diagnosis. OPT enables

access to polyps’ surface morphology and internal structure at the same time. In the

future, one interesting direction is to combine morphological analysis of colorectal

polyp surfaces (e.g., [156, 157]) with 3-D texture analysis.

The contextual ranking model was trained with a stochastic gradient descent method

that can be updated online. Extending the algorithm to learn the model in an interactive

manner would be an interesting direction. For example, the cancer detector could

be trained in an active learning setting. The machine could identify a few hard or

informative training examples and asks the annotator to provide clicks. These clicks

can then be used to update the classification model online.

To reduce the annotation effort while training a good quality classification model,

weakly supervised learning has shown promising results in this research. However,

in both weakly supervised settings cubic image patches were used. In future, other

approaches for generating regions or segments of interest using appearance information

may be considered [142].
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The feature extraction process is unsupervised in this research. In the future,

learning feature extractors and classification models simultaneously would be an

interesting direction. Recently deep learning techniques have yielded promising results

in learning image representations from large datasets. Applying such techniques to OPT

datasets would be an interesting direction. Moreover, instead of only learning from the

three discrete class labels (LGD, HGD and ICA), the system output space could be

extended to consider continuous labels reflecting the dysplastic changes. Further, the

output could be extended to be a detailed clinical histology report with various items

(classification with structured output).

The features extracted by the systems are difficult to interpret. One interesting

research direction is to develop data mining algorithms that learn semantically meaning-

ful visual clues or concepts from the images annotated at image-level [83, 106]. Since

the accuracy of interpreting OPT images depends on the experience of the pathologist,

visual concepts summarised from large-scale OPT datasets are potentially useful for

pathologist training purposes. In order to train the pathologists to identify cancerous

regions in OPT, a collection of representative regions searched from a large polyp

database would be useful. Manually collecting the regions can be very laborious and

difficult due to the large variations across the polyps. Automatically mining for the

discriminative and semantically meaningful features or regions could be an efficient

alternative.



Appendix A

List of publications

The following publications have resulted from work described in this thesis.

• Classification of colorectal polyp regions in optical projection tomography

Li W, Zhang J, McKenna S J, Coats M, Carey F A (2013)
International Symposium on Biomedical Imaging (ISBI), San Francisco

• Learning from partially annotated OPT images by contextual relevance ranking

Li W, Zhang J, Zheng W, Coats M, Carey F A, McKenna S J (2013)
International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), Nagoya

• Comparative analysis of feature extraction methods for colorectal polyp images in

optical projection tomography

Li W, Coats M, Zhang J, McKenna S J (2013)
Medical Image Understanding and Analysis (MIUA), Birmingham
Best student paper

• Multiple instance cancer detection by boosting regularised trees

Li W, Zhang J, McKenna S J (2015)
International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), Munich

• Discriminating dysplasia: Optical tomographic texture analysis of colorectal polyps

Li W, Coats M, Zhang J, McKenna S J (2015)
Medical Image Analysis 26 (2015) 57-59
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The following is a list of contributions to other publications during the PhD period.

• Multi-scale analysis of the surface morphology of colorectal polyps from optical

tomography

Zhang J, Zhang J, Coats M, Li W, Carey F A, McKenna S J (2015)
Computer Methods in Biomechanics and Biomedical Engineering: Imaging &
Visualization

• HEp-2 cell classification using multi-resolution local patterns and ensemble SVMs

Manivannan S, Li W, Akbar S, Wang R, Zhang J, McKenna S J (2014)
1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence
Images (I3A) International Conference on Pattern Recognition (ICPR), Stockholm
Winner of International Contest on Performance Evaluation of I3A Systems, Task 1

• HEp-2 specimen classification using multi-resolution local patterns and SVM

Manivannan S, Li W, Akbar S, Wang R, Zhang J, McKenna S J (2014)
1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence
Images (I3A) International Conference on Pattern Recognition (ICPR), Stockholm
Winner of International Contest on Performance Evaluation of I3A Systems, Task 2

• Brain tumor region segmentation using local co-occurrence features and conditional

random fields

Manivannan S, Shen H, Li W, Annunziata R, Hamad H, Wang R, Zhang J (2014)
Brain Tumor Digital Pathology Segmentation Challenge MICCAI, Boston
Best Performing Runner-up

• An automated pattern recognition system for classifying indirect immunofluores-

cence images of HEp-2 cells and specimens

Manivannan S, Li W, Akbar S, Wang R, Zhang J, McKenna S J (2015)
Pattern Recognition
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